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Abstract. An important consideration in the context of distributed
ledger protocols is fairness in terms of transaction ordering. Recent work
[Crypto 2020] revealed a connection of (receiver) order fairness to social
choice theory and related impossibility results arising from the Condorcet
paradox. As a result of the impossibility, various relaxations of order fair-
ness were proposed in prior works. Given that distributed ledger proto-
cols, especially those processing smart contracts, must serialize the input
transactions, a natural objective is to minimize the distance (in terms
of number of transactions) between any pair of unfairly ordered trans-
actions in the output ledger — a concept we call bounded unfairness. In
state machine replication (SMR) parlance this asks for minimizing the
number of unfair state updates occurring before the processing of any
request. This unfairness minimization objective gives rise to a natural
class of parametric order fairness definitions that has not been studied
before. As we observe, previous realizable relaxations of order fairness
do not yield good unfairness bounds.

Achieving optimal order fairness in the sense of bounded unfairness
turns out to be connected to the graph theoretic properties of the under-
lying transaction dependency graph and specifically the bandwidth met-
ric of strongly connected components in this graph. This gives rise to
a specific instance of the definition that we call “directed bandwidth
order-fairness” which we show that it captures the best possible that any
ledger protocol can achieve in terms of bounding unfairness. We prove
ordering transactions in this fashion is NP-hard and non-approximable
for any constant ratio. Towards realizing the property, we put forth a
new distributed ledger protocol called Taxis that achieves directed band-
width order-fairness. We present two variations, one that matches the
property perfectly but (necessarily) lacks in performance and liveness,
and another that achieves liveness and better complexity while offering
a slightly relaxed version of the property. Finally, we comment on appli-
cations of our work to social choice, a direction which we believe to be
of independent interest.
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1 Introduction

The development of blockchain protocols, starting with the Bitcoin blockchain
[30], lead to increased interest in a classic problem in distributed systems — the
state-machine replication (SMR) problem, cf. [34]. In SMR, the task of executing
a state machine is assigned to a set of processors, and in the Byzantine fault
tolerant version of the problem, processing requests should proceed unhindered
by the actions of faulty nodes, even if such nodes arbitrarily deviate from the
protocol in a coordinated manner.

A special case of state machine replication is the problem of ledger consensus,
cf. [18–20,32], that requires the joint maintenance of a ledger of transactions so
that two fundamental properties are being met: (i) consistency, i.e., the ledger
of settled transactions is growing monotonically, (ii) liveness, i.e., the ledger of
transactions incorporates new transactions in a timely manner. A third property
related to the order of transactions has received much less attention in analysis
work. In the original SMR abstraction of [34], while proper ordering of transac-
tions is required, the fairness of this order is not explored.

The formal investigation of fairness in the context of ordering transactions
was initiated with the elegant results of [25], which introduced it formally as
“order-fairness” and pointed to an inherent impossibility to attain it in the dis-
tributed setting that relates to the Condorcet paradox. In a nutshell, (receiver)
order-fairness posits that whenever two transactions tx and tx′ are received in
this order by most nodes in the system, then they should not be ordered differ-
ently in the ledger they maintain. The Condorcet paradox kicks in when cycles in
the receiving order of three or more transactions exist across the nodes. In such
case, it turns out that there may be no output transaction order that satisfies
order-fairness. This motivates relaxations of order-fairness that enable protocols
to circumvent the impossibility and realize them in a distributed setting.

There are two principal approaches in relaxing fairness. The first one relies
on a concept of time that can apply across all participants. In approximate order
fairness [25], fair ordering in the output applies only to appropriately “spaced
apart” transactions across all nodes. In timed-relative fairness, cf. [27,37], if a
transaction tx is received by all honest parties prior to tx′, then tx must be
sequenced before tx′. There are two obvious disadvantages of this approach to
fairness: first, it requires reference to some shared notion of time. Second, it
gives up on a lot of transactions whose propagation patterns somewhat overlap;
in many applications however (e.g., front running mitigation) it is exactly for
such transactions that fair ordering is needed.

The second principal approach, block order fairness [25], gives up on assigning
a unique sequence number to all transactions in the output ledger. Transactions
can be batched together in the same “block” in which case the system can be said
to refrain from actually ordering them. Block order fairness has the advantage
that it can be defined without referring to any shared notion of time and thus
it can apply to transactions that are submitted concurrently and even apply
to asynchronous execution environments. However, given that many distributed
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ledger applications require a total ordering of the output, it leaves open the
question how far apart transactions may end up when finally serialized.

Motivated by the above, we set out to investigate the natural objective of
minimizing the number of unfairly ordered transactions preceding for any trans-
action in the serialized output of a distributed ledger. This objective, similar
to block order fairness, needs no shared notion of time to be meaningful, but it
also translates to an eminently practical guarantee in the SMR setting that block
order fairness lacks: the system will strive to minimize the number of (inevitable)
unfair state updates that happen before the processing of any transaction.

To illustrate the importance of bounded unfairness with an example, con-
sider a simple automated market maker (AMM) where it maintains a constant
product XY = C for swapping two tokens X and Y (Y is the native token)
and one transaction can only sell a fixed number of tokens. When the market
loses confidence in X, every stakeholder would like to sell X to minimize her
loss. Consider an AMM state (X0, Y0) (i.e., X0Y0 = C) and a number k of stake-
holders s0, s1, . . . , sk−1, each one selling an amount of Δ = δX0 tokens at times
t0 < t1 < · · · < tk−1, respectively. At time ti, the AMM state has slipped to
the point (X0 + iΔ,C/(X0 + iΔ)) = ((1 + iδ)X0, Y0/(1 + iδ)) and the exchange
rate for stakeholder i should be (Y0/X0)/[(1 + iδ)(1 + (i + 1)δ)]. In particular,
an unfair ordering (s1, s2, . . . , sk−1, s0), will result in stakeholder s0 transacting
with exchange rate (Y0/X0)/[(1 + kδ)(1 + (k +1)δ)] instead of (Y0/X0)/(1 + δ).
It follows the exchange rate becomes worse proportionally to 1/k2 when k − 1
unfair state updates take place, thus keeping the number of unfair state updates
at the minimum possible value (as bounded unfairness strives to do) is in the
best interest of the users, protecting them from the effects of unfair slippage.

1.1 Our Results

We introduce a new class of (receiver) order fairness definitions – bounded unfair-
ness. In SMR protocols all input transactions are eventually sequenced following
an ordering σ which assigns a unique index to each transaction. Our definition is
parameterized by a threshold ϕ and a bound B; each party that runs the proto-
col has an “input profile” which ranks all received transactions according to the
order they were received. For two transactions tx, tx′, we say that tx ≺ϕ tx′ if
ϕ fraction of input profiles present tx before tx′. Given any two such transac-
tions, the output ordering σ should satisfy σ(tx) − σ(tx′) ≤ B. I.e., tx cannot
be serialized more than B positions later compared to tx′.

Observe that (ϕ,B)-fairness matches standard order fairness for the case of
B = 0 while for any choice B > 0 it relaxes it. The relaxation allows transactions
tx ≺ϕ tx′ to be “unfairly” sequenced as (tx′, . . . , tx) with tx′ coming at most
B positions earlier. Given the unrealizability of fairness for B = 0, the obvious
question to ask here is for what values of B it is possible to realize the property
and what is the smallest possible choice for it.

In order to minimize B, we allow it to be a function of the parties’ input
profiles and the given pair of transactions. The input profiles define a transaction
dependency graph G which includes an edge (tx, tx′) if and only if tx ≺ϕ tx′.
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Given this, we observe that the problem of (ϕ,B) fairness relates to the concept
of graph bandwidth over G, cf. [21]. The bandwidth problem asks for a vertex
ordering σ : V → N that minimizes the maximum difference σ(u) − σ(v) across
all edges (u, v) ∈ E. We call this the directed bandwidth as it aims at minimizing
the length of the “backward edges” in G, i.e., those that violate fairness. We
instantiate the bound B using the directed bandwidth of the strongly connected
component (SCC) that contains the two transactions, or 0 if no such SCC exists.

Our first result regarding our new definition that bases fairness on directed
bandwidth establishes that it is the best possible we can hope for in terms of
minimizing unfair state updates preceding any transaction. Indeed, we prove
that for any protocol that serializes the transactions there can be SCCs in the
dependency graph within which two transactions must be ordered spaced apart
by as many positions as the directed bandwidth of the SCC. Any function B
that beats this bound is unrealizable!

Our second result regarding fairness based on directed bandwidth investi-
gates the complexity of the problem. By adapting previous results for the band-
width problem over undirected graphs, we prove that the directed bandwidth
problem is NP-hard and non approximable for any constant ratio. Armed with
this result, we prove that any protocol that realizes our order fairness property
optimally also solves directed bandwidth, i.e., it solves an NP-hard problem. We
also prove upper and lower bounds for the maximum directed bandwidth across
all graphs; this result establishes the worst-case that is to be expected in terms
of serializing the transactions with bounded unfairness. In particular we show
that in the worst-case directed bandwidth equals n − Θ(log n) where n is the
number of transactions. Given the above, a natural question is how previous
relaxations of order fairness fare w.r.t. bounding unfairness. We present explicit
counterexamples illustrating how such previous definitions do not provide good
bounds.

We then turn to investigate the inherent tension between liveness and our fair-
ness definition. Similar to block order fairness, we first prove that it is impossible
to satisfy liveness and directed-bandwidth order-fairness when the transaction
delivery mechanism is asynchronous. Intuitively, the reason is that Condorcet
cycles may extend indefinitely in a manner which is impossible to accommodate
outputting any transaction in the cycle without breaking fairness. Given this
impossibility one has to either settle for weak-liveness (transactions are included
eventually [25]) or restrict fairness a bit more. Towards this latter target we
consider a bounded delay transaction dissemination environment where each
transaction is disseminated within a window of time Δtx. In this setting our
core observation is that Condorcet cycles spanning a long period of time can
be partitioned across the time domain in such a way that a bound on directed
bandwidth of the graph can be derived. In such graphs we prove that directed
bandwidth is bounded by at most 3 times the maximum number of transactions
disseminated concurrently within a Δtx time window. This gives rise to a relaxed
definition of our fairness notion that we call timed directed bandwidth.
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The astute reader so far would have observed that we introduced our concept
in a setting where participants are static — the relation tx ≺ϕ tx′ which gives
rise to the transaction dependency graph is based on numbers of parties who
witness a particular order between the two transactions. In a permissionless
environment however, e.g., such as that of Bitcoin, participants may engage with
a protocol in a transient manner hence making ≺ϕ ill defined. We address this
issue by recasting the relation in the permissionless setting as follows: tx ≺ϕ tx′

means that a ϕ fraction of hashing power “stands behind” a particular ordering
between two transactions for a minimum period of time which is specified by a
security parameter.

Armed with the above definitional framework, we focus on realizing directed
bandwidth fairness. We put forth Taxis, a permissionless protocol that operates
in the same setting as Bitcoin. We present two variants. In TaxisWL, miners
continuously submit suffixes of their transaction input profile packaged within
proofs-of-work using the 2-for-1 PoW technique of [20] that are included provided
they are sufficiently recent using the recency condition of [33]. In this fashion
it is possible to continuously compute and expand the transaction dependency
graph G on-chain for the settled set of transactions. The ledger is then created
by identifying SCCs of G and calculating directed bandwidth.

Our second variation of the Taxis protocol breaks long cycles when they occur
and uses the median of timestamps to determine the transaction ordering within
large SCCs. This enables us to achieve liveness and timed directed bandwidth
fairness, the relaxation of our directed bandwidth fairness definition that relaxes
fairness for particularly long Condorcet cycles.

We present a full analysis of our protocols in a permissionless dynamic par-
ticipation setting using the analytical toolset from [17,20]. Notably, we enhance
the “typical execution” concept by lower-bounding the difficulty that ϕ fraction
of honest parties can acquire. This lower bound makes it possible for us to show
that, for a specific transaction tx, ϕ fraction of honest parties can accumu-
late more difficulty than others (including the adversary and the rest of honest
parties) during K consecutive rounds, which guarantees that parties will agree
on (i) the transactions that precede tx; and (ii) a timestamp associated with
tx. Combining these properties with our dependency graph construction rules,
we conclude consistency, liveness (for Taxis) and order-fairness according to the
description above.

Regarding performance, we note that TaxisWL runs exponentially on the
number of edges of the subgraph of the transaction graph that is defined
by the (largest) Condorcet cycle. Recall that given the hardness and non-
approximability of directed bandwidth we cannot expect a polynomial-time algo-
rithm; furthermore, in practice, Condorcet cycles may be quite small or even not
occurring at all (in non-adversarial settings), see [24], hence for practical pur-
poses exponential dependency on their corresponding subgraph length may not
be prohibitive. Furthermore, for Taxis, assuming a Δtx bound on transaction
dissemination, we improve the complexity to be bounded by an exponential on
the size of the largest Condorcet cycle (for constant throughput environments).
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We conclude with a discussion on alternative ways to relaxing order-fairness
and open questions regarding the structure of transaction dependency graphs.
While our concept of directed bandwidth achieves an optimal ordering of trans-
actions in terms of bounding unfairness, there can be orthogonal considerations
that highlight the multi dimensionality of the fairness problem. We also discuss
issues related to dynamic participation and how our results can also translate to
the permissioned setting.

As a final contribution we would like to highlight how our work can have appli-
cations to social choice theory. Typically, in social choice, the input profiles of par-
ties (e.g., rankings of the candidates) are assumed to be finite sequences. Given
such rankings, it is sought to produce an agreeable ordering with good proper-
ties. In such case, fairness captures the natural property that if candidate A is
preferable by a majority of participants compared to another candidate B, then
A should be ranked higher in the final ranking. In the social choice context, our
result can be seen as a way to answer the social choice problem when participants
have an ever evolving sequence of preferences and it is desired to combine their
preferences while minimizing the violations of their preferences as much as pos-
sible. For instance, consider an infinite sequence of news items, and a dynamic
population of agent-editors with distinct preferences for each one, in terms of e.g.,
how interesting each one is. The task is to produce a single output news feed that
respects the preferences of the agent-editors as much as possible. Our results read-
ily translate to this setting enabling the agent-editors to produce a unified news
feed with the minimum possible misplacement between news items: specifically if
ϕ fraction of agents deems item n as more interesting than item n′, then n′ will be
placed at most B positions before n in the unified news feed.

Organization of This Paper. The rest of the paper is organized as follows.
In Sect. 2, we present preliminaries on the protocol exeuction model, transaction
profiles and dependency graphs. We formally define and analyze transaction
order fairness in Sect. 3. In Sect. 4, we present our fair-order protocol Taxis. We
discuss some future research directions that might be of independent interest
in Sect. 5. A survey of related works [2,5,6,9,23–25,27,28,36,37], and a detailed
description of preliminaries, protocols and proofs can be found in the full version
of this paper [26].

2 Preliminaries

In this section we first briefly describe our protocol execution model, transaction
diffusion mechanism and the dynamic environment. Refer to [26] for more details.
We then introduce transaction profiles and dependency graphs in Sect. 2.2. They
are notations crucial to the discussion of order fairness.

2.1 Protocol Execution Model

Our model follows Canetti’s formulation of “real world” notion of protocol exe-
cution [7,8] for multi-party protocols. To specify the “resources” that may be
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available to the instances running protocol—e.g., the diffuse channel—we will
follow the approach of describing them as ideal functionalities in the terminol-
ogy of [8].1

The protocol execution proceeds in “rounds”. Parties are always aware of the
current round (i.e., synchronous processors); this is captured by a global clock
GClock [22]. Inputs are provided by an environment program Z to parties that
execute the protocol Π. The adversary A is a single entity that takes control
of corrupted parties, and is both “adaptive” (i.e., A can take control of parties
on the fly) and “rushing” (A is allowed to observe honest parties’ actions before
deciding her reaction). The hash function H(·) is modeled as a random oracle
FRO and abstracts parties attempting to solve “proof-of-work” [14]. Following the
convention that different types of messages are diffused by their own network,
we consider two diffusion functionalities — one for general messages (FDiffuse)
and another for transactions (see below). For all messages except transactions,
the communication is bounded-delay (a.k.a., “partial synchronous” [13,32]). I.e.,
there is an upper bound Δ (measured in number of rounds) and the adversary
may delay the delivery of messages for up to Δ rounds.

Transaction Diffusion Model. The environment program Z is responsible
for generating new transactions and handing them to the diffusion functionality.
We consider two types of transaction diffusion functionality — F tx,async

Diffuse and
F tx,Δtx

Diffuse . The first functionality captures the asynchronous transaction diffusion,
i.e., in F tx,async

Diffuse the adversary can deliver a transaction tx at any time (after tx is
generated by Z). The only restriction is that F tx,async

Diffuse should send all transactions
to all parties eventually. The second one captures a Δtx-disseminated transaction
diffusion network. Specifically, in F tx,Δtx

Diffuse the adversary is forced to deliver a
transaction to all the honest parties within Δtx rounds after it is learnt by at
least one honest participant.

Considering the physical limits on transaction throughput, we assume that
the total number of transactions will be a polynomial function of the running
time of protocol execution.

Dynamic Participation. In order to describe the protocol execution in a more
realistic fashion, following the treatment in [3], we classify protocol participants
into different types. Especially, alert parties—the core set of parties to carry
out the protocol—are those who have access to all the resources (random oracle,
network, clock) and are synchronized with each other. We also put some restric-
tion on the environment’s power to fluctuate the number of alert parties [17,20];
i.e., for any window of fixed length, the increase/decrease on the number of alert
parties is bounded (see [26] for more details).

State Machine Replication. State machine replication [34] is a problem that
asks a set of parties accepting input logs to maintain a public data structure

1 Note that these notions are used for model description only, our security proof is
property-based.
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that serializes the logs. This public data structure is called ledger in the context
of ledger consensus (cf. [18,19]). Conventionally, a public ledger should satisfy
two properties (we adopt L as the settled part of the ledger in party’s view, and
˜L the whole ledger held by the party).

– Consistency: For any two honest parties P1,P2 reporting L1,L2 at rounds
r1 ≤ r2, respectively, it holds that L1 is a prefix of ˜L2.

– Liveness: (parameterized by u ∈ N, the “wait time” parameter): If a trans-
action tx is provided to all honest parties for u consecutive rounds, then it
holds that for any player P, tx will be in L.

2.2 Transaction Profiles and Dependency Graphs

Let T denote the (finite) set of all possible transactions with elements tx. A
transaction profile (or “profile” for short) is a bijection R : T → [m] where m =
|T|. For each (honest) party Pi, its receiving transaction log forms a profile which
is denoted by Ri. Consider a set of n parties P, we write R = 〈R1,R2, . . . ,Rn〉 as
the list of all transaction profiles. Regarding order fairness, we are interested in
a serialization function F that takes an indefinte number of transaction profiles
R as input and outputs a new profile denoted by σ, namely σ = F (R).

We adopt “≺” to describe the “order before” relation on T×T. Note that this
relation is (i) irreflexive (not tx ≺ tx); (ii) asymmetric (tx ≺ tx′ implies not
tx′ ≺ tx) and (iii) transitive (i.e., tx ≺ tx′ and tx′ ≺ tx′′ implies tx ≺ tx′′).
We write tx ≺i tx′ if Ri(tx) < Ri(tx′); i.e. tx ≺ tx′ in party Pi’s profile (in
other words, Pi receives transaction tx before tx′). For every pair of distinct
transactions tx, tx′ in T, they are ascribed either the relations tx ≺i tx′ or
tx′ ≺i tx in profile Ri.

In order to achieve order fairness, we are interested in the pairs of transac-
tions such that one is received by sufficiently many parties before the other. To
measure what “sufficiently many” means, we adopt ϕ ∈ R

+ as the order fairness
parameter. We say tx ≺ϕ

R tx′ if, for profiles R, tx ≺ tx′ holds in at least ϕ
fraction of these profiles (when the profile set is explicit in the context we drop
the subscript and simply write tx ≺ϕ tx′). Note that when ϕ ≤ 1/2, it results
in a logical contradiction as both tx ≺ϕ tx′ and tx′ ≺ϕ tx hold. Hence, we only
care about ϕ such that 1/2 < ϕ ≤ 1.

Transaction Timestamp Assignment. We next present a timestamp assign-
ment function Fts which is useful in the context of state machine replication
problem. Note that different from the one-shot consensus where input pro-
files are given to parties as input in an instant, the transaction log that a
party receives grows with time. Hence, we assign each transaction a timestamp
to indicate when it is received. I.e., parties store transactions in pair 〈tx, t〉
where t ∈ N

+ is the time that they receive tx. We denote the timestamp
of tx in profile R as TS(tx,R) and the list of all timestamps associated with
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tx in R as TS(tx). We call the profiles R Δtx-disseminated if for all transac-
tions, the timestamps associated with them are within a Δtx time window (i.e.
∀tx ∈ T,maxTS(tx) − minTS(tx) ≤ Δtx).

Consider an assignment of a timestamp to each transaction, which can be
represented by a function Fts : T → N

+. If for profiles R it holds that ∀tx ∈
T, Fts(tx) ∈ TS(tx), then we say Fts is compliant with R. Let Fts,R denote the
set of all compliant Fts with R. Especially, we are interested in the mapping
from each transaction to its earliest receiving time; and we denote this mapping
by Fmin

ts (i.e., ∀tx ∈ T, Fmin
ts (tx) = minTS(tx)).

Transaction Dependency Graphs. Consider a list of transaction profiles
R = 〈R1,R2, . . . ,Rn〉. An (R, ϕ)-dependency-graph is a directed graph GR,ϕ

constructed as follows. For each transaction txi, add a vertex vi to GR,ϕ; then,
for any pair of vertices txi, txj , add an edge (vi, vj) if txi ≺ϕ txj . When ≺ϕ

is the majority relation (i.e., ϕ = 1/2 + 1/m, where m is the total number of
transactions), we write GR and call the graph R-dependency. Note that when
ϕ > 1/2, at most one of (i, j) and (j, i) can be added — i.e., a dependency graph
is oriented.

Graph Notations. A vertex ordering of a graph G = (V,E) is a bijection
σ : V → [n] where n = |V |. A null graph is the unique graph having no vertices.
A subgraph S of G is another graph such that V (S) ⊆ V (G) ∧ E(S) ⊆ E(G)
(V (S) must include all endpoints of the edges in E(S)). Conversely, a supergraph
H of G is a graph formed by adding vertices, edges, or both to G. A spanning
supergraph is a supergraph by merely adding edges to the original graph.

A directed graph is strongly connected if every vertex is reachable from every
other vertex. The strongly connected components are maximal subgraphs of a
directed graph that are themselves strongly connected.

For a dependency graph G, we slightly abuse the notation and use transaction
tx and its generated vertex v interchangeably. For instance, (tx, tx′) denotes the
edge from vertex v generated by tx to vertex v′ generated by tx′. And σ(tx) is
the same as σ(v) where v is generated by tx.

3 Order Fairness

In this section we first give a definition of order fairness in the sense of bounded
unfairness. We then connect order fairness to DirectedBandwidth and pro-
vide a fine-grained fair-order definition which is the best that one can expect in
this setting. Next, we study this problem in the context of state machine repli-
cation and permissionless participation respectively. Due to the space limit, all
proofs in this section are presented in the full version of this paper [26].
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3.1 Bounded Unfairness and Serialization

An ideal fair order σ on profiles R follows all ϕ-preferences in R. I.e., for all
tx ≺ϕ tx′ it holds σ(tx) < σ(tx′). Unfortunately, this is impossible with the
existence of Condorcet cycles — ϕ-preferences can be cyclic and hence no σ can
satisfy all of them simultaneously. To see the simplest example, fix ϕ = 2/3 and
consider three transactions tx1, tx2, tx3 and three profiles R1 = tx1 ≺ tx2 ≺
tx3, R2 = tx2 ≺ tx3 ≺ tx1 and R3 = tx3 ≺ tx1 ≺ tx2. We have tx1 ≺ϕ tx2,
tx2 ≺ϕ tx3 and tx3 ≺ϕ tx1.

Note that there is a hidden constant in σ(tx) < σ(tx′) (i.e., σ(tx)−σ(tx′) <
0) to indicate the position that tx′ can be placed before tx. A natural relaxation
on standard order fairness would be to enlarge this distance to some realizable
extent. I.e., an order is fair if for all preferences tx ≺ϕ tx′, tx′ is not ordered at
a position that is too earlier compared with tx. In order to acquire a fine-grained
fairness notion, we are interested in upper-bounding this distance on every pair
of transactions tx, tx′ in specific transaction profiles R. Thus we define B as a
function of R, ϕ, tx and tx′ and require σ(tx) − σ(tx′) < B. This gives us an
intuitive and parametric definition of order fairness.

Definition 1 ((ϕ,B)-fair-order). A profile σ is a (ϕ,B)-fair-order on R if
for all tx, tx′ such that tx ≺ϕ

R tx′, it holds that σ(tx)− σ(tx′) ≤ B where B is
a function of R, ϕ, tx and tx′.

(ϕ,B)-fair-order is unrealizable when B is a function such that there exist
R and it holds that ∀σ,∃(tx, tx′), σ(tx) − σ(tx′) > B(R, ϕ, tx, tx′). In other
words, B is too “small” on some profiles thus no ordering could order tx, tx′

“close enough” as specified by B. On the other hand, Definition 1 is trivial when
B is a function such that ∃(R, tx, tx′), B(R, ϕ, tx, tx′) ≥ m − 1 where m is
the total number of transactions in R (i.e., tx, tx′ can be arranged apart for an
arbitrary distance). The reason such a B is called trivial is that, intuitively, given
a set of profiles, any protocol that realizes an (unfair) order with B = m − 1 on
one transaction pair tx, tx′ can be converted into a new protocol with fair order
B′ < m − 1 on every pairs, by simply swapping tx, tx′ in the output profile2;
moreover, as we show in Theorem 5, there exists a practical B which requires
distance strictly less than m − 1 (more precisely, m − logm/2) for every pair of
transactions.

Serialization with Adversarial Profiles. We then consider order fairness in
the presence of an adversary. Given a protocol execution, the set of honest par-
ties H is well-defined and we let h = |H| denote the number of honest parties.
We abstract the sequence of transactions received by an honest party Pi as Ri,
and write RH = 〈R1,R2, . . . ,Rh〉 as the honest profiles. Regarding corrupted
parties, note that they can deviate arbitrarily from the protocol thus the profile
2 Notice that B = m − 1 on a transaction pair tx, tx′ only when tx ≺ϕ tx′ and tx is

put at the last but tx′ is put at the first of the output profile. By swapping tx, tx′

we get a new order with largest unfair distance strictly smaller than m − 1.
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abstraction does not apply to them. Instead, we model the adversarial manipu-
lation as follows. Suppose F is a serialization function that takes an indefinite
number of profiles as input and outputs a new profile, for every honest party
we require that they output σ = F (R) where R = 〈RH,RA〉 and RA is some
arbitrary profiles (this models the adversarial behavior). Note that for different
honest parties, RA can be different to them. Thus, the following definition does
not ask for agreement — i.e., honest parties could output different profiles as
long as they are all fair orderings on RH; it implies agreement only in the all
honest setting.

Definition 2 (implementing a fair-order serialization). Given a protocol
execution, an (F,ϕ,B)-consistent serialization event happens if and only if for
any honest party Pi, there exist profiles R = 〈RH,RA〉 such that

(i) RH is defined by the sequence of transactions received by honest parties;
(ii) Pi outputs σ = F (R) and σ is a (ϕ,B)-fair-order on honest profiles RH.

A protocol serializes transactions according to F with (ϕ,B)-order-fairness, if the
(F,ϕ,B)-consistent serialization event happens with overwhelming probability.

Notice that, in order to implement a non-trivial fair-order serialization, the
adversary should not be too powerful with respect to the fairness parameter ϕ.
To model this we consider upper-bounding profiles in RA and we write t as its
maximum number of profiles. Then we consider the threshold on t with respect
to the number of honest parties h and fair-order parameter ϕ. For instance, dis-
honest majority (t > h) is infeasible with any ϕ. This is because if the adversary
could select more profiles than the honest, then A can completely dominate the
ϕ-preferences. In other words, the adversary can vanish any tx ≺ϕ tx′ by simply
inserting profiles with the opposite order.

To see how adversarial power should be restricted in terms of the fair order
parameter, we prove that when t ≥ (2ϕ−1)h, it becomes impossible to implement
non-trivial fair-order serialization.

Theorem 1. When t ≥ (2ϕ−1)h, no protocol implements non-trivial fair-order
serialization.

We say an adversary A is admissible with fairness parameter ϕ if it holds that
t < (2ϕ−1)h and in Definition 2 the number of profiles in RA are upper-bounded
by t. All following discussions on order fairness and transaction serialization are
with respect to an admissible adversary.

3.2 Transaction Dependency Graphs

Fix ϕ and n transaction profiles R, there will be a unique (R, ϕ)-dependency-
graph GR,ϕ. When ϕ < 1/2 + 1/n and n is odd (i.e., the majority preference),
the dependency graph will be a tournament (since all pairwise preference can
be extracted). As ϕ increases, the graph becomes more and more sparse. While
the specific edges to be removed are subject to the profiles, we show that the
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structure of dependency graphs depends on the fairness parameter ϕ, and a large
ϕ implies graphs without cycles of small size. For instance, when ϕ > 2/3, no
directed triangle can exist in the dependency graph; when ϕ > 3/4, no directed
square can exist; etc. We formalize this property in Theorem 2.

Theorem 2. For any ϕ > 1/2 and any profiles R, the (R, ϕ)-dependency-graph
GR,ϕ does not contain cycles of size k for all k < 1/(1 − ϕ)�.

Conversely, given an oriented graph G, there exist some profiles whose depen-
dency graph is exactly G. McGarvey [29] provides an approach to construct
these profiles (with majority preference). We briefly describe McGarvey’s app-
roach here. Suppose we would like to construct a profile set R from an ori-
ented graph G with m vertices. For each edge (vi, vj) ∈ G, add two profiles
R1,R2 to R with R1(txi) = 1,R1(txj) = 2,R2(txi) = m − 1,R2(txj) = m and
R1(txk) + R2(txk) = m + 1 for all k �= i, j — i.e., txi, txj are put at the head
and rear of the profile respectively and the rest are in an exactly reversed order.
Notice for all edge (vi, vj), txi, txj are in the same order only in the two profiles
constructed from them.

Dependency Graph with Adversarial Profiles. Given a protocol execution,
the (RH, ϕ)-dependency-graph G is unique and well-defined. We are interested
in the relationship between G and dependency graphs that are constructed with
adversarial profiles.

Note that parties cannot distinguish which profile is corrupted, thus for R =
〈RH,RA〉, it is infeasible to consider the dependency graph based on preferences
held by ϕ fraction of profiles. For instance, when ϕh honest parties believe tx ≺
tx′, the adversary can collude with the minority and vanish this preference in
R; similarly, when (ϕh − 1) honest parties receive tx ≺ tx′, the adversary can
join forces with them and make this preference account for ϕ fraction in R.

Fix honest profiles RH, we show that for any admissible adversary A and
any adversarial profiles RA selected by A, it yields a dependency graph G′ on
〈RH,RA〉 with majority preference such that all edges in G remain the same
orientation in G′.

Theorem 3. Fix ϕ and honest profiles RH and denote the (RH, ϕ)-dependency-
graph by G. For any graph G′ ∈ {GR | R = 〈RH,RA〉 and RA is chosen by an
admissible adversary}, it holds that G′ is a spanning supergraph of G.

Theorem 3 shows, with admissible adversarial manipulation, the ϕ-
preferences are “robust” among all dependency graphs. We write the set of all pos-
sible dependency graphs on R = 〈RH,RA〉 from majority preference as GRH,ϕ.
Note that when given RH and ϕ, the set of all possible RA is well-defined with
an admissible adversary by Theorem 1.

3.3 Bounded Unfairness from Directed Bandwidth

Given honest transaction profiles R (with Condorcet cycles), our goal is to find
an ordering that does not put tx′ too early before tx when tx ≺ϕ tx′. Consider
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a dependency graph G ∈ GR,ϕ and a vertex ordering σ on G. Theorem 3 implies
that G contains cycles (as all edges forming the cycles in GR,ϕ preserve in G),
i.e., there will be back edges (tx, tx′) such that tx ≺ϕ tx′ and σ(tx) > σ(tx′).
The length of a back edge (tx, tx′) is the distance of its source and target
in the ordering σ(tx) − σ(tx′). Ideally, a fair order comes with back edges of
small lengths. In order to quantify how small the length of a back edge can
be, we are interested in finding a vertex ordering on the dependency graph
G that minimizes the maximum length of back edges. Following the similar
treatment in [21] (where they consider the forward edges), we state this problem
as DirectedBandwidth in Definition 3.

Definition 3 (Directed Bandwidth). Given a directed graph G = (V,E),
DirectedBandwidth asks to find a vertex ordering σ∗ such that DBW(σ∗, G) =
minσ DBW(σ,G) where

DBW(σ,G) = max
(u,v)∈E,

σ(u)>σ(v)

σ(u) − σ(v).

The directed bandwidth of a graph G is DBW(G) = DBW(σ∗, G).

Note that when G is acyclic, there exist σ which is a topological ordering
on G such that no back edge exists; this has little to do with the fair-order
serialization problem and DBW(G) = 0 for an acyclic graph. We also note that
DBW(G) = 0 if G is the null graph.

Analogous to Definition 3, Bandwidth [10,11,16] is a well-known and exten-
sively studied graph problem aiming at minimizing the quantity BW(G, σ) =
max(u,v)∈E |σ(u) − σ(v)| among all vertex orderings on an undirected graph.
Bandwidth has been proved to be both NP-hard [31] and NP-hard to approx-
imate within any constant ratio [12] over general graphs. Further, Bandwidth
remains NP-hard and NP-hard to approximate even on very restricted graphs
like caterpillars of hair length at most 3 (a restricted tree).

Since an undirected graph can be converted to a digraph by replacing each
edge with two symmetric directed edges, there is a simple reduction from Band-
width to DirectedBandwidth and thus DirectedBandwidth is also NP-
hard and NP-hard to approximate over general graphs. Notice that, in our con-
text, dependency graphs are all oriented graphs. We prove that DirectedBand-
width remains NP-hard and NP-hard to approximate within any constant ratio
over oriented graphs.

Theorem 4. DirectedBandwidth is NP-hard and NP-hard to approximate
within any constant ratio over oriented graphs.

DirectedBandwidth can be solved trivially in factorial time (O∗(n!)) by
an exhaustive search on all possible orderings; and, unlike some vertex ordering
problems that can be solved by dynamic programming or divide-and-conquer, so
far there is no evidence that these techniques also applies on DirectedBand-
width. A recent work by Jain et al. [21] provides exponential algorithms to find
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the exact and approximate solutions to DirectedBandwidth. Specifically, the
exact algorithm runs in O∗(3|V | · 2|E|) time; and in order to get an ordering
with bandwidth at most (1 + ε) times the optimal one, an approximation algo-
rithm runs in O∗(4|V | · (4/ε)|V |) time. We briefly describe the exact algorithm
for DirectedBandwidth in [26].

Largest Possible Directed Bandwidth. Since all oriented graphs can be
generated by profiles, we are interested in the largest possible bandwidth on
graphs with a fixed number of vertices.

Note that, given n vertices, the worst bandwidth n−1 can always be avoided
by finding an edge (i, j) and outputting σ such that σ(i) = 1 and σ(j) = n. And,
for a small constant k, we can check if a graph has bandwidth n− k by checking
O(n2k) vertex orderings — i.e., we select k vertices each at the head and rear
of orderings and see if a back edge exists between the two sets. Unfortunately,
the time complexity of this simple approach grows to factorial when k = Θ(n)
hence it becomes impractical for large graphs. This raises the question whether
it is possible to find a vertex ordering with directed bandwidth, e.g., 0.99n, for
any oriented graph with n vertices.

Here we give a negative answer to this question. We prove that, among all
oriented graphs with n vertices there exist some tournaments with large directed
bandwidth compared with n3. In Theorem 5 we show that the above simple
approach to check bandwidth will soon terminate on some graphs by considering
Zarankiewicz’s problem.

Theorem 5. Let Gn denote the set of all oriented graphs with n vertices. It
holds that

n − 4 log n < max
G∈Gn

DBW(G) < n − log n/2.

(ϕ, DBW)-fair-order. After extracting the directed bandwidth of a graph in Def-
inition 3, we are now ready to define fair order based on upper-bounding how
much tx′ can be ordered before tx when tx ≺ϕ tx′.

Note that, given a transaction profile set R and its dependency graph G,
we cannot simply define the upper bound as DBW(G). This is because G might
contain several strongly connected components and their sizes might differ a lot.
Actually, the bandwidth of a graph G is the maximum bandwidth among all
strongly connected components in G.

DBW(G) = max{DBW(G′) : G′ is a strongly connected component of G}.

Suppose there is a SCC that contains thousands of transactions and DBW(G) is
also in the thousands. Then, for other relatively small SCCs with, for instance,
10 transactions, an upper bound as DBW(G) does not set any limitation on how
they should be ordered.
3 This result implies that no algorithm can guarantee finding a vertex ordering of

directed bandwidth 0.99n.



48 A. Kiayias et al.

Additionally, note that when given RH and ϕ, a fair-order serialization should
consider all possible dependency graphs GRH,ϕ with admissible RA. Theorem 3
shows that A may create new cycles or enlarge existing ones, but A cannot
remove any edge that has already been there in GRH,ϕ. Due to the above obser-
vations, we propose a fine-grained definition of order fairness (Definition 4) on
top of Definition 1 by replacing the initial function with largest DBW on all possi-
ble SCCs. Specifically, for a pair of transaction tx ≺ϕ tx′, if among all possible
dependency graphs GRH,ϕ there is no graph with SCC that contains tx, tx′

simultaneously then the final output should follow tx ≺ tx′. Otherwise, we will
define the upper bound on their distance in the output by extracting all SCCs
containing tx, tx′ over GRH,ϕ and find the largest possible bandwidth.

Definition 4 ((ϕ, DBW)-fair-order). A profile σ is a (ϕ, DBW)-fair-order on R
if for all tx, tx′ such that tx ≺ϕ

R tx′, it holds that

σ(tx) − σ(tx′) ≤ max
G∈GR,ϕ

DBW
(

SCC(G, tx, tx′)
)

,

where SCC(G, tx, tx′) is a function that outputs an SCC in G that contains both
tx, tx′ if it exists, and a null graph otherwise.

Note that in an all honest setting, no RA exists, thus Definition 4 can be
simplified as “tx ≺ϕ tx′ =⇒ σ(tx) − σ(tx′) ≤ DBW(SCC(GR,ϕ, tx, tx′))”.
See below for an example where we have 8 transactions in R and the (R, ϕ)-
dependency-graph is illustrated in Fig. 1(a). Since DBW(GR,ϕ) = 3, a (ϕ, DBW)-
fair-order on R should satisfy tx ≺ϕ tx′ =⇒ σ(tx) − σ(tx′) ≤ 3. We provide
a profile σ = tx2 ≺ tx3 ≺ tx1 ≺ tx5 ≺ tx6 ≺ tx8 ≺ tx4 ≺ tx7 which is a fair
order on R in Fig. 1(b). Note that only back edges are illustrated and the back
edges (5, 2), (4, 5) and (8, 1) are of maximum length 3. Also compare with the

Fig. 1. Illustration of a dependency graph, a (ϕ, DBW)-fair-order and a lexicographic
order on R. Only back edges are illustrated in (b).
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lexicographic order which has a back edge of length 7 (Aequitas and Themis may
output this order, see below for comparison with existing protocols).

We highlight that Definition 4 is the most precise definition that we can make
on top of Definition 1 and 2. For any new definition that tries to further reduce
maxG∈GR,ϕ

DBW(SCC(G, tx, tx′)) for transactions tx, tx′, there will exist some
profiles RA leading to SCCs with large bandwidth which can invalidate the new
definition. Refer to Sect. 5 for further discussions.

Theorem 6. Suppose that a protocol implements (ϕ,B)-fairness for a func-
tion B. Then for all R there are tx, tx′ with tx ≺ϕ tx′, such that B satisfies
B(R, ϕ, tx, tx′) ≥ maxG∈GR,ϕ

DBW(SCC(G, tx, tx′)).

Comparison with Existing Protocols. We show that Aequitas [25], Themis
[24], pompe [37] and wendy [27] fail to implement (ϕ, DBW)-fair-order serialization
(Definition 2 and 4) even in the all honest setting. For Aequitas, the core obser-
vation here is that when an alphabetical order is adopted to order transactions
within a Condorcet cycle, it is always feasible to simply manipulate the labels of
transactions and produce any desired order. Next, Themis improves the transac-
tion linearization in a Condorcet cycle to a Hamiltonian-cycle-based order. We
point out that this treatment will always produce an order such that tx, tx′ are
at the head and rear respectively but it holds tx′ ≺ϕ tx. Regarding pompe and
wendy, note that in order to be resistant to possible adversarial manipulation,
transactions are ordered by their median timestamp. Thus, we could get any
desired output by constructing profiles with carefully selected timestamps.

The following two examples show how these protocols fail our fair-order seri-
alization definition. In both examples we consider a Condorcet cycle of m trans-
actions and denote its dependency graph as G.

Example 1 (Aequitas and Themis). Suppose tx1 ≺ϕ tx2, we assign labels to
transactions such that label(tx2) < label(txi) < label(tx1) for all txi other
than tx1, tx2. Since an alphabetical order is adopted in a cycle, Aequitas will
output σAequitas = tx2 ≺ . . . ≺ tx1; i.e., σAequitas(tx1) − σAequitas(tx2) = m − 1.
Note that Themis can also output σAequitas if the transaction label is well-selected
and the Hamiltonian cycle starts with tx2. Refer to [26] to see a detailed profile
example R such that for all tx ≺ϕ tx′, an output σ satisfying our definition yields
σ(tx)−σ(tx′) ≤ 1. However, Aequitas and Themis outputs an order σAequitas and
there exist some tx ≺ tx′ such that σAequitas(tx) − σAequitas(tx′) = m − 1.

Example 2 (pompe and wendy). Suppose tx1 ≺ϕ tx2, we assign timestamps
to transactions so that the median timestamps yield med(tx2) < med(txi) <
med(tx1) for all i such that txi is a transaction other than tx1, tx2. Since median
timestamp decides the final order, pompe and wendy will output σpompe = tx2 ≺
. . . ≺ tx1; i.e., σpompe(tx1)− σpompe(tx2) ≤ m − 1. Refer to [26] to see a detailed
profile example R such that for all tx ≺ϕ tx′, an output σ satisfying our defini-
tion yields σ(tx)−σ(tx′) ≤ m/3�. However, pompe and wendy outputs an order
σpompe on R and there exist tx ≺ϕ tx′ such that σpompe(tx)−σpompe(tx′) = m−1.



50 A. Kiayias et al.

3.4 Fairness versus Liveness

We define our fair order notions based on the complete transaction profiles.
However, during the protocol execution parties can only learn a prefix of their
profiles. In this section we discuss the inherent tension between liveness and
order fairness. Specifically, we prove that it is impossible to satisfy all desired
properties when the transaction dissemination is asynchronous (even if in the
non-corrupting setting); next, we show that, when there is an upper bound on
transaction diffusion, it is possible to have liveness with relatively weak but still
useful fairness.

Fairness in an Asynchronous Network. Suppose the transaction dissemina-
tion is asynchronous — i.e. a transaction can appear at any position of a (com-
plete) transaction profile. In order to get a complete view of the transaction set
that precedes a specific transaction tx, parties may have to wait indefinitely from
the first time they saw tx. Note that standard liveness is still applicable with
asynchronous transaction diffusion network. We have the following dilemma: if a
Condorcet cycle spans for a long period of time and part of the transactions are
delivered to all participants, then these transactions should appear in the (set-
tled) output. In such scenario, parties have to decide the order with incomplete
information.

We show below that the asynchronous dissemination will inevitably lead
to the failure of (ϕ, DBW)-order-fairness. I.e. in order to satisfy consistency and
liveness, the honest parties have to output an ordering σ on R such that tx ≺ϕ

tx′ but σ(tx)−σ(tx′) = n−1 where n is the total number of transactions in R.
The general proof idea is to construct two executions that are indistinguish-

able up to some time t + L (L is the liveness parameter) so that parties have
to output transactions up to time t due to liveness. However, the transaction
profiles are different after time t + L such that in the first execution it forms
a Condorcet cycle but there is no cycle in the second. We extract the possible
outputs at the end of the first execution, by carefully considering consistency
and liveness conditions in both executions. We conclude that the output in the
first execution must be an ordering with the worst bandwidth, which implies the
failure of order fairness.

Theorem 7. Suppose the transaction dissemination is asynchronous, there is
no protocol that can achieve consistency, liveness and (ϕ, DBW)-order-fairness.

One approach to solve this dilemma is to relax liveness (a.k.a. weak-liveness,
cf. [25]). I.e., standard liveness holds if there is no Condorcet cycle or a cycle
does not span for long time; however, the system completely loses liveness during
the ongoing of a large cycle.

Definition 5 (Weak-liveness, informal). If a transaction tx is provided to
all honest parties for sufficiently many consecutive rounds, then tx will be in the
(settled) ledger eventually.
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Weak-liveness is not in-line with the standard BFT SMR problem; and since
Condorcet cycles can chain together thus form a cycle of infinite length, it is also
difficult to measure how “weak” this relaxation is compared with the standard
definition (it is subject to the largest cycle in transaction profiles). Hence, we
turn to another direction towards the reconciliation — we would like to achieve
standard liveness as well as slightly weaker (but still non-trivial) fairness.

Fairness with Δtx-disseminated Transactions. Suppose there exists an
upper bound Δtx on transaction dissemination, i.e., if t is the earliest times-
tamp associated with tx, then in all honest profiles it cannot be the case 〈tx, t′〉
for t′ ≥ t. We show that the results in Theorem 7 can be mitigated in this
scenario.

The core observation is, if a Condorcet cycle spans for a long period of time,
we can perform partition on the set of transactions in this cycle, and these
partitions correspond to a good partition on the dependency graph such that we
can figure out an upper bound on the DirectedBandwidth problem.

The partition rule on the dependency graph goes as follows. Let TSCC denote
the set of all transactions in the Condorcet cycle and GSCC its corresponding
generated graph. Consider a timestamp assignment Fts on TSCC and a constant
Δ ∈ N

+ such that Δ ≥ Δtx. An (Fts,Δ)-partition P on TSCC is a set of non-
empty subsets P1, P2, . . . such that

Pi =
{

tx | tx ∈ TSCC ∧ M + (i − 1)Δ ≤ Fts(tx) < M + iΔ
}

where M = min{Fts(tx) | tx ∈ TSCC} (i.e. the earliest timestamp among all
transactions in TSCC). Note that the union of the parts of this partition is exactly
the original transaction set and the intersection of two distinct parts is empty.

An (Fts,Δ)-partition on GSCC, the dependency graph of TSCC, is a set of non-
empty subsets V1, V2, . . . such that Vi is a set of vertices in GSCC such that all
corresponding transactions are in partition Pi. Especially, consider the earliest
timestamp assignment Fmin

ts , transaction dissemination Δtx and its corresponding
(Fmin

ts ,Δtx)-partition on GSCC. The bandwidth of GSCC is at most twice of the
maximum number of vertices in a partition.

Theorem 8. Consider profiles R, their dependency graph G and a strongly con-
nected component GSCC ∈ G. Consider an (Fmin

ts ,Δtx)-partition on GSCC that
corresponds to the sets V1, V2, . . . ,. Then it holds that

DBW(GSCC) ≤ 2max
∣

∣Vi

∣

∣.

Note that it is a non-trivial task to design a protocol that allows parties
to learn the earliest timestamp of each transaction without any trusted third
party4. Nonetheless, a protocol can, for each transaction let parties agree on a
timestamp that falls in its Δtx dissemination time window; and such protocol can
be resistant to an adversary that controls up to half of the total resources, which
is compliant with any admissible adversary (for technical details on synthesizing
4 We note that so far there is no protocol that can complete this task.
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a good timestamp, see Sect. 4). Thus, we consider dependency graphs with a
compliant timestamp assignment Fts ∈ Fts,R and we allow that the specific
assignment (as long as it is compliant with R) can be chosen by the adversary.

We highlight that, in this context there exist a simple ordering trick that
can provide us good bandwidth. Specifically, consider a dependency graph G
and an R-compliant timestamp assignment Fts. By sorting vertices with a non-
decreasing order on Fts (i.e., we order u before v if Fts(u) < Fts(v)), it yields
a vertex ordering with bandwidth upper bounded by three times the maximum
total number of concurrent transactions in a Δtx time window (Theorem 9). We
highlight that this ordering approach can be done without knowing the exact
upper bound (Δtx) on transaction dissemination. Additionally, the bandwidth
of this ordering is independent of the size of the Condorcet cycle — in other
words, its performance is better on large cycles compared with small ones.

Theorem 9. Consider profiles R, its dependency graph G and a strongly con-
nected component GSCC ∈ G. Suppose Fts ∈ Fts,R is a compliant timestamp
assignment with respect to R, and σ is a vertex ordering on GSCC that orders
vertices by a non-decreasing order on Fts, then it holds that

DBW(σ,GSCC) ≤ 3max
∣

∣Vi

∣

∣.

Timed Directed Bandwidth. Given that Definition 4 might conflict with
liveness even if the transaction dissemination is Δtx-bounded, we shall define a
feasible fair order based on our observations in Theorem 8 and 9. Our technique
is to extend the bandwidth function DBW to a timed fashion — i.e., the input
dependency graph G is now accompanied with the earliest time that a transac-
tion appears in the (honest) profile. A timed directed bandwidth function TDBW
on a (strongly connected) graph G with timestamp assignment Fmin

ts works as
follows. If the earliest timestamp of two transactions are sufficiently apart from
each other (i.e., the cycle is large and spans for a long time) then TDBW returns
an upper bound as extracted in Theorem 9; otherwise it returns the directed
bandwidth on graph G.

TDBW(G) =
{

3max
∣

∣Vi(G)
∣

∣ if ∃(tx, tx′)Fmin
ts (tx) ≥ Fmin

ts (tx′) + 3Δtx,
DBW(G) otherwise.

We are now ready to extend the (ϕ, DBW)-order-fairness (Definition 4) by
replacing the bandwidth function DBW with the timed bandwidth function TDBW.
In this new definition, if two transactions are not within the same Condorcet
cycle over all possible dependency graphs, their order in the output should follow
parties’ preference; if they are in the same cycle on some graphs, and all cycles
are relatively small (i.e., it does not span for too long time) then their distance
is upper-bounded by the largest possible bandwidth of the SCCs; and finally if
some cycles do span for a long time, then we replace the upper-bound by three
times the total number of concurrent transactions in a Δtx time window.
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Definition 6 ((ϕ, TDBW)-order-fairness). A profile σ is a (ϕ, TDBW)-fair-order
on R if for all tx, tx′ such that tx ≺ϕ

R tx′, it holds that

σ(tx) − σ(tx′) ≤ max
G∈GR,ϕ

TDBW
(

SCC(G, tx, tx′)
)

,

where SCC(G, tx, tx′) is a function that outputs an SCC in G that contains both
tx, tx′ if it exists, and a null graph otherwise.

3.5 Bounded Unfairness in a Permissionless Environment

In this section we show how to adapt our (ϕ,B)-order-fairness notion to a per-
missionless environment. We highlight that the only change we have to make in
this new setting is to re-define the abstraction of profiles and the “order before
by sufficiently many” notion (≺ϕ); all other definitions and arguments regarding
order fairness could remain the same as above.

In a permissioned network, there is a one-to-one mapping from parties to
profiles. This is because (honest) parties are online during the entire execution,
thus profiles are exactly the abstract of their transaction logs at the end of the
execution. Unfortunately, this is not the case in a permissionless environment in
that parties can join and leave by their will (without notifying anyone else) and
(possibly) no party can eventually hold a complete transaction profile.

Recall that in Sect. 2.1 we present a fine-grained classification on the type of
participating parties. Especially, alert parties are the core participants that own
all resources to run the protocol and have synchronized with each other. Under
this dynamic participation model, we would like to use a profile to refer to the
transaction log that an alert party holds at a specific round. In other words,
we re-consider the mapping above in the permissionless setting as follows. Since
there is no guarantee that an alert party P at round r will remain alert at any
round other than r, we abstract the transaction log held by P at round r as a
profile. Note that these profiles can be incomplete, i.e., it may only contain a
few transactions T ⊆ T and is a mapping T → [m] where m = |T |. We say a
profile is a (P, r)-profile, if it corresponds to the transaction log of an alert party
at round r. Also note that regarding Definition 2 with an admissible adversary,
the number of profiles in RA should be bounded by a round-by-round fashion
— i.e., at a round r, RA can report at most t < (2ϕ − 1)h profiles where h is
the number of (P, r)-profiles.

Then, we re-define the notion of “order before by sufficiently many”. Let t
be the earliest time that at least one of tx and tx′ appears in ϕ fraction of the
(P, t)-profiles. We say tx′ ≺ϕ tx, if during a sufficiently long period of time,
say, K rounds, at least ϕ fraction of the (P, r)-profiles report tx′ ≺ tx where
r ∈ [t, t + K) and P is an alert party at round r.

4 Taxis Protocol

In this section we present a new protocol Taxis and its basic building blocks. The
ultimate product of Taxis is a ledger L providing fair transaction order. Due to
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the space limit, all detailed protocol description and analysis are presented in
the full version of this paper [26].

Before we introduce Taxis, we present its preliminary version TaxisWL as a
direct comparison with Aequitas. TaxisWL achieves consistency, weak-liveness and
(ϕ, DBW)-order-fairness. Specifically, while the liveness is weak (same as Aequitas),
this protocol achieves the best transaction order fairness that we can expect.
Next, by adding a few simple modifications on TaxisWL, we present Taxis that
reconciles the tension between liveness and fair order. The ledger of Taxis satisfies
consistency, (standard) liveness and (ϕ, TDBW)-fair-order.

Taxis is a two-stage protocol that decouples the mining procedure of profiles
and the final serialization of transactions. We will use blockchain as an intermedi-
ate information aggregator to collect profiles (i.e., transaction log) and build the
ultimate ledger L on top of this blockchain. For simplicity, we present TaxisWL

and Taxis assuming static number of participants and discuss how to adapt them
to the dynamic participation in [26].

Blockchain Notations. A block with target T ∈ N is a quadruple of the form
B = 〈ctr, r, h, x〉 where ctr, r ∈ N, h ∈ {0, 1} and x ∈ {0, 1}∗. A blockchain C
is a (possibly empty) sequence of blocks; the rightmost block by convention is
denoted by head(C) (note head(ε) = ε). These blocks are chained in the sense
that if Bi+1 = 〈ctr, r, h, x〉, then h = H(Bi), where H(·) is cryptographic hash
function with output in {0, 1}κ. We adopt TS(B) to denote the timestamp of B;
and, slightly abusing the notations and omitting the current time r, we will use
C�k to denote the chain from pruning all blocks B such that TS(B) ≥ r − k.

2-for-1 Proof-of-Work. 2-for-1 PoW is a primitive that binds multiple PoW
mining processes together by utilizing a single random oracle query. It was first
proposed in [19] to improve the corruption threshold in ledger consensus. This
primitive mitigates the possible attack with multiple independent mining pro-
cesses, where the adversary can join forces to any one of the oracles and gain
undesired advantage.

We will use 2-for-1 PoW to mine two types of blocks: ledger blocks and profile
blocks. Ledger blocks form the Taxis blockchain and they will only include recent
profile blocks (unlike regular blockchains, ledger blocks in Taxis will not include
any transactions “directly”). Meanwhile, parties will use profile blocks to report
their local profiles. We denote the mining target of ledger blocks and profile
blocks by TLB and TPB, respectively. Taxis will maintain a constant ratio between
them; for simplicity, in our presentation and analysis, we assume TLB = TPB.

The main goal of adopting 2-for-1 PoW to bind the mining process of these
two types of blocks together, is to achieve better chain quality. Recall that chain
quality is bad in the Bitcoin backbone protocol [19,20], where the adversary
can contribute more blocks to the common prefix compared with her relative
computational power. By adopting 2-for-1 PoW, Taxis guarantees that, for a
sufficiently long time, ϕ fraction of parties mine ϕ fraction of the profiles (and
they are all included by ledger blocks in the blockchain).



Ordering Transactions with Bounded Unfairness 55

Freshness and Recency Parameter. For the sake of achieving better chain
quality on profile blocks, certain changes should be made to the 2-for-1 mining
procedure. Ideally, the adversary A should not be allowed to mine profile blocks
timestamped in the very future; and, blocks should go stale as time passes by so
that A cannot choose to withhold them to gain a sudden advantage. Analogous
to the treatment in fruitchain [33], we introduce two mechanisms to help ensure
the freshness of profile blocks. On one hand, the header of a profile block should
point to the last block in the settled blockchain; this prevents the adversary from
mining blocks in the very future, as an honest ledger block will introduce fresh
randomness which is unpredictable for A. On the other hand, we set a recency
parameter R (in rounds) such that a profile block PB referring to a settled ledger
block LB will only be valid before time TS(LB) + R (in other words, it cannot
be included by a ledger block with timestamp later than TS(LB) + R).

4.1 TaxisWL Protocol

Mining Procedure. In every round, parties try to mine new blocks after they
update their local chains according to the chain selection rule (see below for
validation details). Two different block contents will be prepared: ledger block
content LBContent which contains all (valid) newly seen profile blocks; and
profile block content PBContent that includes the local profile of the miner.
Parties then compute the Merkle root stLB = MerkleTree(LBContent) and
stPB = MerkleTree(PBContent), respectively. Next, miners make a single ran-
dom oracle query with the following input: ctr, a random nonce; h, the reference
to previous block; h′, the reference to the last block in the settled part; r, the
current timestamp; stLB, the Merkle root of ledger block; and stPB, the Merkle
root of the profile block. They receive an ouput

u = H(ctr, h, h′, r, stLB, stPB).

If u < TLB, the party succeeds in mining a ledger block. A new block LB with
content LBContent is generated and appended to the local chain. If the value of
the reversed output string (which we denote by [u]R) satisfies [u]R < TPB, a new
profile block PB is mined and will be diffused to the network.

Note that timestamp r is shared information in both blocks, so it is impossible
to get two products with different timestamps. This prohibits the adversary from
manipulating timestamp unless she completely drops from one mining procedure.
For a ledger block, the reference to the settled block (h′) and the Merkle root
of profile blocks (stPB) are dummy information and we do not care about their
values, they are only useful when parties want to check their validity (see below).
Similarly, for a profile block, the reference to the previous block (h) and the
Merkle root of ledger blocks (stLB) are dummy information.

We also highlight that there is no need for parties to include their entire
transaction log in PB. A prefix of the profile can be pruned if all transactions in
that prefix appear in the settled blockchain for more than K rounds (i.e., these
transactions have been reported for sufficiently long time and parties agree on the
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set of transactions that precede them, see below for details). Note that with Δtx-
disseminated transaction diffusion and liveness property of the blockchain, all
transactions received by an honest party before time t is guaranteed to be in the
settled blockchain within a constant time (see protocol analysis). Furthermore,
if P notices that its local transaction log shares a common prefix with another
profile block PB in the settled blockchain, then P can produce profile blocks with
pointer to PB to indicate their common part and thus save space.

Validity Check of Chains. Recall that the Taxis blockchain is similar to that
of Bitcoin’s (except that Taxis includes additional 2-for-1 PoW information) and
so we follow [20] regarding the validity of ledger blocks. In addition, we also need
to check the validity of profile blocks. For a valid profile block PB, we require that
its block header satisfies three properties: (i) PB correctly reports a reference to
LB where LB is the last block after pruning the blockchain for k rounds; (ii) PB
reports a timestamp that is earlier than the ledger block containing PB but no
later than TS(LB) + R; and (iii) hash of PB block header is smaller than the
profile block target TPB. A chain C in Taxis is valid if C itself is valid and all the
profile blocks included in C are valid.

Extracting Transaction Order. We detail how the ledger L is extracted in
TaxisWL. Generally speaking, parties will use profile blocks in the settled part
of the blockchain to build a dependency graph; then, transaction order is deter-
mined by running graph condensation and (possibly) DirectedBandwidth
algorithm (see [26]) on all SCCs. Note that all of these computations can be
done locally based on the on-chain information.

As protocol execution proceeds, local chains held by honest parties will share
a long common prefix (we write k as the common prefix parameter — i.e., the
rounds that parties need to prune their local chain). Protocol participants will
extract a transaction pool TXPool in their common prefix by selecting those
transactions that have been reported for sufficiently long time. More specifically,
in order for a transaction tx to be selected, there should exist a K-time-window
of tx, starting at time t such that (i) t is the timestamp of the earliest ledger
block that includes a profile block PB reporting tx; and (ii) this K-time-window
should be fully included in the settled blockchain — i.e., at round r a party only
considers time window that starts before round r − k − K.

Transactions in TXPool are then added to a dependency graph G as vertices.
Regarding rules to add edges, for each transaction tx we care about the pro-
file blocks in its K-time-window: if the majority of these profile blocks report
tx′ ≺ tx, then we add a dotted edge (tx′, tx) to G (when tx′ does not exist in
G, a vertex of tx′ is added). Note that a dotted edge (tx′, tx) does not confirm
the preference tx′ ≺ tx in G. In order to count the edge in the subsequent com-
putation, we need to wait for the K-time-window of tx′ and see if the majority
of those profile blocks report tx ≺ tx′. When this holds, we update the dotted
edge to solid (all the subsequent computations on G only consider solid edges).
The reason for designing this two-phase edge adding rule is because, for those
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transaction pairs such that no ϕ-preference holds, the adversary might be able
to report conflicting orders in the corresponding K-time-windows5.

After constructing the dependency graph G, parties can linearize the trans-
actions on top of G. Notice that G can be cyclic. Parties first compute the
condensation graph G∗ of G — i.e. each SCC is replaced by a vertex. Since G∗ is
acyclic, there exist source vertices (i.e., vertices without incoming edges) in G∗.
Protocol participants do the following steps repeatedly. Let Vsource denote the set
of all source vertices in G∗ such that for all v ∈ Vsource all transactions in v are
in TXPool (transactions that are waiting for some unconfirmed ones will never
be selected in Vsource). If Vsource is empty then parties terminate and output the
final ledger L. Otherwise, they select v ∈ Vsource such that the starting time of
v’s associated K-time-window is the earliest among Vsource (if a vertex in G∗ rep-
resents a SCC in G, we choose the earliest time window in that SCC). Then, if v
represents a single vertex in G, parties append the corresponding transaction to
L directly; otherwise, they run the DirectedBandwidth algoirthm to extract
the bandwidth-optimal order l on vSCC (i.e., the component in the original graph
that condenses to v in G∗) and append l to L. After processing v, we remove it
from G∗ and this yields a new source vertex set Vsource.

TaxisWL Ledger Properties. With bounded dynamic participation and appro-
priate parameters, the ledger L of TaxisWL satisfies three properties — con-
sistency, weak-liveness and (ϕ, DBW)-order-fairness. Note that for consistency, a
suffix of L should be pruned to be resistant to adversarial manipulation. Refer
to the protocol anaylsis in [26] to see the detailed consistency parameter.

Theorem 10. Assuming bounded dynamic participation, bounded network delay
and honest majority, there exist protocol parameterizations such that the ledger L
of TaxisWL achieves consistency, weak-liveness and (ϕ, DBW)-order-fairness except
with probability negligibly small in the security parameter.

4.2 Taxis Protocol

We present the full Taxis protocol on top of TaxisWL in this section. Briefly speak-
ing, we add a fallback mechanism to order transactions that remain unconfirmed
for a long time based on the beginning point of their K-time-window. Note that
we only make two simple changes in the mining and order-extraction stage.

Mining Procedure. In Taxis, parties book-keep the local receiving time of
transactions; and, when mining profile blocks, they additionally attach these
timestamps to each transaction. All the other steps in the mining procedure
remain the same. Since parties will agree on the profiles of a transaction tx in a
sufficiently long time window, they will agree on the timestamp vector associated
with tx as well.
5 When an edge from tx′ to tx exist, tx will not get confirmed into the ledger. Also

note that, with overwhelming probability, solid edges will appear on those transaction
pairs with ϕ-preference. For details, see the protocol analysis.
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Extracting Transaction Order. During the order-extraction stage, a fallback
mechanism is provided to deal with cycles that span for a long time. Specifically,
for all unconfirmed vertices Vunconfirmed in the condensation graph G∗, we check if
there exist a vertex v ∈ Vunconfirmed such that its corresponding SCC (vSCC) in G
contain transactions whose K-time-window begins before r−(K+k+Δtimeout)6.
Note that Δtimeout is a timeout parameter that indicates the cycle spans for a
long time (see protocol analysis for more details). If such v in G∗ exists, we order
all vertices in vSCC in an increasing order based on their median timestamp. For
a transaction tx, its median timestamp med(tx) is computed on the timestamp
vector associated with tx in its K-time-window. Note that since parties will
agree on tx’s timestamp vector, they will also agree on med(tx); and, taking
the median guarantees that med(tx) falls in the Δtx-dissemination time window
with tx, thus the results in Theorem 9 applies.

In addition, when tracing the previous dependency graphs, Taxis will be able
to detect those large cycles by carefully comparing the beginning point of K-
time windows among all transactions in the cycle, so that it will process them
using the same fallback mechanism (this guarantees consistency).

Taxis Ledger Properties. We provide a full analysis of the security of Taxis
protocol with bounded dynamic participation in [26]. Specifically, we prove that
the ledger L of Taxis satisfies three desired properties — consistency, (standard)
liveness and (ϕ, TDBW)-order-fairness.

Theorem 11. Assuming bounded dynamic participation, bounded network delay
and honest majority, there exist protocol parameterizations such that the ledger
L of Taxis achieves consistency, liveness and (ϕ, TDBW)-order-fairness except with
probability negligibly small in the security parameter.

Performance Analysis of Taxis. We detail the computation/communication
complexity of the Taxis protocol. For the proof of work part and communication
overhead, it requires a random oracle call per round and possibly (if a PoW
is found) a message transmission with message size, worst case, linear in the
security parameter plus the number of transactions that are disseminated within
a sliding window of length polylogarithmic in the security parameter.

To maintain the local transaction dependency graph G, note that G can be
built incrementally since all vertices and edges are extracted from the settled
part of the blockchain; and, every time a vertex tx is added to G, the number
of computational steps required (which will add the necessary edges between
the vertices) is linear in the number of transactions that appear in tx’s K-time-
window, which is also of length polylogarithmic in the security parameter.

Regarding solving DirectedBandwidth on each SCC of the transaction
dependency graph, note that while the exact algorithm from [21] consumes
exponential time with respect to the number of concurrent transactions, we
6 We note that two large cycles cannot run in parallel, and there is at most one vertex

with multiple transactions that can pass the timeout check. Refer to protocol analysis
for more details.
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highlight that, in real execution, it runs in practical time for two reasons. First,
a polynomial-time fallback will be triggered after a time slack of length Δtimeout

has passed, where Δtimeout is a parameter that is of the same order of magnitude
with respect to the common prefix parameter, the size of input (i.e., the num-
ber of vertices in a SCC) to DirectedBandwidth is therefore bounded by a
polylogarithmic function of κ times the transaction throughput. On the other
hand, the transaction dependency graph of a large Condorcet cycle is of good
structure7 such that we could improve the running time from O∗(3n ·2n2

) in [21]
to f(t) ·nt · 2nt where t is the transaction throughput and f(t) is a function that
depends only on t, note that t � n. We present and analyze this algorithm in
[26]. Also note that while this local computation is the most expensive step but
it only needs to be performed once for each SCC throughout the entire protocol
execution.

5 Discussion and Future Directions

Alternative Ways of Relaxing Order Fairness. In this paper we define
transaction order fairness based on upper-bounding the positions that a trans-
action can be ordered before another when violating their preference. It is worth
highlighting however that the graph theoretic model we put forth in Sect. 3 can
accommodate a larger variety of order fairness relaxations.

For instance, one could consider the relaxation “an output profile σ should
break the least number of ϕ-preferences.” In the context of dependency graphs,
this idea on fair order can be related to the FeedbackArcSet problem [4]
which asks to remove a subset of edges to make the graph acyclic while keeping
the subset as small as possible.

Another possible relaxation is to minimize the cumulative size of all viola-
tions. This means that instead of focusing on the maximum distance of back
edges in a component, we care about their sum

∑

(u,v)∈E,σ(u)>σ(v) σ(u) − σ(v).
This definition, can be considered as the “global” variant of our order fairness
notion; and, the corresponding graph problem — MinimumLinearArrange-
ment [4] — is also well-studied.

Another flavor of fairness that can also be cast in the same context is studied
in a recent work, Themis, [24], called consequent-transaction fairness, which can
be viewed in our context as maximizing the number of consecutive forward edges.

Structure of Transaction Dependency Graphs. An interesting ques-
tion arises with respect to (R, ϕ)-dependency-graphs, as they were defined in
Sect. 2.2. In Theorem 2 we show that, unless ≺ϕ is the majority relation, GR,ϕ

7 If a Condorcet cycle spans for a long time, and the time points that two transactions
enter this system are sufficiently apart from each other, then the edge between these
two transactions will never be selected as backward edge. For large Condorcet cycles,
such type of edges account for the vast majority of all the edges. See a detailed
explanation in [26].
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cannot have arbitrarily small cycles. Is this also a sufficient condition? I.e., given
a graph G without cycles of size less than 1/(1 − ϕ)�, do there exist pro-
files R such that G = GR,ϕ? When ≺ϕ is the majority relation, this question
was answered positively for any oriented graph by McGarvey in [29] (see Sub-
sect. 3.2). The majority case has been studied further in other works. Stearns [35]
and later Erdős and Moser [15] give bounds on the required size of R. More
recently, Alon [1] looked into a more refined property of R. We suggest the study
of similar questions with respect to GR,ϕ, when 1/2 < ϕ ≤ 1 as an interesting
direction.

(ϕ, DBW)-fair-order. Theorem 6 shows that (ϕ, DBW)-fair-order is the best that
we can expect on a Condorcet cycle SCC in terms of bounding unfairness. We
note here that it is possible for some transactions tx, tx′ to be put even closer
than the bandwidth among all bandwidth-optimal orderings. Nonetheless, there
is no need to push this definition a step further (e.g., to bound the distance of
any two transactions by their maximum distance among all bandwidth-optimal
orderings). The reason is that Definition 4 has already been restricted enough
such that only a bandwidth-optimal ordering on this SCC will satisfy it. Even
if we might be able to bound the distance on some transaction pairs further it
does not change the set of orderings that satisfy this definition.

Securing Order Fairness with Transient Joining. Astute readers may
notice that, in Sect. 3.5, it becomes impossible to achieve order fairness in the
permissionless environment if the joining pattern of alert parties is transient —
i.e., no party stays alert for a long time hence no transaction order preference
can persist in the network. While this problem stems from the nature of per-
missionless settings and is thus intrinsically impossible to solve, we provide two
alternative ways to model the execution environment that can offer different
trade-offs.

One route is to restrict the adversarial power on registering / de-registering
parties. I.e., A is allowed to de-register at most τ fraction of honest parties during
any time window of length K, but τ should remain sufficiently small with respect
to K so that when a transaction is received by sufficiently many parties earlier
than another, both could be continuously reported.

Alternatively, we could extend our dynamic participation model (Sect. 2.1) to
let parties “bootstrap” to collect transactions before they become alert. Specif-
ically, we introduce a profile as a new resource that an alert party needs in
order to run the protocol. If a party P has passively listened to the protocol
and obtained a sufficiently long transaction log, then P is “profile-ready.” Alert
parties should be those that are also profile-ready. Given this and that the envi-
ronment (which controls how the population of parties fluctuates) is restricted
to offer a sufficient number of alert parties, in this new setting we guarantee
that all alert parties can keep reporting transaction order preference; and, this
mechanism is robust against the adversarial registration and de-registration on
alert parties.
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Order Fairness in the Permissioned Setting. We note that (ϕ, DBW)-fair-
order serialization can also be achieved with a PKI. Specifically, parties could
make use of the broadcast and set consensus module in Aequitas [25] to let
parties agree on a dependency graph; then, instead of alphabetically linearizing
transactions in the same “block”, parties use the directed bandwidth algorithm
(refer to our full version [26]) to get the bandwidth-optimal order. With this
additional treatment, we can adapt Taxis as a permissioned protocol that achieves
consistency, weak-liveness and (ϕ, DBW)-order-fairness.
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