
Public-Coin, Complexity-Preserving,
Succinct Arguments of Knowledge for NP

from Collision-Resistance

Cody Freitag1(B), Omer Paneth2, and Rafael Pass3

1 Northeastern University, Boston, USA
c.freitag@northeastern.edu

2 Tel Aviv University, Tel Aviv, Israel
omerpa@mail.tau.ac.il

3 Tel Aviv University & Cornell Tech, Tel Aviv, Israel
rafaelp@tau.ac.il

Abstract. Succinct arguments allow a powerful (yet polynomial-time)
prover to convince a weak verifier of the validity of some NP state-
ment using very little communication. A major barrier to the deploy-
ment of such proofs is the unwieldy overhead of the prover relative to
the complexity of the statement to be proved. In this work, we focus
on complexity-preserving arguments where proving a non-deterministic
time t and space s RAM computation takes time Õ(t) and space Õ(s).

Currently, all known complexity-preserving arguments either are
private-coin, rely on non-standard assumptions, or provide only weak
succinctness. In this work, we construct complexity-preserving succinct
argument based solely on collision-resistant hash functions, thereby
matching the classic succinct argument of Kilian (STOC ’92).

1 Introduction

In an interactive proof system, a powerful prover tries to convince a weak veri-
fier the validity of some statement over potentially many rounds of interaction.
In order to be meaningful, such a protocol needs to satisfy completeness—an
honest prover will successfully convince the verifier of a true statement—and
soundness—a cheating prover cannot convince the verifier of a false statement
(at least with high probability). Proof systems where soundness only holds with
respect to computationally bounded (i.e. polynomial-time) provers are known as
arguments. In this work, we focus on succinct arguments where the verifier’s run-
ning time and the communication between the prover and verifier are extremely
small, essentially independent of the complexity of the underlying statement.

Building upon the machinery of probabilistically checkable proofs (PCPs)
[2], Kilian [58] gave the first succinct argument for NP, where soundness only
relies on the existence of a collision-resistant hash function (CRH). Even though
the prover in Kilian’s protocol is theoretically “efficient”—the prover runs in

c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14654, pp. 112–141, 2024.
https://doi.org/10.1007/978-3-031-58737-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58737-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-58737-5_5

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 113

polynomial-time as a function of the complexity of underlying NP statement—
the concrete overheads of PCPs have made such an argument system pro-
hibitively expensive in practice. Over the last 30 years, much progress has been
made on improving the overheads of PCPs (see e.g. [13,15–17,39,65]) even at the
cost of additional rounds of communication (see e.g. [12,14,68,69]). Despite all
of this progress, there is still a fundamental barrier to making Kilian’s protocol
(or similar variants) practically efficient. The issue is that the prover needs to
seemingly store the entire PCP in memory, meaning the high PCP costs are not
only felt in the time to compute the proof but also in the space required by the
prover.

Complexity-Preserving Succinct Arguments. Motivated by the above
issue, Valiant [73] proposed the notion of complexity-preserving succinct argu-
ments where, in order to prove a statement with an NP verifier running in time t
and space s, the prover only needs to use time Õ(t) and space Õ(s).1 Notably, the
prover cannot use space that depends even linearly on the time t to verify the
NP relation. Complexity-preserving SNARKs can be from standard SNARKs
based on the idea of recursive proof composition. Valiant [73] and, subsequently,
Bitansky et al. [19] constructed complexity-preserving succinct non-interactive
arguments of knowledge (SNARKs) for NP based on plain SNARKs for NP, via
recursive proof composition. The existence of SNARKs for NP, however, is a
non-falsifiable “knowledge” assumption, and there are known barriers for basing
SNARKs on falsifiable assumption [46].

Towards basing complexity-preserving, succinct arguments on more standard
assumptions, Bitansky and Chiesa [21] show how to construct a complexity-
preserving multi-prover interactive proof (MIP), which can then be compiled into
a complexity-preserving succinct interactive argument using fully homomorphic
encryption (FHE). Compared to Kilian’s protocol, their succinct argument has
two main downsides. First, they rely on the heavier cryptographic machinery
of FHE rather than only collision-resistance. Second, and more notably, their
transformation results in a private-coin rather than a public-coin protocol. This
means that their verifier needs to keep private state hidden from the prover in
order for the protocol to maintain soundness. In contrast, the verifier in Kilian’s
protocol maintains no private state and simply sends public random coins for
each of its messages. Public-coin protocols can be verified publicly, which is cru-
cial for increasingly important applications of proofs in the distributed setting.
Indeed, this was one of the main open questions posed in [21]:

Do there exist public-coin complexity-preserving succinct arguments for NP
whose security can be based on standard cryptographic assumptions?

Some recent works provide initial indications towards a positive resolution,
but they all either rely on non-standard assumptions or fall short of achieving
full succinctness. Block, Holmgren, Rosen, Rothblum, and Soni [23] construct a

1 For simplicity, we suppress polynomial factors in the security parameter in the intro-
duction.

114 C. Freitag et al.

public-coin argument for NP with succinct communication in the random oracle
model (ROM) assuming hardness of discrete log.2 However, the verifier in their
protocol runs in time Õ(t) so the argument is not “fully” succinct.3 Finally, an
even more recent paper by Block, Holmgren, Rosen, Rothblum, and Soni [24]
construct the first public-coin, complexity-preserving, fully succinct argument
for NP in the “plain” model (i.e., without a random oracle). This construc-
tion uses O(log t) rounds of communication and relies on the assumption that
a group of hidden order can be sampled using public coins—the only candidate
such groups are class groups of an imaginary quadratic field, which were first
suggested for cryptographic use by [37] but have seen relatively little attention
as a cryptographic assumption.

Bangalore, Bhadauria, Hazay, and Venkitasubramaniam [4] construct com-
plexity preserving arguments based only on black-box use of CRH, matching the
assumptions for Kilian’s protocol. Their protocol, however, is not fully succinct
as it requires communication Õ(t/s) and verifier running time Õ(t/s + s). Fur-
thermore, they demonstrate barriers for getting a fully succinct protocol in this
setting.

Even when allowing for private coins, we emphasize that the protocol of
[21] assumes FHE, which is a significantly stronger assumption than CRH,
required for Kilian’s original (non-complexity-preserving) protocol. Viewing
these assumptions qualitatively through the lens of Impagliazzo’s five worlds [50],
FHE is a “Cryptomania” assumption compared to the substantially weaker
“Minicrypt” assumption of CRH.4 Very recent work by [38,53,66] obtain pub-
licly verifiable complexity-preserving SNARGs from a host of other assumptions
(not all known to imply FHE), but these SNARG are only for languages in P ;
furthermore, these assumptions are still Cryptomania assumptions. This raises
the following question:

Do (even private-coin) complexity-preserving succinct arguments
for NP (or even P) exist in Minicrypt?

1.1 Our Results

We resolve both of the above open problems, showing the existence of a public-
coin, complexity-preserving, succinct argument for all non-deterministic, poly-
nomial-time RAM computation based solely on collision-resistance. Similar to
[21] (as well as Kilian’s protocol [58] with a suitable underlying PCP), we actually
2 Even though SNARKs for NP can be built in the ROM [63], the construction of [19]

makes non-black-box use of the underlying SNARK verifier, so it is not clear how to
prove their construction secure in the ROM.

3 Note that this is still non-trivial since their scheme has succinct communication.
4 Strictly speaking, Impagliazzo defined Minicrypt as the potential world where one-

way functions (and hence symmetric-key encryption) exist yet public-key encryption
does not. Technically, one-way functions do not generically imply CRH in a black-box
way [71]. However, CRH are still often considered to be a Minicrypt assumption and
viewed as a much weaker assumption than the existence of public-key encryption.

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 115

give an argument of knowledge for NP. This is a stronger property that intuitively
stipulates that if the prover convinces the verifier on some NP statement, it must
actually “know” a corresponding witness.

Theorem 1.1 (Informal; see Theorem 4.1). Assuming the existence of
collision-resistant hash functions, there exists a public-coin, complexity preserv-
ing, succinct argument of knowledge for NP. On input statements for security
parameter λ and time bound t, the protocol requires O(logλ t) rounds of commu-
nication.

We note that we require slightly super constant round complexity for our
protocol to be sound for all non-deterministic (not a priori bounded) poly(λ)-time
computations. Specifically, for every bound c such that the RAM computation
requires time λc on inputs of length λ, we give a protocol that uses 6c+6 messages
of communication. So, there is no fixed constant bounding the number of rounds
for a protocol that handles all non-deterministic, polynomial-time computation.
It is a fascinating open problem to give a protocol with a fixed constant number
of rounds.

Our construction is based on recursive proof composition similar to [19,73].
However, we compose interactive arguments rather than SNARKs, so we are
able to get a result based only on CRH. To implement our recursive proof com-
position, we make non-black box use of the underlying hash function. This allows
us to circumvent the barrier of [4].

Applications of Our Main Theorem. We get the following applications using
our construction from Theorem 1.1:

– Zero-knowledge: We can generically transform our protocol into one that
satisfies zero-knowledge, based on the techniques of [8] adapted to the setting
of public-coin, succinct arguments of knowledge. In a bit more detail, we have
the prover first commit to its messages and then prove in zero-knowledge
that it can open the commitments to messages that would cause the verifier
to accept. Using the constant-round, public-coin, zero-knowledge protocol
of [5,6] based on CRH, this results in a zero-knowledge protocol that preserves
the succinctness and public-coin properties at the cost of a constant number
of additional rounds. See the full version for full details.

– Parallelizability (SPARKs): Applying the transformation of [40] to our
construction, we can construct a public-coin, complexity-preserving, succinct
parallelizable argument of knowledge (SPARK) for NP in poly(log t) rounds
from collision-resistance. In a SPARK, the prover leverages poly(log t) par-
allel processors in order run in nearly optimal parallel time t + poly(log t)
(with no multiplicative overhead). This construction resolves an open prob-
lem from [40] (Section 8.1).

– Non-interactive SNARGs and SPARGs in the ROM: Since our con-
struction is a public-coin protocol, it can be made non-interactive via the
Fiat-Shamir transform [42] by replacing the verifier’s public-coin messages
with a hash of the communication transcript so far. Soundness of this trans-
formation holds for all non-deterministic polynomial-time computations in

116 C. Freitag et al.

the ROM by the analysis of [47].5 This yields the first non-interactive, public-
coin, complexity-preserving, succinct argument for NP based on any standard
assumption in the ROM.6 (Recall that previous such results either rely on
non-standard assumptions [19,24], or have a linear-time verifier [23] and still
rely on Cryptomania assumptions.)
Applying the transformation of [40] to our non-interactive protocol results
in a non-interactive, complexity-preserving, succinct parallelizable argument
(SPARG) in the ROM. The corresponding complexity-preserving construc-
tion of [40] relied on recursive composition of SNARKs à la [19], where secu-
rity is not known to hold in the ROM.

– Tighter memory-hard VDFs in the ROM: We note that [43] construct
a non-complexity-preserving, non-interactive SPARG for P from LWE, which
yields generic constructions of verifiable delay functions (VDFs) from any
inherently sequential function. Furthermore, if the underlying sequential func-
tion requires “large” memory usage,7 this is preserved by the transformation,
so they also get a memory-hard VDF assuming any memory-hard sequen-
tial function.8 However, since their non-interactive SPARG is not space-
preserving, their honest evaluation algorithm requires much more space than
a potential adversary who does not need to compute the corresponding proof.
As our non-interactive protocol is complexity-preserving, it yields a memory-
hard VDF in the ROM based on CRH and any memory-hard sequential
function with a much tighter memory gap for the honest and adversarial
evaluations than [43].9 Recall that the complexity-preserving, non-interactive
SPARK for NP from [40] also implies a tighter memory-hard VDF, but they

5 [47] proves security of Fiat-Shamir in the ROM for constant-round arguments with
negligible soundness error. We can apply their analysis to our protocol since for every
fixed polynomial-bound on the NP verification time, our protocol only requires a
constant number of rounds.

6 It isn’t clear how to argue the resulting non-interactive protocol is an argument of
knowledge in the ROM. In particular, Valiant [73] first showed that Micali’s proto-
col [63] is an argument of knowledge, which requires that the CRH be extractable/
implemented by a random oracle. A corresponding argument does not immediately
hold in the ROM for protocols based on recursive composition.

7 Memory-hardness can be formalized in many ways, but the application of SPARKs
does not depend on the exact formulation; see [40] for further discussion on this
point.

8 Plain VDFs are useful for generating shared randomness in the distributed setting of
blockchains, and memory-hardness further resists the use of energy-wasteful ASICs
for this task, based on the assumption that most modern CPUs are already heavily
optimized for memory accesses.

9 We note that all current candidate constructions of memory-hard sequential func-
tions are proven secure in the ROM, which we then have to heuristically instantiate
before applying our non-interactive, complexity-preserving, SPARK. As such, we
need to assume the existence of a memory-hard sequential function. It would be
very interesting to directly construct an unconditionally secure memory-hard VDF
in the ROM.

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 117

rely on the existence of SNARKs and there is no proof of security in the
ROM.

1.2 Technical Overview

In this section, we provide a high-level overview for the main ideas underly-
ing our construction. Throughout the overview, we will consider a fixed non-
deterministic RAM computation that runs in time t and space s. Furthermore,
we’ll assume for simplicity that t, s ≤ 2λ for security parameter λ, and we will
suppress λ, log t, and log s terms in asymptotic statements.

We proceed in three steps to motivate our full construction. First, we provide
a warm-up protocol where the prover runs in time t·poly(s) and space

√
t·poly(s).

Then, we show how to implement this idea recursively where the prover’s space,
verifier’s running time, and communication all grow with poly(s). In other words,
this protocol is complexity-preserving and succinct for small-space computations.
Finally, we show how to use this to handle non-deterministic computations of
arbitrary space, where the prover runs in time t · poly(λ) and space s · poly(λ).

Warm-Up: A (
√

t · poly(s))-Space Solution. We view the RAM computation
as transitioning between a sequence of size s configurations over fixed updates
consisting of some polynomial α = α(s) steps. Specifically, let M be an α-time
non-deterministic function that on input a state st and witness w, outputs a
new state st′ of size s in time α(s). We consider the associated update language
LUpd,α consisting of instances (M, st, st′, t) such that there exists a sequence of
t witnesses w1, . . . , wt such that starting with initial state st0 := st, computing
stj := M(stj−1, wj) for all j ∈ [t], results in a final state stt = st′.

We start by recalling how Kilian’s [58] 4-message succinct argument works
with the setup as above. The verifier starts by sending a hash key. Next, the
prover writes down a probabilistically checkable proof (PCP) for the statement
that (M, st, st′, t) ∈ LUpd,α using witnesses w1, . . . , wt. The prover uses a hash
tree [61] to commit to this PCP and sends the verifier the associated hash root,
which acts as a succinct digest of the PCP. The verifier then asks the prover to
open a few random locations in the PCP, with associated local opening proofs
with respect to the provided hash root. The prover opens the corresponding
locations in the PCP, and the verifier accepts if the PCP verifier would have
accepted these responses and all of the openings are valid.

The issue with above approach is that the prover needs to store the entire
PCP, which requires space t·poly(s) even with the most efficient PCPs.10 The use
of PCPs, however, is extremely useful for reducing the necessary communication
and run-time of the verifier. We want to leverage the efficiency benefits of PCPs
without having to store a PCP for the entire computation. So, we observe that

10 To the best of our knowledge, the most space-efficient PCP construction is due
to [13], where they show how, given the size O(t · s) tableau of the computation,
you can efficiently compute each bit of the PCP in low depth. It is a fascinating
open question to construct complexity-preserving PCPs that don’t require storing
the entire computation tableau.

118 C. Freitag et al.

we can do this by only computing a PCP for a part of the computation instead of
the full computation. Specifically, for some choice of k (assuming t is a multiple
of k for simplicity), we split the computation into k sub-statements each of size
t/k,

(M, st0, stt/k, t/k), . . . , (M, st(k−1)·t/k, stt, t/k),

where each sti corresponds to the ith state when iteratively computing M using
witnesses w1, . . . , wt. The prover will then compute and commit to a PCP for
each of the k sub-statements. The verifier will then send PCP queries as in
Kilian’s protocol to open up each PCP and accept if all such PCPs accept.

We proceed to analyze the efficiency of this warm-up protocol, starting with
the space complexity of the prover. As the sub-statements are independent
of each other, the prover can compute each PCP with associated hash root
independently and then forget the full expensive PCP. At any point in time,
the prover only needs to store a single PCP and associated hash tree for t/k
steps of computation as well as k hash roots. Together, this only requires space
(k + (t/k)) · poly(s) to compute the first message. The dependence on t is mini-
mized by setting k =

√
t, resulting in space complexity

√
t ·poly(s). Furthermore,

note that the prover is deterministic, so whenever the prover needs to provide
PCP openings in the next round for the verifier, the prover can recompute the
PCP and hash tree as needed using an additional pass over the underlying wit-
nesses.

In minimizing the space complexity of the prover above, we have actually
lost the original succinctness of Kilian’s protocol. Namely, as k is set larger in
the above protocol, the communication and verifier efficiency suffer. The prover
has to send the k intermediate statements and PCP openings corresponding to
each statement, and the verifier then has to check all k PCP proofs. As such, the
communication and verifier’s run-time grow with k =

√
t when minimizing the

prover’s space complexity. Additionally, if we choose k to be smaller to satisfy
succinctness, the prover’s space complexity grows to be essentially as large as
Kilian’s protocol. So, have we really gained anything?

Towards constructing a full-fledged succinct argument with a space-efficient
prover, we separately tackle the issues of succinctness and prover’s space com-
plexity as follows:

– Fixing succinctness via “commit-and-prove”: In order to reduce the
communication and verifier’s efficiency, we can generically use a standard
“commit-and-prove” technique. Namely, instead of having the prover send
messages for all k sub-protocols, the prover will hash the messages together
and send a fixed size digest committing to the various messages in each round.
In response to each digest sent, the verifier will send a single public-coin mes-
sage that can be reused across all k statements. At the end of this “com-
mitted” interaction by the prover, the prover will use a succinct argument to
prove that it “knows” a set of messages that would have convinced the verifier
in all k sub-protocols. Using Kilian’s protocol for this succinct argument, this
adds 4 messages to the interaction while ensuring that the communication
and verifier complexity are always succinct and independent of k.

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 119

– Fixing prover’s space complexity via recursion: Using the blueprint
above, the prover’s space complexity grows with the complexity to prove a
single sub-statement. So, we will instead use a more space-efficient protocol to
prove each sub-statement rather than Kilian’s—like the one we just built! This
leads to a natural recursive approach to reduce the prover’s space complexity
at the cost of an increase in round complexity.

We next show how to apply both of these fixes simultaneously to construct a
complexity-preserving succinct argument for bounded space computation.

Handling Small-Space, Non-deterministic Computation. Throughout,
we let λ denote the security parameter and consider input statements of the
form (M, st, st′, t) ∈ LUpd,α as defined above where st and st′ are size s states.
By “small-space”, we mean that s ∈ poly(λ) independent of t.

For every r ≥ 0, we recursively construct a public-coin proof system (Pr, Vr)
for the above update language LUpd,α. For every r, we will maintain the following
invariants on the efficiency of (Pr, Vr):

– Pr runs in time t · poly(s, r) and space (t/λr) · poly(s, r),
– Vr runs in time poly(s, r),
– and the communication is at most poly(λ) per message.

Our final protocol will then simply set r = logλ t, yielding a complexity-
preserving protocol for bounded space computations.

For the base case of r = 0, (P0, V0) simply runs Kilian’s succinct argument.
We saw above that the prover runs in time and space t · poly(s), and the verifier
and communication complexity are at most polynomial in the statement size,
which in this case is at most poly(s) since st, st′ are part of the statement. So,
the required invariants hold.

In the general case of r > 0, we split the proof into two phases: (1) committing
to sub-proofs, and (2) recursive proof merging:

– Committing to sub-proofs: Pr will split the computation of t steps into λ
many sub-computations of t/λ steps each. Rather than directly proving each
sub-computation using (Pr−1, Vr−1), Pr will instead succinctly commit to
prover messages for Pr−1 for all sub-computations in each round. Since Vr−1

is public-coin, it maintains no private state, so it can send a single message
per round that can be used across all sub-computations.

– Recursive proof merging: Next, the prover Pr will use Kilian’s succinct
argument to prove that it committed to prover messages in the previous phase
that would cause Vr−1 to accept on all λ sub-computations.

Completeness and argument of knowledge for (Pr, Vr) follow in a straightfor-
ward manner assuming (Pr−1, Vr−1) and Kilian’s protocol are complete, argu-
ments of knowledge. Briefly, to show that (Pr, Vr) is an argument of knowledge,
we show how to use an extractor for Kilian’s protocol to build a cheating prover
for (Pr−1, Vr−1) by extracting out the committed prover messages (which will
be unique and convincing assuming collision-resistance of the commitments).

120 C. Freitag et al.

Given this cheating prover, we can use the extractor for (Pr−1, Vr−1) to extract
out witnesses for the sub-computations, which can simply be pieced together to
form an overall witness for the full sequence of updates. So, the only assumption
we rely on is collision-resistance. However, the running time of the extractor will
grow exponentially with r, but for poly(λ)-time computations, r = logλ t will
only be a constant.

Below, we briefly argue why each efficiency property holds separately:

– Round complexity: The round complexity of (Pr, Vr) adds a constant num-
ber of rounds over (Pr−1, Vr−1). So, in total, the protocol will consist of O(r)
rounds.

– Communication complexity: In the first phase, the prover commits to
each of its messages, so its communication will be independent of r in each
round. Vr needs to send the communication required for a single instance of
Vr−1, not λ instances for each sub-computation. The communication in the
second phase is bounded by the succinctness of Kilian’s protocol, which is
fixed and essentially independent of r and s. It follows that each message
sent has fixed size at most poly(λ), so the total communication is at most
r · poly(λ).

– Verifier efficiency: This follows from the efficiency of Kilian’s succinct argu-
ment, resulting in a verifier that runs in time polynomial in the statement size
for the proof merging phase. This statement consists of proving committed
messages are consistent with r digests according to the input statements of
size s. It follows that the verifier will run in time poly(s, r).

– Prover efficiency: We first analyze the complexity required to commit to
the sub-proofs. By assumption, Pr−1 requires time (t/λ) ·poly(s, r) and space
(t/λ)/λr−1 ·poly(s, r) = (t/λr) ·poly(s, r) to prove each sub-computation. So,
to prove all λ sub-computations requires time λ·(t/λ)·poly(s, r) = t·poly(s, r).
Since all sub-computations can be proved independently, the prover can erase
the additional space needed for each sub-proof, so the total space doesn’t
grow.
For the second phase of recursive proof merging, the prover’s space grows
polynomially with the time to verify all sub-computations are consistent with
the committed prover messages. By succinctness of (Pr−1, Vr−1), the prover’s
messages are short—total size r · poly(λ)—and the running time of Vr−1 is at
most poly(s, r). So, the total time and space for the second phase is at most
poly(s, r).
Combining the complexity for the two phases, the total time of the prover
remains t · poly(s, r) while using space (t/λr) · poly(s, r). We note that a little
more care is required to show that the exact polynomial functions for each r
don’t grow too much, which we defer to the full proof.

Combining the above, this yields a complexity-preserving, succinct argument of
knowledge for small-space s ∈ poly(λ) NP computations.

Handling Arbitrary Space, Non-deterministic Computation. To handle
arbitrary space RAM computations, we follow the blueprint for RAM delegation

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 121

of [54] adapted to the non-deterministic setting. Specifically, rather than proving
updates to the actual space of the computation, we keep track of a hash tree for
the space of the computation and prove updates hold relative to the digest for
the hash tree.

Using the framework of update languages as above, we consider the update
function where the state only keeps track of the hash tree digest. The witness
needed to update the state provides information to: (1) prove the bit read at
each step of the computation is correct with respect to the hash tree digest, and
(2) if the computation step causes a write to memory, computes and proves the
updated digest with respect to the new memory.

The state size for this update function is some fixed poly(λ) rather than s. So,
if we use the protocol above for this, we only require (t/λr) · poly(λ, r) space by
the prover to run (Pr, Vr) for this update function. Furthermore, we can compute
these hash tree proofs needed as the witnesses for Pr using space only s ·poly(λ)
as opposed to poly(s). By setting r = logλ t above, the prover’s total space
complexity is s ·poly(λ), so we get a public-coin, complexity-preserving, succinct
argument of knowledge for proving general non-deterministic RAM computation
in O(logλ t)-rounds.

1.3 Related Work on Succinct Arguments

We overview the current landscape of succinct arguments, with a focus on
complexity-preserving protocols. First, we overview the main techniques for
constructing succinct arguments for NP from information theoretic proofs in
idealized oracle models. Second, we describe the recursive composition frame-
work underlying constructions of complexity-preserving, succinct non-interactive
arguments for NP from non-falsifiable assumptions. Lastly, we briefly highlight
the relevant work implementing recursive composition for deterministic compu-
tation from falsifiable assumptions. At a very high level, we note that our main
construction follows from a hybrid of the above techniques by recursively com-
posing Kilian’s succinct argument in a space-efficient way, which only relies on
collision-resistant hash functions.

Information-Theoretic Compilers for Succinct Arguments for NP.
Almost all constructions of succinct arguments for NP go through the follow-
ing general blueprint. First, construct an information-theoretic proof with oracle
access to an idealized object. Next, instantiate the oracle with a cryptographic
commitment to the idealized object. Below, we overview existing constructions
of succinct arguments, organized by their corresponding idealized models.

– Probabilistically Checkable Proofs (PCPs): PCPs (introduced for pos-
itive results in [2] and for hardness of approximation results in [41]) are non-
interactive, information-theoretic proofs given oracle query access to a long
proof string. Kilian [58] showed how to compile PCPs into succinct arguments
by committing to the proof string using a vector commitment, which can
be constructed from CRH using Merkle trees [61]. Furthermore, Micali [63]

122 C. Freitag et al.

showed how to make this approach non-interactive using the Fiat-Shamir
transform [42] in the ROM since the underlying protocol is public-coin.

– Interactive Oracle Proofs (IOPs): IOPs (independently introduced by
[14] and [68]) are interactive, public-coin variants of PCPs, where in each
round the prover provides oracle access to a new long string. This gener-
alization of PCPs can result shorter and more prover-efficient proofs (see
e.g. [12,69]) at the cost of extra rounds of communication. Like PCPs, IOPs
can be compiled to succinct arguments using vector commitments and hence
only using CRH.
Most relevant to this work is the IOP-based complexity-preserving argument
of [4], which builds off the Ligero protocol [1]. Because this protocol is based
on IOPs, it only requires assuming CRH. However, their proof size is Õ(t/s)
and verifier runns in time Õ(t/s + s), so their protocol is not fully succinct.
They complement their result with a lower bound, roughly showing that this
proof length is tight for complexity-preserving IOP-based protocols. Specifi-
cally, they show that any such encoding of the size O(t) transcript using space
s must have distance O(s/t), resulting in query complexity—and hence proof
length of the compiled argument—of at least Ω(t/s).

– Linear PCPs: Linear PCPs (introduced by [51] and further studied in [22,26,
45]) are proofs given oracle access to a linear function. [51] first shows how to
convert a linear PCP into a linear multi-prover interactive proof (MIP), where
the proof gives oracle access to potentially many different linear functions.
They then compile this linear MIP into a (private-coin) argument using a
particular multi-commitment scheme for linear functions that can be built
from any additive homomorphic encryption scheme. In contrast to (plain)
PCPs, the benefit of linear PCPs is that you don’t need to materialize the
full linear function in order to commit to it. However, their argument is not
succinct since their linear PCP exponentially long, so the verifier’s query
must be linear in the complexity of the language. Still, their approach results
in very short communication from the prover and gets around the efficiency
bottleneck of using (plain) PCPs.

– Multi-prover Interactive Proofs (MIPs): MIPs (introduced by [9] and
further studied in [21,25]) are interactive proofs with oracle access to inde-
pendent, arbitrary functions that act as various provers who are not allowed
to talk to each other. Bitansky and Chiesa [21] show how to compile MIPs
into (private-coin) succinct arguments using succinct multi-function commit-
ments, which can be constructed from fully homomorphic encryption. Bitan-
sky and Chiesa use MIPs over PCPs because they can construct complexity-
preserving MIPs where, for a time t space s non-deterministic computation,
each prover can be implemented in time Õ(t) and space Õ(s). Then, their
compiler results in a complexity-preserving succinct argument. We note that
it is still a very intriguing open question to construct complexity-preserving
PCPs.

– Polynomial IOPs: Polynomial IOPs (first formalized by [32] but implicit in
previous works) generalize linear PCPs by (1) using oracles for higher degree
polynomials as opposed to only linear functions and (2) allowing interaction

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 123

as in IOPs. Polynomial IOPs can be compiled into arguments using polyno-
mial commitments [57]. Constructing both polynomial IOPs and polynomial
commitments have been at the forefront of practical succinct (non-interactive)
argument constructions (see e.g. [11,33,44,60,70,72] for examples of polyno-
mial IOPs and [10,23,24,27,31,32,57] for examples of polynomial commit-
ments).
Of particular interest to this work are the complexity-preserving arguments
of [23,24]. [23] construct a publicly verifiable, complexity-preserving, zero-
knowledge argument in the ROM assuming hardness of discrete log. How-
ever, the verifier in their protocol runs in time Õ(t), which is still non-trivial
given their additional focus on zero knowledge and succinct communication.
Building off of [23] and [24,32] construct the first public-coin, complexity-
preserving, fully succinct argument. Their protocol requires O(log t) rounds
of communication and relies on the existence of a public-coin hidden order
group. The only candidate such groups are class groups of an imaginary
quadratic field, which were first suggested for cryptographic use by [37] but
have seen relatively little attention as a cryptographic assumption. Alterna-
tively by relying on RSA groups or other private-coin hidden order groups,
the protocol of [24] is only private-coin or relies on trusted setup.

Recursive Composition. Bitansky, Canetti, Chiesa, and Tromer [19]—based
on the construction of incrementally verifiable computation of Valiant [73]—
show how to bootstrap any (pre-processing) succinct, non-interactive, argument
of knowledge [18] (SNARK) for NP into a complexity-preserving SNARK using
recursive composition. The idea is that the prover can first use the underlying
SNARK to prove that each step of the computation was performed correctly.
Instead of having the verifier check each such proof, the prover will instead
batch subsequent proofs together and use the same underlying SNARK to prove
that it knows accepting proofs that would have caused the verifier to accept.
This idea can be applied recursively until the verifier only has to check a single,
succinct proof! Furthermore, the independent nature of the sub-proofs allow the
prover to generate the individual proofs in pieces without blowing up its space
complexity, overall resulting in a complexity-preserving SNARK.

The main downside of this approach is the fact that the existence of
SNARKs is a non-falsifiable, “knowledge” assumption. Furthermore, even with-
out the strong knowledge-soundness property, non-falsifiable assumptions are
likely inherent [46]. Also, SNARKs for NP can only possibly exist with respect
to restricted auxiliary-input distributions assuming indistinguishability obfusca-
tion [20,28]. For these reasons, we focus on more standard, falsifiable assump-
tions in this work. In fact, our main construction can be viewed as implementing
the recursive composition technique of [19] from falsifiable assumptions using
interaction.

Delegation for P. In light of the inherent limitations for constructing succinct,
non-interactive arguments for NP [46], there has been a long and fruitful line of
work focusing on building succinct, non-interactive arguments in the common

124 C. Freitag et al.

reference string model—or delegation protocols—for deterministic computation
and other subclasses of NP (see e.g. [3,29,30,35,38,48,49,52,54–56,66,67,74]).
Of particular note, Holmgren and Rothblum [48] construct privately verifiable,
complexity-preserving delegation protocols for P from the (sub-exponential)
learning with errors assumption. The works of [34,35,49,55,74] construct publicly
verifiable (yet not complexity-preserving) delegation protocols for P from various
falsifiable assumptions. Underlying these constructions are novel techniques for
implementing recursive composition from falsifiable assumptions, albeit restricted
to deterministic computations. The works of [38,53,66] extend these works to
construct incrementally verifiable computation [73] under the same assumptions,
which directly yield publicly verifiable, complexity-preserving delegation proto-
cols for P.

Comparison of Complexity-Preserving Arguments. In Table 1 below, we
summarize various efficiency properties and cryptographic assumptions for exist-
ing complexity-preserving arguments for NP. For simplicity, we use Õ(·) notation
to suppress all multiplicative poly(λ, |x|, log t, log s) terms. All protocols in the
table have prover time Õ(t) and space Õ(s). We note that the various schemes
may differ in the exact terms hidden in the Õ(·) notation, but our primary
focus is on the asymptotics in terms of t and s. Finally, we note that all of the
public-coin protocols can heuristically be compressed to a single message via the
Fiat-Shamir transform in the random oracle model (ROM).

Table 1. Comparison of complexity-preserving arguments for non-deterministic time
t and space s computation. For simplicity, we use Õ(·) notation to suppress all multi-
plicative poly(λ, |x|, log t, log s) terms.

Protocol Verifier Time Communication Messages Public Coin? Assumption

[21] Õ(1) Õ(1) 4 No FHE

[19,73] Õ(1) Õ(1) 1 Yes SNARKs for NP

[23] Õ(t) Õ(1) 1 Yes DLog + ROM

[24] Õ(1) Õ(1) O(log t) Yes Class Groups

[4] Õ(t/s+ s) Õ(t/s) O(1) Yes CRH

This work Õ(1) Õ(1) O(logλ t) Yes CRH

2 Preliminaries

We let N = {1, 2, 3, . . .} denote the set of natural numbers, and for any n ∈ N,
we write [n] to denote the set [n] = {1, . . . , n}. For integers a, b ∈ Z with a ≤ b,
we write [a, b] to denote the set {a, a + 1, . . . , b}. For a set Σ, referred to as the
alphabet, we denote Σ∗ the set of strings consisting of 0 or more elements from
Σ. We let Σn denote the set of n-character strings from Σ and Σ≤n the set
of string of length at most n. For a string s ∈ Σ∗, we let |s| denote the length

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 125

of s. For any string s ∈ Σ∗ and i ∈ [|s|], let s[i] denote the ith character of s.
For i �∈ [|s|], we assume that s[i] always returns a special character ⊥. Unless
specified otherwise, we assume that a string s is defined over the binary alphabet
{0, 1}.

We write λ ∈ N to denote the security parameter. We say that a function
p : N → N is in the set poly(λ) and is polynomially-bounded if there exists a
constant c and an index i ∈ N such that p(λ) ≤ λc for all λ ≥ i. We say that a
function negl : N → R is negligible if for every constant c > 0 there exists i ∈ N

such that negl(λ) ≤ λ−c for all λ ≥ i.
We use PPT to denote the acronym probabilistic, polynomial time. A uniform

algorithm A is a RAM program with a fixed (constant-size) description length.
A non-uniform algorithm A consists of a sequence of algorithms {Aλ}λ∈N, one
for each security parameter λ; we assume for simplicity that Aλ always receives
1λ as its first input. When the security parameter is clear from context, we may
write A(·) instead of Aλ(·) for simplicity. A non-uniform PPT algorithm is one
where the description size of Aλ as a function of λ is in poly(λ).

For a distribution X, we write x ← X to denote the process of sampling
a value x from the distribution X. For a set X , we use x ← X to denote the
process of sampling a value x from the uniform distribution over X . We use
x = A(·) to denote the output of a deterministic algorithm and x ← A(·) to
denote the output of a randomized algorithm. For a randomized algorithm, we
write x = A(·; r) to denote the deterministic output given sequential access to
the random coins r. We write x := y to denote the assignment of value y to x. For
a distribution D, we define Supp (D) to denote the support of the distribution
D.

RAM Computation. We model a non-deterministic RAM computation by a
machine M with local word size n, and random access to a working memory
string D ∈ {0, 1}2n

and a read-only witness. The computation of M is carried
out one step at a time by a polynomial-time CPU algorithm step that takes as
input a description of a program M , a RAM state rst of size O(n), a bit bmem

read from memory, and a witness bit bwit. It then outputs a tuple

(rstnew, imem, iwrt, bwrt, iwit) = step(M, rst, bmem, bwit),

where rstnew is the updated state, imem is the next location to read from memory,
iwrt is the location in memory to write next, bwrt is the bit to be written, and iwit

is the next location to read from the witness.
We write MD(w) to denote the computation of M with working memory D

and witness w. We write M(x,w) to denote the computation MD(w) where D
is initialized to start with an encoding of the input x followed by 0s.

The program starts with initial empty state rst0, initial memory and witness
read locations imem

0 = iwit0 = 1. Starting from j = 1, the jth execution step
proceeds as follows:

1. Read the memory bit bmem
j−1 := D[imem

j−1] and witness bit bwitj−1 := w[iwitj−1].
2. Compute (rstj , imem

j , iwrtj , bwrtj , iwitj) = step(M, rstj−1, b
mem
j−1 , bwitj−1).

126 C. Freitag et al.

3. If iwrtj �= ⊥, write a bit to memory D[iwrtj] := bwrtj .

The execution terminates when step outputs a special terminating state for rstt,
which specifies whether the computation is accepting and outputs 1 or rejecting
and outputs 0. Note that we only consider machines with binary output in this
work.

For a RAM computation MD(w), we define its running time t as the number
of steps until M halts and its space s as the maximum index imem

j accessed. Note
that the witness tape is read-only and does not count towards the space.

We say that a RAM computation MD(w) makes m passes over its witness
if reads its witness from left to right at most m times. That is, |{j ∈ [t] : iwitj <

iwitj−1}| < m, where t is the computation’s running time.

Universal Languages. The universal relation RU is the set of instance-witness
pairs ((M,x, t), w) where M is a RAM program with word size n such that
M(x,w) accepts and outputs 1 within t steps. We assume that the description
of M contains its word size 1n in unary, so |M | is always at least n. We let
LU be the corresponding language with relation RU , which we call the universal
language.

Interactive Machines. We consider interactive protocols with interactive
RAM programs. To allow for communication between two interacting machines,
we assume there is a specified part of a machine’s memory for input from and
output to another interactive machine. Once one machine halts after writing
downs its output, we say that it has sent a message consisting of its output
to the other machine. Given a pair of interactive RAM programs A and B, we
denote by 〈A(w), B〉(x) the random variable representing the output of B with
common input x, when interacting with A with common input x and witness w,
when the random tape of each machine is uniformly and independently chosen.
We let ViewB(〈A(w), B〉(x)) be the random variable representing the view of B
in the interaction between A and B, consisting of its inputs, random coins, and
the communication it receives from A. The message complexity of the protocol
is the number of distinct messages sent between A and B before B produces its
final output.

2.1 Collision-Resistant Hash Functions

We give the notion of a keyed collision-resistant hash functions (CRH) that we
use in this work. We emphasize that our definition below allows for arbitrary
length input and produces a fixed size digest, but it is well known that this is
implied by any compressing CRH with fixed input length [36,61,62].

Definition 2.1 (Collision-Resistant Hash Function). A keyed collision-
resistant hash function is given by an algorithm Hash with the following syntax:

– dig = Hash(hk, x): A deterministic algorithm that on input a hash key hk ∈
{0, 1}λ and string x ∈ {0, 1}∗, outputs a digest dig ∈ {0, 1}λ.

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 127

We require that Hash runs in polynomial-time and satisfies the following security
property:

– Collision Resistance: For all non-uniform polynomial-time adversaries A,
there exists a negligible function negl such that for all λ ∈ N, it holds that

Pr
[
hk ← {0, 1}λ

(x, x′) ← A(hk) :
x �= x′

Hash(hk, x) = Hash(hk, x′)

]
≤ negl(λ).

2.2 Hash Trees

We follow the definition of hash trees from [54] with slight modifications
from [40].

Definition 2.2 (Hash Tree). A hash tree is a tuple of algorithms (KeyGen,
Hash,Read,Write,VerRead,VerWrite) with the following syntax and efficiency:

– hk ← KeyGen(1λ): A randomized polynomial-time algorithm that on input the
security parameter 1λ outputs a hash key hk.

– (tree, dig) = Hash(hk,D): A deterministic polynomial-time algorithm that on
input a hash key hk and a database D ∈ {0, 1}s outputs a hash tree tree and
a string dig ∈ {0, 1}λ. We require that tree has size at most s · poly(λ, log s).

– dig = Digest(hk,D): A deterministic algorithm that on input a hash key hk
and a database D ∈ {0, 1}s outputs a string dig ∈ {0, 1}λ. For databases of
the form D = x‖0s−|x|, Digest runs in time (|x| + 1) · poly(λ, log s).

– (b, πrd) = Readtree(ird): A read-only deterministic RAM program that accesses
a database tree and on input an index ird outputs a bit brd and a proof πrd.
The program runs in time poly(λ, log s).

– (dignew, πwrt) = Writetree(iwrt, bwrt): A deterministic RAM program that
accesses a database tree and on input an index iwrt and bit bwrt outputs a
new digest dignew and a proof πwrt. The program runs in time poly(λ, log s)
and tree remains fixed size.

– b = VerRead(dig, ird, brd, πrd): A deterministic polynomial-time algorithm that
on input a digest dig, an index ird, a bit brd, and a proof πrd outputs a bit b.

– b = VerWrite(dig, iwrt, bwrt, dig′, πwrt): A deterministic polynomial-time algo-
rithm that on input a digest dig, an index iwrt, a bit bwrt, a new digest dig′,
and a proof πwrt outputs a bit b.

We require that (KeyGen,Hash,Read,Write,VerRead,VerWrite) satisfy the follow-
ing properties:

– Digest Consistency: For every λ ∈ N and D ∈ {0, 1}s, it holds that

Pr

⎡
⎣hk ← KeyGen(1λ)

(·, dig) = Hash(hk,D)
dig′ = Digest(hk,D)

: dig = dig′

⎤
⎦ = 1.

128 C. Freitag et al.

– Correctness of Read: For every λ ∈ N, D ∈ {0, 1}s, ird ∈ [s], m ≥ 0, and
sequence of pairs (ij , bj) ∈ [s] × b for j ∈ [m], let D′ ∈ {0, 1}s be the database
equal to D followed by updates bj to index ij for each j ∈ [m]. Then, it holds
that

Pr

⎡
⎢⎢⎢⎢⎣

hk ← KeyGen(1λ)
(tree, dig0) = Hash(hk,D)
∀j ∈ [m],

(·, digj) = Writetree(ij , bj)
(brd, πrd) = Readtree(ird)

:
VerRead(digm, ird, brd, πrd) = 1
∧ brd = D′[ird]

⎤
⎥⎥⎥⎥⎦ = 1.

– Correctness of Write: For every λ ∈ N, D ∈ {0, 1}s, iwrt ∈ [s], bwrt ∈
{0, 1}, m ≥ 0, and sequence of pairs (ij , bj) ∈ [s] × {0, 1} for j ∈ [m], let
D′ ∈ {0, 1}s be the database equal to D followed by updates bj to index ij
for each j ∈ [m]. Let D′

new be the database equal to D′ followed by one more
update bwrt to index iwrt. Then, it holds that

Pr

⎡
⎢⎢⎢⎢⎣

hk ← KeyGen(1λ)
(tree, dig0) = Hash(hk,D)
∀j ∈ [m], (·, digj) = Writetree(ij , bj)
(dignew, πwrt) = Writetree(iwrt, bwrt)
(·, dig′) = Hash(hk,D′

new)

:
VerWrite(digm, iwrt,

bwrt, dignew, πwrt) = 1
∧ dignew = dig′

⎤
⎥⎥⎥⎥⎦ = 1.

– Soundness of Read: For every non-uniform PPT A, there exists a negligible
function negl such that for all λ ∈ N, it holds that

Pr

⎡
⎣hk ← KeyGen(1λ)

(dig, i, b, π, b′, π′) ← A(hk) :
b �= b′

∧ VerRead(dig, i, b, π) = 1
∧ VerRead(dig, i, b′, π′) = 1

⎤
⎦ ≤ negl(λ).

– Soundness of Write: For every non-uniform PPT A, there exists a negli-
gible function negl such that for all λ ∈ N, it holds that

Pr

⎡
⎣hk ← KeyGen(1λ)

(dig, i, b, dignew, π,
dig′

new, π′) ← A(hk)
:
dignew �= dig′

new

∧ VerWrite(dig, i, b, dignew, π) = 1
∧ VerWrite(dig, i, b, dig′

new, π′) = 1

⎤
⎦ ≤ negl(λ).

Based on Merkle trees [61], we can construct hash trees that satisfy the above
definition from any CRH.

Theorem 2.3 ([40,61]). Assuming the existence of a keyed collision-resistant
hash function, there exists a hash tree as per Definition 2.2.

2.3 Arguments of Knowledge

We define arguments of knowledge for the universal language LU . We use a
definition from [40] which is equivalent to the more standard definition of [7] (see
Remark 2.5). We choose to work with this definition since it is more convenient
in settings involving composition (see Remark 2.6). We note that in contrast to
the notion of universal arguments [6], our arguments of knowledge property only
considers polynomial time computations.

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 129

Definition 2.4 (Argument of Knowledge). A pair of interactive RAM pro-
grams (P, V) is an argument of knowledge for RU if the following hold:

– Prover Efficiency: There exists a polynomial q such that for every λ ∈ N

and ((M,x, t), w) ∈ RU , the prover P on common input (1λ, (M,x, t)) and
witness w runs in time q(λ, |M,x|, t).

– Completeness: For every λ ∈ N and (y, w) ∈ RU , it holds that

Pr
[〈P (w), V 〉(1λ, y) = 1

]
= 1.

– Argument of Knowledge: For every polynomial p, there exists a proba-
bilistic oracle machine E and a polynomial q such that for every non-uniform
polynomial-time prover P �, there exists a negligible function negl such that
for every λ ∈ N, and instance y = (M,x, t) such that |M,x| ≤ p(λ) and
t ≤ p(λ), the following hold.
Let V [ρ] denote the verifier V using randomness ρ ∈ {0, 1}�(λ) where �(λ) is
a bound on the number of random bits used by V . Then:
1. The expected running time of EP �

(1λ, y, ρ) is bounded by q(λ) where the
expectation is over ρ ← {0, 1}�(λ) and the random coins of E, and oracle
calls to P � cost only a single step.

2. It holds that

Pr
[

ρ ← {0, 1}�(λ)

w ← EP �

(1λ, y, ρ)
:

(y, w) �∈ RU
∧ 〈P �, V [ρ]〉(1λ, y) = 1

]
≤ negl(λ).

Remark 2.5 (Equivalence to definition of [7]). The “standard” definition of an
argument of knowledge is due to Bellare and Goldreich [7] (BG). The BG extrac-
tor always succeeds in extracting a valid witness (in contrast to succeeding in
accordance with a uniformly sampled view given by the verifier’s randomness
ρ) but runs in expected time poly(λ)/(ε − negl(λ)) for negligible function negl
where ε is the probability that 〈P �, V 〉(1λ, y) = 1. The existence of a BG extrac-
tor implies the existence of an EFKP extractor (as defined above) and vice
versa [40]. This implication from BG to EFKP is shown via the intermediate
notion of witness-extended emulation from Lemma 3.1 of [59] and Lemma A.6
of [40]. To construct a BG extractor from an EFKP extractor, you first sam-
ple randomness ρ for the verifier, check if 〈P �, V [ρ]〉(1λ, y) is accepting, run the
EFKP extractor with ρ if so, and repeat if the transcript is rejecting or the
extractor fails.

Remark 2.6 (On composition for the definition of [40]). A key challenge when
composing arguments of knowledge is bounding the running time of the final
extractor. One notion that composes well is “precise” arguments of knowl-
edge [64] where, for any given view of the cheating prover (defined by the verifier’s
randomness ρ as above), the extractor’s running time is a fixed polynomial in
the running time of the cheating prover on that particular view. This notion,
however, is quite strong and not known to hold for arguments of knowledge from
standard assumptions.

130 C. Freitag et al.

In a more standard—and also achievable—argument of knowledge notion
called witness-extended emulation [59], the extractor is not given a view, but
instead must output a uniformly distributed view of the verifier and a corre-
sponding witness if the verifier accepts the view. Furthermore, an extractor for
witness-extended emulation only needs to run in expected polynomial time and
may use rewinding. However, the view chosen by the extractor may not be con-
sistent with the external view when used as a sub-protocol.

The argument of knowledge notion of [40] gives the extractor a uniformly
sampled view and requires that the extractor run in expected polynomial-time
over the choice of the view (although to compose well, this polynomial must be
independent of the cheating prover’s strategy). This relaxes the strict efficiency
requirement of [64] since the extractor need not run in fixed polynomial time,
but also (conceptually) strengthens the notion of [59] as the extractor must work
for a given view rather than outputting one itself. Existentially, the definitions
of [40] and [59] are equivalent however; see the above remark.

Public-Coin Protocols. We say that an argument (P, V) is public-coin—or
equivalently that V is a public-coin verifier—if all of V ’s messages simply consist
of random coins, and V maintains no other private state. Specifically, the final
output of V is a function only of the protocol’s transcript.

Efficiency. We consider two efficiency requirements of arguments for RU : suc-
cinct and complexity-preserving arguments. Roughly speaking, in succinct argu-
ments the communication complexity and verification time are logarithmic in the
running time of the computation that is being proved. In complexity-preserving
arguments, the time and space complexity of the honest prover are close to the
complexity of the original computation. When measuring efficiency, we model
the prover P and verifier V as interactive RAM programs. We formalize these
notions below.

Definition 2.7 (Succinct Arguments). Let (P, V) be an argument for RU .
We say that (P, V) is succinct if there exists a polynomial q such that for any λ ∈
N and (y = (M,x, t), w) ∈ RU , the following always hold during the experiment
〈P (w), V 〉(1λ, y):

– Succinct Verification: The verifier V runs in time at most q(λ, |M,x|,
log t).

– Succinct Communication: The length of the transcript is at most q(λ,
log |M,x|, log t).

Succinct arguments of knowledge are known based on CRH.

Theorem 2.8 ([58]). Assuming the existence of a keyed collision-resistant hash
function, there exists a 4-message, public-coin, succinct argument of knowledge
for RU .

Definition 2.9 (Complexity-Preserving Arguments). Let (P, V) be an
argument for RU . We say that (P, V) is complexity-preserving if there exists

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 131

a polynomial q such that for any λ ∈ N and (y = (M,x, t), w) ∈ RU such that
M(x,w) uses space s, the prover P in the experiment 〈P (w), V 〉(1λ, y) runs in
time at most t · q(λ, |M,x|, log t) and uses space at most s · q(λ, |M,x|, log t).

3 Arguments of Knowledge for Bounded Space
Computation

As a step towards our main result, we construct an argument of knowledge for
the update language in this section. In the update language, we consider a non-
deterministic polynomial-time Turing machine M updating a state of size s. The
language contains tuples (M, st, st′, t) such that M moves from state st to state
st′ via a sequence of t updates. In Sect. 4, we turn this argument for the update
language into a complexity preserving succinct argument of knowledge for RU .

Definition 3.1 (Update Language). Let α be a polynomial. The update lan-
guage LUpd,α with relation RUpd,α consists of instance-witness pairs of the form
((M, st, st′, t), w) where M is an α-time non-deterministic Turing machine, st,
st′ ∈ {0, 1}s, t ∈ N, and w = (w1, . . . , wt) ∈ {0, 1}α(s)×t such that the following
procedure accepts:

– Set st0 = st.
– For i = 1, . . . , t:

• Emulate M(sti−1, wi). If M does not halt within α(s) steps then reject.
• Obtain M ’s output sti. If |sti| �= s then reject.

– Accept if stt = st′ and reject otherwise.

We construct a sequence of arguments for LUpd,α.

Theorem 3.2. Assume the existence of a keyed collision-resistant hash func-
tion. There exists d ∈ N such that for every polynomial α, there exists sequence
of interactive RAM programs {(Pr, Vr)}r≥0 such that the following hold:

– Completeness: For every λ ∈ N, r ≥ 0, and (y, w) ∈ RUpd,α, it holds that

Pr
[〈Pr(w), Vr〉(1λ, y) = 1

]
= 1.

– Argument of Knowledge: For every polynomial p, there exists a proba-
bilistic oracle machine E and a polynomial q such that for every non-uniform
polynomial-time prover P � and function r = r(λ) such that (λ · r)r ≤ p(λ),
there exists a negligible function negl such that for every λ ∈ N, instance
y = (M, st, st′, t) such that |y|, t ≤ p(λ), the following hold.
Let Vr[ρ] denote the verifier Vr using randomness ρ ∈ {0, 1}�(λ). Then:
1. The expected running time of EP �

(1λ, y, ρ, r) is bounded by q(λ).
2. It holds that

Pr
[

ρ ← {0, 1}�(λ)

w ← EP �

(1λ, y, ρ, r)
:

(y, w) �∈ RUpd,α

∧ 〈P �, Vr[ρ]〉(1λ, y) = 1

]
≤ negl(λ).

132 C. Freitag et al.

– Efficiency: There exists a polynomial q such that for every λ ∈ N, r ≥ 0,
and (y = (M, st, st′, t), w) ∈ RUpd,α such that |st| = s, the following efficiency
properties always hold in the experiment 〈Pr(w), Vr〉(1λ, y) assuming (λ · |M | ·
α(s) · t · r)d ≤ 2λ:

• Efficiently Computable: There exists a polynomial-time Turing ma-
chine that on input 1r outputs the descriptions of the interactive RAM
programs (Pr, Vr).

• Round Complexity: The interaction between Pr and Vr consists of 6r+4
messages.

• Prover Efficiency: The prover Pr runs in time at most t ·q(λ, |M |, s, r)
and space at most (t/λr) · q(λ, |M |, s, r) and makes at most 1 pass over
its witness per message it sends.

• Verifier Efficiency: The verifier Vr is public-coin and runs in time at
most q(λ, |M |, s, r).

• Communication Efficiency: The length of each message sent by Pr or
Vr is at most q(λ).

The full construction is provided in Sect. 3.1 with associated proofs deferred to
the full version.

3.1 Construction

Let α be any polynomial. We construct a sequence of interactive RAM programs
(Pr, Vr)r≥0 satisfying the properties stated in Theorem 3.2.

Let (Pbase, Vbase) be a 4-message, public-coin, succinct argument of knowl-
edge for RU (see Theorem 2.8). In the base case (P0, V0), we use (Pbase, Vbase)
by converting an the instance y = (M, st, st′, t) ∈ LUpd,α to an input for LU
as follows. We define M ′ to be the machine that takes as input (st, st′, t),
sets st0 := st, computes sti := M(sti−1, wi) for i = 1, . . . , t, and outputs 1 if
st′ = stt and 0 otherwise. Note that M ′ runs in non-deterministic time t · α(s)
given witness w ∈ {0, 1}α(s)×t. The prover P0 and verifier V0 in the interaction
〈P0(w), V0〉(1λ, (M, st, st′, t)) simply emulate 〈Pbase(w), Vbase〉(1λ, (M ′, (st, st′, t),
t · α(s)), and V0 returns the output of Vbase.

For r ≥ 1, the construction of (Pr, Vr) relies on a keyed collision-resistant
hash function Hash and on the protocol (Pr−1, Vr−1). At a high level, the protocol
has two phases: In the first phase the prover splits the update statements into
λ smaller sub-statements and proves all sub-statements in parallel using the
protocol (Pr, Vr). To keep the communication from growing too much, in each
round, the prover only provides a short commitment the messages of the λ
parallel executions. In the second phase, the prover uses the protocol (Pbase, Vbase)
to succinctly prove that the λ committed transcripts are all accepting.

We proceed to give a formal description of the protocol (Pr, Vr). The prover
Pr and verifier Vr receive as common input a security parameter 1λ and an
instance y = (M, st, st′, t) ∈ LUpd,α. The prover additionally receives a witness
w = (w1, . . . , wt) ∈ {0, 1}α(s)×t such that (y, w) ∈ RUpd,α.

– Vr samples a hash key hk ← {0, 1}λ and sends it to Pr.

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 133

– Set τ = �t/λ�. Pr sets st0 := st and for i = 1, . . . , t, it computes sti :=
M(sti−1, wi). During this computation, Pr only saves the states st0, stt and
the λ − 1 intermediate states sti·τ for i ∈ [λ − 1]. Every other state is erased
as soon as the next state is computed. Pr computes dig0 = Hash(hk, (st1, . . . ,
stλ−1)) and sends dig0 to Vr.

– For i ∈ [λ−1], let yi = (M, st(i−1)·τ , sti·τ , τ) and let yλ = (M, st(λ−1)·τ , stt, t−
(λ − 1) · τ). For i ∈ [λ − 1], let witi = (w(i−1)·τ+1, . . . , wi·τ) and let witλ =
(w(i−1)·τ+1, . . . , wt).

– For j = 1, . . . , 3r − 1 corresponding to each back-and-forth round of (Pr−1,
Vr−1):

• Vr samples vmsgj ← {0, 1}�, where � is a bound on the length of length
of each messages sent by Vr−1 on input (1λ, yi). Vr sends vmsgj to Pr.

• For i = 1, . . . , λ, Pr emulates Pr−1 with input (1λ, yi), witness witi
and verifier messages vmsg1, . . . , vmsgj and obtains Pr−1’s next mes-
sage pmsgj,i. The prover saves the message pmsgj,i and erases the mem-
ory used to emulate Pr−1 as soon as pmsgj,i is computed. Pr computes
digj = Hash(hk, (pmsgj,1, . . . , pmsgj,λ)) and sends digj to Vr.

– Let xmrg = (1λ, r, t,M, hk, st0, stt, �dig, �vmsg) for �dig = (dig0, . . . , dig3r−1) and
�vmsg = (vmsg1, . . . , vmsg3r−1). Let wmrg = (�st,Pmsg) where �st = (stτ , . . . ,

st(λ−1)·τ) and Pmsg = (pmsgj,i)j∈[3r−1],i∈[λ]. The prover emulates Pbase and
the verifier emulates Vbase in the interaction

〈Pbase(wmrg), Vbase〉(1λ, (Merge, xmrg, tmrg)),

where Merge is the non-deterministic machine of Fig. 1 and tmrg is the time
to compute Merge(xmrg, wmrg). The verifier returns the output of Vbase.

4 Complexity-Preserving Succinct Arguments
of Knowledge

In this section, we build a complexity-preserving succinct argument of knowledge
for LU using the argument for the update language given in Sect. 3. At a high
level, we follow the blueprint of [19] where each step of the update language
emulates one step of the RAM computation. Instead of accessing memory, the
memory content is provided as part of the witness. A hash tree is used to verify
memory accesses (Definition 2.2).

Theorem 4.1. Assume the existence of a keyed collision-resistant hash func-
tion. There exists a public-coin, succinct, complexity-preserving, argument of
knowledge (P, V) for RU . On common input (1λ, (M,x, t)), the message com-
plexity of the protocol is at most 6 logλ t + 6, and P makes at most 3 logλ t + 3
passes over its witness.

To prove the theorem, we provide a construction in Sect. 4.1 with associated
proofs deferred to the full version.

134 C. Freitag et al.

Machine Merge

Inputs: A security parameter 1λ, a recursion depth r ∈ N, a number of
steps t ∈ N, a machine M , a hash key hk, an initial state st0, a final state
stt, a sequence of digests �dig = (dig0, . . . , dig3r−2), and a sequence of verifier
messages �vmsg = (vmsg1, . . . , vmsg3r−3).

Witness: A sequence of intermediate states �st = (stτ , . . . , st(λ−1)·τ), and
prover messages Pmsg = (pmsgj,i)j∈[3r−2],i∈[λ].

Verification: Merge(xmrg = (1λ, r, t, M, hk, st0, stt, �dig, �vmsg), wmrg =
(�st,Pmsg)) outputs 1 if all of the following checks pass:

1. dig0 = Hash(hk, �st).
2. For each j ∈ [3r − 2], digj = Hash(hk, (pmsgj,1, . . . , pmsgj,λ)).
3. For each i ∈ [λ − 1], Vr−1 outputs 1 on common in-

put (1λ, (M, st(i−1)·τ , sti·τ , τ)) given the transcript of message
(vmsg1, pmsg1,i, . . . , vmsg3r−1, pmsg3r−1,i). For i = λ, the above holds but
for common input consisting of statement (M, st(λ−1)·τ , stt, t− (λ−1) · τ).

Fig. 1. The non-deterministic machine Merge used to verify the validity of all interme-
diate LUpd,α statements.

4.1 Construction

We construct a proof system (P, V) for RU satisfying the properties stated in
Theorem 4.1. In the construction we make use of the update function UpdHT
given in Fig. 2. At a high level, each call to UpdHT runs a step of M and updates a
hash tree digest over the memory. Let α be the polynomial specifying the running
time of UpdHT as a function of its state size. Our construction relies on a hash
tree HT (see Theorem 2.3) and the arguments (Pr, Vr)r≥0 for LUpd,α given by
Theorem 3.2 with associated constant d.

The prover P and verifier V receive as common input the security parameter
1λ and an instance y = (M,x, t) ∈ LU . The prover additionally receives a witness
w such that (y, w) ∈ RU .

Let |st| denote the state size for UpdHT. We run the following protocol using
security parameter λ′ := max(λ, d · �log(|UpdHT| ·α(|st|) · log t)�), which ensures
that (λ′ ·|UpdHT|·α(|st|)·t·logλ′ t)d ≤ 2λ′

as required for the efficiency properties
of Theorem 3.2 to hold. Note that this will not effect the asymptotic succinctness
or complexity-preserving properties of our protocol as λ′ ∈ O(λ + log |M,x| +
log t). For simplicity, we simply write λ instead of λ′ in the protocol description.

The proof system is defined as follows:

– V samples a hash key hk ← HT.KeyGen(1λ) and sends it to P .
– P computes (treemem, digmem

0) = HT.Hash(hk,D), where D is the initial
memory that starts with an encoding of x followed by 0s. V computes
the same digest via digmem

0 = HT.Digest(hk,D). Both P and V set st0 =
(rst0, digmem

0 , imem
0) where rst0 is the initial RAM state and imem

0 = 1.

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 135

Update Function UpdHT

Hardcoded: The input machine M .

State: Each state consists of a RAM state rst, a memory hash tree digest
digmem, and a memory index imem. An invalid state is indicated by ⊥.

Witness: Each witness consists of a witness bit bwit, a read memory bit bmem,
a memory read proof πmem, a new memory digest digmem

new , and a write proof
πwrt.

Computation: The function UpdHT(st, w) computes a new state stnew as
follows:

1. Verify that st �= ⊥. Parse st = (rst, digmem, imem) and w = (bwit, bmem, πmem,
digmem

new , πwrt).
2. Verify that HT.VerRead(digmem, imem, bmem, πmem) = 1.
3. Compute (rstnew, imem

new , iwrt, bwrt, iwitnew) = step(M, rst, bmem, bwit).
4. If iwrt = ⊥, verify that digmem

new = digmem and πwrt = ⊥. Otherwise, verify
that HT.VerWrite(digmem, iwrt, bwrt, digmem

new , πwrt) = 1.
5. If all verifications pass, output stnew = (rstnew, digmem

new , imem
new). Otherwise,

output stnew = ⊥.

Fig. 2. The update function UpdHT for proving the correctness of non-deterministic
RAM computation in small state using a hash tree HT.

– For j = 1, . . . , t, P computes the next state stj and witness witj given the
current state stj−1 as follows:
1. Let stj−1 = (rstj−1, dig

mem
j−1 , imem

j−1).
2. Compute (bmem

j−1 , ·) = HT.Readtree
mem

(imem
j−1).

3. Compute (rstj , imem
j , iwrtj , bwrtj , iwitj) = step(M, rstj−1, b

mem
j−1 , w[iwitj−1]).

4. If iwrtj = ⊥, set digmem
j = digmem

j−1 and πwrt
j = ⊥. Otherwise, set (digmem

j ,

·) = HT.Writetree
mem

(iwrtj , bwrtj).
5. P saves stj = (rstj , digmem

j , imem
j) for the next iteration and erases stj−1

and all other working memory aside from its inputs and treemem.

P sends stt to V and erases all of its working memory other than its inputs.

– Let r = �logλ t�. P and V emulate Pr and Vr, respectively, in the interaction

〈Pr(wit1, . . . ,witt), Vr〉(1λ, (UpdHT, st0, stt, t)).

In order to compute each of its messages, Pr makes a single pass over the
witness (wit1, . . . ,witt). To emulate this, P computes each message for Pr as
follows:

• Compute (treemem, digmem
0) = HT.Hash(hk,D) and initialize st0 = (rst0,

digmem
0 , imem

0).
• For j = 1, . . . , t, P does the following:

136 C. Freitag et al.

1. Let stj−1 = (rstj−1, dig
mem
j−1 , imem

j−1).
2. Compute (bmem

j−1 , πmem
j−1) = HT.Readtree

mem

(imem
j−1).

3. Compute (rstj , imem
j , iwrtj , bwrtj , iwitj) = step(M, rstj−1, b

mem
j−1 , w[iwitj−1]).

4. If iwrtj = ⊥, set digmem
j = digmem

j−1 and πwrt
j = ⊥. Otherwise, set (digmem

j ,

πwrt
j) = HT.Writetree

mem

(iwrtj , bwrtj).
5. P saves stj = (rstj , digmem

j , imem
j) and witness witj = (w[iwitj−1], b

mem
j−1 ,

πmem
j−1 , digmem

j , πwrt
j) and erases stj−1 and all other working memory

aside from its inputs and treemem.
6. P emulates Pr providing access to witj until Pr reads from the next

witness witj+1, at which point P erases witj and continues in the loop
in order to compute witj+1.

• Once Pr has computed its next message, P sends it to V and erases all
of its working memory other than its inputs.

To emulate Vr, V simply needs to run its code given the transcript of messages
from P . At the end of the emulated interaction, V outputs 1 if rstt corresponds
to an accepting state and Vr outputs 1.

Acknowledgments. Cody Freitag is supported by a Khoury College Distinguished
Postdoctoral Fellowship. His work was partially done while at Cornell Tech and Boston
University, and he is supported in part by the NSF Graduate Research Fellowship under
Grant No. DGE-2139899, DARPA Award HR00110C0086, AFOSR Award FA9550-18-
1-0267, NSF CNS-2128519, and DARPA under Agreement No. HR00112020023.

Omer Paneth is a member of the Checkpoint Institute of Information Security
and is supported by an Azrieli Faculty Fellowship, Len Blavatnik and the Blavatnik
Foundation and ISF grant 1789/19. Supported in part by AFOSR Award FA9550-23-
1-0312. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the United
States Government or AFOSR.

Rafael Pass is supported in part by AFOSR Awards FA9550-18-1-0267, FA9550-
23-1-0387, FA9550-23-1-0312, ISF Grant No. 2338/23 and an Algorand Foundation
award. This material is based upon work supported by DARPA under Agreement No.
HR00110C0086. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of
the United States Government, DARPA, AFOSR or the Algorand Foundation.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: CCS, pp. 2087–2104. ACM (2017)

2. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, STOC, pp. 21–31 (1991)

3. Badrinarayanan, S., Kalai, Y.T., Khurana, D., Sahai, A., Wichs, D.: Succinct dele-
gation for low-space non-deterministic computation. In: STOC, pp. 709–721. ACM
(2018)

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 137

4. Bangalore, L., Bhadauria, R., Hazay, C., Venkitasubramaniam, M.: On black-box
constructions of time and space efficient sublinear arguments from symmetric-
key primitives. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022. LNCS, vol.
13747, pp. 417–446. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
22318-1 15

5. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual
Symposium on Foundations of Computer Science, FOCS, pp. 106–115 (2001)

6. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661–1694 (2008)

7. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 28

8. Ben-Or, M., et al.: Everything provable is provable in zero-knowledge. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York
(1990). https://doi.org/10.1007/0-387-34799-2 4

9. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive
proofs: how to remove intractability assumptions. In: STOC, pp. 113–131. ACM
(1988)

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon inter-
active oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx,
D., Sannella, D. (eds.) 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, Prague, Czech Republic, 9–13 July 2018. LIPIcs,
vol. 107, pp. 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018).
https://doi.org/10.4230/LIPIcs.ICALP.2018.14

11. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 23

12. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive
oracle proofs with constant rate and query complexity. In: ICALP. LIPIcs, vol. 80,
pp. 40:1–40:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

13. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of
probabilistically-checkable proofs. In: Boneh, D., Roughgarden, T., Feigenbaum,
J. (eds.) Symposium on Theory of Computing Conference, STOC 2013, Palo Alto,
CA, USA, 1–4 June 2013, pp. 585–594. ACM (2013). https://doi.org/10.1145/
2488608.2488681

14. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

15. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Short PCPs
verifiable in polylogarithmic time. In: 20th Annual IEEE Conference on Computa-
tional Complexity (CCC 2005), San Jose, CA, USA, 11–15 June 2005, pp. 120–134.
IEEE Computer Society (2005). https://doi.org/10.1109/CCC.2005.27

16. Ben-Sasson, E., Kaplan, Y., Kopparty, S., Meir, O., Stichtenoth, H.: Constant rate
PCPs for circuit-sat with sublinear query complexity. J. ACM 63(4), 32:1–32:57
(2016)

17. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM J.
Comput. 38(2), 551–607 (2008)

18. Bitansky, N., et al.: The hunting of the SNARK. J. Cryptol. 30(4), 989–1066 (2017)

https://doi.org/10.1007/978-3-031-22318-1_15
https://doi.org/10.1007/978-3-031-22318-1_15
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1145/2488608.2488681
https://doi.org/10.1145/2488608.2488681
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1109/CCC.2005.27

138 C. Freitag et al.

19. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) Symposium on Theory of Computing Conference, STOC
2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 111–120. ACM (2013). https://doi.
org/10.1145/2488608.2488623

20. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. SIAM J. Comput. 45(5), 1910–1952 (2016)

21. Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32009-5 16

22. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

23. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Public-coin zero-
knowledge arguments with (almost) minimal time and space overheads. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 168–197. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64378-2 7

24. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-
efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12828, pp. 123–152. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84259-8 5

25. Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using mul-
tiple provers. IACR Cryptology ePrint Archive, p. 846 (2014)

26. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 67–97. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 3

27. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

28. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional aux-
iliary input. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol.
9453, pp. 236–261. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48800-3 10

29. Brakerski, Z., Brodsky, M.F., Kalai, Y.T., Lombardi, A., Paneth, O.: SNARGs for
monotone policy batch NP. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO
2023. LNCS, vol. 14082, pp. 252–283. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-38545-2 9

30. Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and batch NP
verification from standard computational assumptions. In: STOC, pp. 474–482.
ACM (2017)

31. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-
proofs: short proofs for confidential transactions and more. In: IEEE Symposium
on Security and Privacy, pp. 315–334. IEEE Computer Society (2018)

32. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–
706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-642-32009-5_16
https://doi.org/10.1007/978-3-642-32009-5_16
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-030-64378-2_7
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-48800-3_10
https://doi.org/10.1007/978-3-662-48800-3_10
https://doi.org/10.1007/978-3-031-38545-2_9
https://doi.org/10.1007/978-3-031-38545-2_9
https://doi.org/10.1007/978-3-030-45721-1_24

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 139

33. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

34. Choudhuri, A.R., Garg, S., Jain, A., Jin, Z., Zhang, J.: Correlation intractability
and SNARGs from sub-exponential DDH. In: Handschuh, H., Lysyanskaya, A.
(eds.) CRYPTO 2023. LNCS, vol. 14084, pp. 635–668. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-38551-3 20

35. Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for P from LWE. In: 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS, pp. 68–79 (2021)

36. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

37. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36178-2 8

38. Devadas, L., Goyal, R., Kalai, Y., Vaikuntanathan, V.: Rate-1 non-interactive argu-
ments for batch-NP and applications. In: FOCS, pp. 1057–1068. IEEE (2022)

39. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)
40. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: SPARKs: succinct paralleliz-

able arguments of knowledge. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020. LNCS, vol. 12105, pp. 707–737. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45721-1 25

41. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and
the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996)

42. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

43. Freitag, C., Pass, R., Sirkin, N.: Parallelizable delegation from LWE. In: Kiltz, E.,
Vaikuntanathan, V. (eds.) TCC 2022. LNCS, vol. 13748, pp. 623–652. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-22365-5 22

44. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR
Cryptology ePrint Archive, p. 953 (2019)

45. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

46. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC, pp. 99–108. ACM (2011)

47. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
In: International Colloquium on Automata, Languages, and Programming, ICALP,
pp. 268–282 (1990)

48. Holmgren, J., Rothblum, R.: Delegating computations with (almost) minimal time
and space overhead. In: FOCS, pp. 124–135. IEEE Computer Society (2018)

49. Hulett, J., Jawale, R., Khurana, D., Srinivasan, A.: SNARGs for P from Sub-
exponential DDH and QR. In: Dunkelman, O., Dziembowski, S. (eds.) EURO-
CRYPT 2022. LNCS, vol. 13276, pp. 520–549. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-07085-3 18

https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-031-38551-3_20
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/978-3-030-45721-1_25
https://doi.org/10.1007/978-3-030-45721-1_25
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-031-22365-5_22
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-031-07085-3_18
https://doi.org/10.1007/978-3-031-07085-3_18

140 C. Freitag et al.

50. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
the Tenth Annual Structure in Complexity Theory Conference, pp. 134–147. IEEE
Computer Society (1995)

51. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs.
In: CCC, pp. 278–291. IEEE Computer Society (2007)

52. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.Y.: SNARGs for bounded depth
computations and PPAD hardness from sub-exponential LWE. In: STOC 2021:
53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC, pp.
708–721 (2021)

53. Kalai, Y., Lombardi, A., Vaikuntanathan, V., Wichs, D.: Boosting batch arguments
and RAM delegation. In: STOC, pp. 1545–1552. ACM (2023)

54. Kalai, Y., Paneth, O.: Delegating RAM computations. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 91–118. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 4

55. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In:
STOC, pp. 1115–1124. ACM (2019)

56. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power
of no-signaling proofs. In: STOC, pp. 485–494. ACM (2014)

57. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

58. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, STOC, pp. 723–732 (1992)

59. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptol. 16(3), 143–184 (2003)

60. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: CCS, pp.
2111–2128. ACM (2019)

61. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

62. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

63. Micali, S.: CS proofs (extended abstracts). In: 35th Annual Symposium on Foun-
dations of Computer Science, FOCS, pp. 436–453 (1994)

64. Micali, S., Pass, R.: Local zero knowledge. In: STOC, pp. 306–315. ACM (2006)
65. Mie, T.: Short PCPPs verifiable in polylogarithmic time with O(1) queries. Ann.

Math. Artif. Intell. 56(3–4), 313–338 (2009)
66. Paneth, O., Pass, R.: Incrementally verifiable computation via rate-1 batch argu-

ments. In: FOCS, pp. 1045–1056. IEEE (2022)
67. Paneth, O., Rothblum, G.N.: On zero-testable homomorphic encryption and pub-

licly verifiable non-interactive arguments. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10678, pp. 283–315. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70503-3 9

68. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. SIAM J. Comput. 50(3) (2021)

69. Ron-Zewi, N., Rothblum, R.D.: Local proofs approaching the witness length
[extended abstract]. In: FOCS, pp. 846–857. IEEE (2020)

https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-319-70503-3_9
https://doi.org/10.1007/978-3-319-70503-3_9

Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge 141

70. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 25

71. Simon, D.R.: Finding collisions on a one-way street: can secure hash functions
be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054137

72. Szepieniec, A., Zhang, Y.: Polynomial IOPs for linear algebra relations. In:
Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol. 13177, pp.
523–552. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97121-2 19

73. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

74. Waters, B., Wu, D.J.: Batch arguments for np and more from standard bilinear
group assumptions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS,
vol. 13508, pp. 433–463. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-15979-4 15

https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/978-3-030-97121-2_19
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1007/978-3-031-15979-4_15

	Public-Coin, Complexity-Preserving, Succinct Arguments of Knowledge for NP from Collision-Resistance
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work on Succinct Arguments

	2 Preliminaries
	2.1 Collision-Resistant Hash Functions
	2.2 Hash Trees
	2.3 Arguments of Knowledge

	3 Arguments of Knowledge for Bounded Space Computation
	3.1 Construction

	4 Complexity-Preserving Succinct Arguments of Knowledge
	4.1 Construction

	References

