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Abstract. Monero is a popular cryptocurrency with strong privacy
guarantees for users’ transactions. At the heart of Monero’s privacy
claims lies a complex transaction system called RingCT, which com-
bines several building blocks such as linkable ring signatures, homomor-
phic commitments, and range proofs, in a unique fashion. In this work,
we provide the first rigorous security analysis for RingCT (as given in
Zero to Monero, v2.0.0, 2020) in its entirety. This is in contrast to prior
works that only provided security arguments for parts of RingCT.

To analyze Monero’s transaction system, we introduce the first holis-
tic security model for RingCT. We then prove the security of RingCT
in our model. Our framework is modular: it allows to view RingCT as
a combination of various different sub-protocols. Our modular approach
has the benefit that these components can be easily updated in future
versions of RingCT, with only minor modifications to our analysis.

At a technical level, we split our analysis in two parts. First, we iden-
tify which security notions for building blocks are needed to imply secu-
rity for the whole system. Interestingly, we observe that existing and
well-established notions (e.g., for the linkable ring signature) are insuffi-
cient. Second, we analyze all building blocks as implemented in Monero
and prove that they satisfy our new notions. Here, we leverage the alge-
braic group model to overcome subtle problems in the analysis of the
linkable ring signature component. As another technical highlight, we
show that our security goals can be mapped to a suitable graph prob-
lem, which allows us to take advantage of the theory of network flows
in our analysis. This new approach is also useful for proving security of
other cryptocurrencies.
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1 Introduction

In the rapidly growing zoo of cryptocurrencies, Monero1 [33,52] is among the
largest and most well-known systems, with a market capitalization of about
1 See https://www.getmonero.org.
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three billion USD at the time of writing. One of Monero’s distinguishing fea-
tures is its unique transaction scheme RingCT (“Ring Confidential Transactions”)
which offers users a high degree of privacy for on-chain transactions. To this end,
RingCT provides an efficient means of hiding how funds are transferred between
users. The core property that users of a currency rely on, however, is transaction
security. Namely, it should not be possible to spend funds twice, create money
out of thin air, or steal coins from other users. To achieve transaction security,
decentralized currencies require that the validity of transactions can be verified
publicly, which seemingly contradicts the privacy goals of currencies like Monero.

Monero’s Complexity. To achieve the challenging goal of reconciling privacy
and security, RingCT combines several simpler building blocks such as linkable
ring signatures, homomorphic commitments, and range proofs into a highly com-
plex protocol. The building blocks are combined with a key derivation process in
a unique way. This is in contrast to simpler currencies, e.g. Bitcoin, which merely
rely on standard signatures. Unfortunately, it is not obvious at all that RingCT’s
complex system is indeed secure. For example, when a user Alice sends coins to
a user Bob, Alice (who may be adversarial) derives new keys for Bob using Bob’s
long-term address. This implies that Alice has non-trivial knowledge of relations
between the keys of Bob, potentially opening the door for related-key attacks.
Such related-key attacks are not considered by the standard security notions of
the components. Even worse, the complex nature of RingCT has led to concrete
attacks [37,42,43] in the past, which were not captured by the limited prior
analyses. This raises the following question:

Is Monero’s transaction scheme secure?

Our Contribution. In this work, we provide the first comprehensive and holis-
tic security analysis of RingCT. Our contributions are

– We show that RingCT as a whole achieves transaction security.
– We thereby identify which security properties of components are sufficient

to imply security for the entire transaction scheme. Thus, our analysis is
modular, which makes it easy to adapt to changes of RingCT in the future.

– We introduce a new proof technique which reduces a game-based security
notion to a combinatorial problem of network flows. This combinatorial argu-
ment allows us to prove that no adversary can create money out of thin air.
We are confident that it can be applied when analyzing other currencies as
well.

Along the way, we face several technical challenges, arising from composition
in the algebraic group model (AGM) [21] and the insufficiency of established
security notions for building blocks. For example, we observe that the estab-
lished notion of linkability for linkable ring signatures has to be strengthened
significantly (see Sect. 1.2).
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Due to space limitations, we refer to the full version [12] for formal
details of our analysis and full proofs, and mostly give an overview
here.

1.1 Our Approach: A Modular Analysis of RingCT

We provide the first rigorous security analysis of Monero’s transaction system
RingCT as a whole. Our framework is modular and abstracts many of the com-
ponents of RingCT into stand-alone building blocks. We believe that these com-
ponents naturally reflect the design ideas of RingCT, and lead to an improved
understanding of the ideas at its core. In addition, this approach makes it pos-
sible to easily replace a given part of the scheme in future system updates. For
example, should Monero decide to use another ring signature scheme in the
future, one just needs to redo the parts of our analysis that deal with the ring
signature component. Conversely, our results may also serve as guidelines for the
required security properties of the components in the event of such an update.

We begin by introducing syntax and model for the desired security properties
of the top-level transaction scheme (i.e., RingCT). We define a single security
experiment that can be summarized as follows:

1. Whenever an honest user receives coins, they can later spend these coins.
That is, an adversary can neither steal the coins that an honest user received,
nor prevent the honest user from spending them.

2. An adversary can not create coins out of thin air. That is, the adversary can
never spend more coins than it ever received.

In contrast to prior models for RingCT-like transaction schemes, our model
is not only holistic, but also takes subtleties such as the reuse of randomness or
adversarially generated keys into account.

Having defined the security properties we aim for, we then prove that our
model of RingCT meets these properties. This consists of the following steps:

1. Syntax and Security for Subcomponents. We identify the structural compo-
nents of RingCT and introduce appropriate syntax for them. Then, we define
several new security notions that are tailored to the interplay of these build-
ing blocks within RingCT. For example, due to potential related-key attacks,
it is necessary to define security of the ring signature component with respect
to the key derivation mechanism. Thus, we require security notions that differ
from well-established ones from the literature.

2. System Level Analysis. The next step of our analysis is to prove the security of
any top-level transaction scheme that follows our syntax. Our proof is generic
and only assumes that subcomponents satisfy our novel security notions. A
technical highlight of our proof is the utilization of the theory of network
flows. Concretely, after applying the security notions of subcomponents to
extract the hidden flow of money in the system, we define a graph based on
it. Then, we use further notions of subcomponents to argue that this graph
constitutes a flow network. Finally, we show that no money can be created by
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using the fact that every cut in such a flow network has the same flow passing
through it. We are confident that this new technique is also applicable in the
context of other currencies such as Bitcoin or Ethereum.

3. Component Level Analysis. Finally, we instantiate the components as in Mon-
ero and prove that they satisfy our security notions. Here, the biggest chal-
lenge lies with the linkable ring signature component, for which we provide
an analysis in the Algebraic Group Model (AGM) [21]. We encounter several
subtle issues that arise from composing different building blocks. As such, we
believe that our proof sheds further light on the pitfalls of naively composing
proofs in the AGM.

1.2 Technical Highlights and Findings

In this section, we give an overview of some of our findings.

Composing Extractors in the Algebraic Group Model. To show that our
security notions for components imply security for the entire transaction scheme,
we make use of knowledge extractors. Namely, we consider each transaction that
the adversary submits to the system, and run a knowledge extractor to get
the secret signing key that the adversary used to create the transaction. The
existence of such an extractor should be guaranteed by our notions for the link-
able ring signature components. As we extract for each submitted transaction,
it is crucial that our extractor does not rewind the adversary. A common way
to design such a non-rewinding extractor for a given scheme is to leverage the
algebraic group model (AGM) introduced by Fuchsbauer, Kiltz, and Loss [21].
In this model, whenever an adversary submits a group element X ∈ G (e.g.,
as part of transaction), it also submits exponents (γi)i such that X =

∏
i Aγi

i ,
where Ai ∈ G are all group elements the adversary ever received. We say that
(γi)i is a representation of X over basis (Ai)i. A carefully crafted extractor can
now use the representation to compute the secret signing key the adversary used.
Unfortunately, formally defining under which conditions such an extractor has
to succeed turns out to be non-trivial. The naive way of doing it would be to
define an isolated notion for the linkable ring signature as follows: The adver-
sary gets system parameters as input (including a generator g ∈ G), and may
output a signature and algebraic representations of all group elements over basis
g, and it wins if the extractor fails to output a secret key, but the signature is
valid. In fact, such an isolated approach has been used in the literature for other
primitives [10,38]. However, this extractor does not compose well. Concretely,
in the isolated notion, the extractor expects that all representations are over
basis g. On the other hand, if we use our extractor in the wider context, i.e.,
in the proof of RingCT, the representations are over much more complicated
bases, because the adversary receives group elements in signatures, hash values,
and keys. Formally, the security game (and subsequent reductions) would have
to translate all representations into a representation over basis g first. It turns
out that such a translation is not compatible with our subsequent proof steps.
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For example, if the adversary just forwards a signature that it obtained from a
signing oracle, there is no way that we can extract a secret key from it.

The solution we opt for is to change the isolated notion for the linkable ring
signature into a more involved notion resembling simulation-extractability, in
which we give the adversary oracles that output signatures, hash values, and
keys. We require that the extractor is able to extract a valid secret key only
under certain conditions, e.g., if the adversary did not obtain the signature from
an oracle. At the same time, the extractor is not allowed to share any internal
state with the oracles. While this makes our extractor usable in the proof of
RingCT, it substantially complicates the AGM proof of the extractor.

Notions of Linkability. In a ring signature scheme, a signer holding a secret
key sk can sign a message with respect to a so-called key ring R = (pk1, . . . , pkN ),
where sk is associated with one of the public keys, say pki∗ . Crucially, the signa-
ture does not reveal the index i∗, so that the signer stays anonymous. Linkable
ring signatures additionally allow to publicly identify whether two signatures
have been computed using the same secret key. More precisely, they are required
to satisfy a property called linkability. It states that there is an efficient algorithm
Link, such Link outputs 1 on input σ, σ′ (resp. 0) if and only if the signatures σ, σ′

have been computed with the same (resp. different) secret key. In terms of secu-
rity, no adversary should manage to compute two signatures σ, σ′ using the same
secret key, such that Link(σ, σ′) outputs 0. In other words, Link detects if two
signatures are computed using the same secret key, and can not be cheated by an
adversary. In RingCT, each unspent transaction output is associated to a fresh
secret key, which implies that Link can detect double spending of outputs. For-
mally defining linkability is a non-trivial task. As already noted in [27], there are
several independent notions of linkability. One of the more established notions is
so-called pigeonhole linkability. It is defined in the following way: An adversary
breaks pigeonhole linkability if it outputs N + 1 valid non-linking signatures,
where all rings have size at most N . Unfortunately, pigeonhole linkability seems
to be insufficient for our purposes. Concretely, suppose an adversary uses a key
ring (o1, o2) consisting of two outputs o1 and o2 in two distinct valid transactions.
Now, recall from our previous paragraph that we use a knowledge extractor that
gives us the secret key that the adversary used. Assume this knowledge extractor
returns the secret key sk1 associated to o1 in both cases, but the two signatures
do not link. Intuitively, linkability should say that this is not possible, because
the adversary used sk1 to compute both signatures. However, pigeonhole link-
ability is not applicable, as we only have two signatures on rings of size two.
Instead, we need a notion of linkability that is tied to our knowledge extractor,
and rules out this case. More precisely, it should guarantee that if the extractor
outputs the same secret key for two signatures, then the signatures link.
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1.3 Related Work

In this section, we give an overview of related work.

Related Security Models. Prior to our work, security models for systems
similar to RingCT have been given [18,19,35,49,56]. Notably, all of them ana-
lyze new constructions and not RingCT as it is. Further, some of these models
[18,19,49,56] omit important non-trivial aspects of RingCT, e.g., adversarial
key derivation. Some of them [35,49,56] do not give a security definition for
the whole scheme, but instead present a set of notions, somewhat similar to the
component-wise notions we present as an intermediate step. It remains unclear
how these notions relate to each other and the security of the transaction scheme
as a whole. We provide a more detailed discussion on these models and how they
relate to our model in Sect. 5.

History of Monero. Monero’s transaction scheme RingCT originates in the
CryptoNote protocol [52], which is based on a linkable ring signature presented
in [24]. Noether [44] introduced a way to hide transaction amounts using Ped-
ersen commitments [45] and range proofs, and also presented a compatible new
ring signature component, called MLSAG. The construction of MLSAG is mostly
based on [36]. Later, MLSAG was replaced by a more concise ring signature com-
ponent, called CLSAG [27], and Bulletproofs/Bulletproofs+ [7,11,26] are being
used as range proofs. Bulletproofs++ [16] are investigated for potential use [46].
Overviews of Monero and its transaction system can be found in [1,33]. Prior
work has studied the security of some of RingCTs’s building blocks in isola-
tion [7,26,27,45], but no rigorous security argument has been given for RingCT
as a whole.

New Constructions and Functionality Enhancements. Several works pre-
sented new constructions of transaction schemes similar to RingCT. These range
from efficiency and anonymity improvements [31,35,49,56] to the use of post-
quantum assumptions [18,19]. Also, some works modify RingCT with the moti-
vation to increase compatibility with other protocols, e.g., second-layer proto-
cols [40] or proof of stake consensus [39]. A variety of protocols has been designed
add new functionality to the Monero ecosystem. Examples include proofs of
reserve [14,15], payment channels [40,48,50], and protocols atomic swaps [28,50].

Attacks on Monero. Researchers have also studied attacks against Monero
and their mitigations. These target privacy [13,17,20,32,34,41,47,53–55], cen-
tralization [9] and security aspects [37,42,43]. In terms of privacy, attacks reach
from passive attacks [41,53] to active attacks [54,55], and temporal attacks [34]
that make users traceable. These attacks are purely combinatorial in nature.
The works [17,47] study how to mitigate such combinatorial attacks.
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Related Currencies and Their Analysis. ZCash [29] is one of the most
prominent privacy-focused cryptocurrencies. It is based on the Zerocash proto-
col [3], which comes with a cryptographic security analysis. The current protocol
specification of ZCash [29] suggests that ZCash deviates from Zerocash in mul-
tiple ways. Mimblewimble [30] is a currency prototype that uses homomorphic
commitments for efficiency reasons and to hide transaction amounts. In contrast
to Monero’s transaction scheme, Mimblewimble does not rely on ring signatures
or stealth addresses. A security model and analysis of Mimblewimble has been
given in [22,23].

2 Informal Overview of Monero Transactions

In this section, we give an informal overview of the Monero transaction scheme.
The purpose of this is twofold. On the one hand, it should explain the complex
structure of transactions for readers not familiar with Monero. On the other
hand, Monero versed readers may use this section as a first introduction to our
modularization. We assume familiarity with common cryptographic tools such
as commitments, ring signatures, and zero-knowledge proofs.

User Addresses. Before diving into the structure of transactions, we first
clarify what constitutes an address of a user, i.e., its long-term key material.
Namely, each user holds a triple (ipk, ivk, isk). We call these the identity public
key, identity view key, and identity signing key, respectively. While ipk serves
as a public address of the user, the keys ivk and isk should remain secret and
provide the following functionality:

– The identity view key ivk allows to identify payments that the user receives
and decrypt the associated amounts.

– The identity signing key isk allows to spend funds, i.e., sign transactions.

Readers familiar with simpler currencies such as Bitcoin should think of isk
as a secret key as in Bitcoin, and ivk as being an additional key related to
privacy. Namely, leaking ivk should only compromise the privacy, but not the
security of users. In the concrete implementation of Monero, the identity public
key ipk contains two group elements Kv = gkv ∈ G and Ks = gks ∈ G, where
isk = ks ∈ Zp, and ivk = kv ∈ Zp, i.e., we have ipk = (givk, gisk).

Key Concepts of Transactions. Transactions in Monero follow the widely
used UTXO (“unspent transaction output”) model. In this model, each transac-
tion spends some inputs into some outputs, and all inputs are unused outputs
of previous transactions. As our running example, we consider the case of a
transaction with two inputs and three outputs. A transaction is visualized in
Fig. 1. We refer to the sender of a transaction as Alice, and to the recipient of an
output as Bob. A naive transaction (as used in other currencies) would simply
contain references to the inputs, and a digital signature per input. Each output
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would contain the address of the receiver Bob and the amount that it is worth.
In contrast, Monero uses the following core ideas:

– To hide the sender, the actual inputs are grouped with decoy inputs. Ring
signatures are used for each input.

– To hide the recipient, addresses contained in outputs are rerandomized. These
rerandomized addresses are also known as stealth addresses.

– Amounts contained in outputs are hidden in homomorphic commitments.

Next, we explain how these ideas are implemented in more detail.

Fig. 1. Schematic overview of an example transaction in Monero with two inputs and
three outputs. Inputs are actually references to previous outputs. Signatures σi connect
inputs and pseudo outputs. The homomorphic property of commitments ties pseudo
outputs to outputs. In addition to inputs, outputs, and signatures, a transaction also
contains a public seed pseed and a range proof π.

Outputs. We start by describing what constitutes an output of a transaction,
and how it is generated. Recall that in a naive transaction, an output would just
be the address of the recipient and an amount. Monero hides amounts in commit-
ments com, and recipients by using rerandomizations pk of their actual address
ipk. To ensure that the recipient Bob can (1) recognize that he receives an output,
and (2) use that output, the randomness for commitments and rerandomization
has to be recovered by Bob. This is implemented using a Diffie-Hellman-style
derivation of shared secrets: The sender Alice first includes a public seed (also
called transaction public key) pseed = gr in the transaction. The public seed
will be used for the entire transaction, and not just for one output. Then, she
derives ok = (Kv)r, where Kv is the view key part of Bob’s identity public key
ipk = (Kv,Ks), i.e., ok = givk·r. Thus, ok serves as a shared secret between
Alice and Bob. The randomness for the rerandomization and the commitment is
derived from ok and the position of the output. Namely, the first component of
an output is pk = Ks ·gτ , where the exponent τ ∈ Zp is deterministically derived
from ok and the position of the output. The second component is a commitment
com = Com(amt, cr), where the randomness cr is deterministically derived from
ok and the position of the output. Finally, the output also contains a symmetric
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encryption ct of the amount amt. Most importantly, the values τ, cr, and the
key for the encryption are all deterministically derived from ok and the position
of the output. Let us point out the implications of this: The recipient Bob can
derive the shared secret ok using his view key ivk = kv and the public seed pseed.
Then, he can also derive τ and cr from ok, decrypt ct, and check whether the
equations pk = Ks · gτ and com = Com(amt, cr) hold. If so, Bob knows that he
just received amt coins. This is possible even if isk is unknown. If isk = ks is
known, then Bob can recover a secret key sk = ks + τ for pk. This allows Bob
to spend the output in a future transaction. To emphasize, ok is a shared secret
between Alice and Bob, and no other party learns τ, cr, or the decryption key
for ct.

Inputs. Assume Alice owns an output o∗ = (pk∗, com∗, ct∗) of a previous trans-
action. Especially, she knows the secret key sk∗ corresponding to pk∗. Assume
she wants to use this output as an input in the current transaction. A naive way
for Alice to do that would be to include (a reference to) o∗, and a signature with
respect to pk∗ to prove ownership. In order to obfuscate the link between the
transaction and o∗, Monero uses a different approach. Namely, in a first step,
Alice selects some random outputs o′ = (pk′, ·, ·) of previous transactions in the
system. These are not necessarily owned by Alice, and will serve as decoys. For
simplicity, assume she only selects one such decoy output. Then, (references to)
the outputs o∗ and o′ are included in the transaction. Finally, Alice does not use a
standard signature, but instead she uses a ring signature for ring R = {pk∗, pk′}.
This signature proves that Alice owns one of the outputs o∗, o′, but does not
reveal which one. However, this implies that after the transaction is accepted by
the system, there has to be some mechanism that ensures that the output o∗

can no longer be spent, while the decoy output o′ can. We will see how to solve
this later.

Homomorphic Commitments. So far, we discussed how to include outputs
in transactions, and use previously received outputs as inputs for a transaction.
However, we did not discuss how it is ensured that combination of inputs and
outputs is valid, i.e., no money is created. In other words, we have to ensure
that

∑
j amtinj =

∑
i amtout

i , where amtinj and amtout
i are the amounts encoded in

inputs and outputs, respectively. To do this without revealing the amounts itself,
Monero leverages homomorphic properties of the commitment scheme (i.e., the
Pedersen commitment scheme). Namely, ignoring decoys for a moment, if comin

j

are the commitments contained in the inputs, and comout
i are the commitments

in the outputs, then we would ensure that
∑

j com
in
j =

∑
i com

out
i . Intuitively,

the binding property of the commitment scheme should tell us that this equality
implies the equality over the amounts that we want. However, this only holds if
we avoid overflows. To do that, we ensure that the amtinj and amtout

i are in a
certain range. For that reason, Alice includes a range proof π in the transaction.
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Pseudo Outputs. In the previous paragraph, we oversimplified our explana-
tion. Namely, the following two obstacles remain:

– How can Alice ensure that the equation
∑

j com
in
j =

∑
i com

out
i holds?

Namely, for the Pedersen commitment, this not only requires
∑

j amtinj =
∑

i amtout
i , but also

∑
j cr

in
j =

∑
i cr

out
i , where com∗

∗ = Com(amt∗∗, cr
∗
∗). Given

the structure of outputs, Alice has no way to ensure this.
– If we insist on the equation

∑
j com

in
j =

∑
i com

out
i , then actual inputs are

distinguishable from the decoys, as they most likely do not satisfy the equa-
tion.

To get around these two problems, a level of indirection, called pseudo out-
puts, is used. In a nutshell, a pseudo output is just another commitment that
Alice computes to connect inputs to outputs. Namely, for each of her inputs
with amount amtinj , Alice computes a new commitment comj = Com(amtinj , crj),
with freshly sampled randomness crj , and such that

∑
j crj =

∑
i cr

out
i . Then,

instead of homomorphically checking equality between inputs and outputs, we
now check equality between pseudo outputs and outputs using the equation∑

j comj =
∑

i com
out
i . This works out, because Alice now has the freedom to

choose the values crj . In this way, we ensure that no money is created on the
transition from pseudo outputs to outputs. What remains is to ensure that this
also holds for the transition from inputs to pseudo outputs. To do that, for each
input j, Alice needs to prove that she indeed used amtinj to compute comj , where
amtinj is the amount associated to her input (pk∗, com∗, ct∗). Recall that in our
running example, this input is grouped with a decoy (pk′, com′, ct′). We can not
just insist on com∗ = comj , because this reintroduces the two problems from
above. Instead, Alice could prove that com∗ − comj or com′ − comj is a com-
mitment to 0. For Pedersen commitments with basis g, h, this is equivalent to
proving that Alice knows some r such that com∗−comj = gr or com′−comj = gr.
Interestingly, this proof can implemented as part of the ring signature that is
used: We introduce a second dimension to the public keys, and Alice signs for the
ring R = {(pk∗, com∗ −comj), (pk′, com′ −comj)} using the secret key (sk∗, r). In
this way, the signature not only proves ownership of inputs, but also consistency
between the amounts encoded in input and pseudo output.

Double-Spending Detection. When we discussed the structure of inputs, we
claimed that ring signatures are used for each input. We already saw that this
claim is just a simplification, because pseudo outputs require us to use two-
dimensional ring signatures. What we did not solve yet is the problem raised
in our discussion of inputs. Namely, after a transaction is accepted, the actual
inputs should no longer be spendable, while the decoy outputs should be. Intu-
itively, if we were able to detect that two signatures are computed using the
same secret key, then we could solve this problem. Namely, we force that each
pk is only used once, and a transaction is only accepted if no signature con-
flicts with a previous one, in the above sense. Fortunately, there is a variant of
ring signatures, called linkable ring signatures, that allows us to do exactly that.
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More precisely, there is an algorithm Link(σ, σ′) which outputs 1 if and only if σ
and σ′ were computed using the same key sk. This does not reveal which sk was
used.
Summary: Transaction Generation. A user Alice can generate a transaction
as follows:

1. Alice computes a public seed pseed = gsseed and includes it in the transaction.
2. Alice computes outputs. That is, for each recipient Bob with identity public

key ipk = (Kv,Ks) that should receive amt coins, she does the following:
(a) Derive the shared secret ok from Kv and sseed.
(b) Using ok and the position of the output, derive commitment randomness

and a rerandomization term.
(c) Use these to compute a commitment com to amt and a rerandomization

pk of Ks.
(d) Encrypt amt into a ciphertext ct using a key derived from ok.
(e) The output is (pk, com, ct).

3. For each of her inputs, Alice selects other outputs of previous transactions as
decoys, and groups her actual input with these decoys.

4. For each of her inputs, Alice computes a pseudo output comj , such that the
pseudo outputs sum up to the sum of the output commitments.

5. Alice computes a range proof π showing that the amounts in output commit-
ments and pseudo outputs do not cause overflows.

6. For each of the inputs, Alice signs the transaction using a two-dimensional
linkable ring signature.

Summary: Transaction Verification. Throughout the last paragraphs, we
introduced a lot of conditions that a valid transaction has to satisfy implicitly.
Now, we explicitly summarize them. Namely, to verify the validity of a transac-
tion, the following has to be checked:

1. All inputs (including the decoys) are outputs of previous transactions.
2. All signatures are valid with respect to the given rings.
3. There is no signature that links to another signature in this or a previous

transaction.
4. We have

∑
j comj =

∑
i com

out
i , where comj are the pseudo outputs, and

comout
i are the output commitments.

5. The range proof for the commitments verifies.

3 Model for Private Transaction Schemes

In this section, we present our formal model for a private transaction scheme,
such as RingCT. We first specify the components of a private transaction scheme.
Then, we define how transactions are constructed using these components.
Finally, we define the security of private transaction schemes.
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3.1 Syntax

We introduce our syntax for private transaction schemes. A more detailed ver-
sion is given in our full version [12]. Throughout, we assume that some system
parameters par ← Setup(1λ) are generated using a setup algorithm Setup. These
are given implicitly to all algorithms and define certain data types. A private
transaction scheme consists of several components, which we introduce below.
For the informal explanation, we assume that a user Alice wants to spend coins
to a user Bob.

Key Derivation Scheme. We start with the definition of a key deriva-
tion scheme KDS. This component specifies how users generate their long-term
address, and how other users can then derive stealth addresses from them, i.e.,
keys associated to outputs in the system. Concretely, to generate its long-term
address, Bob runs an algorithm GenID(par) that outputs a triple (ipk, ivk, isk).
As explained in Sect. 2, the identity public key ipk serves as the public address,
and the identity view key ivk and identity signing key isk are kept secret. Now,
suppose Alice wants to spend coins to Bob. For that, Alice first samples a pub-
lic seed pseed and a private seed sseed using an algorithm Encaps(par). Intu-
itively, we think of pseed as a first message in a key exchange between Alice and
Bob. Alice includes pseed in the transaction such that Bob receives it. Then,
she uses these seeds and Bob’s address to derive a stealth address for Bob.
To do that, algorithms SendDecaps and RecDecaps are used, where Alice runs
SendDecaps(ipk, sseed) and Bob runs RecDecaps(ivk, pseed). As a result, both
obtain a shared secret ok, called the output key. Alice now uses this shared
secret in algorithm DerPK(ipk, ok, tag) to derive the public key pk, which is the
stealth address. Bob uses algorithm DerSK(isk, ok, tag) to derive the correspond-
ing secret key sk. Further, Bob can identify public keys pk that are derived for
him by a further algorithm Track: if Track(ipk, ok, pk, tag) = 1, then this indicates
that pk is derived for him. Here, the tag tag ∈ N is used for domain separation
and ordering.

Verifiable Homomorphic Commitment Scheme. To hide the amount of
a transaction while still allowing to verify consistency of inputs and outputs,
a special kind of commitment scheme, and an associated proof is used. This is
formalized by the notion of a verifiable homomorphic commitment scheme VHC.
Namely, recall that when Alice commits to an amount she sends to Bob, then
she deterministically derives the random coins cr used for the commitment from
the output key ok that is shared between Alice and Bob. We model this via
algorithm DerRand(ok, tag) that outputs cr. Given such random coins and an
amount amt ∈ D ⊆ N0, one can commit to amt using com := Com(amt, cr).
Here, D is the set of allowed amounts. We require that Com is homomorphic
in both amt and cr. Then, Alice can prove that she knows valid amounts in D
that she committed to within one transaction. This is modeled by an algorithm
PProve(stmt,witn) that takes a set of commitments as a statement stmt and the
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corresponding preimages as a witness witn, and outputs a proof π. The proof
can then be verified for stmt by running an algorithm PVer(stmt, π).

Data Encryption Scheme. As amounts are hidden due to the use of a com-
mitment scheme, Alice needs to communicate them privately to Bob. For that, a
(symmetric) encryption scheme DE is used. It makes use of the shared secret ok
as a key. We omit the details here, as they are not related to any of our security
notions, but only relevant for privacy.

Key Conversion Scheme. Recall from our overview in Sect. 2 that Alice shows
consistency between amounts in inputs and pseudo outputs by translating com-
mitments in inputs and pseudo outputs into public keys used in the linkable ring
signature scheme. If Alice knows the commitment randomness for two such com-
mitments that commit to the same amount, then she can know the corresponding
secret key. We formalize this process by defining a key conversion scheme KCS.
Namely, Alice runs an algorithm auxpk := ConvertPublic(com, com′) to obtain
an auxiliary public key auxpk from a pair of commitments com and com′, where
we think of com as being part of an input, and com′ as being the pseudo output.
Similarly, she can run auxsk := ConvertSecret(cr, cr′) for the associated random-
ness cr, cr′ to get an auxiliary secret key auxsk. The guarantee is that if com
and com′ commit to the same amount with randomness cr, cr′, respectively, then
auxsk is a valid secret key for auxpk, and can then be used within the linkable
ring signature component.

Two-Dimensional Linkable Ring Signature Scheme. Before Alice can
publish the transaction, she needs to sign it, using a variant of a ring signa-
ture scheme. Recall from our overview in Sect. 2, that this has two reasons.
First, it ensures that Alice holds secret keys for one output referenced by each
input. Second, in combination with the key conversion scheme, it ensures that
the amounts between inputs and pseudo outputs are consistent. We formalize
this as a two-dimensional linkable ring signature scheme LRS, which is given by
three algorithms Sig,Ver, and Link. To sign a message m, e.g., a transaction,
with respect to some key ring R = (pki, auxpki)

N
i=1, Alice has to know a valid

pair of secret keys sk, auxsk for one of the pki, auxpki. Then, she can compute
a signature σ ← Sig(R, sk, auxsk,m). This signature can be verified with respect
to R and m by running Ver(R,m, σ). Also, one can check whether two signatures
σ, σ′ were computed using the same key by running Link(σ, σ′).

Generating Transactions. Suppose Alice wants to spend amtout
i coins to a

user with identity public key ipki for each i ∈ [K]. Further, suppose that Alice
wants to use L inputs for that, which are outputs (pkin

j , comin
j ) (for j ∈ [L])

of previous transactions that she owns. Because she owns them, she knows the
associated amount and commitment randomness amtinj , crinj , and the correspond-
ing secret key skj . We write Usej = (pkin

j , comin
j , amtinj , crinj , skj) for j ∈ [L] to
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denote these outputs that Alice uses as inputs, along with the corresponding
secret information. Finally, assume that Alice picked additional outputs (not
necessarily owned by her) from previous transactions. We let Refj be the list
of these outputs, including an entry pkin

j , comin
j . Now, we specify how Alice

generates a transaction by defining an algorithm GenTx, which takes as inputs
(Usej)Lj=1, (Refj)Lj=1, and (ipki, amtout

i )Ki=1. We formally present this algorithm
in our full version [12].

Verifying Transactions. We specify how a user can verify a given transaction
by defining an algorithm VerTx. As the validity of a transaction depends on
the current state of the system, e.g., on previous transactions, this algorithm
needs additional inputs that model this state. Concretely, we model all public
seeds of previous transactions by a list PSeeds, all outputs in the system by a list
Outputs, and all signatures contained in previous transactions by a list Signatures.
Then, algorithm VerTx takes as input the lists PSeeds,Outputs,Signatures and a
transaction Tx. We formally define this algorithm in the full version [12].

Receiving Outputs. When a transaction Tx is published, users should be
able to identify outputs that they receive. For that, we define an algorithm
Receive. Concretely, write Tx = (In,Out, pseed, π) and let its outputs be Out =
(
pkout

i , comout
i , cti, tagi

)K

i=1
. Then, each user with keys ipk, ivk, isk runs Receive

on inputs pkout
i , comout

i , cti, tagi for each i ∈ [K]. Additionally, the user inputs
pseed and its keys ipk, ivk, isk. The algorithm outputs the received amount amt,
and the commitment randomness and secret key cr, sk in case the amount is non-
zero. The commitment randomness and secret key are then needed whenever the
user wants to spend this output.

3.2 Security

In this section, we introduce our security notion for private transaction schemes
like RingCT. In other words, we make explicit what we aim to prove by pre-
senting a cryptographic security game. To define security, we introduce data
structures and oracles that model the state of the world and the adversary’s capa-
bilities. For the entire section, we fix a private transaction scheme PTS = (LRS,
KDS,VHC,DE,KCS) and an efficient adversary A.

Threat Model. Before we explain the details of our security game, we provide
intuition for the threat model. In our security game, the adversary is allowed to
interact with honest users and a public ledger, which accepts and stores trans-
actions whenever they are valid. The adversary can make new users appear,
corrupt users, and instruct honest users to create and publish transactions. Fur-
ther, the adversary can submit arbitrary transactions to the ledger. The goal of
the adversary is to either create coins out of thin air, or to steal or invalidate
coins from honest users. In the remainder of this section, we state the definition
of this security game more precisely.
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State of the World. To model the current state of the world, our game holds
several data structures. First, the game should keep track of existing (honest)
users, by storing identity keys and information about the outputs that these
users own. For that, we introduce the following data structures.

– Identities: This list contains identity public keys ipk for users. These users are
initially honest, but may later be corrupted by the adversary.

– ivk[·], isk[·]: These maps contain the identity view key ivk[ipk] and the identity
signing key isk[ipk] for each ipk ∈ Identities.

– corr[·] : This map contains a value corr[ipk] ∈ {0, 1, 2} for each ipk ∈ Identities.
It models the corruption state of this user, i.e., corr[ipk] = 0 by default,
corr[ipk] = 1 if A knows ivk[ipk], and corr[ipk] = 2 if A knows ivk[ipk] and
isk[ipk].

– Owned[·] : This map contains a list Owned[ipk] for each ipk ∈ Identities. This
lists contains all outputs that user ipk owns. Additionally, it contains side
information that is necessary to spend these outputs. Namely, the lists contain
entries of the form (pk, com, amt, cr, sk). It is only kept consistent for users
ipk with corr[ipk] < 2.

Second, the game should be able to generate and verify transactions. For
that, the game has to know all previous transactions, or more precisely, previous
outputs and signatures. Therefore, we introduce the following data structures.

– TXs: This list contains all transactions in the system, i.e., transactions that
have been submitted and verified.

– PSeeds: This list contains all public seeds pseed that are contained in trans-
actions in the system.

– Outputs: This list contains all outputs (pk, com) that are currently in the
system. These may, for example, be part of previous transactions.

– Signatures: This list contains all signatures σ that are part of previous trans-
actions.

Finally, we want to keep track of the amount of coins that A obtained from
the game, and the amount of coins that it spent to honest users. This will be
necessary to define security.

– received ∈ N0: This integer models how many coins the adversary obtained
from the game, e.g., via transactions generated by honest users.

– spent ∈ N0: This integer models how many coins the adversary spent to the
game, e.g., via transactions received by honest users.

Adversary Capabilities. The capabilities of an adversary are modeled by a
set of oracles to which the adversary has access. When the adversary calls these
oracles, the current state of the world may change. This means that the oracles
trigger changes to the data structures discussed before. Formally, we present all
oracles using pseudocode in the full version [12].

The first capability that adversary A has is to interact with honest users
and corrupt them. It can populate the system with honest users, and we model
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two types of corruption. This reflects that users may store their keys in differ-
ent locations. Additionally, we will see that the adversary can always generate
identity public keys on its own and use them in transactions.

– NewIdentity() : This oracle generates a new honest user. For that, it gener-
ates keys (ipk, ivk, isk) ← GenID(par). Then, it inserts ipk into the list Identities,
and sets ivk[ipk] := ivk, isk[ipk] := ∅, corr[ipk] := 0. It returns ipk to A.

– PartCorr(ipk) : This oracle allows A to learn the identity view key of an
honest user. Precisely, the oracle returns ⊥ if ipk /∈ Identities or corr[ipk] �= 0.
Otherwise, it sets corr[ipk] := 1 and returns ivk[ipk] to A.

– FullCorr(ipk) : This oracle allows A to learn the identity signing key of an
honest user. Precisely, the oracle returns ⊥ if ipk /∈ Identities or corr[ipk] �= 1.
Otherwise, it sets corr[ipk] := 2. Then, it updates received accordingly, i.e.,

received := received+
∑

(pk,com,amt,cr,sk)∈Owned[ipk]

amt.

It returns isk[ipk] to A.

Recall that valid transactions are required to use outputs in the system as
inputs. Thus, we need to introduce some initial supply of outputs, as otherwise
there is no way to create a valid transaction. This corresponds to mining coins in
the real world. In our model, we let A arbitrarily create new outputs by calling
one of the following two oracles. Recalling that an output contains a public key
and a commitment, we may allow A to compute the commitment on its own, or
to let the game compute it. However, we need to keep track of the amount of coins
that A spawned in this way. Therefore, if A submits a (potentially maliciously
computed) commitment, it is only considered valid if it can be received by an
honest user.

– NewHonSrc(pk, pseed, com, tag, ct) : This oracle tries find an honest user
to receive the given output. For that, it runs Receive for each user ipk ∈
Identities with corr[ipk] < 2. If for some user, the received amount is non-
zero, it inserts (pk, com) into Outputs and stores the output together with the
secrets necessary to spend it in the list Owned[ipk].

– NewSrc(pk, amt, cr) : This oracle inserts (pk, com) into Outputs, where
com := Com(amt, cr). It also updates received accordingly, i.e., received :=
received+ amt.

Finally, it is clear that we should enable the adversary to put transactions
on the ledger. Additionally, honest parties may publish transactions. For that,
we let adversary A instruct honest users to generate transactions with some
specified receivers. We allow A to determine the distribution from which the
users sample decoys and coins that they spend.

– AddAdvTrans(Tx) : This oracle first verifies the given transaction using
algorithm VerTx and the current state of the system given by PSeeds,Outputs,
and Signatures. If the transaction is invalid, it returns. Otherwise, it updates
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TXs,PSeeds,Outputs, and Signatures accordingly, by inserting Tx into TXs, its
public seed pseed into PSeeds, all its outputs (pk, com) into Outputs, and all
its signatures into Signatures. It also updates the owned outputs of all honest
users by running algorithm Receive for every honest user and every output of
Tx, and then updating Owned accordingly. Finally, it sets spent := spent +
spentnow, where spentnow is the total amount that honest users received from
Tx.

– AddHonTrans(ipk, (ipki, amtout
i )Ki=1 , ISamp,RSamp) : By calling this oracle,

A instructs an honest user with identity public key ipk to pay amtout
i coins to

identity public key ipki for each i ∈ [K]. For that, the honest user should use
distribution ISamp to determine the outputs that should be used as inputs,
and distribution RSamp to determine the remaining decoys. Precisely, this
oracle returns if ipk /∈ Identities or corr[ipk] = 2. Otherwise, it generates a
transaction as follows.
1. Sample inputs to use by running (Usej)Lj=1 ← ISamp(Owned[ipk]) and

(Refj)Lj=1 ← RSamp(Owned[ipk], (Usej)Lj=1).
2. Check validity of the inputs. Namely, each Usej = (pkj , comj , amtj , crj ,

skj) should be in Owned[ipk], the output (pkj , comj) contained in Usej

should be in Refj , and each (pk, com) ∈ Refj should be in Outputs. Also,
∑L

j=1 amtj =
∑K

i=1 amtout
i should hold. If one of these conditions does

not hold, the oracle returns ⊥.
3. Generate the transaction Tx by running algorithm GenTx. If the transac-

tion is not valid, return ⊥. We will see later that the adversary wins the
game in this case.

Next, the oracle updates Owned[ipk] := Owned[ipk] \ {Usej}j∈[L]. It also
updates Owned,TXs,PSeeds,Outputs as in oracle AddAdvTrans. Then, it
updates received accordingly, i.e., received := received+amtout

i for each i ∈ [K]
with ipki /∈ Identities or corr[ipk] = 2. Finally, it returns Tx to A.

Security Notion. Next, we define the security notion for a private transaction
scheme PTS = (LRS,KDS,VHC,DE,KCS). To this end, we introduce a security
game UNFA

PTS(λ) for an adversary A. In the security game, A interacts with all
oracles defined above. Informally, A breaks the security of the system, if it can
create money out of thin air, or prevent honest users from spending their coins.
Therefore, we say that A wins the security game, if at least one of the following
two events occur at any point during the game:

1. Event win-create: We have spent > received.
2. Event win-steal: Adversary A instructs an honest user to generate a transac-

tion using oracle AddHonTrans, a transaction Tx is generated accordingly,
but does not verify, i.e., VerTx(PSeeds,Outputs,Signatures,Tx) = 0.

Consider a private transaction scheme PTS = (LRS,KDS,VHC,DE,KCS). For
any algorithm A we define the game UNFA

PTS(λ) as follows:

1. Consider oracles Oid := (NewIdentity,PartCorr,FullCorr), Osrc =
(NewHonSrc,NewSrc), and Otx = (AddAdvTrans,AddHonTrans)
described above.
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2. Run A with access to oracles Oid,Osrc,Otx on input 1λ.
3. Output 1, if win-create = 1 or win-steal = 1. Otherwise, output 0.

We say that PTS is secure, if for every PPT algorithm A the following advantage
is negligible:

AdvunfA,PTS(λ) := Pr
[
UNFA

PTS(λ)→1
]
.

4 Overview of Our Analysis

In this section, we give an overview of our formal analysis of RingCT. Due to
space limitations, we keep this overview informal. We encourage the interested
reader to consult our full version [12] for the detailed formal analysis. Our strat-
egy consists of three steps. First, we introduce security notions for (combinations
of) the subcomponents of a private transaction scheme. Second, we show that
whenever the subcomponents satisfy these notions, the security of the private
transaction scheme follows generically. Third, we prove that the instantiations
of subcomponents used in Monero satisfy the respective notions.

4.1 Security Notions for Components

We introduce several security notions for the subcomponents of a private trans-
action scheme. For each notion, we informally sketch a security game. The formal
games are given in our full version [12]. We also aim to convey an intuition for
why it is needed in the context of a private transaction scheme. Throughout this
section, we fix a private transaction scheme PTS = (LRS,KDS,VHC,DE,KCS)
and an efficient adversary A. We assume that A gets the system parameters par
at the beginning of each game.

Tracking Soundness. Recall that an honest user recognizes received out-
puts using algorithm Track. We want to ensure that when an honest user
recognizes such an output (i.e., Track outputs 1), then this output can later
be spent. In other words, if Track outputs 1, then a valid secret key will be
derived. We capture this by the notion of tracking soundness. In the security
game, A gets as input the keys ipk, ivk, isk of an honest user, which are gen-
erated via (ipk, ivk, isk) ← GenID(par). Then, it outputs pseed, pk, tag, and the
honest user runs ok := RecDecaps(ivk, pseed), b := Track(ipk, ok, pk, tag) and
sk := DerSK(isk, ok, tag) as it does when trying to receive an output. The adver-
sary A wins if b = 1 but sk is not a valid secret key for pk.

Key Spreadness. We introduce a notion that we call key spreadness. Roughly,
it states that different public seeds pseed, pseed′ or different tags tag, tag′ lead to
different derived keys sk, sk′. Looking ahead, this ensures that no two signatures
generated by honest users link. In the security game for key spreadness, A gets
access to an honest user’s keys ipk, ivk, isk and outputs seeds pseed, pseed′ and
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tags tag, tag′. Then, the honest user derives keys sk and sk′ via sk := DerSK(isk,
RecDecaps(ivk, pseed), tag) and sk′ := DerSK(isk,RecDecaps(ivk, pseed′), tag′).
Finally, A wins this game if (pseed, tag) �= (pseed′, tag′) but sk = sk′.

Conversion Soundness. Recall that the key conversion scheme KCS allows to
transform pairs of commitment randomness cr, cr′ for commitments com, com′

to the same data amt into auxiliary keys auxsk and auxpk. Intuitively, when one
then uses auxsk in the ring signature and cr′ in a pseudo output commitment,
this should prove that one knew cr. Our notion of conversion soundness roughly
states that knowing auxsk and cr′ implies (via a translation algorithm) knowing
cr. In other words, if conversion soundness holds, then it is enough to show
that generating a valid transaction requires knowledge of auxsk and cr′. For the
formal notion, we require that there is an efficient algorithm Translate, such that
(any efficient) A wins the following game only with negligible probability. First,
A outputs amt, cr′, com, com′, auxpk, auxsk. Then Translate is run given all these
elements as input and outputs cr. The adversary wins the game if its input was
well formed, i.e., Com(amt, cr′) = com′, (auxpk, auxsk) are a valid key pair, and
ConvertPublic(com, com′) = auxpk, but translation failed, i.e., Com(amt, cr) �=
com or ConvertSecret(cr, cr′) �= auxsk.

Binding Commitment. Clearly, the commitment scheme should satisfy the
standard notion of binding. This ensures that an adversary can not change the
amount of an output. To recall, A breaks binding if it outputs (amt, cr) and
(amt′, cr′) such that (amt, cr) �= (amt′, cr′) and Com(amt, cr) = Com(amt′, cr′).

Commitment Knowledge Soundness. We introduce the notion of commit-
ment knowledge soundness. Roughly, it states that the proofs π included in
transactions are proofs of knowledge. Precisely, if an adversary generates pseudo
output commitments and output commitments for a transaction along with a
proof π, then the adversary must know the corresponding amt and commitment
randomness cr. Looking ahead, the technical reason why we require a proof of
knowledge is that we have to extract cr before we can reduce to binding in an
overall proof of security. We stress the importance of being able to extract mul-
tiple times from the adversary. This is because we need to run the extractor
for every submitted transaction in our overall proof. In our formal definition, we
require the existence of an efficient extractor ExtVHC such that no efficient A wins
the following game with non-negligible probability. The adversary A gets access
to an oracle O. Whenever A calls O, it submits a statement stmt = (comi)i and
a proof π. Then, the game runs the extractor witn ← ExtVHC(stmt, π) to get a
witness witn = (amti, cri)i. If in any of these queries we have PVer(stmt, π) = 1,
i.e., the proof verifies, and there is some i such that Com(amti, cri) �= comi, i.e.,
extraction failed, then A wins.



148 C. Cremers et al.

Non-slanderability. A well-established notion for linkable ring signatures is
non-slanderability [27,51] (sometimes called non-frameability [2,5]). This notion
states that it is not possible for an adversary to come up with a signature
that links to an honest user’s signature. In our setting, this means that it
can not happen that an honest user computes a signature on a transaction
using a valid secret key, and this transaction gets rejected because the signa-
ture links to a previous signature. However, we can not just use the standard
non-slanderability notion, because the key derivation scheme KDS introduces
non-trivial relations between keys. Hence, we define a game that is similar
to non-slanderability, but for keys that are derived using KDS. When mak-
ing signature queries, the adversary can specify the parameters with which the
secret key sk is derived from an identity signing key isk. Let us now give an
overview of our non-slanderability game. In this game, A gets access to oracles
NewIdentity,Corr, and Sign. When called, oracle NewIdentity generates
keys (ipk, ivk, isk) ← GenID(par) for a new honest user, and returns (ipk, ivk) to A.
The adversary A can corrupt any such user and learn isk by querying Corr(ipk).
Further, it can ask for signatures using oracle Sign. Here A submits pk, pseed,
tag,R, auxsk,m. The oracle then finds an honest user with key (ipk, ivk, isk) that
owns pk, i.e., such that Track(ipk, ok, pk, tag) = 1 for ok := RecDecaps(ivk, pseed).
Then, it derives sk from ok, isk, and tag using algorithm DerSK and computes a
signature σ ← Sig(R, sk, auxsk,m) on the message m. This signature is returned
to A. When A terminates, it outputs a tuple (R∗,m∗, σ∗). It wins the game,
if σ∗ is valid for message m∗ and R∗, A never received a signature from Sign

by querying m∗ and R∗ together, and there is a non-corrupted honest user that
computed a signature σ in Sign such that Link(σ, σ∗) = 1.

Key Onewayness. We also define a weaker notion related to non-slanderability.
Namely, the adversary should not be able to come up with secret keys without
corrupting a user, given access to the same oracles as in the non-slanderability
game. More precisely, in the key onewayness game, A gets access to the same
oracles as for non-slanderability, and outputs a tuple (ipk∗, pk∗, pseed∗, tag∗, sk∗).
It wins, if (pk∗, sk∗) are a valid key pair, ipk∗ is the key of an honest
and non-corrupted user, and this honest user recognizes pk∗ as its key, i.e.,
Track(ipk∗, ok, pk∗, tag∗) = 1 for ok := RecDecaps(ivk, pseed∗), where ivk is the
identity view key of this user.

Key Knowledge Soundness. If we want to use the notion of conversion sound-
ness introduced above, we first need to extract an auxiliary secret key auxsk from
an adversary submitting a transaction. Therefore, we introduce a strong prop-
erty called key knowledge soundness. Roughly speaking, it states that LRS is a
signature of knowledge, i.e., the adversary can only come up with a valid signa-
ture if it knows a valid secret key (sk, auxsk). Before we present the definition,
let us discuss one subtlety. A natural way of defining this notion would be to
allow the adversary to submit tuples (R,m, σ) to an oracle O, and let this ora-
cle try to extract suitable secret keys via an extractor in the algebraic group
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model. If this extraction fails, the adversary wins. While this is a good start, it
is not exactly what we want. Namely, in our setting, the adversary also receives
signatures from the outside, e.g., when we want to do a reduction breaking key
onewayness. If the adversary simply submits these signatures to O, there is no
hope that the adversary knew any secret keys. On a technical level, we would
also encounter composition problems with the algebraic group model. This is
because our definition defines the basis for algebraic representations that the
algebraic adversary submits, and that are used by the extractor. If this basis
is different when we want to apply key knowledge soundness (e.g., because the
adversary received additional group elements as part of keys of honest users),
then the extractor is useless. This motivates why we give additional oracles to
the adversary in our notion.

We now sketch the final definition of key knowledge soundness. We require
that there is an efficient extractor ExtLRS, such that no efficient adversary A wins
the following game. Adversary A gets access to the same oracles NewIdentity,
Corr,Sign as in the non-slanderability game. Further, it gets access to an oracle
O and wins, if for at least one of its queries to O, a certain winning condition is
triggered. When A calls O, it has to submit a triple (R,m, σ) such that it never
submitted R,m together to the signing oracle Sign and obtained a signature for
it, and also it has to hold that Ver(R,m, σ) = 1, i.e., σ is a valid signature for
R,m. If these conditions hold, parse R as R = (pki, auxpki)i. Then, the extractor
ExtLRS is run and outputs (i∗, ski∗ , auxski∗), which intuitively should mean that
A used secret keys ski∗ , auxski∗ for pki∗ , auxpki∗ to compute σ. The adversary
wins if this extraction failed, i.e., (auxpki∗ , auxski∗) or (pki∗ , ski∗) are not a valid
key pair.

Knowledge Linkability. Typically, linkable ring signatures should satisfy link-
ability. Informally, this notion states that if one uses the same secret key to
compute two signatures, then these will link. The formalization of this intu-
ition is non-trivial. In particular, we observe that the standard formalization
(sometimes called pigeonhole linkability) is not enough for our purposes (cf.
Section 1.2). Instead, we need a notion that is compatible with the extractor we
defined for key knowledge soundness. This is because, in some sense, the extrac-
tor already tells us which key was used to compute a signature. Motivated by
this, we define knowledge linkability, which roughly rules out that the extractor
extracted the same sk twice from two signatures σ, σ′ that do not link. In other
words, it guarantees that if the extractor extracts the same key twice, then the
corresponding signatures must link. More concretely, the knowledge linkability
game is similar to the key knowledge soundness game that we introduced before.
The only change is the winning condition in oracle O. To describe this new win-
ning condition, we use the notation that we used to decribe the key knowledge
soundness game. With this notation, A wins, if it submits a triple (R,m, σ) to
O, subject to the same restrictions as in key knowledge soundness, and σ does
not link to any signature σ′ output by Sign or submitted to O before, but a
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secret key associated to pki∗ has been used to sign before. This includes the case
where the extractor identified pki∗ as the signing public key before.

4.2 System Level Analysis

We show that any private transaction scheme is secure, given that its subcom-
ponents satisfy the notions introduced in the previous section. Informally, we
prove the following statement.

Theorem 1 (Informal). Let PTS be a private transaction scheme. Assume
that the subcomponents of PTS satisfy all security notions introduced in Sect. 4.1.
Then, PTS is secure.

For the formal statement, we refer to our full version [12]. We now present the
main ideas used to prove this theorem. For both this informal overview and the
formal analysis, we consider the two winning conditions separately.

Honest User Can not Spend. We start with winning condition win-steal.
Informally, the adversary wins via winning condition win-steal, if there is a
transaction with an output o that an honest user receives, and later the hon-
est user can not spend this output. More concretely, the adversary instructs
the user to compute a transaction Tx using this output via algorithm GenTx,
and then Tx is invalid, i.e., VerTx outputs 0. To bound the probability of this
event, we consider the different conditions that make algorithm VerTx out-
put 0. Write Tx = (In,Out, pseed, π), In = (Refj , comj , σj)Lj=1, and Out =
(
pkout

i , comout
i , cti, tagi

)K

i=1
. The cases are as follows.

– VerTx may output 0 because the public seed pseed contained in Tx is not
fresh, i.e., there is a previous transaction that has the same public seed. As
pseed is generated freshly by the honest user during generation of Tx, we can
rely on the entropy of pseed to rule this case out.

– VerTx may output 0 because some input contained in the transaction Tx is
not a previous output. However, an honest user would never include such an
input in a transaction. Thus, this case can not occur.

– VerTx may output 0 because commitments included in the transaction Tx
are not valid, i.e., the proof π does not verify, or

∑L
j=1 comj �= ∑K

i=1 com
out
i .

Note that all involved commitments and the proof π are computed honestly
in GenTx, and it follows from the completeness of VHC that this case never
happens.

– VerTx may output 0 because one of the signatures σj is not valid.
– VerTx may output 0 because of double spending detection. That is, it may

reject the transaction because one of the signatures σj links to a previous
signature.

For the last two cases, we observe that the secret key that is used to compute
the signatures is derived from the output o, which is provided by the adversary.
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Therefore, we can not use completeness properties immediately and require addi-
tional arguments. Namely, for the case of invalid signatures, we first apply the
tracking soundness notion. This notion tells us that for any output o = (pk, com)
that an honest user receives from an adversary, it derives a valid secret key sk
such that (pk, sk) ∈ KR. Now, we can apply completeness of LRS to argue that
the signature is always valid. The case of linking signatures is a bit more chal-
lenging. Namely, we consider two sub-cases. If the signature links to a maliciously
generated signature, i.e., a signature that is contained in a transaction that the
adversary submitted, then the adversary breaks non-slanderability. On the other
hand, if the signature links to a signature that is also generated by an honest
user, then we want to use the completeness property of LRS again. Specifically,
it states that signatures computed honestly using different secret keys do not
link. Now, it remains to argue that an honest party does not use the same secret
key twice. For that, we make use of the key spreadness notion, and the fact that
public seeds are not reused.

Adversary CreatesMoney. Consider the second winning condition win-create.
Roughly, our main strategy is to define a directed graph G with weighted edges
modeling the state of the system during the security game. Then, we use the secu-
rity notions for building blocks to argue that this satisfies the conditions of a flow
network. Recall that in such a flow network, a flow value f(e) ≥ 0 is assigned to
each edge e in the graph, such that for each vertex (except a dedicated source and
sink) the incoming flow equals the outgoing flow. Then, we use the theory of net-
work flows to conclude. We will now make this rough idea more explicit. Namely,
our proof proceeds in four main steps, which are as follows:

1. We consider each transaction and extract all hidden amounts and used secret
keys. More precisely, for each output and pseudo output of the transaction,
we extract the hidden amount and random coins for the commitments using
commitment knowledge soundness. For each signature contained in the trans-
action, we extract the secret key and auxiliary secret that have been used to
generate the signature. This is done using key knowledge soundness. Espe-
cially, we are now able to distinguish real inputs from decoys.

2. Using the knowledge we gained in the first step, we define a directed graph
G = (V,E), and an assignment f(e) ≥ 0 to each edge e ∈ E. In this graph, for
each output and each transaction in the system, there is an associated vertex.
Whenever an output is used in a transaction as an input, there is an edge e
from the output vertex to the transaction vertex. Further, there is an edge
from each transaction to all of its outputs. In addition, there are dedicated
vertices s and t, where {s, t} ⊆ V . For each source output, we add an edge
from s to the vertex of this output. Finally, we add an edge from each output
vertex that does not have an outgoing edge yet to t. In other words, outgoing
edges of s model the initial money supply of the system, while ingoing edges
of t model unused outputs. In terms of edge weights f(e), notice that each



152 C. Cremers et al.

edge e is incident to one2 output vertex. We set f(e) to be the amount that
we extracted from this output in the first step.

3. We show that this graph G and the assignment f define a flow network. To do
so, we need to prove that for each vertex v (except s and t) the incoming flow,
i.e.,

∑
e=(u,v)∈E f(e), is equal to the outgoing flow, i.e.,

∑
e=(v,w)∈E f(e). For

that, we distinguish transaction and output vertices:
(a) For transaction vertices, we first show that the sum of amounts is pre-

served between pseudo outputs and outputs. To do that, we use the homo-
morphic property and the binding property of VHC. Then, we show that
for each input, the amount is preserved between the input (which is the
output of a previous transaction) and the associated pseudo output. For
that, we first leverage conversion soundness, and then apply binding of
VHC once more. Note that we can only reduce from binding because we
extracted amounts and random coins for each commitment before.

(b) Each output vertex has in-degree one by definition. Thus, as long as we
can show it also has out-degree one, the flow preservation follows. The
main tool to show this is knowledge linkability.

4. Now that we showed that we have a flow network, we leverage the theory of
flow networks to conclude. Omitting some details, this works as follows. Recall
that an st-cut in G is a partition of V into two disjoint sets of vertices Vs, Vt

with s ∈ Vs and t ∈ Vt. The value of any such st-cut is the net flow from Vs to
Vt, i.e., the flow from Vs to Vt minus the flow from Vt to Vs. In our proof, we
are now interested in the following st-cut. We let Vs contain s and all vertices
that are controlled by honest parties, i.e., transactions that honest parties
created and outputs that are owned by honest parties. We let Vt contain all
other vertices, i.e., t, all transactions created by the adversary, and all outputs
not owned by honest parties. For this specific cut, we can argue that its value
is at most L+ received− spent, where L is the flow from Vs to vertex t. To see
that, note that the flow from Vs to Vt is at most L + received, because each
edge with weight f from Vs to Vt which is not going into vertex t increases
the value of received by f . Further, the flow from Vt to Vs is at least spent,
because whenever spent is increased by f , a new edge with weight f from Vt

to Vs is added to the graph.
Recall that it is our goal to argue that received − spent ≥ 0, i.e., the

adversary spent at most as much as it received. Now, our central idea is to
rely on the fact that in any flow network, the value of any cut is equal to
the incoming flow T of the sink vertex t. In combination with the observation
above, this shows that L + received − spent ≥ T . By definition, we have
T ≥ L, and thus L + received − spent ≥ L. Subtracting L from both sides,
we get received− spent ≥ 0, i.e., received ≥ spent, which means the adversary
can not create coins.

2 Special care needs to be taken for corruptions, but we ignore them in this informal
overview.
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4.3 Component Level Analysis

To conclude that Monero’s transaction scheme RingCT is secure, it remains to
show security of its subcomponents with respect to the notions introduced in
Sect. 4.1.

Theorem 2 (Informal). Let PTS be the RingCT private transaction scheme.
The subcomponents of PTS satisfy the security notions introduced in Sect. 4.1.

We provide the formal theorem in our full version [12].
We prove all notions based on the discrete logarithm assumption in the ran-

dom oracle model. While for some of the notions (e.g., binding) standard tech-
niques suffice, the analysis of the linkable ring signature component turns out
to be the most challenging part. Here, we rely on the algebraic group model to
prove key knowledge soundness, which is natural for a knowledge-based security
notion. We emphasize that we do not prove the notion of commitment knowl-
edge soundness. This notion is defined for algorithms PProve and PVer of VHC,
which are implemented using Bulletproofs/Bulletproofs+ [7,11] in Monero. A
detailed analysis of this would not fit the scope of this work, and we leave it as
a conjecture that the schemes satisfy commitment knowledge soundness. For an
analysis of Bulletproofs in a similar model the reader may consult [26].

5 Other Models for RingCT-Like Systems

While no previous work analyzes Monero’s transaction scheme RingCT as it is,
some previous works [18,19,35,49,56] introduce models for protocols similar to
RingCT. In this section, we elaborate on the shortcomings of these models. We
also encourage the reader to consult the discussion on different models in [19,35].
As our work is only about transaction security and not about privacy, we omit
discussing the privacy aspects of these previous models. We assume that the
reader is familiar with our overview in Sect. 2.

Fragmented Security Notions. In our work, we provide a single experi-
ment defining security for the transaction scheme as a whole. Informally, secu-
rity means that an adversary can only spend what it owns, and not steal users
coins. Unfortunately, most previous models [35,49,56] do not give a single secu-
rity model for that. Instead, they provide a set of notions for components.
Mostly, these mimic the standard notions of a linkable ring signature scheme,
e.g., non-slanderability, linkability, unforgeability, and the notions of a commit-
ment scheme, e.g., binding. We call such a model fragmented. The problem of
such a model is that it is not clear how the notions relate, whether they compose,
and how they imply security for the entire transaction scheme. For example, in
[35], it is not obvious how and why the notions of binding, balance, and non-
slanderability imply security of the entire transaction scheme when combined.
Comparing to our work, fragmented models are somewhat similar to the set
of security notions we define for our components. For example, we also have a
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binding and a non-slanderability notion for the components. Arguing that such
a set of notions implies the security of the entire transaction scheme is highly
non-trivial, as our analysis shows.

Adversarial Outputs. Recall that in Monero, each output of a transaction
corresponds to a public key pk and a commitment com. If an adversary creates
a transaction spending coins to an honest user, it derives this public key pk and
the commitment com based on the public seed pseed of a transaction, and the
recipients identity public key ipk. As a consequence, the adversary may know
relations between different outputs of the same honest user, possibly leading to
related key attacks. This means that any reasonable security model has to give
the adversary the ability to derive outputs for honest users. We observe that
several security models in previous works [18,19,49,56] do not have this feature.

Sun et al.’s RingCT 2.0. Sun et al. introduce [49] a model for protocols sim-
ilar to RingCT and give a new construction based on pairings. Their model has
several shortcomings. First, by defining security via two notions called balance
and non-slanderability, they obtain a fragmented model in the above sense. Sec-
ond, in terms of adversarial capabilities, their model is restricted. For example, as
already noted in [35], their notions do not model adversarially generated outputs
(i.e., stealth addresses). Instead, they only consider honestly generated outputs,
which can not be assumed in the case of Monero. Moreover, the adversary does
not have the ability to submit an arbitrary transaction to the chain. Instead, it
can only add transactions by calling an oracle that honestly creates the trans-
action. Overall, these aspects limit the expressiveness of the model significantly.
Third, the authors of [49] informally claim that linkability follows from their
non-slanderability notion. As explained in [35], this is not true in general. In the
context of Monero, this means that there can be counterexamples in which the
given non-slanderability notion holds but double spending is possible.

Yuen et al.’s RingCT 3.0. Yuen et al. [56] also provide a model for proto-
cols similar to RingCT and give a construction based on a new ring signature
scheme. In terms of security, Yuen et al. provide three notions, called unforge-
ability, equivalence, linkability, and non-slanderability, which is fragmented in
the above sense. Similar to the model by Sun et al. [49], the adversary can only
add transactions via an oracle that generates these transactions honestly, and
all outputs of honest parties are derived honestly.

Lai et al.’s Omniring. Lai et al. [35] introduce a model for transaction schemes
and propose a new scheme that is more efficient than Monero’s current trans-
action scheme. Then, they give an analysis of this new scheme with respect to
their notions. In their model, Lai et al. first introduce two security properties,
called balance and binding. Binding is defined in a natural way, and balance
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is formalized via an extractor that can extract all witnesses from an adversari-
ally generated transaction. Moreover, non-slanderability is defined as a separate
notion. This leads to a fragmented model and it is not clear how these three
notions relate to each other and what they mean in combination. For example,
while the non-slanderability notion gives the adversary access to oracles that
allow to add transactions to the system arbitrarily, this is not the case for the
balance and binding notions. Also, while having an extractor seems to be close
to one of the security notions we introduce for components, the extractor in [35]
only has to work for a single transaction. It is not clear what happens if we run
such an extractor for multiple transactions. For example, the extractor is allowed
to use rewinding, leading to an exponential blowup in running time when done
naively on multiple transactions. Finally, the model of Lai et al. does not cap-
ture that honest users reuse randomness within one transaction for creating the
outputs.

MatRiCT and MatRiCT +. In [18,19], constructions of transaction schemes
based on lattice assumptions are presented. Contrary to previous works, both
works provide a single experiment for security instead of giving fragmented secu-
rity models. On the downside, both works [18,19] do not model adversarially
generated outputs (i.e., stealth addresses). It is mentioned in Appendix C.A
of [18] that stealth addresses can be added to their lattice-based scheme in an
easy way. However, it is clear that not modeling stealth addresses formally com-
pletely removes the challenge of dealing with related key attacks as discussed
before. Finally, both works [18,19] do not model the reuse of randomness for
output generation of honest users.

6 Limitations and Future Work

In our work, we only deal with standard Monero addresses and do not consider
the case of subaddresses or integrated addresses. We also do not cover multi-
signatures and multi-signature addresses. This work focuses on the security of
Monero’s transaction scheme. In particular, we do not consider the consensus
layer, and we do not model privacy of the transaction scheme. We plan to elab-
orate a model and analysis for privacy in future work. As it is standard in the
literature, we use the abstraction of a prime order group to analyze the compo-
nents of Monero, while it is actually implemented over curve Ed25519 [4]. Due
to the modularity of our framework, one could extend our results to the setting
of Ed25519 (in the spirit of, e.g., [6]) without the need of redoing the entire anal-
ysis. We assume that transaction public keys are never reused, yet we observe
the consequences for transaction proofs (see the full version [12]). Finally, we do
not show that the Bulletproof/Bulletproof+ component [7,8,11,25] of the sys-
tem satisfies the security notion we define for it. It has been shown in [26] that
Bulletproofs satisfy a related notion. After discussion with the authors of [26],
we conjecture that their proof can be extended to show that Bulletproofs satisfy
our notion as well. We leave investigating all of these directions as future work.
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