
Integrating Causality in Messaging
Channels

Shan Chen1(B) and Marc Fischlin2

1 Southern University of Science and Technology, Shenzhen, China
chens3@sustech.edu.cn

2 Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
marc.fischlin@tu-darmstadt.de
https://www.cryptoplexity.de

Abstract. Causal reasoning plays an important role in the comprehen-
sion of communication, but it has been elusive so far how causality should
be properly preserved by instant messaging services. To the best of our
knowledge, causality preservation is not even treated as a desired secu-
rity property by most (if not all) existing secure messaging protocols like
Signal. This is probably due to the intuition that causality seems already
preserved when all received messages are intact and displayed according
to their sending order. Our starting point is to notice that this intuition
is wrong.

Until now, for messaging channels (where conversations take place),
both the proper causality model and the provably secure constructions
have been left open. Our work fills this gap, with the goal to facilitate
the formal understanding of causality preservation in messaging.

First, we focus on the common two-user secure messaging channels
and model the desired causality preservation property. We take the pop-
ular Signal protocol as an example and analyze the causality security of
its cryptographic core (the double-ratchet mechanism). We show its inad-
equacy with a simple causality attack, then fix it such that the resulting
Signal channel is causality-preserving, even in a strong sense that guar-
antees post-compromise security. Our fix is actually generic: it can be
applied to any bidirectional channel to gain strong causality security.

Then, we model causality security for the so-called message franking
channels. Such a channel additionally enables end users to report individ-
ual abusive messages to a server (e.g., the service provider), where this
server relays the end-to-end-encrypted communication between users.
Causality security in this setting further allows the server to retrieve
the necessary causal dependencies of each reported message, essentially
extending isolated reported messages to message flows. This has great
security merit for dispute resolution, because a benign message may be
deemed abusive when isolated from the context. As an example, we apply
our model to analyze Facebook’s message franking scheme. We show that
a malicious user can easily trick Facebook (i.e., the server) to accuse an

Shan Chen is affiliated with both the Research Institute of Trustworthy Autonomous
Systems and the Department of Computer Science and Engineering of SUSTech.
c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14653, pp. 251–282, 2024.
https://doi.org/10.1007/978-3-031-58734-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58734-4_9&domain=pdf
http://orcid.org/0000-0003-0597-8297
https://doi.org/10.1007/978-3-031-58734-4_9

252 S. Chen and M. Fischlin

innocent user. Then we fix this issue by amending the underlying message
franking channel to preserve the desired causality.

Keywords: Causality · Secure messaging · Signal · Message franking

1 Introduction

Causality deals with the relationship of cause and effect. In computer systems
causality preservation should ensure that events are processed in the right order.
This is a long-standing topic in the area of distributed computing, e.g., Lamport’s
seminal work on logical clocks [23] and follow-up works on determining consistent
global snapshots [8] and state recovery [34]. The ideas in these works, e.g., the
ability to reconstruct the global state from local information, are still valid today.

Causality preservation has meanwhile also entered the area of cryptography.
In particular, it was recently identified as a desired security property for secure
instant messaging protocols, as discussed informally in [32,36]. However, there
the goal of causality preservation is quite weak: “implementations can avoid dis-
playing a message before messages that causally precede it” [36]. This may seem
correct at first glance as it borrows the same intuition from distributed comput-
ing for ordering events, but a closer look shows that such a guarantee is actually
not sufficient for secure messaging (SM). The reason is that message dependen-
cies are much more subtle than event dependencies: the user’s comprehension
of a received message may be influenced by any messages displayed before it,
even if some of them are causally independent. We illustrate this with a classic
example below.

Alice Bob
“buy?”

“yes!”

“sell?”

Alice’s view

Alice Bob
“buy?”

“yes!”“sell?”

What really happened

Alice Bob
“buy?”

“yes!”

“sell?”

Bob’s view

Fig. 1. Classic causality confusion example

As shown in Fig. 1, Alice asks Bob for investment advice using an instant
messaging application. At first, Alice asks if she should buy a stock and Bob
confirms, but Bob’s response got delayed (e.g., due to network issues or attacks).
From Alice’s view, Bob remains silent, so Alice thinks he is currently offline. After
a while, Alice tries to reach Bob again but this time she asks if she should sell
the stock. Then, Alice receives Bob’s response and mistakenly sells her stock.

It is worth noting that in the above example all messages are delivered and
displayed in the correct order, so the causality confusion is not caused by out-
of-order message display. The reason is that the message order cannot represent

Integrating Causality in Messaging Channels 253

the exact causal relations of the real communication. In particular, the “yes!”
response from Bob does not tell Alice which of her messages he replied to. One
may then be tempted to address this issue with a “reply-to” feature provided by
some instant messaging applications, however, Bob did not know that he had to
“reply-to” the “buy?” message because his view was not ambiguous at all (i.e.,
only the “buy?” message was received before his response). Even if users are
required to “reply-to” all messages, which significantly hampers usability, this
feature usually cannot handle a response that depends on multiple messages.

Therefore, to resolve or mitigate causality confusion, it is better (or at least
as a useful complement) to enable SM applications to extract the necessary
causal information from their “channel-layer” protocols (through which users
transmit application messages). This idea is formulated as a causality-preserving
property in our model, which roughly captures an SM channel user’s ability
to locally reconstruct the global causal relations of the communication. Note
that such security is against active man-in-the-middle attacks, so it cannot be
guaranteed by unauthenticated transport-layer protocols like TCP. Besides, our
causality-preserving feature does not affect the immediate decryption property [1]
usually required by SM channels. That is, when appended with the associated
causal information, each received message can still be immediately decrypted
upon receipt; meanwhile not only its sending order but also the exact message
dependencies are reconstructed by the receiver.

Furthermore, compared to SM applications, it is probably more urgent and
necessary to integrate causality in the so-called message franking schemes. Such
a scheme additionally enables users to report abusive messages to the middle
server who relays their end-to-end-encrypted communication. Clearly, the causal
dependencies (i.e., the context) of an individually reported message is crucial for
the server to determine if it is abusive.

For instance, a response to the question “what was the worst insult you have
ever heard?” should be treated as benign, but it looks abusive when isolated from
the context. A direct mitigation is to utilize timestamps that the server (e.g.,
Facebook) adds to each relayed message: the accused person can report the above
question and argue that the seemingly abusive message is just a response to that
question, as justified by their associated timestamps. However, this approach is
not perfect, because timestamps reflect only the order of messages received by
the server rather than the exact causal relations of the end-to-end conversation.
For example, in Fig. 1 the server may still mistakenly view concurrent messages
“sell?” “yes!” as sequential ones (i.e., as in either Alice’s view or Bob’s view). As
another example, when Bob sends “my friend was insulted like this” followed by
a message with abusive words, Alice can accuse Bob by reporting only the second
message. Then, since in message franking only the message receiver (Alice) is
allowed to report, the timestamp of the reported message does not help the server
determine if Bob has ever sent a message right before the reported message.

In order to resolve causality issues in abuse reporting, one can enable the
server to extract the entire (or necessary) context associated with the reported
message. This is formulated as report causality preservation in our model.

254 S. Chen and M. Fischlin

1.1 Causality in Cryptographic Channels

Following previous work [1,20], we treat (two-party) SM channels as bidirectional
channels. In this work, we focus on their causality-preserving property.

In the cryptographic literature, channels were often defined as a unidrectional
primitive where one party only sends messages and the other party only receives.
For this simplified setting, the desired channel security is usually modeled with
respect to a cryptographic primitive called stateful authenticated encryption.
This primitive was proposed by Bellare et al. [5] and later adopted or refined
by follow-up works [6,21,22,27], mainly used to analyze the Transport Layer
Security (TLS) record protocol. Recently, Marson and Poettering [26] initial-
ized the formalization of bidirectional channels and their security, and showed
how to securely combine two unidirectional channels to construct a bidirectional
channel. Their results have later been extended to analyze multi-party broadcast
channels [14], SM channels [20], and message-franking channels [19]. What all
these approaches have in common is that they considered only channels on top
of reliable networks (e.g., their constructions cease further functionality when a
single message got lost). This however does not match the typical design of SM
channels that could operate on unreliable networks, for which permanent mes-
sage loss is possible. To tolerate message loss and meanwhile enable immediate
decryption, Alwen et al. [1] extended the model for SM channels and applied it
to analyze Signal’s channel protocol, but they did not consider causality issues.

There were two formal analyses aiming to model causality for multi-party
cryptographic channels [14,25], but neither is satisfactory even for two parties.
In particular, [25] defines causality as implied by ciphertext integrity, which
should not be the case for a well-defined causality notion, e.g., Signal is proved
to achieve ciphertext integrity [1] but causality confusions can still occur (e.g.,
the example in Fig. 1). The other work [14] focuses on a different object called
broadcast channel, but their security notion captures only the aforementioned
weak causality preservation goal (i.e., to avoid displaying a message before mes-
sages that causally precede it). Besides, neither work handles message loss or
immediate decryption. Therefore, both the proper model of causality preserva-
tion for SM channels and the provably secure constructions remain open.

The other setting we consider for causality preservation is secure abuse
reporting (also known as message franking). Here secure messaging is extended to
enable users to report abusive messages to a server (e.g., the service provider),
who relays their encrypted communication. Message franking was named and
first introduced by Facebook’s end-to-end-encrypted message system [15]. Its
rough idea is to add message commitments to the underlying SM channel and
let the server tag the encrypted messages transmitted through it. Formal analysis
of message franking was initiated by Grubbs et al. [18] and continued by follow-
up works on attachment franking [12] and asymmetric message franking [35], all
of which treat message franking as an unidirectional primitive. Recently, bidi-
rectional message franking channels were modeled in [19]. However, prior works
on message franking essentially treat reported messages individually so do not
consider their causality.

Integrating Causality in Messaging Channels 255

1.2 Our Contributions

The main contribution of our work is a formal study of the proper causality
preservation model for messaging channels. We focus on two settings: two-party
secure messaging and message franking. In each setting, we define a security
model for it and propose provably secure constructions by adding causality to a
popular real-world protocol. We hope that our formal results can help to clarify
the subtleties of causality issues and facilitate the integration of causality in
messaging channels. More details are summarized as follows.

Modeling Causality Preservation for Bidirectional Channels. Intu-
itively, causality is preserved by a bidirectional channel if the communicating
parties are able to locally reconstruct the global view of their conversation. Such
a global view is formalized in Sect. 2 as a so-called causality graph, a bipartite
graph where each vertex represents a sending or receiving action and each edge
represents a message transmission. It can be viewed as a simplified two-party
version of the multi-party communication graph defined in [25]. With such a
causality graph, we model causality preservation for bidirectional channels in
Sect. 4. To match the practical design of SM channels, our model incorporates
two important aspects that were not considered by previous causality works:

• Our model is compatible with unreliable networks, i.e., tolerating message
loss and out-of-order delivery;

• Our causality security in its strong version captures post-compromise security,
i.e., causality can be recovered even after a state compromise if the adversary
stays passive during recovery [10]; this property is critical for SM channels
since here a session may last for a very long time (e.g., months).

Relations to Integrity Notions. So far, all previous works on causality preser-
vation essentially defined it as implied by ciphertext integrity. However, as men-
tioned before, this should not be the case if causality preservation is properly
defined. In Sect. 4.5, we show that our causality preservation notion is completely
separate from ciphertext integrity, as expected. Note that causality preservation,
however, implies plaintext integrity, as otherwise the attacker can manipulate the
message dependencies by simply modifying the messages (and causality becomes
meaningless if the associated messages can be changed).

Causality Preservation of TLS 1.3. Before applying our model to analyze
Signal, we first investigate a simpler bidirectional channel — the TLS 1.3 record
protocol [30]. Since mitigating causality confusion for TLS may not seem very
important, we do not claim this as our main contribution and leave it in the full
version [9]. Nevertheless, adding causality to the TLS channel turns out to be
very simple and practical, making it appealing to identify suitable use cases (a
toy example is described in the full version [9]).

256 S. Chen and M. Fischlin

Formally, we first show that the TLS 1.3 channel cannot preserve causality
even in our basic model (i.e., with no post-compromise security and assuming
reliable in-order message delivery). Our causality attack essentially reflects the
causality confusion illustrated in Fig. 1. To address that, we propose efficient fixes
that add necessary causal information to each transmitted message, such that
the resulting causal TLS 1.3 channels provably achieve causality preservation.
Thanks to reliable in-order message delivery, one only has to add the number of
consecutively received ciphertexts, denoted by δ, along with each sent message.
This elegant idea has already appeared in [25, Remark 5, p.79] for constructing
causal channels in their model, but not yet applied to any real-world protocols.
For TLS 1.3, we show that δ can be securely added as part of the message, of the
associated data, or even of the local nonce; the former two are very practical.

Causality Preservation of Signal. In Sect. 5, we analyze Signal’s channel pro-
tocol (the double-ratchet mechanism [28]) with our strong causality preservation
model that captures unreliable network and post-compromise security. First, we
show that the Signal channel also suffers from a similar causality attack as in
the TLS case, which actually implies its insecurity even in our weak model. To
fix it, we also add necessary causal information to each transmitted message.
However, since Signal may operate on unreliable networks, transmitting only δ
is not enough to derive all causal dependencies of the communication. We resolve
this by using a first-in-first-out queue Q to record the entire causal information
before each sent message. As transmitting all previous causal information may
incur too much overhead (i.e., linear in the number of exchanged messages), we
further show how Q can be shortened such that in common scenarios the over-
head is small enough for practical use. The resulting causal Signal channel is
proved to preserve strong post-compromise causality. It turns out that our pro-
posed fix is generic, i.e., it can be applied to any bidirectional channel to provide
strong causality security. Finally, we show a concrete way for SM applications
to integrate causality in their application-layer user interfaces.

Modeling Causality Preservation for Message Franking Channels. In
Sect. 6, we present our causality preservation model for message franking chan-
nels. It captures two types of attackers. The first type considers a malicious
server (which relays the end-to-end-encrypted communication) against honest
users. Our security notion for this type is called channel causality preservation,
which captures the security of the underlying SM channel and is defined in the
same way as for bidirectional channels described above. The second type con-
siders a malicious user that tries to fool the reporting system by tampering with
causality. Causality preservation against such attacks is modeled as report causal-
ity preservation, which guarantees that successfully received messages must be
reportable and successfully reported messages must be honest and carry the cor-
rect causal information. Note that, unlike the first type, here the second-type
attacker knows the secret state used to encrypt and decrypt messages.

Integrating Causality in Messaging Channels 257

Causality Preservation of Facebook’s Message Franking. Finally, in
Sect. 7 we apply our model to analyze Facebook’s message franking scheme.
First, we show that it does not preserve channel causality, as the same causal-
ity attack against Signal works here. Then, we show that the scheme does not
preserve report causality either, even if it uses our causal Signal channel. This is
because no causal information associated with the reported message is carried
in the report. We fix this in our provably secure generic construction by adding
and committing the missing causal information (kept in a queue similar to the
Signal case). Our construction allows the defendant to prove with causality that
the reported abusive message has been taken out of context.

1.3 Further Related Work

Alwen et al. [1] formalized the property of immediate decryption. This property
says that the receiver of a message can decrypt a ciphertext obtained from the
sender instantaneously upon arrival, even in settings with out-of-order delivery.
Moreover, the recipient can also identify the ordinal number in the sequence
of received messages. The notion has later been refined in [11,29]. Immediate
decryption thus focuses on a functional property, with some weak aspects of
reliable ordering of received messages at a party’s site. The bilateral (or poten-
tially multilateral) view of causality, capturing dependencies between sent and
received messages in communication, is thus orthogonal.

Continuing the line of research about immediate decryption, Barooti et al. [2]
defined the notion of recovering with immediate decryption (RID), as an exten-
sion of the notions in [7,13]. The receiver version of the RID notion, denoted
as r-RID, demands that the receiver can detect if a previously received cipher-
text has been maliciously injected by the adversary. The sender version, s-RID,
requires that the sender can detect that the receiver has obtained such a mali-
cious ciphertext. The noteworthy extension in [2] is that the authors consider
communication channels with out-of-order delivery. While RID is primarily an
integrity notion, the solutions in [2] themselves share the idea of including history
information in the ciphertexts with our constructions—which ultimately can be
traced back to [25]. Namely, in [2] the receiver transmits the list of received
ciphertexts (for r-RID) or a hash thereof (for s-RID). Our security goal, how-
ever, and the details of our constructions are different: we do not consider active
attack detection while they do not handle causality.

Formal security treatments of out-of-order delivery in cryptographic channels
can be found in [6,22,31]. Recently, Fischlin et al. [16] defined a more fine-
grained robustness property for channels over unreliable networks. Robustness
complements the classical integrity notion and states that maliciously injected
ciphertexts on the network cannot disturb the receiver’s expected behavior. In
contrast, causality addresses dependencies on the message level, thus aiming at
a different scope. One could, nonetheless, integrate a robustness notion as in [16]
on top, on the channel level. Indeed, the Signal protocol already has robustness
built in, which follows as in [16] for QUIC, because the receiver’s state remains
unchanged for an illegitimate ciphertext.

258 S. Chen and M. Fischlin

2 Causality Graphs

In order to formally define the causality preservation security, we introduce the
notion of a causality graph associated with an interactive communication (often
called a session) between two parties, say Alice (A) and Bob (B). We follow the
idea of multi-party communication graphs described in [25], but focus on the
two-party case and extract the most relevant aspects from their notions.1

Intuitively, a causality graph unambiguously identifies all causal information,
i.e., dependencies of sending and receiving actions, in the associated communi-
cation session. Note that here only successful receiving actions are considered in
the graph, i.e., each receiving action corresponds to an accepted message. The
graph is not static: it grows with ongoing communications within the session
and always reflects all dependencies of already performed actions. Formally, we
have the following definition for the two-party case.

Definition 1. The causality graph G = (VA, VB , E, <) associated with a two-
party communication session is a bipartite graph with two strict (or irreflexive)
total orders respectively on the disjoint vertex sets VA, VB, and a strict partial
order on all vertices, where the notation < is overloaded to denote all orders.

Each vertex represents either a sending action (called a sending vertex) or a
receiving action (called a receiving vertex) performed by some party and VA, VB

respectively denote the vertex sets of party A, B. The edge set E consists of
only directed edges from sending to receiving vertices, each edge representing the
transmission of a message. The orders on VA and on VB are naturally defined
according to the increasing occurrence times of the represented actions. The order
on VA ∪VB is the transitive closure of the orders on VA, VB and the order implied
by the directed edges (i.e., (x, y) ∈ E ⇒ x < y).2

G is correct if and only if 1) the above defined order on VA ∪ VB is a strict
partial order and 2) each receiving vertex is connected to exactly one sending
vertex and each sending vertex is connected to at most one receiving vertex.

With the strict partial order on VA∪VB , the above causality graph unambigu-
ously identifies all dependencies of the already performed sending and receiving
actions. We say two edges (x1, y1), (x2, y2) ∈ E are concurrent if 1) they are
in opposite directions (i.e., x1, x2 cannot both belong to VA or to VB) and 2)
y1 �< x2 and y2 �< x1; the latter means x1, y1, x2, y2 cannot be totally ordered.
Intuitively, two concurrent edges do not depend on each other. We also say a
(sending) vertex is isolated if it is not connected to any edge, which could happen
when the message has not been delivered or got lost during transmission.

A pictorial description of an example causality graph is given in Fig. 2 (left).
In the dashed box, we see two pairs of concurrent edges: (a1, b3), (b1, a2) as well
as (a1, b3), (b2, a3). An example of a non-concurrent edge pair is (a5, b5) from
Alice to Bob together with (b6, a7) from Bob to Alice in the lower part, where

1 We note that [25] defined a notion called causal graph. This looks similar but is
actually for reliable networks, while our causality graph captures unreliable networks.

2 This is actually the strict partial order derived from Lamport’s logical clock [23].

Integrating Causality in Messaging Channels 259

a1 b1

a2 b2

a3 b3

a4
b4 isolated

a5
b5

a6
b6

a7
b7

a8
b8

concurrent

order/time

causality graph G

a1 b1

a2 b2

a3 b3

a4
b4

a5
b5

a6
b6

a7

a8

restricted graph G|A

a1 b1

a2 b2

a3 b3

a4
b4

a5
b5

a6
b6

b7

b8

restricted graph G|B

Fig. 2. An example causality graph G and the restricted graphs G|A, G|B of Alice (left
party) and Bob (right party).

the latter edge depends on the former one. The figure also shows two (dotted)
isolated sending vertices a8 and b4.

Graph Addition. In order to model dynamic updates of the causality graph,
we define a binary addition operation + that inputs a graph and an action
and outputs an updated graph. Let (S, P) denote a sending action of party
P ∈ {A, B}. We write G ← G+(S, P) to express that G is updated by capturing
(S, P), i.e., adding a new sending vertex v to the vertex set VP (then v will be
the largest vertex in VP with respect to <). Let (R, P, i) denote a receiving action
of party P , with the associated sending action represented by the i-th sending
vertex v̄i in VP̄ , where P̄ = {A, B}\P ; here v̄i exists because this sending action
occurred before (R, P, i). Similarly, we write G ← G + (R, P, i) to express that G
is updated by capturing (R, P, i): first add a new receiving vertex v to VP and
then add a directed edge (v̄i, v).

Restricted Graph. Intuitively, the restricted graph G|P of party P captures
the causality graph G restricted to P ’s view. Let v be the largest vertex in VP .
Formally, G|P is a subgraph of G that consists of v, all vertices in VA ∪ VB that
are smaller than v, and all edges between those vertices; this is also known as
the v-prefix of G as defined in [26]. G|P can be efficiently derived from G.

Note that G|P excludes any edge (and its receiving vertex) that is con-
current to, or larger than, the last edge from P̄ to P . Consider the example
causality graph G shown in Fig. 2. The restricted graph G|A of Alice excludes
edges (a4, b7), (a6, b8) (and vertices b7, b8) because they are concurrent to (b6, a7)
(which is the last edge from Bob to Alice). This reflects the fact that Alice
does not know whether the messages sent at a4, a6 have been delivered to Bob
because she has not received any response regarding those messages yet. Alice
at a7 received a message sent from Bob at b6; however, this receiving action only
confirms the delivery of Alice’s messages sent at a1, a5 but not those sent at
a4, a6, since the latter are received after b6. Similarly, the restricted graph G|B

260 S. Chen and M. Fischlin

of Bob excludes edge (b6, a7) and vertex a7. It also does not include vertex a8
because it is not smaller than b8 (the largest vertex in VB); this reflects the fact
that Bob is not yet aware of Alice sending at a8.

3 Preliminaries

Notations. Let ⊥ denote an invalid element. The output of a function or algo-
rithm is all ⊥(s) if any of its input is ⊥. Let . denote the member access operation,
e.g., a.x denotes the x element of a. However, in the figures that depict the secu-
rity experiments and protocols shown later, the state prefixes are omitted for
simplicity, e.g., if a state st contains an element x then we simply write x instead
of st.x.

In the full version [9], we recall the definitions of authenticated encryption
with associated data (AEAD), message authentication codes (MACs), and com-
mitment schemes with verification, as well as their corresponding advantage
measures that this work focuses on: Advauth

AEAD, Adveuf-cma
MAC , and Advv-bind

CS .

4 Bidirectional Channels and Causality Preservation

4.1 Bidirectional Channels

A bidirectional channel allows two parties (or users), Alice (A) and Bob (B),
to securely communicate with each other, where each party P ∈ {A, B} can
send messages to the other party P̄ = {A, B} \ P , and receive messages sent by
P̄ . For security reasons, the sending party transforms messages to ciphertexts
before transmitting them and the ciphertexts are later transformed back to mes-
sages by the receiving party. Both parties can keep states across their sending
and receiving actions. Formally, we have the following definition based on the
bidirectional channel notion proposed by [26].
Definition 2. A bidirectional (cryptographic) channel is a three-tuple Ch =
(Init,Snd,Rcv) associated with a key space KCh, a state space ST , a message
space M, and an index space I:

Init(P, k) → stP : takes P ∈ {A, B}, k ∈ KCh, and outputs the initial state of P ;
Snd(P, st, m) $→ (st′, c): takes P ∈ {A, B}, st ∈ ST , m ∈ M, and outputs an

updated state st′ ∈ ST and a ciphertext c ∈ {0, 1}∗;
Rcv(P, st, c) → (st′, m, i): takes P ∈ {A, B}, st ∈ ST , c ∈ {0, 1}∗, and outputs

an updated state st′ ∈ ST and a message m ∈ M ∪ {⊥} with index i ∈ I.

Correctness requires that each party outputs the messages sent by the other party
together with the correct index that indicates their sending order.

We say a party accepts a message m (and the ciphertext c) if Rcv processing
c is successful, i.e., it outputs m �= ⊥. If the channel runs over an unreliable
network, we follow [1] to require that (i) state st remains unchanged if Rcv

Integrating Causality in Messaging Channels 261

outputs m = ⊥; (ii) Rcv never accepts two messages with the same index; and
(iii) index i can be efficiently extracted from the ciphertext c (denoted by c.i).

Note that the message index i can be either a simple ordinal number in N

that matches a send counter, or of any form as long as the indices are strictly
ordered. For instance, in the SM syntax of [1], an index is a two-tuple that
consists of an epoch number and a send counter within that epoch. However,
due to the bijective mapping between indices and ordinals, our definitions for
simplicity do not differentiate them explicitly.
Definitional Differences From [26]. First, our channel algorithms have the
acting party’s identity as an explicit input to capture the different behaviors
of the communicating parties when running the same algorithm with the same
inputs, e.g., TLS client and server use different components of the same session
key (part of the input state) for encryption (in Snd) and decryption (in Rcv).
Furthermore, for conciseness our Snd and Rcv algorithms do not take as input
unencrypted application-level associated data, i.e., channel parties require the
entire input message to be encrypted, which is often the case for real-world bidi-
rectional channels (e.g., TLS 1.3, Signal, etc.). As we will show, there may be
some associated data formed by the bidirectional channels and authenticated by
their underlying authenticated encryption schemes, but such associated data is
not specified by the channel users. However, it is easy to extend our definition
to capture the application-level associated data if desired. Finally, our Rcv algo-
rithm additionally outputs an index i to determine the sending order of received
messages, which is necessary to model out-of-order delivery or message loss, but
often omitted if the channel is over a reliable in-order network.

4.2 Local Graph and Its Update Function
Our security definitions utilize the notion of a local graph GP to represent the
causal information derived by a party P . The local graph can be constructed
from the party’s local protocol execution. Causality preservation of a channel
should imply that each party’s local graph always matches its restricted graph,
i.e., GP = G|P . Intuitively, this means that local protocol execution is consistent
with the party’s expected view on causality: What the parties knows about the
causality structure is accurate (up to what can be guaranteed).

A local graph update function localG is a function invoked after each success-
ful Rcv execution. Function localG inputs a local graph and the Rcv execution’s
transcript TRcv and outputs an updated local graph. Note that the transcript
consists of all the input, output, random coins, internal states, etc., used in
the considered Rcv execution. The intuition behind localG is to update the local
graph with the causal information extracted from the successful receiving action.
Such a function is necessary because extracting causal information from received
ciphertexts is the only way for a party P to correctly order the other party P̄ ’s
sending and receiving actions in its local graph GP , as P does not have access
to P̄ ’s view. Furthermore, we define localG to concern only receiving actions
because successful sending actions can be trivially added to the local graph in
an unambiguous way, which is denoted by GP ← GP + S.

262 S. Chen and M. Fischlin

4.3 Causality Preservation

Now, we formally define the security notion of causality preservation (CP). The
idea is that the adversary wins if it makes some party’s local graph GP deviate
from the restricted graph G|P , i.e., if the party’s internal view on causality differs
from the actual (local) view. We note that the adversary also wins (event Bad
below) if it makes the receiver accept a malicious message, either one that has
not been sent (if Ch is designed for unreliable networks) or one that has not
been sent or is delivered in wrong order (if Ch is designed for reliable in-order
networks). The former event occurs if the receiver outputs a message m with
index i which has not been put on the wire, and the latter event further checks
if the index i is as expected. Note that in the first case we cannot stipulate more
since transmissions may get lost or be delivered later. Augmenting the security
game by the Bad events ensures that the content of the message remains intact,
thus guaranteeing that responses correspond to the right information.

Security Experiment. In Fig. 3, we depict the security experiment (or game)
for causality preservation Expcp

Ch,localG,A(1λ) that is executed between a chal-
lenger and an adversary A. The experiment is associated with a bidirectional
channel Ch = (Init,Snd,Rcv) and a local graph update function localG.

Expcp
Ch,localG,A(1λ) :

1: k
$← KCh

2: stA ← Init(A, k)
3: stB ← Init(B, k)
4: sA, sB , rA, rB ← 0
5: G, GA, GB ← ε
6: R ← ∅

7: ASend,Recv

8: terminate with 0

Send(P, m) :

1: (stP , c) $← Snd(P, stP , m)
2: if c = ⊥ then return ⊥
3: G ← G + (S, P), GP ← GP + S
4: add (P, sP , m, c) to R, sP ← sP + 1
5: return c

unreliable networks:
Bad = [(P̄ , i, m, ·) R∈�]

reliable in-order networks:
Bad = [(P̄ , i, m, ·) R∈� or i �= rP]

Recv(P, c) :
1: (stP , m, i) ← Rcv(P, stP , c) // TRcv : transcript

2: if m = ⊥ then return ⊥, ⊥
3: if Bad then
4: terminate with 1 (A wins)
5: G ← G + (R, P, i)
6: GP ← localG(GP , TRcv)
7: if GP �= G|P then
8: terminate with 1 (A wins)
9: delete (P̄ , i, ·, ·) from R, rP ← rP + 1
10: return m, i

Fig. 3. Security experiment for causality preservation

In the beginning, the challenger samples a random channel key k and calls
Init with it to derive the initial states. All the states used in the game are also
properly initialized, where in particular sA, sB , rA, rB are used to count sending
and receiving actions. Then, A is given access to two oracles Send and Recv:

Send takes a party identity and a message, calls Snd on the input message,
updates the graphs, records the message, and outputs the derived ciphertext.
Note that for reliable in-order networks when a receiving action fails the state
stP may be set to ⊥ by Rcv, and if so Snd(P, stP , ·) will always output (⊥, ⊥).

Recv takes a party identity and a ciphertext and calls Rcv on the input cipher-
text. If the accepted message triggers the Bad event discussed above, A wins.
Otherwise, the party’s local graph GP and the (global) causality graph G

Integrating Causality in Messaging Channels 263

are updated. Then, A wins if the local graph does not match the restricted
graph. Finally, the oracle removes the accepted message from the record and
outputs the message with its index.

Advantage Measure. The advantage is defined as Advcp
Ch,localG(A) =

Pr[Expcp
Ch,localG,A(1λ) ⇒ 1] for any arbitrary localG. We say a bidirectional chan-

nel Ch preserves causality (or is CP-secure) if one can construct an efficiently
computable function localG� such that, for any efficient adversary A, the advan-
tage Advcp

Ch,localG�(A) is negligible.
The above security definition may look a bit elusive due to its reliance on the

constructibility of localG� (which may not be unique), but the intuition is not
complicated. Note that constructibility is a stronger requirement than existence
because an existing function may be very hard to find (e.g., a function to output
hash collisions). By definition, each party in a CP-secure channel can use localG�

to extract all correct causal information associated with an ongoing session in
the presence of an active attacker, which is impossible for an insecure channel
due to the non-constructibility (or even non-existence) of localG�.

Note that a CP-secure channel only guarantees that each party is in principle
able to derive all causal information captured by its restricted graph, which
corresponds to the constructibility of some localG�. However, this does not imply
that all correct causal information is indeed derived and utilized by the channel
parties, e.g., they may use arbitrary functions to extract the necessary portion of
causal information. This actually gives the practical channel constructions more
flexibility for utilizing causality, i.e., it may be sufficient for a party to extract
only partial causal information (rather than the entire local graph) to perform
its causality-related functionality (see the TLS analysis in the full version [9] for
example). In the future sections, we will illustrate in our analysis how exactly
causality can be utilized to improve security for our proposed constructions.

4.4 Causality Preservation with Post-compromise Security

The above basic causality preservation notion is sufficient to analyze secure con-
nection protocols like TLS 1.3 (see the full version [9]), for which state corruption
leads to no security.3 However, post-compromise security is an important con-
cern for secure messaging (SM) protocols like Signal, since their sessions typically
last for a long time (e.g., months). In order to capture this type of bidirectional
channels, we define the notion of strong causality preservation (SCP) that recov-
ers security after state compromise (and defaults to the basic weaker notion for
uncompromised executions). Here for simplicity only unreliable networks are
considered, as popular practical SM protocols like Signal usually do not assume
reliable in-order message delivery.

3 For secure connection protocols, our work focuses on their security within a basic
connection, where no post-compromise security is guaranteed, but such protocols
(e.g., TLS 1.3) could achieve post-compromise security across resumed sessions [33].

264 S. Chen and M. Fischlin

Epochs. In order to formalize post-compromise security, we follow the prior
work to associate each party with a sequence of incrementing epochs t =
0, 1, 2, . . . that represents consecutive time periods. Each transmitted message
and ciphertext are also associated with the same epoch as that of the party
when it sent them. We assume that the epoch number t is part of the party’s
state stP (denoted by stP .t) and can be efficiently extracted from the ciphertext
c (denoted by c.t). Then, for any ciphertext c accepted by a party P , we assume
that c.t ≤ stP .t + 1. We will see that Signal satisfies the above assumptions.
Finally, we let (GP)≥t and (G|P)≥t respectively denote subgraphs of GP and
G|P that consist of only vertices (and edges between them) created at epochs
larger than or equal to t.

Expscp
Ch,Δ,localG,A(1λ) :

1: k
$← KCh

2: stA ← Init(A, k)
3: stB ← Init(B, k)
4: G, GA, GB ← ε
5: tc ← −∞
6: R, Rc ← ∅

7: ASend,Recv,Corr

8: terminate with 0

Corr(P) :
1: add R.get(P̄) to Rc

2: tc ← max(stA.t, stB .t)
3: return stP

Send(P, m) :

1: (stP , c) $← Snd(P, stP , m)
2: if c = ⊥ then return ⊥
3: G ← G + (S, P), GP ← GP + S
4: add (P, c.i, m, c) to R
5: if c.t < tc + Δ then
6: add (P, c.i, m, c) to Rc

7: return c

Invalid = [min(stA.t, stB .t) < tc + Δ
and (P̄ , ·, ·, c) R∈�]

Bad = [min(stA.t, stB .t) ≥ tc + Δ
and (P̄ , i, m, ·) R∈�
and (P̄ , i, ·, ·) R∈� c]

Recv(P, c) :
1: if Invalid then
2: return ⊥, ⊥
3: (stP , m, i) ← Rcv(P, stP , c) //TRcv: transcript

4: if m = ⊥ then return ⊥, ⊥
5: if Bad then
6: terminate with 1 (A wins)
7: if (P̄ , i, m, ·) ∈ R then
8: G ← G + (R, P, i)
9: GP ← localG(GP , TRcv)
10: if (GP)≥tc+Δ �= (G|P)≥tc+Δ then
11: terminate with 1 (A wins)
12: delete (P̄ , i, ·, ·) from R, Rc

13: return m, i

Fig. 4. Security experiment for strong causality preservation

Security Experiment. In Fig. 4 we depict the security experiment (or game)
for strong causality preservation Expscp

Ch,Δ,localG,A(1λ) that is executed between a
challenger and an adversary A. The experiment is additionally associated with
a parameter Δ ≥ 0 that indicates how fast (in terms of epochs) parties recover
from state compromise. Intuitively, strong causality preservation guarantees that
even if at some epoch a party is corrupted, after Δ epochs the channel protocol
resurrects causality again.

The experiment is more complicated than the CP experiment due to state
compromise. In the beginning, the challenger initializes two additional states,
tc that stores the most recent (i.e., largest) compromised epoch and Rc that
records the compromised messages (with the corresponding ciphertexts). Then,
A is given oracle access to Send, Recv, Corr, where Corr is for state corruption.
Corr takes a party identity and outputs the party’s current state; it also records

all the outstanding messages sent by the other party as compromised (i.e.,
adding them to Rc) and updates tc.

Send works as before except that: if the party is still recovering from state com-
promise, i.e., c.t < tc + Δ, then the sent message and ciphertext are recorded
as compromised.

Integrating Causality in Messaging Channels 265

Recv becomes more complicated to handle corruption, but it downgrades to the
Recv oracle in the CP experiment when no corruption occurs (then tc =
−∞ and Rc = ∅). In the beginning, the Invalid condition is checked, which
ensures that the adversary performs passively during channel recovery (i.e.,
no malicious ciphertext can be processed when either party’s current epoch
is less than tc + Δ). Then, if the ciphertext is successfully transformed to a
message (i.e., the message is accepted), the Bad event is checked. Bad occurs
if after recovery a party accepts a malicious message that was neither sent by
the other party nor associated with a compromised epoch, and hence in this
case A wins. Otherwise, the local graph GP and (global) causality graph G are
updated, where the latter is updated only when the accepted message is not
modified since message dependencies captured by G are meaningless without
the correct messages. Then, A wins if the after-recovery subgraph of either
party’s local graph (GP)≥tc+Δ does not match that of the party’s restricted
graph (G|P)≥tc+Δ. Finally, the oracle removes the accepted message from the
records and outputs the message with its index.

We remark that our model does not capture forward secrecy for causality.
The key observation is that, even after state recovery, the part of a causality
graph that corresponds to a previous uncompromised epoch may still be affected
by a compromised message that carries malicious causal information. However,
causality for already received messages is still guaranteed upon corruption.

Advantage Measure. The advantage is defined as Advscp
Ch,Δ,localG(A) =

Pr[Expscp
Ch,localG,Δ,A(1λ) ⇒ 1] for any arbitrary localG. We say a bidirectional

channel Ch preserves Δ-strong causality (or is Δ-SCP-secure) if one can construct
an efficiently computable function localG� such that, for any efficient adversary
A, the advantage Advscp

Ch,Δ,localG�(A) is negligible. Similarly, a Δ-SCP-secure
channel also guarantees that each party is in principle able to derive all causal
information captured by its restricted graph in epochs after recovery, but parties
may choose to extract only partial causal information.

SCP ⇒ CP and CP �⇒ SCP. For SCP ⇒ CP, we note that SCP downgrades
to CP if the adversary makes no corruption query, in which case tc = −∞ and
Rc = ∅. The other direction is not true, e.g., causal TLS 1.3 channels (details
in the full version [9]) offer no post-compromise security.

4.5 Relations to Integrity Notions

Our (S)CP notions are clearly orthogonal to confidentiality (i.e., causal relations
can be simply observed by a network attacker), but one may think of them as
complements to integrity. We show that this is not quite the case.

First, in Fig. 5 we formalize the security experiments of plaintext integrity
(INT-PTXT) and ciphertext integrity (INT-CTXT) for bidirectional channels.4

4 [26] initialized the formal security definitions for bidirectional channels, but their
notions do not capture unreliable networks.

266 S. Chen and M. Fischlin

Expint-ptxt/int-ctxt
Ch,A (1λ) :

1: k
$← KCh

2: stA ← Init(A, k)
3: stB ← Init(B, k)
4: sA, sB , rA, rB ← 0, R ← ∅

5: ASend,Recv

6: terminate with 0

Send(P, m) :

1: (stP , c) $← Snd(P, stP , m)
2: if c = ⊥ then return ⊥
3: sP ← sP + 1
4: add (P, sP , m, c) to R
5: return c

Recv(P, c) :
1: (stP , m, i) ← Rcv(P, stP , c)
2: if m = ⊥ then return ⊥, ⊥
3: if Badptxt/Badctxt then
4: terminate with 1 (A wins)
5: rP ← rP + 1, delete (P̄ , i, ·, ·) from R
6: return m, i

Fig. 5. Security experiments for plaintext and ciphertext integrity, where Badptxt = Bad
as defined in Fig. 3, Badctxt = [(P̄ , i, ·, c) �∈ R] for unreliable networks and Badctxt =
[(P̄ , i, ·, c) �∈ R or i �= rP] for reliable in-order networks.

Their advantage measures are defined naturally and denoted by Advint-ptxt
Ch (A)

and Advint-ctxt
Ch (A) respectively.

Exps-int-ptxt/ctxt
Ch,Δ,A (1λ) :

1: k
$← KCh

2: stA ← Init(A, k)
3: stB ← Init(B, k)
4: tc ← −∞
5: R, Rc ← ∅

6: ASend,Recv,Corr

7: terminate with 0

Send(P, m) :

1: (stP , c) $← Snd(P, stP , m)
2: if c = ⊥ then return ⊥
3: add (P, c.i, m, c) to R
4: if c.t < tc + Δ then
5: add (P, c.i, m, c) to Rc

6: return c

Recv(P, c) :
1: if Invalid then return ⊥, ⊥
2: (stP , m, i) ← Rcv(P, stP , c)
3: if m = ⊥ then return ⊥, ⊥
4: if Bads-ptxt/Bads-ctxt then
5: terminate with 1 (A wins)
6: delete (P̄ , i, ·, ·) from R, Rc

7: return m, i

Fig. 6. Security experiments for strong plaintext integrity and strong ciphertext
integrity, where Corr, Invalid and Bads-ptxt = Bad are defined in Fig. 4 and Bads-ctxt =
[min(stA.t, stB .t) ≥ tc + Δ and (P̄ , i, ·, c) �∈ R and (P̄ , i, ·, ·) �∈ Rc].

Then, in Fig. 6 we define the security experiments for strong plaintext
integrity (S-INT-PTXT) and strong ciphertext integrity (S-INT-CTXT) that
offer post-compromise security for bidirectional channels. Similarly, we denote
their advantage measures by Advs-int-ptxt

Ch,Δ (A) and Advs-int-ctxt
Ch,Δ (A) respectively.

To clarify the relationship of the above two notions, we define a notion
called robust correctness (ROB-CORR) to capture correctness in a robust sense:
after state recovery, decrypting ciphertexts created in a compromised epoch
and decryption failure do not affect the correctness requirement, i.e., an hon-
est ciphertext is always decrypted to the original message and index.5 Its secu-
rity experiment is the same as Fig. 6, except that the Bad event is replaced by
Badrob-corr = [min(stA.t, stB .t) ≥ tc + Δ and (P̄ , i, ·, c) ∈ R and (P̄ , i, m, ·) �∈
R and (P̄ , i, ·, ·) �∈ Rc]. The advantage measure is denoted by Advrob-corr

Ch,Δ (A).
In the full version [9], we investigate the relations among the above integrity

notions and our (S)CP notions; the results are summarized in Fig. 7.

5 This notion is loosely connected to the idea behind the robust notion for unreliable
channels recently put forward in [16], namely that malicious ciphertexts do not dis-
turb the expected behavior. However, in our case the notion is closer to a correctness
property after recovery. A similar correctness security notion was also defined in [1].

Integrating Causality in Messaging Channels 267

SCP

CP

S-INT-PTXT

INT-PTXT

S-INT-CTXT

INT-CTXT

+ ROB-CORR

Fig. 7. Notion relations. Solid arrows mean an implication, dotted (crossed out) arrows
mean a separation.

5 Causality Preservation of Signal

In this section, we analyze causality preservation of the Signal protocol [24,28].
We focus on its double-ratchet component [28] without considering the X3DH
key agreement [24] used to derive the initial shared key. First, we show that
Signal as a bidirectional channel does not even achieve the basic CP security.
Then, we propose simple fixes to construct SCP-secure causal Signal channels
and describe a potential user interface for the SM applications to display the
causal dependencies to end users.

5.1 The Signal Channel and Its Insecurity

The Signal Channel. According to our defined syntax (see Definition 2), we
can view Signal as a bidirectional channel, denoted by ChSignal. Here we briefly
summarize its main cryptographic design, and refer to the full version [9] for a
more detailed description of the Signal channel based on its core building blocks.

Signal performs a so-called continuous key agreement (CKA) protocol to
generate a series of shared secrets, such that after state compromise the channel
parties are able to recover security with a fresh shared secret. Parties in the
Signal channel send and receive messages in alternate epochs, with odd epochs
for Alice to send and Bob to receive, and even epochs for Bob to send and Alice
to receive. Therefore, concurrent messages sent by different parties are associated
with distinct epochs. Recall that in Sect. 4.4 we assume each party P keeps the
epoch number t in its local state stP and the associated epoch number can be
efficiently extracted from the ciphertext; this is the case for Signal.6

The epoch numbers of both parties are initialized as 0. For each party P ,
its epoch number stP .t is incremented from t to t + 1 in two cases: (1) after P
receives from the other party a message with epoch number t + 1 (e.g., when
stB.t = 0 and Bob receives a message associated with epoch t = 1, Bob updates
stB.t = 1); or (2) before P sends a message while t is not the epoch for P to send

6 Actually, Signal exploits the uniqueness of the latest CKA message (authenticated
but not encrypted, as shown in the full version [9]) to index epochs. For simplicity,
we follow [1] to assume an explicit epoch number is used.

268 S. Chen and M. Fischlin

(e.g., when stA.t = 2 and Alice wants to send a message, the epoch number is
incremented to stA.t = 3 because Alice can only send messages in odd epochs).
This design matches our assumption in Sect. 4.4 that each bidirectional channel
party P accepts only ciphertexts with epoch number ≤ stP .t + 1.

The above CKA also provides forward secrecy, which for Signal roughly
means that state corruption does not affect the security of the (encrypted) mes-
sages already transmitted in previous epochs. Actually, forward secrecy guaran-
teed by Signal is more fine-grained, i.e., even within the same epoch the already
sent messages remain safe. To achieve such security, each party in Signal further
updates its sending (or receiving) key after each sending (or receiving) action,
such that past keys cannot be derived from new keys.

The message index of ChSignal is hence a two-tuple (t, s), where t is the epoch
number and s is the sent message counter within epoch t.

Causality Insecurity of ChSignal. We can follow the idea reflected in Fig. 1
to construct an efficient adversary A against causality preservation of ChSignal.
First, A samples a random bit b

$← {0, 1}. Then, consider the following
queries for any three messages m1, m2, m3 ∈ M: ➀ c1

$← Send(A, m1), ➁

(m1, (1, 0)) ← Recv(B, c1), ➂ c2
$← Send(A, m2), ➃ (m2, (1, 1)) ← Recv(B, c2),

➄ c3
$← Send(B, m3), ➅ (m3, (2, 0)) ← Recv(A, c3). If b = 0, A runs ➀➁➂➃➄➅;

otherwise b = 1, A runs in a different order: ➀➁➂➄➃➅. These two cases are
depicted in Fig. 8.

t = 1
t̄ = 1

t = 1
t̄ = 1

t̄ = 2
t = 2

t = 1
t̄ = 1

t = 1
t = 2

t̄ = 2
t̄ = 1

c1

c2

c3

c1

c2

c3

Fig. 8. Causality attack against Signal. Each ciphertext contains the epoch t for sending
actions and the obtained epoch value t̄ for receiving actions. The send counters are
irrelevant for the attack and are omitted. The adversary chooses one of the execution
flows randomly. Then, Alice’s views (in the dashed boxes) in both cases are identical,
whereas Alice’s restricted graphs are different: the right hand side does not contain
Bob’s last vertex.

Clearly, the above two cases result in two different causality graphs (and
different restricted graphs for Alice): in the left world (b = 0) Bob sent m3 after
receiving m2 but in the right world (b = 1) that is not the case. Note that in
both worlds Bob has received m1 before sending m3, so m3 must belong to epoch
t = 2.7 Since c3 carries no information about whether m2 has been received, both
worlds look identical to Alice. (This can be verified by checking the detailed

7 Note that if Bob sends a message m before receiving any messages from Alice, then
this message m belongs to epoch t = 0.

Integrating Causality in Messaging Channels 269

description of ChSignal in the full version [9].) Therefore, GA �= G|A happens
with probability at least 1/2, i.e., Advcp

ChSignal,localG(A) ≥ 1/2 for any possible
update function localG. By definition, ChSignal does not preserve causality.

5.2 Integrating Causality in Signal

Since Signal allows for out-of-order message delivery and message loss, transmit-
ting only the δ value (i.e., the number of consecutively accepted messages before
the sent message, more details discussed in the full version [9]) as for TLS is not
enough to reconstruct the full causal relations. In order for the parties to build
the correct restricted graph, along with each sent message the entire causal infor-
mation before this message (that has not been known by the receiving party)
has to be transmitted. We store this information in a queue Q (with the usual
methods enq, deq, and front to enqueue and dequeue elements, and to read the
front element without dequeuing it). Then, we propose a so-called message-borne
causal Signal channel, indicating where Q is borne. Analogously, one can also
construct an associated-data-borne causal Signal channel, by authenticating Q
as part of the associated data rather than encrypting it.8

A Generic Causal Channel Compiler. In Fig. 9, we show a generic compiler
that transforms an arbitrary bidirectional channel Ch = (Init,Snd,Rcv) into a
message-borne causal channel Chm. In particular, when Ch is instantiated with
ChSignal, we get the message-borne causal Signal channel Chm

cSignal.
As shown in Fig. 9, Chm keeps indices iS , iR and queue Q as three additional

states and encrypts the latter two states with the sent message. Formally, Q
is a (first-in-first-out) queue that records a sequence of actions before the sent
message in their correct time order: each action is recorded as the index of
the associated sent or received message. We require that one can distinguish
a sending index from a receiving index. Clearly, the receiving party is able to
construct the correct restricted graph if all actions before the sent message
are recorded in Q. However, this may incur too much overhead, e.g., a Signal
communication session may last for months and hence involve many actions.

To mitigate overhead, we use indices iS , iR to update Q such that it records
only the actions performed by party P but whose delivery has not yet been
confirmed, i.e., P has not accepted any ciphertext sent from P̄ that confirms the
delivery of those actions. Let iS denote, in P ’s view, the largest index of messages
accepted by P̄ , then Q only needs to record P ’s actions after its iS-th sending
action, because earlier actions have been recorded and transmitted along with
the sent messages accepted by P̄ . For instance, consider the message sent by Bob
at b6 in Fig. 2. This message has index 4 and queue Q consists of the (sending)
message indices associated with b3, b4, b5, i.e., Q = (1̄, 3, 3̄) (where ī indicates
a receiving index), because the received message at b5 already confirmed the
8 As far as we know, the associated data is rarely used by instant messaging services

for handling application-level data, so the message-borne version seems easier to
understand and implement. It also matches our bidirectional channel syntax well.

270 S. Chen and M. Fischlin

Chm.Init(P, k):
1: stCh ← Ch.Init(P, k)
2: iS , iR ← −1, Q ← ∅

3: return (stCh, iS , iR, Q)

update(Q, ī, iS , iR, īR):
1: Q.enq(̄i)
2: if iR < ī then iR ← ī
3: if iS < īR then
4: while Q.front() �= īR do
5: Q.deq()
6: if |Q| = 0 then abort
7: Q.deq(), iS ← īR

Chm.Snd(P, st, m):

1: (stCh, c)
$← Ch.Snd(P, stCh, (m, iR, Q))

2: if stCh = ⊥ then return ⊥, ⊥
3: Q.enq(c.i)
4: return st, c

Chm.Rcv(P, st, c):

1: (stCh, (m, īR, Q̄), ī) ← Ch.Rcv(P, stCh, c)
2: if m = ⊥ then return st, ⊥, ⊥
3: update(Q, ī, iS , iR, īR)

4: return st, m, ī

Fig. 9. The message-borne causal channel Chm (with dashed boxes highlighting the
added causality-related operations). It deploys a queue Q and two indices iS , iR whose
current values are always kept in the augmented state st = (stCh, iS , iR, Q). Barred
values represent the data output by the receiver of the underlying channel (as opposed
to internal states). The value Q̄ is not returned by Rcv, but it is part of the Rcv
transcript TRcv so can be used by localG to update the local graph. When Ch = ChSignal,
message indices are of the form (t, s) and ordered lexicographically (with −1 denoting
a minimum).

delivery of messages sent at b1 and b2. In order to easily update iS , we transmit
an additional state iR of P that records the largest index of accepted messages
sent by P̄ , then iS can be updated by comparing to īR (i.e., the largest index of
P̄ ’s accepted messages sent by P) decrypted from ciphertexts sent by P̄ . This
generalizes the idea of δ value, where it suffices to count the processed message
in between; here we record all message indices since the last confirmation.

The actual procedures involving iS , iR, Q are described in the boxed content
of Fig. 9. In Init, (iS , iR) are both initialized to −1, the minimum message index;
Q is initialized to the empty queue. In Snd, (iR, Q) are encrypted with the
sent message, and after the encryption the message index (extracted from the
ciphertext c) is recorded by Q. In Rcv, (̄iR, Q̄) are decrypted along with the
message from the received ciphertext, and if the decryption succeeds (Q, iS , iR)
are updated by running update. This update function first records the index ī of
the accepted message, then updates iR when it is smaller than ī; next, if iS < īR

(i.e., some of P ’s early actions currently recorded by Q have been known by P̄),
then it deletes those early actions and updates iS .

Note that Chm remains correct since the causality-related operations (dash-
boxed in Fig. 9) do not affect the input of Snd nor the output of Rcv.

SCP Security of Chm. Consider a function localG�
m that updates GP as follows.

First, it extracts the decrypted queue Q̄ and the output index ī from the input
transcript TRcv. Then, it processes Q̄ from its front (oldest) element to its back
(latest) element one by one. Recall that each element ei in Q̄ is a message index
that represents an action. Consider the i-th element ei in Q̄. If ei represents a
sending action, the function checks if the ei-th sending vertex in VP̄ has been
added, and if not adds it and connects it to the corresponding receiving vertex

Integrating Causality in Messaging Channels 271

(if any) in VP . If ei represents a receiving action, the function checks if the ei-th
sending vertex in VP already connects to some receiving vertex in VP̄ , and if not
adds a new receiving (largest) vertex v̄ to VP̄ and a directed edge from the ei-th
sending vertex of VP to v̄. After processing the entire queue Q̄, it adds the ī-th
sending vertex v̄′ to VP̄ (if not yet added) and a new receiving (largest) vertex
v′ to VP , then adds the edge (v̄′, v′). We illustrate the above procedures with a
simple example in Fig. 10.

i = 1

i = 2

ī = 1̄

i = 3

Q̄ = (1, 2̄)

i = 1

x

ī = 2̄

i = 2

ī = 3̄

graph

Q̄ = (1, 2̄)

local graph

Q̄ = (2̄)

iteration #1

add edge for the
final action

finalizing

Fig. 10. Building local graph in Chm. The first figure shows the actual communication
graph (with its first message being dropped on the network) where the left party
eventually receives a ciphertext with queue Q̄ = (1, 2̄). Starting from its local graph
(2nd figure) it iterates over the queue Q̄, skipping the first sending vertex 1 (as it has
been received) and adding the receiving vertex 2̄ as the largest vertex in the other
party’s vertex set and the edge (3rd figure). It finalizes the update by adding the
vertices and edge of the final action (4th figure).

With localG�
m, it is not hard to see that: (1) GP = G|P always holds for

a correct Chm execution and (2) (GP)≥tc+Δ = (G|P)≥tc+Δ always holds for a
correct Chm execution after recovery; we call this the correctness of localG�

m. In
the following theorem (with proof in the full version [9]), we show that the SCP
security of the generic causal channel Chm can be reduced to the S-INT-CTXT
and ROB-CORR security of its underlying bidirectional channel Ch.

Theorem 1. For any Δ > 0 and efficient adversary A, there exist efficient
adversaries B, C such that

Advscp
Chm,Δ,localG�

m
(A) ≤ Advs-int-ctxt

Ch,Δ (B) + Advrob-corr
Ch,Δ (C).

When Ch is instantiated with ChSignal, in the full version [9] we show that
Chm

cSignal provably achieves SCP security with Δ = 3.

Integrating Causality in Application User Interfaces. Recall that SCP
security ensures that the channel parties are in principal able to derive the
correct causal information, but how to utilize it is up to the SM applications.

272 S. Chen and M. Fischlin

Here for completeness, we show a concrete method for application user interfaces
to visualize causality offered by our causal channel.

Consider a message m accepted by a user, say, Alice. A causal channel can
provide a causality feature that allows Alice to view which of her sent messages
m depends on. To do this, the channel extracts the decrypted Q̄ from the Rcv
execution that outputs m, collects the recorded indices of messages sent by Alice,
and returns those message indices along with m to the application. Then, the
feature can be realized by highlighting the messages returned from the channel
when Alice does a “press and hold” on the accepted message m. A toy example
is described in the full version [9].

Such a causality-preserving feature helps users reduce or avoid misunder-
standing caused by insufficient or incorrect causal dependencies displayed on
a regular user interface (that does not preserve causality). There could be
other more elegant ways to visualize causality, but finding the best visualiza-
tion method and performing usability testing are beyond the scope of our work.

On the Size of Q. Recall that Q records all performed actions (as message
indices) whose delivery has not yet been confirmed. From Fig. 9, we see that index
queue Q dominates all overhead (computation, storage and communication).
More precisely, all overhead is linear to the queue size |Q|. Clearly, |Q| depends
on the communication patterns of the conversations, for which we show two
examples in the full version [9]. In practice, a straightforward way to limit such
overhead is to set a threshold for the maximum number of elements in Q, similar
to how Signal limits the maximum number of cached encrypted messages. Here,
however, the causality security is slightly weakened to protect only the actions
recorded in Q, for which a formal confirmation is left for future work.

6 Message Franking Channels and Causality Preservation

6.1 Message Franking Channels

In a message franking channel, besides exchanging messages the users are also
allowed to report abusive messages to a third party (e.g., the messaging service
provider). This additional functionality is called message franking (MF) by Face-
book Messenger [15]. Such a setup concerns three parties: two users Alice (A),
Bob (B), and a third party that we call a server (S). S routes (encrypted) mes-
sages exchanged between users (and hence S is referred to as a router in [19]).
The role of the server is to authenticate the franking tag c.cf included in any
ciphertext c routed through the server, such that the receiver (reporter) has a
proof for the server to check that the other user has indeed sent that ciphertext.

A message franking channel (MFC) has been formalized by [19]. Similar to
the discussion in Sect. 4.1, we extend their definition to capture the acting party’s
identity and the received index of the sending action (wrapped into the message
auxiliary information), meanwhile ignoring the application-level associated data,
sometimes referred to as a header. Besides, to match our bidirectional channel
syntax and for better understanding, our definition is not nonce-based.

Integrating Causality in Messaging Channels 273

Definition 3. A message franking channel is a five-tuple MFCh =
(Init,Snd,Rcv,Tag,Rprt) associated with a channel key space KCh, a server key
space KS, a state space ST , a message space M, an auxiliary information space
U , an index space I, an opening key space Kf , a franking tag space Cf , and a
tag space T :

Init(P, k) → stP : takes P ∈ {A, B, S} and a key k, where k ∈ KCh for P ∈ {A, B}
and k ∈ KS for P = S, and outputs the initial state of P ;

Snd(P, st, m) $→ (st′, c) takes P ∈ {A, B}, st ∈ ST , m ∈ M, and outputs an
updated state st′ ∈ ST and a ciphertext c ∈ {0, 1}∗, where the ciphertext
contains a franking tag c.cf ∈ Cf and a message index c.i ∈ I;

Rcv(P, st, c) → (st′, m, u, kf) takes P ∈ {A, B}, st ∈ ST , c ∈ {0, 1}∗, and
outputs an updated state st′ ∈ ST , a message m ∈ M ∪ {⊥} with auxiliary
information u ∈ U that contains message index u.i ∈ I, and an opening key
kf ∈ Kf ;

Tag(stS , P, cf) → (st′
S , τ): takes stS ∈ ST , (sender identity) P ∈ {A, B}, cf ∈

Cf , and outputs an updated state st′
S ∈ ST and a server tag τ ∈ T ;

Rprt(stS , P, m, u, kf , cf , τ) → (st′
S , b) takes stS ∈ ST , (reporter identity) P ∈

{A, B}, m ∈ M, u ∈ U , kf ∈ Kf , cf ∈ Cf , τ ∈ T , and outputs an updated
state st′

S ∈ ST and a verification bit b ∈ {0, 1}.

Let Ch = (Init′,Snd,Rcv′) be the underlying bidirectional channel of MFCh, where
Init′ is Init with input P ∈ {A, B} and Rcv′ is Rcv with output (st′, m, u.i).
Correctness requires that 1) Ch is correct and 2) all received messages can be
successfully reported (i.e., b = 1).

A message franking channel MFCh extends its underlying bidirectional chan-
nel in several ways: (i) Init further initializes the secret state of the server; (ii)
Snd and Rcv respectively further output a franking tag and an opening key used
by the server to verify authenticity of user messages; (iii) Rcv outputs auxiliary
information (in addition to the message index) to capture potential causality
information of the received message; and (iv) Tag and Rprt are used by the
server to tag encrypted messages and verify reported messages.

6.2 Causality Preservation of Message Franking Channels

As briefly explained in the introduction, there are two types of causality preserva-
tion one would expect from a message franking channel. One is security for honest
users against a malicious server that acts as a network attacker, resembling our
causality preservation for bidirectional channels. The other one is security for an
honest server against one malicious user who knows the channel key and tries
to fool the reporting system by tampering with causality.

Trust Model. Before defining security, we first clarify the trust model for
message franking channels. It is usually assumed that the server-user commu-
nications are mutually authenticated, which in practice can be realized by, e.g.,

274 S. Chen and M. Fischlin

server-authenticated TLS connections with user login. In particular, if the server
is not authenticated, a user can send abusive messages that cannot be reported;
if the user is not authenticated, a user can forge and successfully report abusive
messages never sent by the other user. Note that such mutual authentication
guarantees message integrity against network attackers, i.e., only a malicious
server is able to play man-in-the-middle attacks.

Channel Causality Preservation. First, as with bidirectional channels, we
define security notions to model causality preservation for honest users, which
we call channel causality preservation (CCP) notions. The goal of the adversary
is the same as the bidirectional channel case, i.e., to make some user’s local
view on causality deviate from the actual case or to make some user accept a
malicious message. Under our trust model, the adversary is a malicious server
that mirrors a network attacker in the bidirectional channel setting.

The security experiments for both the basic and strong causality preser-
vation of a message franking channel MFCh are defined in the same way as
depicted in Fig. 3 and Fig. 4, except that the bidirectional channel algorithms
Init,Snd,Rcv are replaced by those of MFCh and the message index is extracted
from the accepted auxiliary information. The corresponding advantage measures
Advcp

MFCh,localG(A) and Advscp
MFCh,Δ,localG(A) are also defined in the same way.

Note that the server-related algorithms Tag,Rprt do not show up in the above
security definitions because the adversary plays the role of a malicious server
and knows the server secrets. One can also define the integrity notions for mes-
sage franking channels as with Fig. 5 and Fig. 6 and derive similar relationship
between CCP notions and integrity notions as with Fig. 7.

Report Causality Preservation. Then, we model the causality security that
is directly related to the “message franking” functionality, which we call report
causality preservation (RCP). To define such security, it is convenient to view
the adversary as either a malicious sender or a malicious receiver (reporter), like
[18,19] defining sender-binding and receiver-binding notions for message franking
schemes. Sender binding guarantees that no malicious user can make the other
user accept a message that cannot be reported (and hence the correct causal
information cannot be reported); receiver binding guarantees that no malicious
user can successfully report a message that is never sent by the other user.
Similarly, we split our RCP notion into two parts: RCP-S and RCP-R.

Our RCP-S notion (see Fig. 11 for its security experiment Exprcp-s
MFCh,A(1λ))

is equivalent to the sender binding notion defined in [19], except that we add a
Send oracle to allow an honest party to send messages and our MFC syntax uses
probabilistic AEAD and ignores headers. This notion is a “bidirectional chan-
nel” extension of the “unidirectional” sender-binding property defined in [18],
and the adversarial goal in our model is again to make an honest user accept an
unreportable message. Note that in Exprcp-s

MFCh,A(1λ), the Recv oracle is required
to process only ciphertexts with valid tags output by Tag, because the trust

Integrating Causality in Messaging Channels 275

model assumes that users can only receive messages through the server (other-
wise RCP-S is easy to break). Also note that although a malicious sender can
manipulate the global causality graph, once the local graph is settled on the
honest receiver side, this graph is deemed correct and cannot be modified; there-
fore, causality-related functionality is irrelevant to the definition of RCP-S. More
detailed description of RCP-S is omitted here due to its high similarity to [19].
The RCP-S adversarial advantage of a message franking channel MFCh is defined
as Advrcp-s

MFCh(A) = Pr[Exprcp-s
MFCh,A(1λ) ⇒ 1]. We say MFCh is RCP-S-secure if its

RCP-S advantage is negligible for any efficient adversary A.
Our RCP-R notion (formally defined later) also follows the receiver-binding

definitions [18,19], but it is extended to further allow the adversary to win if
it successfully reports a message that carries wrong or insufficient causal infor-
mation. As explained in the introduction, such information is very important
for message franking because a benign message may look abusive when taken
out of context. By design, RCP-R obviously implies receiver binding, which
is defined as RCP-R excluding causality-related parts. Such a receiver binding
notion (omitted here for conciseness) is essentially equivalent to receiver binding
defined in [19]. However, the other direction is not true, i.e., receiver binding
does not imply RCP-R. For instance, as shown in Sect. 7.1, Facebook’s message
franking channel MFChFB does not achieve RCP-R security, but with a theo-
rem very similar to Theorem 3 (shown in Sect. 7.2) one can prove that MFChFB
satisfies receiver binding.

We say a message franking channel preserves report causality (or is RCP-
secure) if it is both RCP-S-secure and RCP-R-secure. In the following, we show
the formal definition of our RCP-R security.

Message-Dependency Graph and its Extractor. First, we clarify what
causal information is considered sufficient for a message m sent by an honest
party P and reported by a malicious user P̄ . Ideally, the entire causal infor-
mation until the sending action of the reported message could be carried by
the m’s auxiliary information, but this leads to expensive communication over-
head. Instead, it suffices to carry only the causal information not yet confirmed
by P̄ in P ’s view, because the confirmed causal information has already been
carried by the auxiliary information of messages accepted by P and hence can
be reported. The above not-yet-confirmed causal information is exactly what
queue Q records in the causal channel Chm (see Fig. 9) appended with the index
i of the reported message m. We call the causality graph that represents the
above causal information associated with each message the message-dependency
graph. Let G|iP denote the message-dependency graph of the i-th message sent
by party P , which is a subgraph of G|P . For instance, consider the message sent
by Bob at b6 in Fig. 2. This message has index 4 and G|4B consists of (a1, b3),
b4, (a5, b5), and b6, because the received message at b5 already confirmed the
delivery of messages sent at b1 and b2. Note that G|iP is necessary for the server
to construct the restricted causality graph G|P of the accused honest party P .

276 S. Chen and M. Fischlin

A message-dependency graph extractor Extr is a function that takes a message’s
auxiliary information and outputs a message-dependency graph.

Exprcp-s
MFCh,A(1λ) :

1: kS
$← KS

2: kCh
$← A(1λ)

3: stS ← Init(S, kS)
4: stA ← Init(A, kCh)
5: stB ← Init(B, kCh)
6: Rt, Rr ← ∅

7: ASend,Recv,Tag,Report(kCh)
8: terminate with 0

Send(P, m) :

1: (stP , c) $← Snd(P, stP , m)
2: if c = ⊥ then return ⊥
3: return c

Recv(P, c, τ) : (require (P̄ , c.cf , τ) ∈ Rt)
1: (stP , m, u, kf) ← Rcv(P, stP , c)
2: if m �= ⊥ then
3: add (P, m, u, kf , c.cf , τ) to Rr

4: return m, u, kf

Tag(P, cf) :
1: (stS , τ) ← Tag(stS , P, cf)
2: add (P, cf , τ) to Rt

3: return τ

Report(P, m, u, kf , cf , τ) :
1: (stS , b) ← Rprt(stS , P, m, u, kf , cf , τ)
2: if b = 0 and (P, m, u, kf , cf , τ) ∈ Rr then
3: terminate with 1 (A wins)
4: return b

Exprcp-r
MFCh,Extr,A(1λ) :

1: kS
$← KS

2: kCh
$← A(1λ)

3: stS ← Init(S, kS)
4: stA ← Init(A, kCh)
5: stB ← Init(B, kCh)
6: R, Rf ← ∅, G ← ε
7: ASendTag,Recv,Report(kCh)
8: terminate with 0

SendTag(P, m) :

1: (stP , c) $← Snd(P, stP , m)
2: if c = ⊥ then return ⊥
3: G ← G + (S, P)
4: (stS , τ) ← Tag(stS , P, c.cf)
5: add (P, c, τ) to R
6: add (P, c.i, m, c.cf) to Rf

7: return c, τ

Recv(P, c, τ) : (require (P̄ , c, τ) ∈ R)
1: (stP , m, u, kf) ← Rcv(P, stP , c)
2: if m �= ⊥ then G ← G + (R, P, u.i)
3: return m, u, kf

Report(P, m, u, kf , cf , τ) :
1: (stS , b) ← Rprt(stS , P, m, u, kf , cf , τ)
2: if b = 1 and [(P̄ , u.i, m, cf) R∈� f or Extr(u) �= G|u.i

P̄]
then terminate with 1 (A wins)

3: return b

Fig. 11. Security experiments for report causality preservation

Security Experiment for RCP-R. On the bottom of Fig. 11, we depict
the RCP-R security experiment Exprcp-r

MFCh,Extr,A(1λ), which is associated with
a message franking channel MFCh = (Init,Snd,Rcv,Tag,Rprt) and a message-
dependency graph extractor Extr.

In the beginning, the challenger samples a random server key kS and the
adversary outputs an arbitrary channel key kCh, then the Init algorithm is exe-
cuted to derive the initial states. All the states used in the game are also properly
initialized. Then, A inputs the channel key kCh and is given access to three ora-
cles SendTag, Recv and Report:

SendTag takes a user identity and a message, calls Snd on the input message,
updates the graph, calls Tag on the franking tag (included in the derived
ciphertext), records useful information in R and Rf , and returns the derived
ciphertext and server tag. This oracle models a user sending messages honestly
through the server. Recall that malicious senders are already captured by
RCP-S, whose goal is to make the other user accept unreportable messages.

Recv takes a user identity, a ciphertext and a server tag, calls Rcv on the input
ciphertext, updates the graph, and outputs the derived message with auxil-
iary information and the derived opening key. Note that this oracle does not
give the adversary much additional ability, because as a malicious receiver
it already knows the secret user state to decrypt any ciphertext. The pur-
pose of this oracle is to allow an honest party receive messages (through the
server) and to update the global causality graph G (used to detect mali-
ciously reported causal information). Therefore, we can require the oracle to
only process ciphertexts and server tags output by SendTag queries.

Integrating Causality in Messaging Channels 277

Report takes a reporter (receiver) identity, a message with auxiliary information,
an opening key, a franking tag, and a server tag, calls Rprt on the oracle input,
and returns the derived verification bit b. The adversary wins if it reports
successfully (b = 1) with either a message never output by an honest sender
((P̄ , u.i, m, cf) �∈ Rf) or incorrect causal information (Extr(u) �= G|u.i

P̄
).

Advantage Measure of RCP-R. The RCP-R advantage is defined as
Advrcp-r

MFCh,Extr(A) = Pr[Exprcp-r
MFCh,Extr,A(1λ) ⇒ 1] for any arbitrary extractor Extr.

We say a message franking channel MFCh is RCP-R-secure if one can construct
an efficiently computable function Extr� such that, for any efficient adversary A,
the advantage Advrcp-r

MFCh,Extr�(A) is negligible. That is, a RCP-R-secure message
franking channel guarantees that the server can use Extr� to derive all causal
information captured by the associated message-dependency graph of each suc-
cessfully reported message.

Remark on RCP-R Security. Note that RCP-R security both guarantees the
authenticity of the reported message and extends it to the message flow. The
reported flow itself, however, does not include the content of previous messages
but only contains information about the related causal relations (to reduce the
overhead). In case of a dispute, the accused party can then report the content
of the previous messages for the server to reconstruct the communication. We
discuss this process in more detail for the concrete case of Facebook Messenger
at the end of Sect. 7.2.

7 Causality Preservation of Facebook’s Message Franking

In this section, we first describe Facebook Messenger’s message franking
scheme [15] and show its insecurity for preserving report causality, then amend
it to provably achieve the desired security.

7.1 Facebook’s Message Franking Channel and Its Insecurity

Facebook’s Message Franking Channel. Following our message franking
channel syntax (see Definition 6.1), we present Facebook’s MFC as a message
franking channel MFChFB in Fig. 12, in a generic style for the benefit of modular
design. That is, we abstract MFChFB as constructed with a bidirectional channel
Ch = (Init,Snd,Rcv), a commitment scheme with verification CS = (Com,VerC),
and a MAC MAC = (K,Mac,Ver), where Facebook Messenger uses Signal as the
underlying bidirectional channel protocol (i.e., Ch = ChSignal) and instantiates
both CS and MAC with HMAC-SHA-256 HMAC [4]. Correctness of MFChFB
follows from that of its building blocks Ch, MAC, and CS.

Causality Insecurity of MFChFB. First, as shown in Sect. 5.1, we know
MFChFB does not preserve channel causality when Ch is instantiated with

278 S. Chen and M. Fischlin

Init(P, k):
1: if P = S then
2: return k
3: stCh ← Ch.Init(P, k)
4: s ← 1, iS , iR ← −1
5: Q ← ∅

6: return (stCh, s, iS , iR, Q)

Snd(P, st, m):
1: if P = S or st = ⊥ then return st, ⊥
2: (kf , cf) ← Com((m, s, Q))

3: (st, ce)
$← Ch.Snd(P, stCh, (m, iR, Q , kf))

4: Q.enq(s), s ← s + 1
5: return st, (ce, cf)

Tag(st, P, cf):
1: if P = S or st = ⊥ then return st, ⊥
2: τ ← Mac(st, cf‖P‖P̄)
3: return st, τ

Rcv(P, st, c):
1: if P = S or st = ⊥ then return st, ⊥, ⊥, ⊥
2: (st, (m, īR, Q̄ , kf), ī) ← Ch.Rcv(P, stCh, c.ce)

3: if m = ⊥ or VerC((m, ī, Q̄), kf , c.cf) = 0 then
4: return st, ⊥, ⊥, ⊥
5: update(Q, ī, iS , iR, īR)

6: return st, m, (̄i, Q̄), kf

Rprt(st, P, m, u, kf , cf , τ):
1: if P = S or st = ⊥ then return st, 0
2: return st,Ver(st, cf‖P̄‖P, τ)∧VerC((m, u), kf , cf)

Fig. 12. Facebook’s message franking channel MFChFB (without boxed content) and
the causal message franking channel MFChcFB (with boxed content). The update func-
tion is the same as defined in Fig. 9.

ChSignal. Then, in the following we show that MFChFB does not achieve RCP
security (more specifically, RCP-R security) either, even if Ch is instantiated
with our proposed causal Signal channel Chm

cSignal. The key observation is that
the server receives only the reported message and its index, but not any other
causal information. For instance, for the two execution flows considered in our
Signal causality attack depicted in Fig. 8, when the message m3 associated with
c3 is reported, the server cannot distinguish the two flows (that lead to different
message-dependency graphs). That is, any extractor Extr will output an incorrect
message-dependency graph associated with m3 with probability at least 1/2, i.e.,
Advrcp-r

MFChFB,Extr(A) ≥ 1/2 for any possible extractor Extr. By definition, MFChFB
does not achieve RCP-R security.

7.2 Integrating Causality in Facebook’s Message Franking

The Causal Message Franking Channel. As shown in Fig. 12 with boxed
content, our causal message franking channel MFChcFB amends Facebook’s mes-
sage franking channel by adding a queue Q (defined in Sect. 5.2) to the auxiliary
information of each sent message. This is quite similar to the Signal case, so the
performance overhead introduced by MFChcFB is also linear in |Q| as discussed
in Sect. 5.2. It is also easy to check that MFChcFB remains correct.

CCP Security of MFChcFB. Consider a local graph update function localG�

that extracts Q̄ and ī from the input transcript TRcv and proceeds as localG�
m for

Chm. With a proof (omitted here) very similar to that of Theorem 1, we have
the following theorem showing that the SCP security of our proposed causal
message franking channel MFChcFB can be reduced to the S-INT-CTXT and
ROB-CORR security of the underlying bidirectional channel Ch.9 In particu-
lar, the latter holds for Δ = 3 when Ch is instantiated with ChSignal (e.g., for
Facebook Messenger), as discussed in the full version [9].

9 A similar theorem (omitted here) holds for the case of basic causality preservation.

Integrating Causality in Messaging Channels 279

Theorem 2. For any Δ > 0 and any efficient adversary A, there exist efficient
adversaries B, C such that

Advscp
MFChcFB,Δ,localG�(A) ≤ Advs-int-ctxt

Ch,Δ (B) + Advrob-corr
Ch,Δ (C).

RCP Security of MFChcFB. First, for almost the same reason why Facebook’s
message franking scheme satisfies perfect sender binding in [18], we can conclude
that MFChcFB achieves perfect RCP-S security (i.e., Advrcp-s

MFChcFB
(A) = 0). This

is because Recv in the RCP-S security game (see top of Fig. 11) processes only
ciphertexts with a valid server tag (i.e., sent through the server) and Rcv runs
the same VerC check as in Rprt before accepting a message. Actually, with the
same argument one can show that the original Facebook’s MFC MFChFB is also
RCP-S-secure. Then, for RCP-R security, consider a message-dependency graph
extractor Extr� that takes (̄i, Q̄) from the input auxiliary information u and
then proceeds as localG�

m for Chm, but now updating an empty local graph. The
following theorem (proved in the full version [9]) shows that MFChcFB preserves
report causality if its underlying MAC and CS schemes are secure. The latter
holds when both instantiated with HMAC [3,18].

Theorem 3. For any efficient adversary A, there exist efficient adversaries B, C
such that

Advrcp-r
MFChcFB,Extr�(A) ≤ Adveuf-cma

MAC (B) + Advv-bind
CS (C).

Improving Dispute Handling with Causality. Here we show how causal-
ity can be utilized by a message franking server to handle disputes in a more
reliable way. In particular, the MFChcFB server can construct Extr� to extract
the message-dependency graph when dealing with abuse reports. Since now the
server knows how the reported message depends on previous messages (without
knowing the content), the server can ask the users to report those messages for
further consideration if the accused user wants to defend himself. This process
can continue until the fact is clear, which is always viable because in the worst
case the entire communication with the correct causal information is revealed.

For instance, consider the attack discussed in the introduction: Alice asks
Bob “what was the worst insult you have ever heard?” and reports the received
response. The server now gets the exact message dependencies of the reported
message (which may be visualized as a causality graph or something similar)
and knows that Bob indeed received some message from Alice before sending
the reported message, so it can ask Bob if he wants to report that message to
defend himself. In this way, the above causality attack can be prevented.

8 Conclusion

We have seen that causality in two-user messaging channels can be preserved if
one transmits sufficient information on the channel to be able to reconstruct the

280 S. Chen and M. Fischlin

restricted graph. This coincides with the original idea in distributed computing
to recover global states from local snapshots. It is an interesting open problem to
investigate how causality can be integrated in secure group messaging. Another
interesting problem to explore is to determine a lower bound on the time and
space overhead for channels to guarantee causality security.

We remark that, from a channel perspective, we assume the atomic sending
of messages, while for example TLS 1.3 is rather a stream-based interface [17].
Although it may seem first that our notion of causality is related only to an
application-level viewpoint with atomic message processing, it is nonetheless
tied to the receiving action Rcv of the channel protocol.

Finally, while not the focus of this work, it is certainly worthwhile to investi-
gate how causality can be better visualized for users; one should also scrutinize
how users respond to such designs.

Acknowledgments. We thank the anonymous reviewers for valuable comments. Shan
Chen is funded by the research start-up grant by the Southern University of Science and
Technology. Marc Fischlin is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) - SFB 1119 - 236615297.

References

1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and
modularization for the Signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. Part I, volume 11476 of LNCS, pp. 129–158. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-17653-2_5

2. Barooti, K., Collins, D., Colombo, S., Huguenin-Dumittan, L., Vaudenay, S.: On
active attack detection in messaging with immediate decryption. In: Handschuh,
H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part IV, volume 14084 of Lecture Notes
in Computer Science, pp. 362–395. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-38551-3_12

3. Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11818175_36

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1

5. Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: prov-
ably fixing the SSH binary packet protocol. In: Atluri, V. (ed.) ACM CCS 2002,
pp. 1–11. ACM Press (2002)

6. Boyd, C., Hale, B., Mjølsnes, S.F., Stebila, D.: From stateless to stateful: generic
authentication and authenticated encryption constructions with application to
TLS. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 55–71. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_4

7. Caforio, A., Durak, F.B., Vaudenay, S.: Beyond security and efficiency: on-demand
ratcheting with security awareness. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol.
12711, pp. 649–677. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75248-4_23

https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-031-38551-3_12
https://doi.org/10.1007/978-3-031-38551-3_12
https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/978-3-319-29485-8_4
https://doi.org/10.1007/978-3-030-75248-4_23
https://doi.org/10.1007/978-3-030-75248-4_23

Integrating Causality in Messaging Channels 281

8. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

9. Chen, S., Fischlin, M.: Integrating causality in messaging channels. Cryptology
ePrint Archive, Paper 2024/362 (2024). https://eprint.iacr.org/2024/362

10. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
Hicks, M., Köpf, B. (eds.) CSF 2016 Computer Security Foundations Symposium,
pp. 164–178. IEEE Computer Society Press (2016)

11. Cremers, C., Zhao, M.: Provably post-quantum secure messaging with strong com-
promise resilience and immediate decryption. Cryptology ePrint Archive, Report
2022/1481 (2022). https://eprint.iacr.org/2022/1481

12. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: from
invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 155–186. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1_6

13. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS,
vol. 11689, pp. 343–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26834-3_20

14. Eugster, P., Marson, G.A., Poettering, B.: A cryptographic look at multi-party
channels. In: CSF 2018, pp. 31–45. IEEE (2018)

15. Facebook: Messenger secret conversations – technical whitepaper (2017)
16. Fischlin, M., Günther, F., Janson, C.: Robust channels: handling unreliable net-

works in the record layers of QUIC and DTLS 1.3. J. Cryptol. 37(2), 9 (2024)
17. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: security

of stream-based channels. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 545–564. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7_27

18. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403,
pp. 66–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_3

19. Huguenin-Dumittan, L., Leontiadis, I.: A message franking channel. In: Yu, Yu.,
Yung, M. (eds.) Inscrypt 2021. LNCS, vol. 13007, pp. 111–128. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-88323-2_6

20. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1_2

21. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5_17

22. Kohno, T., Palacio, A., Black, J.: Building secure cryptographic transforms, or how
to encrypt and MAC. Cryptology ePrint Archive, Paper 2003/177 (2003). https://
eprint.iacr.org/2003/177

23. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications (1978)

24. Marlinspike, M., Perrin, T.: The X3DH key agreement protocol (2016). https://
www.signal.org/docs/specifications/x3dh/x3dh.pdf

25. Marson, G.A.: Real-World Aspects of Secure Channels: Fragmentation, Causality,
and Forward Security. PhD thesis, Technische Universität (2017)

https://eprint.iacr.org/2024/362
https://eprint.iacr.org/2022/1481
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-030-88323-2_6
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://eprint.iacr.org/2003/177
https://eprint.iacr.org/2003/177
https://www.signal.org/docs/specifications/x3dh/x3dh.pdf
https://www.signal.org/docs/specifications/x3dh/x3dh.pdf

282 S. Chen and M. Fischlin

26. Marson, G.A., Poettering, B.: Security notions for bidirectional channels. IACR
Trans. Symm. Cryptol. 2017(1), 405–426 (2017)

27. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size Does matter: attacks and
proofs for the TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0_20

28. Perrin, T., Marlinspike, M.: The double ratchet algorithm (2016). https://signal.
org/docs/specifications/doubleratchet/doubleratchet.pdf

29. Pijnenburg, J., Poettering, B.: On secure ratcheting with immediate decryption.
In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. Part III, volume 13793 of
LNCS, pp. 89–118. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-22969-5_4

30. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(2018)

31. Rogaway, P., Zhang, Y.: Simplifying game-based definitions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 3–32. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96881-0_1

32. Rösler, P., Mainka, C., Schwenk, J.: More is less: on the end-to-end security of
group chats in Signal, WhatsApp, and Threema. In: EuroS&P, pp. 415–429. IEEE
(2018)

33. Scarlata, M.: Post-compromise security and TLS 1.3 session resumption (2020)
34. Strom, R.E., Yemini, S.: Optimistic recovery in distributed systems. ACM Trans.

Comput. Syst. 3(3), 204–226 (1985)
35. Tyagi, N., Grubbs, P., Len, J., Miers, I., Ristenpart, T.: Asymmetric message frank-

ing: content moderation for metadata-private end-to-end encryption. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 222–250. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_8

36. Unger, N., et al.: SoK: secure messaging. In: 2015 IEEE Symposium on Security
and Privacy, pp. 232–249. IEEE Computer Society Press (2015)

https://doi.org/10.1007/978-3-642-25385-0_20
https://doi.org/10.1007/978-3-642-25385-0_20
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://doi.org/10.1007/978-3-031-22969-5_4
https://doi.org/10.1007/978-3-031-22969-5_4
https://doi.org/10.1007/978-3-319-96881-0_1
https://doi.org/10.1007/978-3-030-26954-8_8

	Integrating Causality in Messaging Channels
	1 Introduction
	1.1 Causality in Cryptographic Channels
	1.2 Our Contributions
	1.3 Further Related Work

	2 Causality Graphs
	3 Preliminaries
	4 Bidirectional Channels and Causality Preservation
	4.1 Bidirectional Channels
	4.2 Local Graph and Its Update Function
	4.3 Causality Preservation
	4.4 Causality Preservation with Post-compromise Security
	4.5 Relations to Integrity Notions

	5 Causality Preservation of Signal
	5.1 The Signal Channel and Its Insecurity
	5.2 Integrating Causality in Signal

	6 Message Franking Channels and Causality Preservation
	6.1 Message Franking Channels
	6.2 Causality Preservation of Message Franking Channels

	7 Causality Preservation of Facebook's Message Franking
	7.1 Facebook's Message Franking Channel and Its Insecurity
	7.2 Integrating Causality in Facebook's Message Franking

	8 Conclusion
	References

