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Abstract. Suppose a prover, in possession of a large body of valuable
evidence, wants to quickly convince a verifier by presenting only a small
portion of the evidence.

We define an Approximate Lower Bound Argument, or ALBA, which
allows the prover to do just that: to succinctly prove knowledge of a large
number of elements satisfying a predicate (or, more generally, elements
of a sufficient total weight when a predicate is generalized to a weight
function). The argument is approximate because there is a small gap
between what the prover actually knows and what the verifier is con-
vinced the prover knows. This gap enables very efficient schemes.

We present noninteractive constructions of ALBA in the random ora-
cle and Uniform Random String models and show that our proof sizes are
nearly optimal. We also show how our constructions can be made partic-
ularly communication-efficient when the evidence is distributed among
multiple provers working together, which is of practical importance when
ALBA is applied to a decentralized setting.

We demonstrate two very different applications of ALBAs: for large-
scale decentralized signatures and for achieving universal composability
in general-purpose succinct proof systems (SNARKs).

1 Introduction

Suppose a prover is in possession of a large body of valuable evidence that
is individually verifiable. The evidence is so voluminous that presenting and
verifying all of it is very expensive. Instead, the prover wants to convince a
verifier by presenting only a small portion of the evidence.

More formally, let R be a predicate. We explore succinct arguments of knowl-
edge for a prover who knows a set Sp of values that satisfy R such that |Sp| ≥ np

and wants to convince a verifier that |Sp| > nf, where nf is somewhat smaller
than np. Because nf < np, the verifier obtains a lower bound approximation to
the actual cardinality of Sp; hence we call this primitive an Approximate Lower
Bound Argument or ALBA.
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This problem has a long history. In 1983, in order to prove that BPP ⊆ RPNP,
Sipser and Gács [Sip83, Section V, Corollary to Theorem 6] showed a simple two-
round interactive protocol for proving a lower bound on the size of the set S of
accepting random strings. Their construction is based on hash collisions: the
verifier chooses some number of universal hash functions h1, . . . , hm [CW79] and
the prover shows s, s′ such that s �= s′ and hi(s) = hi(s′) for some i ∈ {1, . . . , m}.
If S is small (of size at most nf), then such hash collisions are very unlikely to
exist, and if S is big (of size at least np), then they must exist by the pigeonhole
principle. In 1986, Goldwasser and Sipser [GS86, Section 4.1] used a slightly
different approach, based on the existence of inverses rather than collisions, for
proving that public coins suffice for interactive proofs (we provide more details
in the full version of our paper [CKRZ23]). To the best of our knowledge, the
term “approximate lower bound” in the context of proof systems appears first
in Babai’s work [Bab85, Section 5.2].

In designing ALBAs, we will aim to minimize communication and computa-
tional complexity; these metrics improve as the “gap” np/nf increases. The proof
size and verifier time in classical techniques above are far from optimal. While
this does not affect the classical applications of ALBAs (such as in proving that
any IP language can be decided by an Arthur-Merlin protocol, where the gap
can be a large constant and the prover has exponential time), as we will see it
does become a pressing concern in modern applications of ALBAs.

1.1 Our Setting

The prover and verifier have access to a predicate R and the prover needs to show
some elements of Sp to the verifier so it is convinced that the prover possesses
more than nf elements that pass R. The goal is to find some property that is
unlikely to hold for small sets Sf of size nf, likely to hold for large sets Sp of size
np, and can be shown with just a few elements.

Generalization to Weighted Sets. We generalize a predicate R that determines
validity of set elements, and consider instead a weight function W that takes
a set element and outputs its nonnegative integer weight. In that context we
wish to explore succinct arguments of knowledge that convince a verifier that
the prover knows a set S that satisfies a lower bound

∑
s∈S W (s) > nf. When

W is {0, 1}-valued, we are in the setting of a predicate, and we call this case
“unweighted.”

We emphasize that R or W are used in a black-box way in our protocols.
Thus, our protocols can be used in settings when these functions do not have a
known specification—for example, they may be evaluated by human judges who
weigh evidence or via some complex MPC protocol that uses secret inputs.

Setup and Interaction Models. Our main focus is on building ALBA proto-
cols that are succinct Non-Interactive Random Oracle Proofs of Knowledge or
NIROPK (see Sect. 2 for the definition). If the prover is successful in convinc-
ing the verifier, then the knowledge extractor can obtain a set of total weight
exceeding nf by simply observing the random oracle queries; in other words,
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the protocol is straight-line extractable in the nonprogrammable random ora-
cle model. Our security is information-theoretic as long as the predicate R (or
the weight function W ) is independent of the random oracle; by the standard
technique of adding a commitment to R (or W ) to every random oracle query,
we obtain computational security even if this function is adaptively chosen to
depend on the oracle.

We also show simple modifications of our protocols that replace random ora-
cles with pseudorandom functions (PRFs). By simply publishing the PRF seed as
a shared random string, we obtain a non-interactive proof of knowledge in the Uni-
form Random String (URS) model, in which extractor works by reprogramming
the URS. Alternatively, we can obtain a two-round public coin proof of knowledge
by having the verifier send the PRF seed (we would then use rewinding for extrac-
tion). Protocols in these two models are non-adaptively secure—i.e., they require
that the predicate R is independent of the URS or the verifier’s first message.

Decentralized Setting. The set Sp may be distributed among many parties. For
instance, in a blockchain setting it could be the case that multiple contribut-
ing peers hold signatures on a block of transactions and they wish to collectively
advance a protocol which approves that block. To capture such settings, we intro-
duce decentralized ALBAs: in such a scheme, the provers diffuse messages via a
peer to peer network, and an aggregator (who may be one of the provers them-
selves) collects the messages and produces the proof. Note that not all provers
may decide to transmit a message. In addition to the complexity considerations
of regular ALBAs, in the decentralized setting we also wish to minimize the
total communication complexity in the prover interaction phase as well as the
computational complexity of the aggregator.

1.2 Our Results

Our goal is to design protocols that give the prover a short, carefully chosen,
sequence of elements from Sp. We show how to do this with near optimal effi-
ciency.

Let λ be the parameter that controls soundness and completeness: the honest
prover (who possesses a set of weight np) will fail with probability 2−λ and the
dishonest prover (who possesses a set of weight at most nf) will succeed with,
say, also probability 2−λ. Let u be the length of the sequence the prover sends.
The unweighted case. We first show an unweighted ALBA in which the prover
sends only

u =
λ + log λ

log np
nf

(1)

elements of Sp. Moreover, we show that this number is essentially tight, by
proving that at least

u =
λ

log np
nf

elements of Sp are necessary. (Note that all formulas in this section omit small
additive constants for simplicity; the exact formulas are given in subsequent
sections.)
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Such a protocol is relatively easy to build in the random oracle model if one
disregards the running time of the prover: just ask the prover to brute force a
sequence of u elements of Sp on which the random oracle gives a sufficiently
rare output. Calibrate the probability ε of this output so that ε · nu

f ≤ 2−λ for
soundness, but (1 − ε)nu

p ≤ 2−λ for completeness. A bit of algebra shows that
u = λ+log λ

log
np
nf

suffices to satisfy both soundness and completeness constraints, so

the proof is short.1 However, in this scheme, the prover has to do an exhaustive
search of 1/ε sequences of length u, and thus the running time is exponential.

It follows that the main technical challenge is in finding a scheme that main-
tains the short proof while allowing the prover to find one quickly. In other
words, the prover needs to be able to find a sequence of u elements with some
special rare property (that is likely to occur among np elements but not among
nf elements), without looking through all sequences. We do so in Sect. 3 by
demonstrating the Telescope construction.

Its core idea is to find a sequence of values that itself and also all its prefixes
satisfy a suitable condition determined by a hash function (and modeled as
a random oracle). This prefix invariant property enables the prover to sieve
through the possible sequences efficiently expanding gradually the candidate
sequence as in an unfolding telescope. We augment this basic technique further
via parallel self composition to match the proof length of the exhaustive search
scheme. The resulting prover time (as measured in the number of random oracle
queries) is dropped from exponential to O(np · λ2). We then show how to drop
further the prover complexity to O(np + λ2) by prehashing all elements and
expressing the prefix invariant property as a hash collision. We also establish
that our constructions are essentially optimal in terms of proof size by proving
a lower bound in the number of elements than must be communicated by any
ALBA scheme that satisfies the extractability requirements of Definition 4.

Weights and Decentralized Provers. In the case where all elements have an inte-
ger weight, the straightforward way to design a weighted scheme is to give
each set element a multiplicity equal to its weight and apply the algorithms
we described above. However, the prover’s running time becomes linear in the
input’s total weight np which could be in the order of 264 (number of coins in
popular cryptocurrencies). A way to solve this problem is to select (with the
help of the random oracle) a reasonably-sized subset of the resulting multiset by
sampling, for each weighted element, a binomial distribution in accordance with
its weight. Given this precomputation, we can then proceed with the Telescope
construction as above and with only a (poly)logarithmic penalty due to the
weights. We detail this technique in Sect. 5.

Turning our attention to the decentralized setting we present two construc-
tions. In the first one, each party performs a private random-oracle-based coin
flip to decide whether to share her value. The aggregator produces a proof by

1 Let ε = 2−λn−u
f to satisfy soundness. Then (1 − ε)nu

p < exp(−2−λn−u
f )nu

p =
exp(−2−λ(np/nf)

u) is needed for completeness, so it suffices to have
exp(−2−λ(np/nf)

u) ≤ 2−λ, i.e., 2−λ(np/nf)
u · log e ≥ λ, i.e. (np/nf)

u ≥ 2λ · λ/ log e.
Taking logarithm gives the desired result.
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concatenating a number of the resulting values equal to a set threshold. In the
second construction, we combine the above idea with the Telescope construction
letting the aggregator do a bit more work; this results in essentially optimal
proof size with total communication complexity O(λ3), or proof size an additive
term

√
λ larger than optimal and total communication complexity O(λ2).

1.3 Applications

Beyond the classical applications of ALBAs in complexity theory described ear-
lier [CW79,Sip83,Bab85,GS86], there are further applications of the primitive
in cryptography.

Weighted Multisignatures and Compact Certificates. In a multisignature scheme,
a signature is accepted if sufficiently many parties have signed the message
(depending on the flavor, the signature may reveal with certainty, fully hide,
or reveal partially who the signers are). In consensus protocols and blockchain
applications, schemes that accommodate large numbers of parties have been put
to use in the context of certifying the state of the ledger. In a “proof-of-stake”
setting, each party is assigned a weight (corresponding to its stake), and the ver-
ifier needs to be assured that parties with sufficient stake have signed a message.

Most existing approaches to building large-scale multisignatures exploit prop-
erties of particular signatures or algebraic structures. For example, the recent
results of Das et al. and Garg et al. [GJM+23,DCX+23] are based on bilinear
pairings and require a structured setup.

In contrast, our work relies only on random oracles, making it compatible with
any complexity assumption used for the underlying signature scheme, including
ones that are post-quantum secure. Expectedly, the black box nature of our
construction with respect to the underlying signature results in longer proofs
(they can be shortened using succinct proof systems, as we discuss in Sect. 1.4).

In more detail, in order to apply an ALBA scheme to the problem of multisig-
natures, we treat individual signatures as set elements. The underlying signature
scheme needs to be unique: it should be impossible (or computationally infeasi-
ble) to come up with two different signatures for the same message and public
key. Otherwise, it is easy to come up with a set of sufficient total weight by
producing multiple signatures for just a few keys2. Alternatively, if the knowl-
edge extractor is allowed to rewind (need not be straight-line), one can use an
arbitrary (not necessarily unique) signature scheme as follows: treat the public
keys as set elements and for every selected public key in the ALBA proof, add
its signature. Using an ALBA with decentralized provers is particularly suited
to the blockchain setting as signatures will be collected from all participants.

A closely related approach is compact certificates by Micali et al. [MRV+21]
who also treat the underlying signature scheme as a black box. In more detail,
their construction collects all individual signatures in a Merkle tree, and selects
2 The verifier could check that all public keys are distinct, but since the proof contains

just a small subset of the signatures, a malicious prover could try many signatures,
or “grind,” until it finds a proof that satisfies this check.
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a subset of signatures to reveal via lottery (that can be instantiated via the
Fiat-Shamir transform [BR93]). Compared to compact certificates, our Telescope
scheme obviates the need for the Merkle tree and hence shaves off a multiplicative
logarithmic factor in the certificate length. It is also not susceptible to grinding
while in compact certificates the adversary can try different signatures to include
in the Merkle tree, and unlike compact certificates that rely inherently on the
random oracle, our scheme can be instantiated in the CRS/URS model. Finally,
our decentralized prover constructions drastically reduce communication. On the
other hand, compact certificates cleverly tie the lottery to public keys rather than
signatures and support an arbitrary signature scheme (not necessarily unique)
while still providing straight-line knowledge extraction.

Reducing communication complexity was also the focus of Chaidos and
Kiayias in Mithril, a weighted threshold multisignature, [CK21], that also uses
unique signatures and random-oracle-based selection. In our terminology, Mithril
applies a decentralized ALBA scheme to unique signatures (possibly followed by
compactification via succinct proof systems, as discussed in Sect. 1.4). In com-
parison to Mithril, our decentralized prover construction achieves significantly
smaller proof sizes (when comparing with the simple concatenation version of
[CK21]) at the cost of higher communication. In Sect. 4.1 we present a simple
lottery that is asymptotically similar to Mithril with concatenation proofs, and
offer a comparison in Sect. 8.

Straight-Line Witness Extraction for SNARKs. Ganesh et al. [GKO+23]
addressed the problem of universal composability [Can00] for witness-succinct
non-interactive arguments of knowledge. Universal composability requires the
ability to extract the witness without rewinding the prover. However, since the
proof is witness-succinct (i.e., shorter than the witness), the extractor must
look elsewhere to obtain the witness. Building on the ideas of Pass [Pas03] and
Fischlin [Fis05], Ganesh et al. proposed the following approach: the prover rep-
resents the witness as a polynomial of some degree d, uses a polynomial commit-
ment scheme to commit to it, and then makes multiple random oracle queries
on evaluations of this polynomial (together with proofs that the evaluations are
correct with respect to the commitment) until it obtains some rare output of
the random oracle (much like the Bitcoin proof of work). The prover repeats
this process many times, and includes in the proof only the queries that result
in the rare outputs. The verifier can be assured that the prover made more
than d queries with high probability, because otherwise it would not be able to
obtain sufficiently many rare outputs. Thus, the knowledge extractor can recon-
struct the witness via polynomial interpolation by simply observing the prover’s
random oracle queries.

We observe that this approach really involves the prover trying to convince
the verifier that the size of the set of random oracle queries is greater than d.
This approach is just an ALBA protocol, but not a particularly efficient one.
Applying our scheme instead of the one custom-built by Ganesh et al. results in
less work for the prover. To get a proof of size u ≤ λ, the protocol of Ganesh
et al. requires the prover to compute d · u · 2λ/u polynomial evaluations and
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decommitment proofs,3whereas our Telescope construction from Sect. 3 requires
only d · λ1/u · 2λ/u of those.4 Thus, our approach speeds up this part of prover’s
work by a factor of about u (which is close to the security parameter λ).

1.4 Relation to General-Purpose Witness-Succinct Proofs

In cases where the weight function can be realized by a program, one can
use general-purpose witness-succinct proofs to tackle the construction of ALBA
schemes via utilizing SNARKs [Gro16,GWC19].

These general purpose tools, however, are quite expensive, especially for the
prover. First, the proving time can become impractical when the number of set
elements in the witness is large. Second, given that the weight function W must
be encoded as a circuit, the proving cost also depends heavily on the complexity
of W . Moreover, W cannot always be specified as a circuit, but is evaluated by
a more complex process—via a secure multi-party computation protocol or a
human judge weighing the strength of the evidence.

On the other hand, these tools can give very short, even constant-size, proofs.
To get the best of both worlds—prover efficiency and constant-size proofs—
one can combine an ALBA proof with a witness-succinct proof of knowledge
of the ALBA proof. This is indeed the approach proposed by Chaidos and
Kiayias [CK21]: it first reduces witness size nf to u by using very fast random-
oracle-based techniques, and then has the prover prove u (instead of nf) weight
computations. We can also apply this technique to our constructions, something
that can result in a constant size proof with a computationally efficient prover.
And given that our constructions can work in the CRS model, one can avoid
heuristically instantiating the random oracle inside a circuit.

2 Definitions

Below we present a definition of ALBA inspired by the non-interactive random
oracle proof of knowledge (NIROPK) [BCS16] with straight-line extraction. To
introduce arbitrary weights, we use a weight oracle W : {0, 1}∗ → N ∪ {0} and
denote for a set S, W (S) =

∑
s∈S W (s).

Definition 1. The triple (Prove,Verify,Extract) is a (λsec, λrel, np, nf)-NIROPK
ALBA scheme if and only if

– ProveH,W is a probabilistic program that has access to the random oracle H
and a weight oracle W ;

– VerifyH,W is a program that has access to the random oracle H and a weight
oracle W ;

3 This value follows from the formula λ = r(b− log d) in the “Succinctness” paragraph
of [GKO+23, Section 3.1]. Note that r is u in our notation, and the expected number
of random oracle queries by the prover is r · 2b. Solving the formula for b, we get
2b = d2λ/r.

4 This value is obtained by setting nf = d and solving (1) for np.
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– ExtractH,W,A is a probabilistic program that has access to the random oracle
H, a weight oracle W and an adversary program A;

– completeness: for all weight oracles W and all Sp such that W (Sp) ≥ np,
Pr[VerifyH,W (ProveH,W (Sp)) = 1] ≥ 1 − 2−λrel ;

– proof of knowledge: consider the following experiment ExtractExp(AH,W ,W ):
Sf ← ExtractH,W,A();
output 1 iff W (Sf) > nf;

we require that for all weight oracles W and all probabilistic oracle access
programs AH,W ,

Pr[ExtractExp(A,W ) = 1] ≥ Pr
[
VerifyH,W

(AH,W ()
)

= 1
] − 2−λsec ;

moreover, ExtractH,W,A() is only allowed to run AH,W once with the real H
and W and only observes the transcript with its oracles (straight-line extrac-
tion property), Extract runs in time polynomial in the size of this transcript.

As presented, this definition is non-adaptive; i.e., it does not allow W to
depend on H; adaptivity can be added if it is possible to commit to W ; see
Sect. 6 for further discussion.

The above formulation of ALBAs captures the setting where a prover has the
entire set Sp in its possession. We will also be interested in ALBAs where the
prover is decentralized—by this we refer to a setting where a number of prover
entities, each one possessing an element s ∈ Sp wish to act in coordination
towards convincing the verifier. We now define a decentralized ALBA.

Definition 2. The quadruple (Prove,Aggregate,Verify,Extract) is a (λsec, λrel,
np, nf)-decentralized NIROPK ALBA scheme if and only if

– ProveH,W is a probabilistic program that has access to the random oracle H
and a weight oracle W ;

– AggregateH,W is a probabilistic program that has access to the random oracle
H and a weight oracle W ;

– VerifyH,W is a program that has access to the random oracle H and a weight
oracle W ;

– ExtractH,W,A is a probabilistic program that has access to the random oracle
H, a weight oracle W and an adversary program A;

– completeness: consider the following experiment CompExp(Sp,W ):

S := ∅;
for s ∈ Sp do

m ← ProveH,W (s);
if m �= ε then � if m is not empty string

S := S ∪ {m};
π ← AggregateH,W (S);
r ← VerifyH,W (π);
return r;
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we require that for all weight oracles W and all Sp such that W (Sp) ≥ np,
Pr[CompExp(Sp,W ) = 1] ≥ 1 − 2−λrel ;

– proof of knowledge: consider the following experiment ExtractExp(AH,W ,W ):
Sf ← ExtractH,W,A();
output 1 iff W (Sf) > nf;

we require that for all weight oracles W and all probabilistic oracle access
programs AH,W ,

Pr[ExtractExp(A,W ) = 1] ≥ Pr
[
VerifyH,W

(AH,W ()
)

= 1
] − 2−λsec ;

moreover, ExtractH,W,A() is only allowed to run AH,W once with the real H
and W and only observes the transcript with its oracles (straight-line extrac-
tion property), Extract runs in time polynomial in the size of this transcript.

In this model, we would like to minimize not only the proof size, but also the
amount of communication characterized by the size of S in CompExp. Note that
the above definition can be extended to multiple rounds of communication, but
this is not something we explore in this work—all our decentralized constructions
are “1-round.”

Finally, we present a proof of knowledge ALBA definition in the CRS model.
Unlike for NIROPK, the knowledge extractor here is allowed to rewind the adver-
sary A and is given it as regular input. Note that the definition crucially requires
the CRS to be independent of W ; see Sect. 7 for further discussion.

Definition 3. (Prove,Verify,Extract,GenCRS) is a (λsec, λrel, np, nf)-CRS proof
of knowledge ALBA scheme if and only if

– ProveW is a probabilistic program;
– VerifyW is a program having access to a weight oracle W ;
– ExtractW is a probabilistic program having access to a weight oracle W ;
– GenCRS is a probabilistic program;
– completeness: consider the following experiment CompExp(W,Sp):

crs ← GenCRS();
π ← Prove(crs, Sp);
r ← VerifyW (crs, π);
return r;

we require that for all weight oracles W and all Sp such that W (Sp) ≥ np,
Pr[CompExp(W,Sp) = 1] ≥ 1 − 2−λrel ;

– proof of knowledge: consider the following experiment SoundExp(AW ,W ):
crs ← GenCRS();
π ← AW (crs);
r ← VerifyW (crs, π);
return r;
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we require that for all weight oracles W and all probabilistic oracle access
programs AW , if A runs in time T and ε = Pr[SoundExp(AW ,W ) = 1] −
2−λsec > 0, then Sf ← ExtractW (A) runs in expected time poly(T, 1/ε) and
Pr

[
W (Sf) > nf

]
= 1.

3 Telescope ALBA

In this section we present two ALBA schemes in sequence. We start with a less
efficient but simpler construction to illustrate the main idea. We then proceed
to optimize the scheme’s efficiency.

For both constructions, we will assume we have three random oracles H0,H1,
and H2 having particular output distributions. We explain how to implement
these using a single random oracle which outputs binary strings in the full ver-
sion [CKRZ23] of this work. Further, we initially restrict weights to be either
0 or 1, and generalize to integers in Sect. 5. Finally, we postpone showing the
proof of knowledge property and instead consider a simpler notion of soundness:
given nf elements fixed in advance, what is the probability that a valid proof
exists containing only those elements? Sect. 6 will then show how a knowledge
extractor can be constructed.

3.1 Basic Construction

The main idea is as follows. Let d, u and q be parameters. The prover first
considers all pairs consisting of an integer in [d] and one of the elements of Sp

and selects each of the npd pairs with probability 1/np. In expectation he will
have d pairs selected. Now these pairs are treated as single units and they are
paired with each element of Sp, resulting in triples that are selected again with
probability 1/np. This process is repeated u times ending with, in expectation,
d tuples consisting of one integer in [d] and u set elements. Now, each of the
tuples is selected with probability q and any selected tuple will be a valid proof.

More formally, let H1 and H2 be random functions returning 1 with proba-
bility 1/np and q respectively, and returning 0 otherwise. Any tuple (t, s1, ..., su)
such that

– 1 ≤ t ≤ d;
– for all 1 ≤ i ≤ u, H1(t, s1, ..., si) = 1;
– H2(t, s1, ..., su) = 1;

is a valid proof (see Sect. 3.3 how to implement H1 efficiently). Define the pro-
gram Verify accordingly.

Intuitively, this works because the honest prover maintains d tuples in expec-
tation at each stage, while the malicious prover’s tuples decrease np/nf times
with each stage. However, to implement and analyze the prover algorithm, it will
be convenient to represent all tuples (t, s1, ..., si), where 1 ≤ t ≤ d, 0 ≤ i ≤ u
and s1, ..., si ∈ Sp, as d trees of height u with {(1), ..., (d)} being the roots of the
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trees and {(t, s1, ..., su)}1≤t≤d,s1,...,su∈Sp being the leaves. To implement Prove,
simply run depth first search (DFS) to find a “valid” path from a root to a leaf.

We will now analyze soundness of this construction. As mentioned above,
the soundness error is defined to be the probability that a valid proof exists
containing only elements from a fixed set Sf of size nf.

Theorem 1. Let

u ≥ λsec + log(qd)
log np

nf

.

Then soundness error is ≤ 2−λsec .

Proof. We analyze soundness error, denoted by S, using simple union bound.

S ≤
(

1
np

)u

· q · d · nu
f =

(
nf

np

)u

· qd.

Then

− log S ≥ −
(

u log
nf

np
+ log(qd)

)

= u log
np

nf
− log(qd) ≥ λsec.

We now analyze completeness.

Theorem 2. Let

d ≥ 2uλrel

log e
; q =

2λrel

d log e
.

Then completeness error is ≤ 2−λrel and the probability that there exists a valid
proof with a particular integer t is at least q − (u + 1) · q2

2 .

Proof. Completeness can be described using the following recursive formula. For
0 ≤ k ≤ u, let f(k) be the probability that when fixing a prefix of an integer
in [d] and u − k elements t, s1, ..., su−k, there is no suffix of honest player’s
elements that works, meaning there is no su−k+1, ..., su ∈ Sp such that for all
u − k + 1 ≤ i ≤ u, H1(t, s1, ..., si) = 1, and H2(t, s1, ..., su) = 1. Then one can
see that

– f(0) = 1 − q;
– for 0 ≤ k < u, f(k + 1) =

(
(1 − 1

np
) + 1

np
· f(k)

)np ;
– the probability that there does not exist a valid proof with a particular integer

t is f(u);
– the probability that the algorithm fails in the honest case is

(
f(u)

)d.

This recursive formula can be approximated:

f(k + 1) =
(

1 +
1
np

(
f(k) − 1

)
)np

≤
(
e

1
np

(f(k)−1)
)np

= ef(k)−1. (2)
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It is convenient to look at the negative logarithm of this expression; we will prove
by induction that − ln f(k) ≥ q − k · q2

2 .
Basic case: − ln f(0) = − ln(1 − q) ≥ − ln(e−q) = q.
Inductive step: by Eq. 2,

− ln f(k + 1) ≥ 1 − f(k) ≥ 1 − e−
(
q−k· q2

2

)

[≥]

Using the values for d and q, one can see that k · q2

2 ≤ u · q2

2 ≤ q, then

[≥]1 −
(

1 −
(

q − k · q2

2

)

+

(
q − k · q2

2

)2

2

)

≥
(

q − k · q2

2

)

− q2

2
= q − (k + 1) · q2

2
.

Hence, − ln f(u) ≥ q − u · q2

2 and the probability that the honest prover fails

is
(
f(u)

)d ≤ exp
(

− (
q − u · q2

2

)
d
)
. Using the values for d and q, one can see

that this is at most 2−λrel . Additionally, the probability that there exists a valid
proof with a particular integer t is

1 − f(u) ≥ e−
(
q−u· q2

2

)

≥

1 −
(

1 −
(

q − u · q2

2

)

+
(q − u · q2

2 )2

2

)

≥ q − (u + 1) · q2

2
.

��
Corollary 1. Let

u ≥ λsec + log λrel + 1 − log log e

log np

nf

; d ≥ 2uλrel

log e
; q =

2λrel

d log e
.

Then soundness error is ≤ 2−λsec and completeness error is ≤ 2−λrel .

It is worth noting that the constant in d, and thus algorithm’s running time,
can be reduced. We show how to do this in the full version. Although the scheme
still remains less efficient than the improved construction in Sect. 3.2, the opti-
mizations can potentially be transferred over; we leave that for future work.

Running Time. In this section we analyze the prover’s running time.
Assume Sp is a set with cardinality np. As mentioned above, all tuples

(j, s1, ..., si) can be represented as d trees. We would like to analyze the number
of “accessible” vertices in these trees. Let the indicator random variable

Aj,s1,...,si
=

{
1 if for all 1 ≤ r ≤ i,H1(j, s1, ..., sr) = 1
0 otherwise.
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If Aj,s1,...,si
= 1 we say the vertex (j, s1, ..., si) is accessible.

Let us first prove that the expected number of accessible vertices in a single
tree at a particular height is 1.

Theorem 3. For any j and 0 ≤ i ≤ u,

E

[
∑

s1,...,si∈Sp

Aj,s1,...,si

]

= 1.

We present the proof in the full version [CKRZ23] of this work.
Assuming the prover runs DFS, Theorem 2 gives a bound on the expected

number of evaluated trees. And by the above theorem, the algorithm invokes H1

npu times and H2 once in expectation per tree. Thus, the expected total number
of hash evaluations shall be the product of the expected number of evaluated
trees and (npu + 1). This, however, needs a more careful proof.

Theorem 4. The expected number of hash evaluations is at most

(

q − (u + 1) · q2

2

)−1

(npu + 1)

We present the proof in the full version [CKRZ23] of this work.
Taking parameter values from Corollary 1 and letting λ = λsec = λrel, we

thus obtain an expected number of hash evaluations of O(np · λ2).
We might also wish to have a tighter bound on the running time or on

the number of accessible vertices to argue that an adversary cannot exploit an
imperfect hash function or a PRF by making too many queries. Below we present
a Chernoff style bound on the number of accessible non-root vertices in all d trees

Z =
∑

1≤j≤d,
1≤i≤u,

s1,...,si∈Sp

Aj,s1,...,si
.

Note that E[Z] = du.

Theorem 5.

Pr[Z ≥ (1 + δ)du] ≤ exp
(

− δ2

4(1 + δ)
· d

u

)

.

We present the proof in the full version [CKRZ23] of this work.
Taking parameter values from Corollary 1 and letting λ = λsec = λrel, we thus

conclude that the algorithm does O(np ·λ3) hash evaluations with overwhelming
probability.
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3.2 Construction with Prehashing

The basic scheme described above has proving expected time O(np · λ2) and
verification time O(λ) if we let λ = λsec = λrel. The modification described
in this section has proving expected time O(np + λ2) and verification time is
unchanged.

The improvement is inspired by balls-and-bins collisions. Whereas in the
previous scheme for every tuple we tried each of np possible extensions, here
we hash tuples to a uniform value in [np] and hash individual set elements to a
uniform value in [np], and consider a valid extension to be such that the tuple
and the extension both hash to the same value. More formally, we have random
functions H0 and H1 producing a uniformly random value in [np] and hash
function H2 returning 1 with probability q and 0 otherwise, and consider a tuple
(t, s1, ..., su) a valid proof if and only if

– 1 ≤ t ≤ d;
– for all 1 ≤ i ≤ u, H1(t, s1, ..., si−1) = H0(si);
– H2(t, s1, ..., su) = 1;

(see Sect. 3.3 how to implement H1 efficiently). Define the Verify program accord-
ingly.

As before, we have d valid tuples in expectation at each stage but by pre-
computing H0(·) (balls to bins) we avoid trying all np extensions for a tuple.
The analysis of completeness, however, is more complicated. Before, we assumed
in the recursive formula that failure events for each element extension are all
independent. Here, it is not true: the fact that one extension eventually suc-
ceeds can tell that the balls-to-bins are well distributed. Indeed, if each bin gets
exactly one ball, then there will always be a tuple that succeeds except maybe
for the requirement that H2(·) = 1. However, if all balls land in one bin, then
the success probability is smaller. To get rid of this dependency, we can however
fix the balls-to-bins arrangement. Then such events become independent again.

The proof has two parts: the first one says that if the arrangement of the
balls is “nice”, then with high probability the honest player succeeds. The second
part proves that we get a “nice” distribution of balls with high probability. The
“nice” property itself is artificial, but one can notice that if the number of bins
of size s is exactly the expected number of bins of size s if the size of each bin is a
Poisson random variable with mean 1, then the analysis of completeness becomes
very similar to that of the previous scheme. By using Poisson approximation and
Chernoff like analysis, we can show that the property we care about does hold
with high probability. We need, however, assume that the number of set elements
np is large enough (on the order of λ3). Alternatively, we can generate multiple
balls per set element.

We first analyze soundness. As mentioned previosly, we define soundness
error to be the probability that a valid proof can be constructed using elements
Sf with |Sf| = nf (simple soundness).
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Theorem 6. Let

u ≥ λsec + log(qd)
log np

nf

.

Then soundness error is ≤ 2−λsec .

We present the proof in the full version [CKRZ23] of this work.

Theorem 7. Assume

d ≥ 16u(λrel + log 3)
log e

; q =
2(λrel + log 3)

d log e
;np ≥ d2 log e

9(λrel + log 3)
. (3)

Then completeness error is ≤ 2−λrel .

We present the proof in the full version [CKRZ23] of this work.

Corollary 2. Assume

u ≥ λsec + log(λrel + log 3) + 1 − log log e

log np

nf

; d ≥ 16u(λrel + log 3)
log e

;

q =
2(λrel + log 3)

d log e
;np ≥ d2 log e

8(λrel + log 3)
.

Then soundness is ≤ 2−λsec and completeness error is ≤ 2−λrel .

It is worth noting that the np ≥ Ω(λ3) requirement can be removed as
follows. Instead of doing Chernoff like analysis, that requires large np, one can
utilize Markov’s inequality to show that the “nice” arrangement of balls into bins
happens with moderate probability, e.g. 3

4 , to achieve a scheme with completeness
1
2 . Such a scheme can then be amplified to achieve arbitrary λrel by setting
λsec := λsec + log λrel and having the verifier accept any one of λrel independent
proofs. As a result, the expected running time is no longer Ω(λ3) but O(np+λ2),
but we need to apply H0 to all elements twice in expectation as opposed to
exactly once. Hence, for large np it still makes sense to use the algorithm as
described at the beginning of the section. The Markov analysis can be found in
the full version [CKRZ23] of this paper.

Running Time. In this section we analyze the prover’s running time. Assume
Sp is a set with cardinality np. As described in Sect. 3.1, all tuples (j, s1, ..., si)
can be represented as d trees of height u. We would like to analyze the number
of “accessible” vertices in these trees. Let the indicator random variable

Aj,s1,...,si
=

{
1 if for all 1 ≤ r ≤ i,H1(j, s1, ..., sr−1) = H0(sr)
0 otherwise.

If Aj,s1,...,si
= 1 we say the vertex (j, s1, ..., si) is accessible.

Similarly to Sect. 3.1, one can prove that the expected number of accessible
vertices in a single tree at a particular height is 1. This holds independently of
the value of H0!
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Theorem 8. For any j and 0 ≤ i ≤ u,

E

[
∑

s1,...,si∈Sp

Aj,s1,...,si

∣
∣
∣
∣
∣
H0

]

= 1.

We will now analyze the expected running time of the prover. The hash func-
tion H0 is invoked exactly np times, so we will only upper bound the expected
number of invocations of H1 and H2.

Theorem 9. The expected number of invocations of H1 and H2 is at most

u + 1
1 − e−q+4uq2 + 2e− 9

4npq
2 · d(u + 1).

We present the proof in the full version [CKRZ23] of this work.
Taking parameter values from Corollary 2 and letting λ = λsec = λrel, we

thus get expected number of evaluations of H1 and H2 O(λ2). This is dominated
by np invocations of H0 since np is assumed to be Ω(λ3).

Below we also present a tight bound on the number of accessible non-root
vertices in all d trees

Z =
∑

1≤j≤d,
1≤i≤u,

s1,...,si∈Sp

Aj,s1,...,si
.

Note that E[Z] = du.

Theorem 10. Let

λ > 0; λ′ =
λ + 2
log e

; np ≥ u2λ′

2
;

u! · u − e
1
3u

u3
≥ 72e− 2

3 · 2λ; δ = e
1+

√
18u2λ′

np

(
3uλ′

d
+ 1

)

.

Then

Pr[Z ≥ δdu] ≤ 2−λ.

We present the proof in the full version [CKRZ23] of this work.
Taking parameter values from Corollary 2 and letting λ = λsec = λrel, we

thus conclude that the prover algorithm evaluates H1 and H2 O(λ3) times with
overwhelming probability.

3.3 Implementing Random Oracles with Long Inputs

We describe our protocols assuming a random oracle H1 that can accommo-
date inputs of any length, which, in particular, implies independence of out-
puts for inputs of different lengths. However, to have an accurate account-
ing for running times, one has to charge for the cost of running a random
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oracle in proportion to the input length. Because the Telescope construction
runs H1(j), H1(j, s1), H1(j, s1, s2), H1(j, s1, s2 . . . , su), the cost of just one
u-tuple is quadratic in u. To reduce this cost to linear (thus saving a fac-
tor of u in running time), we will implement H1(j, s1, . . . , si+1) to reuse most
of the computation of H1(j, s1, . . . , si). The most natural way to do so is to
slightly modify the Merkle-Damg̊ard construction: use a two-input random ora-
cle f (“compression function”) with a sufficiently long output and a function
g that maps the range of f to the distribution needed by H1. We present the
details of implementing g in the full version of this work. Inductively define
H ′

1(j, s1, . . . , si+1) = f(H ′
1(j, s1, . . . , si), si+1) and let H1(x) = g(H ′

1(x)).
While not indifferentiable from a random oracle (see Coron et al. [CDMP05]

for similar constructions that are), this construction suffices for our soundness
and extractability arguments, because those arguments need independence only
for a single chain (they handle multiple different chains by the union bound).
Neither length extension attacks nor collisions are important. Completeness suf-
fers very slightly by the probability of f -collisions, which can be made negligible
by making the output of f large enough and using the bound on the number of
queries made by the honest prover (Theorems 5 and 10).

3.4 Optimality of the Certificate Size

In this section, we show that the number of set elements u included in a proof
is essentially optimal for our constructions. Because our construction works for
a black-box weight function that formally is implemented via an oracle (and in
reality may be implemented by MPC, a human judge, etc.), the verifier must
query the weight function on some values; else the verifier has no knowledge of
whether any values in the prover’s possession have any weight.

Thus, for the sake of proving optimality, we consider only protocols that
make this part of verification explicit. We define an algorithm Read (see the
definition below) that takes a proof and returns set elements; these set elements
must have been in the prover’s possession. We bound the proof size in terms of
the number of set elements returned by Read, showing that if it is too small,
the protocol cannot be secure. We also note that the following definition can be
used for upper bound results too, as demonstrated in Sect. 7 for the CRS model.

Definition 4. (Prove,Read,Verify) is a (λsec, λrel, np, nf)-ALBA scheme if and
only if

– ProveH is a probabilistic random oracle access program;
– VerifyH is a random oracle access program;
– Read is a program;
– completeness: consider the following experiment CompExp(Sp):

π ← ProveH(Sp);
output 1 iff Read(π) ⊆ Sp and VerifyH(π) = 1;

we require that for all sets Sp with size ≥ np, Pr[CompExp(Sp) = 1] ≥ 1 −
2−λrel .
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– soundness: consider the following experiment SoundExp(Sf):
output 1 iff ∃π,Read(π) ⊆ Sf ∧ VerifyH(π) = 1;

we require that for all sets Sf with size ≤ nf, Pr[SoundExp(Sf) = 1] ≤ 2−λsec ;

We now prove a lower bound for a scheme satisfying this definition.

Theorem 11. Assume λrel ≥ 1, define α = λsec−3
log(np/nf)

, assume nf ≥ 3α2, let Sp

be an arbitrary set of size np, and let (Prove,Read,Verify) be a (λsec, λrel, np, nf)-
ALBA scheme. Then

Pr
[∣
∣Read(ProveH(Sp))

∣
∣ > α

]
≥ 1

4
.

We present the proof in the full version [CKRZ23] of this work.

4 ALBAs with Decentralized Prover

In the previous section we assumed the ALBA prover has all the set elements
at hand. In many applications however, such as threshold signatures, this is not
the case. The set elements may be spread across numerous parties who will then
jointly compute a proof. A trivial solution is to use a centralized protocol, by
designating one of the parties as the lead prover and have all other parties com-
municate their set elements to that party. However, this incurs a communication
cost equal to the size of the set, which we would rather avoid.

In this section we present protocols where the various parties holding set
elements start out by performing computations locally and only conditionally
communicate their elements to a designated prover or aggregator. Whilst our
constructions we present in this section still use weights of 0 or 1, they can
be generalized to integer weights as explained in Sect. 5. Finally, as in Sect. 3,
instead of proof of knowledge we consider a simpler notion of soundness: the
probability that a valid proof exists containing only elements from set Sf of size
nf. Section 6 demonstrates how to do knowledge extraction.

4.1 Simple Lottery Construction

The simple lottery scheme is parametrized by the expected number of network
participants μ. Let H be a random oracle that outputs 1 with probability p = μ

np

and 0 otherwise. Each set element s is sent to the aggregator over the network if
and only if H(s) = 1. Now let rs, rc > 1 such that rsrc = np

nf
and set u = rs · pnf

(or equivalently u = pnp
rc

). The aggregator needs to collect and concatenate u
set elements and the verifier accepts if it receives u values that each hash to 1.

Lemma 1. Assuming

u ≥ λsec · ln 2
ln rs − 1 + 1

rs

,

soundness error of the scheme is ≤ 2−λsec .
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We present the proof in the full version [CKRZ23] of this work.

Lemma 2. Assuming

u ≥ λrel · ln 2
rc − 1 − ln rc

,

completeness error of the scheme is ≤ 2−λrel .

We present the proof in the full version [CKRZ23] of this work.
Thus, to minimize u, we need to minimize

max
{

λsec · ln 2
ln rs − 1 + 1

rs

,
λrel · ln 2

rc − 1 − ln rc

}

.

Noting that the first term is decreasing with respect to rs and the second term is
decreasing with respect to rc, the minimum is achieved when the two terms are
equal. If λsec = λrel = λ, then setting rc = np

np−nf
· ln np

nf
and rs = np−nf

nf
· 1
ln

np
nf

gives the smallest u.
We note the interesting fact that choosing rs and rc that minimize u also

minimizes μ. Since μ = pnp = urc, we have

μ ≥ max
{

λsec · ln 2
ln rs − 1 + 1

rs

· rc,
λrel · ln 2

rc − 1 − ln rc
· rc

}

.

The first term is decreasing with respect to rs since rc is, and it can be seen that
the second term is decreasing with respect to rc. Hence, μ is minimized when
the two terms are equal which is the same as the condition for minimizing u.

4.2 Decentralized Telescope

The next logical step to minimize the size of the proof is to run a smarter
aggregator, Telescope, and calculate an appropriate increase to the security and
reliability parameters. While combining a simple lottery with an ALBA aggre-
gator is a generic technique, the generic analysis requires one to calculate two
lottery tail bounds: one for soundness and one for completeness. By using Tele-
scope for the aggregator, we benefit from omitting the soundness tail bounds
from analysis; this section has all details.

As previously, we have parameter μ and select each element to be transmitted
over the network with probability μ/np. After receiving enough elements selected
by the simple lottery, the aggregator runs the algorithm from Sect. 3.2. Note that
it assumes that the number of set elements is large enough, see a bound on np in
Theorem 7. Since μ can be much smaller than said bound, we artificially increase
the number of set elements by producing k sub-elements for each element, for
an appropriate k. This is a purely technical hindrance that goes away in the full
version [CKRZ23] of this paper which describes an ALBA scheme without this
requirement.
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We employ threshold analysis here: calculate the number of set elements
selected by the simple lottery such that 1) this number is achievable with proba-
bility 1− 1

4 ·2−λrel and 2) the Telescope aggregator will produce a valid certificate
with probability 1 − 3

4 · 2−λrel .
For all 1 ≤ i ≤ np, let Xi be 1 if and only if element si is selected and 0

otherwise. Let X =
∑np

i=1 Xi; then E[X] = μ. Assume ρ ∈ N satisfies Pr[X ≥
ρ] ≥ 1 − 2−λrel−2. Reducing the honest-malicious gap from np

nf
to ρ

μ
np

·nf
= np

nf
· ρ

μ

results in increasing the certificate size to

λsec + log(λrel + 2) + 1 + log e − log log e

log np
nf

+ log ρ
μ

(we have λsec+log(λrel+2)+1+log e−log log e instead of λsec+log(λrel+log 3)+
1 − log log e in Theorem 2 because we instantiate it with λsec := λsec + log e and
λrel := λrel + log 4

3 for technical reasons).
One can think of the gap ρnp

μnf
as (1−δ)np

nf
if we set ρ = (1 − δ)μ. Note that

we only decrease np in the np
nf

gap. nf remains the same since the union bound
argument for soundness still works, but with some modifications. Particularly, it
requires μ to be on the order of u2. If we wanted to decrease μ even further, we
could improve the proof below or employ a two-sided threshold analysis as well.

Let Lottery : {0, 1}∗ → {0, 1} be an oracle returning 1 with probability
μ
np

and assume H = (H0,H1,H2,Lottery) where H0, H1, H2 are as defined in

Sect. 3.2. Also let A.ProveH , A.VerifyH be as in Sect. 3.2 and define the following.

procedure B.ProveH(s)
if Lottery(s) = 1 then

return s;
else

return empty string;

procedure B.AggregateH(S)
return A.ProveH(S);

procedure B.VerifyH(π)
parse (t, s1, ..., su) = π;
return 1 iff A.VerifyH(π) = 1∧
∀1 ≤ i ≤ u, Lottery(si) = 1;

Theorem 12. Assume

k ≥ d2 log e

9ρ(λrel + 2)

and instantiate the algorithm in Sect. 3.2 with d ≥ 16u(λrel+2)
log e , q := 2(λrel+2)

d log e , and
np := kρ. Then completeness error is ≤ 2−λrel .

Proof. As assumed above, the simple lottery chooses at least ρ set elements with
probability at least 1 − 2−λrel−2. Given this event, by Theorem 7, the algorithm
outputs a valid certificate with probability at least 1 − 2−λrel−log 4

3 . Therefore,
completeness error is ≤ 2−λrel . ��

We now calculate soundness error defined as the probability that a valid
proof can be constructed using elements Sf with |Sf| = nf.
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Theorem 13. Assume

μ ≥ npu
2

nf
;

ρnp

μnf
> 1;

u ≥ λsec + log(λrel + 2) + 1 + log e − log log e

log np

nf
+ log ρ

μ

.

Then soundness error is ≤ 2−λsec .

We present the proof in the full version [CKRZ23] of this work.
Theorem 12 and 13 give

Corollary 3. Assume

μ ≥ npu
2

nf
;

ρnp

μnf
> 1; k ≥ d2 log e

9ρ(λrel + 2)
;

u ≥ λsec + log(λrel + 2) + 1 + log e − log log e

log np

nf
+ log ρ

μ

and instantiate the algorithm in Sect. 3.2 with u := u, d ≥ 16u(λrel+2)
log e , q :=

2(λrel+2)
d log e , and np := kρ. Then soundness error is ≤ 2−λsec and completeness

error is ≤ 2−λrel .

Using this, we can see how big μ needs to be if we increase u log np
nf

only
by some amount C. To calculate a suitable ρ, we just use a Chernoff bound:

Pr[X ≤ (1 − δ)μ] ≤ e− μδ2

2 . Setting this to 2−λrel−2, we get δ =
√

2(λrel+2)
μ log e . We

now set ρ =
⌈
(1 − δ)μ

⌉
.

Corollary 4. Assume

C > 0; u ≥ λsec + log(λrel + 2) + 1 + log e − log log e + C

log np

nf

; k ≥ d2 log e

9ρ(λrel + 2)
;

μ ≥ max
{

8(λrel + 2)
log e

,
npu

2

nf
,
9u2(λrel + 2) log e

2C2

}

;μ >
2(λrel + 2)

(
1 − nf

np

)2 log e
;

and instantiate the algorithm in Sect. 3.2 just like in corollary 3. Then soundness
error is ≤ 2−λsec and completeness error is ≤ 2−λrel .

We present the proof in the full version [CKRZ23] of this work.
Thus, if we let λ = λsec = λrel and let u only be a constant larger than

optimal, we have μ = O(λ3) as well as the time complexity of the centralized
algorithm also O(λ3). Moreover, μ is proportional to 1

C2 . We note, however, that
setting λrel := 1 and λsec := λsec + log λrel and amplifying the completeness via
parallel repetitions as mentioned in Sect. 3.2 lets us reduce the expected com-
munication complexity to O(λ2). However, it requires some network engineering
to avoid redundant communication, specifically delaying repetitions until the
previous ones have certainly failed.

In the full version [CKRZ23], we also present a different corollary showing
what u needs to be in terms of μ.
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4.3 Optimality of the Certificate Size - Communication Tradeoff

We can attempt to find a lower bound for the tradeoff between the certificate
size u and μ. For this purpose, we use the following definition.

Definition 5. (Prove,Read,Verify) is a (λsec, λrel, np, nf, μ)-lottery based ALBA
scheme if and only if

– ProveH is a probabilistic random oracle access program;
– VerifyH is a random oracle access program;
– Read is a program;
– if L is a random function such that for all x, Pr[L(x) = 1] = μ

np
and we

define Lottery(S) = {x ∈ S : L(x) = 1}, then
• completeness: consider the following experiment CompExp(Sp):

π ← ProveH(Lottery(Sp));
output 1 iff Read(π) ⊆ Lottery(Sp) and VerifyH(π) = 1;

we require that for all sets Sp with size ≥ np, Pr[CompExp(Sp) = 1] ≥
1 − 2−λrel .

• soundness: consider the following experiment SoundExp(Sf):
output 1 iff ∃π,Read(π) ⊆ Lottery(Sf) ∧ VerifyH(π) = 1;

we require that for all sets Sf with size ≤ nf, Pr[SoundExp(Sf) = 1] ≤
2−λsec ;

The following theorem presents our lower bound.

Theorem 14. Assume ρ satisfies Pr
[
B(np,

μ
np

) ≤ ρ
] ≥ 2−λrel+1 where B(n, p)

is a binomial random variable with n experiments each with probability of success
p. Also assume

ρnp

μnf
> 1; μ ≥ 3u2np log e

2nf
; nf ≥ ρ,

let Sp be an arbitrary set of size np and let (Prove,Read,Verify) be a (λsec, λrel, np,
nf, μ)-lottery based ALBA scheme such that

Pr
[∣
∣Read(ProveH(Lottery(Sp)))

∣
∣ ≤ u

]
= 1.

Then

u >
λsec − 4

log np

nf
+ log ρ

μ

.

We present the proof in the full version [CKRZ23] of this work.
Using this, we can establish a lower bound similar to the upper bound Corol-

lary 4.
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Corollary 5. Let C > 0, define

α =
λsec − 4 + C

log np

nf

;u = �α�

and assume

max
{

4
λrel

,
λrel

(1 − nf

np
)2

,
3u2np log e

2nf

}

≤ μ ≤ min
{

α2λrel log2 e

4C2
,
( 4e )λrel

4e10

}

;

nf ≥ 2μ.

Let Sp be an arbitrary set of size np and let (Prove,Read,Verify) be a
(λsec, λrel, np, nf, μ)-lottery based ALBA scheme. Then

Pr
[∣
∣Read(ProveH(Lottery(Sp)))

∣
∣ > α

]
> 0.

We present the proof in the full version [CKRZ23] of this work.
Alternatively, in the full version we also present a corollary showing a lower

bound on the certificate size as of function of μ.

5 Adding Weights

We will assume, without loss of generality, that the weight function W outputs
integers. A naive way to handle weights other than 0 and 1 is to interpret each
set element s as W (s) elements (s, 1), . . . , (s,W (s)) and apply schemes designed
for the unweighted case to (s, i) pairs. Unfortunately, this approach makes the
prover running time linear in the total weight which could be in the order of 264.

Fortunately, any lottery-based scheme in which the number of lottery win-
ners is independent of np (or at most polylogarithmic in np) is amenable to a
more efficient solution (and the Telescope scheme in Sect. 3 can be turned into a
lottery-based scheme first using Sect. 4.2). We simply view (s, 1), . . . , (s,W (s))
pairs as W (s) different lottery participants. For efficiency, instead of having each
of them play the lottery individually with probability p, we sample the number of
winners from the binomial distribution Binom(W (s), p) (similar to the sortition
algorithm used in Algorand [GHM+17]). We do so because it does not matter
which i values win—what matters is only the number of winners. If the bino-
mial sampling returns k, then (s, 1), . . . , (s, k) are considered winners. This does
not increase the complexity compared to the unweighted-lottery-based scheme,
except for binomial sampling rather than lottery applied to each element.

Using Corollary 4 with λsec := λsec+log λrel, λrel := 1 and C := 1, we achieve
a weighted (λsec, λrel, np, nf)-ALBA scheme with proof size

λsec + log λrel + 2 + log 3 + log e − log log e

log np
nf

and expected prover running time O(n+λ2
sec), where n is the number of weighted

elements in the input.



78 P. Chaidos et al.

6 Knowledge Extraction for NIROPK

In this section we show how Definitions 1 and 2 can be realized. While Sects. 3
and 4 provide intuitive constructions with clean combinatorial analysis, they
have a missing piece — a knowledge extractor. As we will see, the simple sound-
ness proven there does not immediately imply proof of knowledge, and more rea-
soning is needed. We also remind that the knowledge extractor must be straight-
line; i.e., rewinding of the prover is not allowed but observing its queries to the
oracles is. Here we describe the full NIROPK scheme including its knowledge
extactor for the case of the basic Telescope construction from Sect. 3.1 while
other Telescope constructions can be made NIROPK in a similar fashion. For
H = (H1,H2), define

procedure ProveH,W (Sp)
run DFS as described in
Section 3.1

procedure VerifyH,W (π)
parse (t, s1, ..., su) = π
return 1 iff

– 1 ≤ t ≤ d;
– ∀1 ≤ i ≤ u,

H1(t, s1, ..., si) = 1;
– H2(t, s1, ..., su) = 1;
– ∀1 ≤ i ≤ u, W (si) = 1

procedure ExtractH,W,A

function AH,W
1

π ← AH,W ();
v ← VerifyH,W (π);
return π;

run AH,W
1 () and observe its ora-

cles transcript τ ;
Sf := ∅;
for x queried to H1 or H2 in τ do

if W (x) = 1 then
add x to Sf;

return Sf.

Theorem 15. Define parameters as in Theorem 1. Then algorithms VerifyH,W

with ExtractH,W,A satisfy the proof of knowledge property of Definition 1.

Proof. The extractor succeeds whenever A succeeds, unless A succeeds after
querying fewer than nf elements of S, which happens with probability at most
2−λsec by the following lemma. Thus, the proof of knowledge property follows by
the union bound.

We present the proof in the full version [CKRZ23] of this work.
The following lemma resembles the simple soundness result in Theorem 1,

but unfortunately is harder to prove. Whereas the proof of Theorem 1 is a simple
application of union bound, the fact that the adversary can choose what weight-
1 elements to query adaptively based on past RO responses makes the “vanilla”
union bound argument inapplicable. Fortunately, there exists a way around this
problem.

Lemma 3. Define parameters as in Theorem 1 and let E be the event that a
valid proof can be made from the first nf (or less) weight-1 elements that AH,W

1

queries to H. Then Pr[E] ≤ 2−λsec .
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We present the proof in the full version [CKRZ23] of this work.
Combining the proof of knowledge property with completeness proven in

Sect. 3.1, we now state the main result of this section.

Corollary 6. Using parameters from Corollary 1, (Prove,Verify,Extract) is a
(λsec, λrel, np, nf)-NIROPK ALBA scheme.

In summary, we achieve information-theoretic but non-adaptive security; i.e.,
additional computational power does not help the adversary avoid knowledge
extraction but he is not allowed to choose the predicate/weight function based
on the random oracle. Adaptive security can be achieved the traditional way:
rerandomize the random oracle by including a commitment to the weight func-
tion as additional input to the random oracle. However, the security downgrades
to computational: assuming that adversary makes at most 2q RO queries, we
need to increase ALBA’s λsec parameter by q.

7 Replacing the Random Oracle with PRF

In this section we show how to remove the need for the random oracle and
instantiate our scheme in the Common Reference String model (or alternatively,
the Uniform Random String model). This is a novel feature of our scheme in
comparison to compact certificates which inherently rely on the random oracle
because of Fiat-Shamir. We utilize a PRF for the hash function H with the CRS
being a random PRF key (or alternatively, uniformly random bits sufficient to
generate one). We note that although the PRF is only secure against computa-
tionally bounded distinguishers, our ALBA scheme retains information-theoretic
security.

Assume (GenKey, F ) is a PRF such that for any oracle access program AO

with running time bounded by T ,
∣
∣
∣
∣ Pr

[AH() = 1
] − Pr

[
AF (GenKey(),·)() = 1

]∣∣
∣
∣ ≤ εprf(T ). (4)

We will assume the unweighted case, but the following can extended to
support weights as well. Combining the improved Telescope construction from
Sect. 3.2 with the tight bound on the number of accessible vertices (Theorem 10)
and instantiating the scheme with the standard (binary) random oracle (the lat-
ter is described in the full version) one can build a Telescope scheme such that
for some B ∈ O(λ3),

– the honest prover’s DFS visits at most B vertices and outputs a valid proof
with probability ≥ 1 − 2−λ;

– there exists a valid proof containing elements from Sf or the number of acces-
sible vertices exceeds B with probability ≤ 2−λ.

Implement ProveH(Sp) as the standard DFS that visits at most B vertices
and define VerifyH(π) in a natural way. We show an ALBA scheme under Defini-
tion 4 where the random oracle is replaced with CRS. Below is the new definition
and a Telescope construction for it.



80 P. Chaidos et al.

Definition 6. (Prove,Read,Verify,GenCRS) is a (λsec, λrel, np, nf)-CRS ALBA
scheme if and only if

– Prove is a probabilistic program;
– Verify is a program;
– Read is a program;
– GenCRS is a probabilistic program;
– completeness: consider the following experiment CompExp(Sp):

we require that for all sets Sp with size ≥ np, Pr[CompExp(Sp) = 1] ≥ 1 −
2−λrel .

– soundness: consider the following experiment SoundExp(Sf):
crs ← GenCRS();
output 1 iff ∃π,Read(π) ⊆ Sf ∧ Verify(crs, π) = 1;

we require that for all sets Sf with size ≤ nf, Pr[SoundExp(Sf) = 1] ≤ 2−λsec ;

procedure R.Prove(crs, Sp)
π ← ProveF (crs,·)(Sp);
return π;

procedure R.Verify(crs, π)
r ← VerifyF (crs,·)(π);
return r;

procedure R.Read(π)
parse (t, s1, ..., su) = π;
return {s1, ..., su};

procedure R.GenCRS
k ← GenKey();
return k;

Theorem 16. R is a (λ′
sec, λ

′
rel, np, nf)-CRS ALBA scheme where λ′

sec = λ′
rel =

− log
(
2−λ + εprf(O(np + λ3))

)
.

Proof. Completeness follows from the fact that Prove’s running time is bounded
by O(np + B) = O(np + λ3) steps and that ProveH(Sp), when instantiated with
the random oracle H, finds a valid proof with probability ≥ 1 − 2−λ. Acting as
a PRF distinguisher, we conclude that ProveF (GenKey(),·) outputs a valid proof
with probability ≥ 1 − 2−λ − εprf(O(np + λ3)).

To prove soundness, we can observe whether a DFS on set Sf finds a valid
proof or does not terminate after visiting B vertices. In the random oracle case,
one or both happen with probability ≤ 2−λ, so in the PRF case it is ≤ 2−λ +
εprf(O(np + λ3)). But the probability that there exists a valid proof in the PRF
case cannot be larger. ��
We present the complete version of the proof in the full version [CKRZ23] of
this work.

7.1 Knowledge Extraction For Definition 6/4

In this section we show how to generically convert an ALBA scheme under Def-
inition 6 to a proof of knowledge scheme under Definition 3. We still assume
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the unweighted scenario (W : {0, 1}∗ → {0, 1}) but the following can be gen-
eralized to add weights. Sometimes it will be convenient to treat W as a set:
{s : W (s) = 1}.

Let X = (X.Prove,X.Read,X.Verify,X.GenCRS) be a (λsec, λrel, np, nf)-CRS
ALBA scheme (as in Definition 6) and define Y = (Y.Prove, Y.Verify, Y.Extract,
Y.GenCRS) as follows.

procedure Y.GenCRS
return X.GenCRS();

procedure Y.ProveW (crs, Sp)
return X.Prove(crs, Sp ∩ W );

procedure Y.VerifyW (crs, π)
S := X.Read(π);
return 1 iff S ⊆ W ∧
X.Verify(crs, π) = 1;

procedure Y.ExtractW (A)
Sf := ∅;
while |Sf| ≤ nf do

crs ← X.GenCRS();
π ← AW (crs);
S := X.Read(π);
Sf := Sf ∪ (S ∩ W );

return Sf;

Theorem 17. Y is (λsec, λrel, np, nf)-CRS proof of knowledge ALBA scheme.

Proof. It is easy to see that Y satisfies the completeness property. We are left
to prove the proof of knowledge property.

First, notice that Y.Extract can only output a set Sf such that Sf ⊆ W
and |Sf| > nf. Now examine a single loop iteration in Y.Extract. We know that
ε = Pr

[
Y.VerifyW (crs, π) = 1

] − 2−λsec > 0 and Y.VerifyW (crs, π) = 1 implies
that S ⊆ W and X.Verify(crs, π) = 1. So,

2−λsec + ε = Pr[Y.VerifyW (crs, π) = 1] ≤ Pr[S ⊆ W ∧ X.Verify(crs, π) = 1].

At the same time, since |Sf| ≤ nf, by the soundness of X (considering the
experiment SoundExp(Sf) from Definition 6), Pr[S ⊆ Sf ∧ X.Verify(crs, π) =
1] ≤ 2−λsec . Therefore,

ε = (2−λsec + ε) − 2−λsec ≤
Pr[S ⊆ W ∧ X.Verify(crs, π) = 1] − Pr[S ⊆ Sf ∧ X.Verify(crs, π) = 1] ≤
Pr[(S ⊆ W ∧ X.Verify(crs, π) = 1) ∧ ¬(S ⊆ Sf ∧ X.Verify(crs, π) = 1)] =

Pr[S ⊆ W ∧ S �⊆ Sf ∧ X.Verify(crs, π) = 1] ≤
Pr[S ⊆ W ∧ S �⊆ Sf] ≤
Pr[∃x ∈ (S ∩ W ) \ Sf].

So, a single iteration of the loop adds at least one new element of W to Sf

with probability at least ε. Therefore, in expectation, the loop runs for at most
(nf +1) · 1

ε iterations. Then it is easy to see that Y.Extract runs in expected time
poly(T, 1/ε) (treating nf as constant). ��

In summary, we achieve information-theoretic but non-adaptive security; i.e.,
additional computational power does not help the adversary avoid knowledge
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np/nf 60/40 66/33 80/20
ALBA Protocol Size Comms Size Comms Size Comms

44928]68SG[SG σ 16384σ 3237σ
C. Cert. [MRV+21] (280) 356σ + 356η 208σ + 208η 104σ + 104η
C. Cert. [MRV+21] (2128) 438σ + 438η 256σ + 256η 128σ + 128η
Telescope, no weights (Sect. 3) 232σ 136σ 68σ
Telescope, weights (Sect. 4.2,5) 239σ 140σ 70σ
Simple Lottery (Sect. 4.1) 4157σ 5058σ 1428σ 1981σ 364σ 675σ
Simple Lottery (λrel = 64) 3060σ 3591σ 1069σ 1395σ 283σ 466σ
Dec. Telescope (Sect. 4.2) 262σ 114264σ 151σ 49929σ 74σ 23104σ

Fig. 1. Certificate sizes and expected communication cost, expressed in revealed/sent
set elements (σ) and, in the case of [MRV+21], secondary reveals of the same elements
in the form of Merkle Tree paths (η). The parameters λsec, λrel are set to 128 unless
otherwise indicated.

extraction but he is not allowed to choose the predicate/weight function based on
the CRS. Even then, this can be useful; one example is applications where PRF
seed is chosen by a randomness beacon after the statement to be proven is already
decided. As a last resort, adaptive security can be achieved by rerandomizing the
PRF using the random oracle: let the CRS be the output of the random oracle
on the description of the weight function. This can be beneficial to instantiating
ALBA purely in the random oracle model, for example, when the knowledge
of an ALBA proof is proven by a SNARK. In that case, calculating the CRS
outside of the SNARK circuit and using PRF inside the circuit lets one avoid
heuristically instantiating RO in the circuit.

8 Performance Comparisons

In terms of prover computation, the Simple Lottery scheme requires negligi-
ble effort from the aggregator (apart from verifying membership and eligibility
of the received set elements). Compact certificates require the prover to build
a commitment to the set of received set items in the form of a Merkle tree,
requiring O(n) hash evaluations, where n is the number of weighted elements in
prover’s input. Telescope in turn requires O(n + λ2) hashes in expectation and
Goldwasser-Sipser requires O(np · λ) hashes.

In terms of number of revealed elements, compact certificates need to reveal
at least λsec

log(np/nf)
set elements (denoted by σ) but they additionally need to

reveal the Merkle tree path of each element (denoted by η) with regards to the
commitment constructed by the prover. The Simple Lottery scheme only reveals
set elements and the number of reveals has the same, linear dependency on λsec,
but has a more complex (and more costly) dependency on (np/nf). Telescope
combines the best of both worlds, as it only needs to reveal close to λsec

log(np/nf)

set elements and the integer t with no need for secondary openings. Goldwasser-
Sipser requires 8λ · (np/nf)4 · (np/nf − 1)−4 reveals.

In Fig. 1 we compare proof sizes and communication costs of our construc-
tions with those of existing protocols: compact certificates [MRV+21] and the
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Goldwasser-Sipser [GS86] scheme. Our analysis of the simple lottery scheme of
Sect. 4.1 is also applicable to Mithril [CK21] as the combinatorics are very simi-
lar. Compact certificates have computational security and we provide proof sizes
secure against adversaries making 280 and 2128 queries; Telescope, on the other
hand, has information-theoretic security and smaller number of revealed ele-
ments, but becomes computationally secure with number of revealed elements
similar to compact certificates when the adversary is allowed to choose the weight
function.

We consider communication costs only where they are meaningful, i.e. in
decentralized schemes. We note that these costs may be significantly lower in
the case of weighted sets where the same element may appear multiple times
with different indices. For compact certificates, we derive values using the for-
mula from [MRV+21]. For the simple lottery we use direct calculation, slightly
improving on the bounds of Sect. 4.1, for Goldwasser-Sipser we use the analysis
performed in the full version, and for Telescope and Decentralized Telescope we
use the bounds from Corollaries 2 and 5. For the weighted Telescope scheme we
use the formula in Sect. 5.
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