
Symmetric Signcryption and E2EE Group
Messaging in Keybase

Joseph Jaeger1(B) , Akshaya Kumar1 , and Igors Stepanovs2

1 School of Cybersecurity and Privacy, Georgia Institute of Technology,
Atlanta, GA, USA

{josephjaeger,akshayakumar}@gatech.edu
2 Riga, Latvia

igors.stepanovs@gmail.com
https://cc.gatech.edu/~josephjaeger/, https://cc.gatech.edu/~akumar805/,

https://igors.org/

Abstract. We introduce a new cryptographic primitive called symmet-
ric signcryption, which differs from traditional signcryption because the
sender and recipient share a secret key. We prove that a natural compo-
sition of symmetric encryption and signatures achieves strong notions of
security against attackers that can learn and control many keys. We then
identify that the core encryption algorithm of the Keybase encrypted
messaging protocol can be modeled as a symmetric signcryption scheme.
We prove the security of this algorithm, though our proof requires assum-
ing non-standard, brittle security properties of the underlying primitives.

1 Introduction

Keybase is a suite of encryption tools. It encompasses a public-key directory,
an instant messenger, and a cloud storage service. Keybase was launched in
2014. In February 2020, it reported having accumulated more than 1.1M user
accounts [27]. In May 2020, Keybase was acquired by Zoom. At the time, Zoom
issued a public statement [36] saying that the Keybase’s team was meant to play a
critical part in building scalable end-to-end encryption for Zoom. The acquisition
appears to have put an end to an active development of new Keybase features,
but as of February 2024 it keeps receiving regular maintenance updates.

Instant Messaging in Keybase. Keybase implements its own end-to-end
encrypted instant messaging protocol. This protocol is designed to support large
groups. One-on-one chats are treated as group chats and hence use the same
protocol. The protocol also allows to send large files as encrypted attachments
in chat. It is impossible to opt out of end-to-end encryption in Keybase. In this
work we analyze the security of this protocol.

The Keybase client is open source [24], but the server is not. Our security
analysis primarily relies on the source code. Keybase also provides the “Keybase
Book” website [22] with excellent documentation that explains its cryptographic
design. The only prior security analysis of Keybase was done by NCC Group in
c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14653, pp. 283–312, 2024.
https://doi.org/10.1007/978-3-031-58734-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58734-4_10&domain=pdf
http://orcid.org/0000-0002-4934-3405
http://orcid.org/0000-0003-4519-3718
http://orcid.org/0009-0009-3963-5584
https://doi.org/10.1007/978-3-031-58734-4_10

284 J. Jaeger et al.

2019 [31], which broadly looked at the security of the entire Keybase ecosystem.
In comparison, we provide an in-depth analysis of a single component in Keybase.

Encrypted Group Chats. In this work we consider a setting in which an
arbitrary number of users can form a group. All group members share a key
for a symmetric encryption scheme. Each instant message within the group is
encrypted with this key. Let us use g to denote the identity of a group and Kg

to denote the key shared between the members of this group. In Keybase, every
member of group g uses the same long-term key Kg to encrypt their outgoing chat
messages. Each message is encrypted only once, simultaneously for all recipients.
The resulting ciphertext is then broadcast to all members of the group.

The Sender Keys protocol [7,28] can be seen as building on this basic design
idea. In Sender Keys, every member of the group owns a distinct symmetric
encryption key; they share it with other group members. Each outgoing message
is encrypted with the sender’s own key, and the resulting ciphertext is broadcast
to the group. Furthermore, each key is used to encrypt only a single message, and
immediately afterwards a new key is derived to be used for the next encryption.
So every group member tracks every other member’s current encryption key,
decrypting each incoming ciphertext with the corresponding sender’s key and
subsequently replacing it with an appropriately derived new key. Variants of the
Sender Keys protocol are used in the Signal [28], WhatsApp [34], and Matrix
[1,2] messengers. In addition, the Messaging Layer Security (MLS) [8] protocol
contains a component called FS-GAEAD [3] or TreeDEM [33] that similarly
uses a sender’s key to encrypt and broadcast a message (but its overall design
significantly differs from design of the Sender Keys protocol).

An encrypted group chat protocol should provide at least confidentiality and
integrity of communication, with respect to an attacker that is not a member of
the group. In part, this could be achieved by building the protocol from a sym-
metric encryption scheme that satisfies some notion of authenticated-encryption
security. But care is needed to also prevent undesired message replays, reorder-
ing, or drops. These requirements are specific to a stateful protocol and do not
necessarily follow from properties provided by the underlying stateless scheme.

Sender Authentication in Group Chats. Consider a group chat protocol
that is built from a single symmetric encryption scheme and where every sym-
metric key is known to all group members. In such a protocol, group members
are able to impersonate each other. This is true regardless of whether each group
uses a single shared encryption key or has each member own a distinct encryp-
tion key. To prevent group members from impersonating each other, it is natural
to use a digital signature scheme. Let us use u to denote the identity of a user
and sku to denote this user’s signing key for a digital signature scheme.

What is a sound way to compose a symmetric encryption scheme with a
digital signature scheme? Let us consider two sequential compositions of a sign-
ing algorithm Sign with an encryption algorithm Encrypt. We call the resulting
schemes Sign-then-Encrypt and Encrypt-then-Sign, and we show them in Fig. 1.
The Sign-then-Encrypt scheme first signs a message m to obtain its digital sig-
nature s and then encrypts (s,m) to obtain and return a symmetric ciphertext

Symmetric Signcryption and E2EE Group Messaging in Keybase 285

Fig. 1. Warmup schemes obtained by composing digital signatures with symmetric
encryption. Left pane: Sign-then-Encrypt. Right pane: Encrypt-then-Sign.

Fig. 2. A high-level representation of the SealPacket scheme in Keybase.

c. The Encrypt-then-Sign scheme first encrypts m as c and then computes a
signature s over c; it returns the pair (c, s).

These compositions closely mirror those that are commonly used to build
signcryption [5], which is a standard cryptographic primitive that combines dig-
ital signatures with public-key encryption [35], except we replace public-key
encryption with symmetric encryption. It is well known that the correspond-
ing compositions for signcryption are not secure in the multi-user setting, unless
some effort is taken to bind together the message with the sender and recipi-
ent identities [5]. The standard advice is to always sign the recipient’s identity
and always encrypt the sender’s identity. Our basic schemes in Fig. 1 would
intuitively suffer from similar issues and benefit from similar countermeasures.
However, the exact details would depend on what kind of security one expects
from these schemes, so we defer this discussion.

The Sender Keys protocol [7] prescribes to sign a symmetric ciphertext; and
this is indeed done by the Signal, WhatsApp, and Matrix messengers. The MLS
protocol [8] protocol prescribes to encrypt a digital signature with a symmetric
encryption scheme. So either protocol can be seen as using some variant of
Encrypt-then-Sign or Sign-then-Encrypt as a subroutine. We will now discuss that
Keybase can be seen as extending both of these basic schemes.

SealPacket: Sign-then-Encrypt in Keybase. Keybase uses a variant of the
basic Sign-then-Encrypt scheme. It signs the symmetric encryption key along with
the plaintext, meaning it signs (Kg,m) instead of just m. The resulting scheme
is called SealPacket and is shown in Fig. 2. In the source code, the decision to
sign Kg is explained as follows [26]:

simply using encryption and signing together isn’t good enough . . . the inner
layer needs to assert something about the outer layer . . . a better approach
is to mix the outer key into the inner crypto, so that it’s impossible to
forget to check it . . .That means the inner signing layer needs to assert

286 J. Jaeger et al.

Fig. 3. A high-level representation of the BoxMessage scheme in Keybase.

the encryption key . . .We don’t need to worry about whether the signature
might leak the encryption key either, because the signature gets encrypted.

Keybase uses SealPacket to encrypt the following three types of plaintexts:
(1) a metadata header that is automatically created and sent along with every
chat message, (2) a file that is sent as an attachment in chat, and (3) an arbitrary
string chosen by a chat bot (for secure server-side storage of bot data).

BoxMessage: Encrypt-then-Sign in Keybase. The BoxMessage scheme in
Keybase is a variant of the basic Encrypt-then-Sign scheme. This scheme, unlike
SealPacket, is used only for one purpose: to encrypt the body of a chat message.
So we denote by cbody the symmetric ciphertext that is created in the inner
(encryption) layer of BoxMessage. The BoxMessage scheme extends the basic
Encrypt-then-Sign scheme in two ways and is shown in Fig. 3. First, it takes an
associated-data field ad and signs (cbody, ad) instead of just cbody. Second, rather
than use a signature scheme, BoxMessage uses SealPacket to sign (cbody, ad).

Keybase uses the auxiliary-data field ad to authenticate a metadata header
for the chat message. This header contains the group’s identity and sender’s
identity among multiple other values. The data in ad is sent in plain over the
network (along with cbody), meaning that SealPacket is not meant to provide con-
fidentiality of ad. Indeed, the Keybase documentation explains that SealPacket
is used to provide the confidentiality of the signature over (cbody, ad) [23]:

fields in the header aren’t secret from the server, and it actu-
ally needs to know several of them . . .The reason for sign-then-
encrypting/signencrypting the header is instead to keep the signature itself
private. Even though the server knows who’s talking to whom, because it’s
delivering all the messages, it’s better that it can’t prove what it knows.

Interestingly, BoxMessage reuses the group’s symmetric encryption key Kg

between its calls to Encrypt and SealPacket. As mentioned above, SealPacket will
itself first sign Kg and then run another instance of Encrypt with Kg as the key.
In total, the same value of Kg is therefore used in 3 distinct contexts.

Symmetric Signcryption. We define symmetric signcryption as a new cryp-
tographic primitive that combines symmetric encryption with digital signatures.
We capture the setting where every user owns a signing key pair and in each
group all users share a single symmetric encryption key. The encryption key is
long-term, meaning it can be used an arbitrary number of times, simultaneously

Symmetric Signcryption and E2EE Group Messaging in Keybase 287

by all members of the group. This will allow us to formalize and analyze the
SealPacket and BoxMessage schemes.

We note that the use of sender-specific encryption keys in the Sender Keys [7]
and MLS [8] protocols can also be captured by symmetric signcryption. Indeed,
in either protocol all symmetric encryption keys can seen as being independently
sampled, and each individual key is used only once. This can be thought of as a
collection of “one-time-use” symmetric signcryption schemes.

We adapt the standard syntax of (asymmetric) signcryption to suit our set-
ting, defining algorithms SigEnc and VerDec. They both take explicit sender and
group identities, nonces, and associated data.

Security of Symmetric Signcryption. We define two security notions for
symmetric signcryption. The out-group authenticated encryption (OAE) security
requires confidentiality and integrity of communication against an adversary that
does not know the symmetric key of the group it attacks. This is required to hold
even against an adversary that can assign to every user an arbitrary (possibly
malformed) digital signature key pair. The in-group unforgeability (IUF) security
requires unforgeability of messages sent by users whose signing keys are not
known to the adversary. This is required to hold even against an adversary that
can assign to every group an arbitrary (possibly malformed) symmetric key.

We show how to extend the basic Sign-then-Encrypt scheme, by carefully
incorporating user and group identifiers, to achieve both of our security notions.
We assume strong unforgeability of the underlying digital signature scheme and
authenticated-encryption security of the underlying encryption scheme.

Implementation of SealPacket and BoxMessage. In the source code of the
Keybase client, SealPacket is implemented in [26] and BoxMessage is imple-
mented in [25]. These schemes are instantiated with the nonce-based authen-
ticated encryption scheme XSalsa20-Poly1305 [15,16] and the digital signature
scheme Ed25519 [17,18]. They also use SHA-512 and SHA-256 which does not
significantly affect the design of either scheme so we omit discussing it here, but
in the main body of the paper, we attempt to formalize both schemes precisely.

Keybase implements four versions of the BoxMessage scheme: V1, V2, V3, and
V4. V1 is deprecated; the Keybase client allows to receive but not send messages
that use V1. V2 is the default version that we formalize and analyze in this
work. V3 is the same as V2, except it supports exploding messages; the body of
an exploding message is encrypted using an ephemeral key instead of Kg. V4 is
the same as V3, except it makes all group members use a dummy (zero) signing
key and instead authenticate messages using pairwise MACs.

Provable Security Analysis. We model BoxMessage and SealPacket as sym-
metric signcryption schemes and provide formal reductions for their IUF and
OAE security. Our analysis is done in a concrete security framework [11], and
in a multi-key setting; we state precise bounds on the advantage of an attacker.
The analysis of BoxMessage largely encompasses that of SealPacket, because
BoxMessage uses SealPacket in a modular way. So we focus on the analysis of
BoxMessage here. The main challenges arise from using Kg in 3 distinct contexts.

288 J. Jaeger et al.

First, we aim to show it is hard to switch the context of the XSalsa20-Poly1305
ciphertexts cbody and cheader. Both are encrypted using the same key Kg, so there
is a risk that an attacker could forge a valid encryption of some body-plaintext
m from a known encryption of some header-plaintext (s, cbody, ad), or vice versa.
To rule out such attacks, we rely on an observation that every application-layer
message m that is queried to be encrypted by BoxMessage is encoded in a specific
way, whereas every header-plaintext (s, cbody, ad) is expected to start with a valid
Ed25519 signature. Based on the specification of Ed25519 we show (in the ROM
and GGM) that it is hard to cast the encoding used in m as a valid Ed25519
signature (with respect to any verification key of adversary’s choice).

Second, we need to show that XSalsa20-Poly1305 provides authenticated
encryption even for certain messages derived from its secret key. This arises
because in SealPacket the XSalsa20-Poly1305 key Kg is first signed with Ed25519
and then the resulting signature is encrypted using XSalsa20-Poly1305 under the
same key. Here again we rely on the specification of Ed25519. An Ed25519 signa-
ture depends on two SHA-512 hash values of the message that is being signed,
but it does not depend on the signed message beyond that. We use this (in
the ROM) to eliminate the need to consider key-dependent messages and hence
only require XSalsa20-Poly1305 to provide the standard notion of authenticated
encryption.

We do not know any way to avoid the above analysis. The necessity to
use non-standard security notions appears to be inherently implied by the
design decisions made in Keybase. This could have been avoided (e.g. with out
Sign-then-Encrypt scheme). Overall, our reductions (in the ROM and GGM) rely
on the AEAD security of XSalsa20-Poly1305, collision resistance of SHA-256 and
SHA-512, and strong unforgeability of Ed25519. We note that Keybase uses the
version of Ed25519 that was recently shown to be SUF-CMA secure [10,20].

Limitations of Our Work. Our analysis of Keybase is intentionally narrow in
scope. We perform an in-depth, algorithmic analysis of specific chat components
that can be modeled as symmetric signcryption. Other analysis is outside the
scope of our work, such as whether these algorithms are secure against timing
attacks and whether they provide protection against message replays, reorder-
ing, or drops when used within the broader stateful chat protocol. More broadly,
our analysis does not explicitly cover many other applications of cryptography
in Keybase, including other versions of BoxMessage, encryption of attachments
or bot data, the initial key exchange used to agree on group keys, the public-key
directory used to share user keys, and the cloud storage service. These applica-
tions are important for the overall security of Keybase, and have the potential
to interplay with each other in subtle ways. For example, user signing keys are
used for multiple tasks in Keybase. We believe appropriate context separation
is used for these purposes (e.g. all messages signed in SealPacket start with
“Keybase-Chat-2”). If not, subtle cross-application attacks may be possible.

Related Work. The Hybrid Public-Key Encryption (HPKE) standard is speci-
fied in RFC 9180 [9]. Alwen, Janneck, Kiltz, and Lipp [4] analyze the “pre-shared
key” modes from RFC 9180. They cast the HPKEAuthPSK mode as an asymmetric

Symmetric Signcryption and E2EE Group Messaging in Keybase 289

signcryption scheme that is augmented with a pre-shared symmetric key, and
they define the corresponding security notions. They analyze the security that is
achieved by HPKEAuthPSK depending on which combinations of keys are secure.
Our definitions are similar in the sense that both works define a signcryption-
type primitive that in addition uses a symmetric key. However, the algorithms
in [4] use one more set of keys, and the definitions in [4] are stated in the two-user
setting. In essence, our primitives are similar in form, but are tailored to be used
as tools in different settings.

2 Preliminaries

We use standard pseudocode notation and assume familiarity with hash func-
tions, random oracles, nonce-based encryption, and digital signatures. Collision
resistance is defined by AdvCRH (ACR) = Pr[H(x) = H(y)∧ x �= y : (x, y) ←$ ACR].

2.1 Standard Security Notions in a Multi-key Setting

Key Management Oracles. Throughout this work we consider multi-key secu-
rity notions. Adversaries in security games will be provided with three types
of key management oracles. These oracles will allow (1) sampling new honest
(i.e. challenge) keys, (2) exposing existing honest keys, and (3) adding corrupt
keys of the adversary’s choice. When an honest key is exposed it becomes cor-
rupt, but it was initially sampled from a correct key distribution. In contrast,
when an adversary adds its own corrupt key, such a key could be maliciously
crafted in an arbitrary way. In basic security notions an adversary cannot ben-
efit from crafting corrupt keys, because no challenge queries are permitted with
respect to such keys. This changes for more complex systems built from more
than one keyed primitive when some security is required to hold even if some
underlying secrets are exposed. The ability to use malicious keys was modeled in
prior work on (asymmetric) signcryption [14], and will be needed in this work.

Our security model for symmetric signcryption in Sect. 3 will define two sets
of key management oracles. The set of user oracles U = {NewHonUser,
ExposeUser,NewCorrUser} will manage the keys for a digital signature
scheme, whereas the set of group oracles G = {NewHonGroup,ExposeGroup,
NewCorrGroup} will manage the keys for a nonce-based encryption scheme.
We adopt the same terminology and notation across all of the multi-key secu-
rity notions; each notion for an asymmetric primitive will define a set of user
oracles U, and each notion for a symmetric primitive will define a set of group
oracles G. For consistency, we include oracles for adding corrupt keys even when
an adversary cannot benefit from using them. When simulating user oracles
in a security reduction, we write SimU to denote the set {SimNewHonUser,
SimExposeUser,SimNewCorrUser} and do similarly for group oracles.

Nonce-Based Authenticated Encryption. Consider game GAEAD of Fig. 4
for nonce-based encryption scheme NE and adversary AAEAD. The advantage of

290 J. Jaeger et al.

AAEAD in breaking the AEAD security of NE is defined as AdvAEADNE (AAEAD) = 2 ·
Pr[GAEAD

NE (AAEAD)]−1. The game samples a challenge bit b, and AAEAD is required
to guess it. Adversary AAEAD is given the group oracles G, encryption oracle Enc,
and decryption oracle Dec. Among the group oracles, NewHonGroup creates
new groups with honestly generated NE keys, ExposeGroup reveals the keys of
existing groups, and NewCorrGroup instantiates new corrupt groups with NE
keys of AAEAD’s choice. We require NE to be nonce-misuse resistant [30], meaning
that no challenge message m is allowed to be queried across two distinct calls to
Enc with respect to the same set of g, n, ad. A corrupt group key can only be
used to call Enc with m0 = m1, and a group key cannot be exposed after it has
been used in Enc with m0 �= m1. The decryption oracle Dec takes g, n, c, ad as
input and decrypts this to the corresponding plaintext m. Following the all-in-
one style of [30,32], it returns ⊥ if b = 0, and it returns m otherwise. This oracle
never decrypts a ciphertext with an exposed group’s key, and it never decrypts
ciphertexts previously produced by Enc (with the same g, c, ad).

Game AEAD
NE (AAEAD)

b ←$ {0, 1} ; b ←$ AG,Enc,Dec
AEAD ; Return b = b

Enc(g, n, m0, m1, ad)

require K[g] = ⊥ and |m0| = |m1|
require ∀d ∈ {0, 1}, (g, n, md, ad) Nd

If m0 = m1 then
If group is corrupt[g] then return ⊥
chal[g] ← true

c ← NE.Enc(K[g], n, mb, ad)
N0 ← N0 ∪ {(g, n, m0, ad)}
N1 ← N1 ∪ {(g, n, m1, ad)}
C ← C ∪ {(g, n, c, ad)} ; Return c

Dec(g, n, c, ad)

require K[g] = ⊥ and ¬group is corrupt[g]
require (g, n, c, ad) C
m ← NE.Dec(K[g], n, c, ad)
If b = 0 then return ⊥ else return m

Game KR
NE (AKR)

AG,Enc,Dec,Guess
KR ; Return win

Enc(g, n, m, ad)

require K[g] = ⊥
require (g, n, m, ad) N
c ← NE.Enc(K[g], n, m, ad)
N ← N ∪ {(g, n, m, ad)} ; Return c

Dec(g, n, c, ad)

require K[g] = ⊥
m ← NE.Dec(K[g], n, c, ad)
Return m

Guess(K)

If ∃g : (K[g] = K and
¬group is corrupt[g]) then

win ← true

NewHonGroup(g)

require K[g] = ⊥
K[g] ←$ {0, 1}NE.kl

ExposeGroup(g)

require K[g] = ⊥ and ¬chal[g]
group is corrupt[g] ← true
Return K[g]

NewCorrGroup(g, K)

require K[g] = ⊥
group is corrupt[g] ← true
K[g] ← K

Fig. 4. Left pane: Game defining authenticated-encryption security of a nonce-based
encryption scheme NE. Right pane: Game defining key-recovery security of NE. Bot-
tom pane: Group oracles G = {NewHonGroup,ExposeGroup,NewCorrGroup}
that are provided to an adversary in either game, except that the boxed code only
appears in the AEAD security game.

Symmetric Signcryption and E2EE Group Messaging in Keybase 291

Key-Recovery Security of NE. Consider game GKR of Fig. 4 for nonce-based
encryption scheme NE and adversary AKR. The advantage of AKR in breaking
the KR security of NE is defined as AdvKRNE(AKR) = Pr[GKR

NE (AKR)].

Game SUFCMA
DS (ASUFCMA)

(u, m, s) ←$ AU,Sign
SUFCMA ; If vk[u] = ⊥ then return false

win1 ← ¬user is corrupt[u] ; win2 ← ((u, m, s) S)
win3 ← DS.Ver(vk[u], m, s)
Return win1 and win2 and win3

Sign(u, m)

require sk[u] = ⊥
s ←$ DS.Sig(sk[u], m)
S ← S ∪ {(u, m, s)}
Return s

NewHonUser(u)

require sk[u] = vk[u] = ⊥
(sk[u], vk[u]) ←$ DS.Kg
Return vk[u]

ExposeUser(u)

require sk[u] = ⊥
user is corrupt[u] ← true
Return sk[u]

NewCorrUser(u, sk, vk)

require sk[u] = vk[u] = ⊥
user is corrupt[u] ← true
sk[u] ← sk ; vk[u] ← vk

Fig. 5. Game defining strong unforgeability of a digital signature scheme DS, where
U = {NewHonUser,ExposeUser,NewCorrUser}.

Strong Unforgeability of Digital Signatures. Consider game GSUFCMA

of Fig. 5 for signature scheme DS and adversary ASUFCMA. The advan-
tage of ASUFCMA in breaking the SUFCMA security of DS is defined as
AdvSUFCMA

DS (ASUFCMA) = Pr[GSUFCMA
DS (ASUFCMA)].

3 Symmetric Signcryption

In this section we define syntax and security for multi-user symmetric signcryp-
tion. In symmetric signcryption, a user encrypts messages using their signing key
and a symmetric key shared by a group of users. We want that nobody outside
a group can learn what messages are being encrypted, and nobody at all can
forge a message as having come from someone other than themself.

Syntax. A symmetric signcryption scheme SS specifies algorithms SS.UserKg,
SS.SigEnc, SS.VerDec, where SS.VerDec is deterministic. These algorithm use
syntax (sk, vk) ←$ SS.UserKg, c ←$ SS.SigEnc(g,Kg, u, sku, n,m, ad), and m ←
SS.VerDec(g,Kg, u, vku, n, c, ad). Associated to SS is a group-key length SS.gkl ∈
N, a nonce space SS.NS, a plaintext space SS.MS ⊆ {0, 1}∗, and an associated-
data space SS.AD. The user’s key generation algorithm SS.UserKg returns a key
pair (sk, vk) where sk is a signing key and vk is the corresponding verification
key. The signcryption algorithm SS.SigEnc takes a group’s identifier g ∈ {0, 1}∗

and its symmetric key Kg ∈ {0, 1}SS.gkl, a sender’s identifier u ∈ {0, 1}∗ and
its signing key sku, a nonce n ∈ SS.NS, a plaintext m ∈ SS.MS, and associ-
ated data ad ∈ SS.AD; it returns a signcryption ciphertext c. The deterministic
unsigncryption algorithm SS.VerDec takes g,Kg, u, vku, n, c, ad, where vku is the

292 J. Jaeger et al.

verification key of the sender u; it returns a plaintext m ∈ {0, 1}∗ ∪ {⊥}, where
⊥ indicates a failure to recover a plaintext. We say that SS is deterministic
SS.SigEnc is deterministic. Correctness is defined in the natural way.

3.1 In-Group Unforgeability

The strongest variant of in-group unforgeability requires that an attacker can-
not modify anything about ciphertexts. We also capture weaker variants. For
example, the SealPacket encryption algorithm in Keybase (as defined in Sect. 4)
uses a signing key to bind its ciphertexts to a group’s symmetric key but not to
a group’s identifier. So we parameterize our security definition in order to cap-
ture the type of authenticity that is as restrictive as possible except for allowing
(what can be described as) cross-group forgeries.

IUF Game. Consider game G IUF of Fig. 6, defined for symmetric signcryption
scheme SS, ciphertext-triviality predicate predauthtrivial, and adversary AIUF. The adva-
ntage of AIUF in breaking the IUF security of SS is defined as AdvIUFSS,predauthtrivial

(AIUF) =
Pr[G IUF

SS,predauthtrivial
(AIUF)]. Adversary AIUF is given access to user oracles U, group ora-

cles G, encryption oracle SigEnc, and decryption oracle VerDec. Its goal is to
set the win flag by forging a ciphertext for an honest user.

Among user oracles, NewHonUser creates honest users with honestly gener-
ated signing keys, NewCorrUser creates corrupt users with malicious signing
keys, and ExposeUser exposes signing keys of existing users. Among group
oracles, NewHonGroup creates honest groups with honestly sampled symmet-
ric keys, NewCorrGroup creates corrupt groups with malicious symmetric
keys, and ExposeGroup exposes symmetric keys of existing groups. Oracles
NewHonGroup and NewCorrGroup take as input a set users identifying the
new group’s users; the encryption and decryption oracles then disallow queries
that match a group to a non-member user. The user and group oracles use
tables user_is_corrupt and group_is_corrupt in order to keep track of the users
and groups whose keys are not secure, respectively. The IUF game never checks
group_is_corrupt, deliberately giving the adversary full control over group keys.

The encryption oracle SigEnc takes (g, u, n,m, ad) and returns a ciphertext
c that is produced by running SS.SigEnc(g,K[g], u, sk[u], n,m, ad). Here note that
the group and user keys K[g] and sk[u] are the only two inputs to SS.SigEnc that
are not directly chosen by the adversary at the moment of querying the SigEnc
oracle. At the end of each SigEnc query, the set C is updated to add the
tuple ((g, u, n,m, ad), c) that can be interpreted as containing the input-output
transcript of this query.

The decryption oracle VerDec takes (g, u, n, c, ad) and returns the mes-
sage m that is recovered by running SS.VerDec(g,K[g], u, vk[u], n, c, ad). Keys
K[g], sk[g] are the only inputs to SS.VerDec not directly chosen by the adver-
sary. If m �= ⊥, then the oracle determines if the current oracle query is a
valid forgery and sets the win flag if so. In particular, VerDec builds the tuple
z = ((g, u, n,m, ad), c) with all input and output values of the current decryp-
tion query. It checks z against the set C that contains the input-output behavior

Symmetric Signcryption and E2EE Group Messaging in Keybase 293

Game IUF
SS,predauthtrivial

(AIUF)

AU,G,SigEnc,VerDec
IUF

Return win

SigEnc(g, u, n, m, ad)

require K[g] = ⊥
require sk[u] = ⊥ and u ∈ members[g]
c ←$ SS.SigEnc(g,K[g], u, sk[u], n, m, ad)
C ← C ∪ {((g, u, n, m, ad), c)}
Return c

VerDec(g, u, n, c, ad)

require K[g] = ⊥
require vk[u] = ⊥ and u ∈ members[g]
m ← SS.VerDec(g,K[g], u, vk[u], n, c, ad)
If m = ⊥ then return ⊥
z ← ((g, u, n, m, ad), c)
If predauthtrivial(z, C) then return m
If ¬user is corrupt[u] then win ← true
Return m

Game OAE
SS,predsectrivial,func

sec
out
(AOAE)

b ←$ {0, 1} ; b ←$ AU,G,SigEnc,VerDec
OAE

Return b = b

SigEnc(g, u, n, m0, m1, ad)

require K[g] = ⊥ and |m0| = |m1|
require sk[u] = ⊥ and u ∈ members[g]
require ∀d ∈ {0, 1}, (g, u, n, md, ad) Nd

If m0 = m1 then
If group is corrupt[g] then return ⊥
chal[g] ← true

c ←$ SS.SigEnc(g,K[g], u, sk[u], n, mb, ad)
N0 ← N0 ∪ {(g, u, n, m0, ad)}
N1 ← N1 ∪ {(g, u, n, m1, ad)}
C ← C ∪ {((g, u, n, mb, ad), c)}
Q ← Q ∪ {((g, u, n, m0, m1, ad), c)}
Return c

VerDec(g, u, n, c, ad)

require K[g] = ⊥ and ¬group is corrupt[g]
require vk[u] = ⊥ and u ∈ members[g]
m ← SS.VerDec(g,K[g], u, vk[u], n, c, ad)
If m = ⊥ then return ⊥
z ← ((g, u, n, m, ad), c)
If predsectrivial(z, C) then return funcsecout(z, Q)
If b = 0 then return ⊥ else return m

NewHonUser(u)

require sk[u] = vk[u] = ⊥
(sk[u], vk[u]) ←$ SS.UserKg
Return vk[u]

ExposeUser(u)

require sk[u] = ⊥
user is corrupt[u] ← true
Return sk[u]

NewCorrUser(u, sk, vk)

require sk[u] = vk[u] = ⊥
user is corrupt[u] ← true
sk[u] ← sk ; vk[u] ← vk

NewHonGroup(g, users)

require K[g] = ⊥
K[g] ←$ {0, 1}SS.gkl

members[g] ← users

ExposeGroup(g)

require K[g] = ⊥ and ¬chal[g]
group is corrupt[g] ← true
Return K[g]

NewCorrGroup(g, K, users)

require K[g] = ⊥
group is corrupt[g] ← true
K[g] ← K ; members[g] ← users

Fig. 6. Left pane: Game defining in-group unforgeability IUF of a symmetric signcryp-
tion scheme SS with respect to a ciphertext-triviality predicate predauthtrivial. Right pane:
Game defining out-group authenticated-encryption security OAE of SS with respect
to a ciphertext-triviality predicate predsectrivial and an output-guarding function funcsecout.
Bottom pane: User oracles U = {NewHonUser,ExposeUser,NewCorrUser}
and group oracles G = {NewHonGroup,ExposeGroup,NewCorrGroup} that
are provided to an adversary in either game, except that the boxed code only appears
in the OAE security game.

294 J. Jaeger et al.

predsuftrivial(z, C)

Return z ∈ C

predeuftrivial(z, C)

((g, u, n, m, ad), c) ← z
Return ∃c : ((g, u, n, m, ad), c) ∈ C

predsuf-except-grouptrivial (z, C)

((g, u, n, m, ad), c) ← z
Return ∃g : ((g , u, n, m, ad), c) ∈ C

predsuf-except-usertrivial (z, C)

((g, u, n, m, ad), c) ← z
Return ∃u : ((g, u , n, m, ad), c) ∈ C

Fig. 7. Sample ciphertext-triviality predicates which capture rules for deciding if a
successfully decrypted VerDec query was trivially obtainable or forgeable.

of all the prior encryption queries. If z is determined to be trivially obtainable
from the information in C, then VerDec exits early (with m as its output
value); otherwise it sets the win flag. This check is performed by the ciphertext-
triviality predicate predauthtrivial. We will describe the syntax and the sample variants
of predauthtrivial below.

Ciphertext-Triviality Predicates. The IUF security game is parameterized
by ciphertext-triviality predicate predauthtrivial (we will also parameterize the OAE
game with predauthtrivial). Predicate predauthtrivial takes a tuple z = ((g, u, n,m, ad), c)
and a set C as input, where C contains tuples of the same format. Here z
describes the input-output values of the current query to VerDec oracle and
each element of C contains an input-output transcript of a prior SigEnc oracle
query. Predicate predauthtrivial returns true if z is considered to be trivially forgeable
based on the information in C and false otherwise.

In Fig. 7 we define several ciphertext-triviality predicates. Predicate predsuftrivial

checks if z ∈ C, capturing the strongest possible level of authenticity. This
requires that only prior outputs of SigEnc can be successfully queried to the
VerDec oracle; any other successful decryption query causes the adversary to
win the IUF game. This predicate can be thought of as making the IUF game
capture the “strong” unforgeability of ciphertexts in our group setting. One
could capture existential unforgeability by considering the predicate predeuftrivial

that does not allow the adversary to win by merely producing new ciphertexts
that decrypt to some tuple (g, u, n,m, ad) previously queried to SigEnc. Pred-
icates predsuf-except-grouptrivial and predsuf-except-usertrivial capture the authenticity of schemes
where a ciphertext encrypting (g, u, n,m, ad) is not bound to the group’s iden-
tifier or to the user’s identifier, respectively. We use predsuftrivial, pred

suf-except-group
trivial

and predsuf-except-usertrivial in our security analysis of Keybase. In this work, we do not
use predsuf-except-usertrivial with the IUF game – we need it for OAE.

3.2 Out-Group Authenticated Encryption

The strongest version of the out-group AE security requires that an attacker
outside a chat group can neither learn any information about the exchanged
messages, nor modify the exchanged ciphertexts in any way. We also capture

Symmetric Signcryption and E2EE Group Messaging in Keybase 295

weaker variants of this security notion. For example, the SealPacket encryption
algorithm (as defined in Sect. 4) does not use a group’s symmetric key to explic-
itly bind its ciphertexts to a user’s signing key or a user’s identifier when used in
isolation. So we capture a variant of out-group AE security that is as restrictive
as possible except for allowing an attacker to violate the sender’s authenticity
within any particular group.

OAE Game. Consider game GOAE of Fig. 6 for symmetric signcryption scheme
SS, ciphertext-triviality predicate predauthtrivial, output-guarding function funcsecout,
and adversary AOAE. The advantage in breaking the OAE security of SS is defined
as AdvOAE

SS,predauthtrivial,func
sec
out
(AOAE) = Pr[GOAE

SS,predauthtrivial,func
sec
out
(AOAE)]. Adversary AOAE is

given access to user and group oracles U and G and to the encryption and
decryption oracles SigEnc and VerDec. The goal of the adversary is to guess
the challenge bit b. Our security game is defined in the all-in-one style of [29,32],
where an adversary can learn the challenge bit by forging a ciphertext to its
decryption oracle.

The user and group oracles in the OAE game are defined as in the IUF game,
except it does not allow calling the ExposeGroup oracle to expose the key of a
group that was previously used for a left-or-right challenge-encryption query (as
explained below). The OAE game never checks the contents of user_is_corrupt,
deliberately giving the adversary full control over user keys.

The encryption oracle SigEnc takes (g, u, n,m0,m1, ad) and returns a
ciphertext c by running SS.SigEnc(g,K[g], u, sk[u], n,mb, ad). The group and user
keys K[g] and sk[u] are the only inputs to SS.SigEnc not directly chosen by the
adversary querying the SigEnc oracle (and the encrypted message mb depends
on the challenge bit). The SigEnc query requires that |m0| = |m1| and will
only use insecure group keys for non-challenge encryptions (i.e. for m0 = m1).
This SigEnc oracle captures nonce-misuse resistance [30], using the sets Nd

to prevent trivial wins. At the end of SigEnc queries, the set C is updated
to add the tuple ((g, u, n,mb, ad), c), and the set Q is updated to add the tuple
((g, u, n,m0,m1, ad), c). Here the Q set can contain the input-output “transcript”
of SigEnc queries from the adversary’s point of view, whereas the set C is more
informative because it contains the message that was actually encrypted. We
will explain the purpose of these sets below.

The decryption oracle VerDec takes (g, u, n, c, ad) and returns the message
m output by SS.VerDec(g,K[g], u, vk[u], n, c, ad). Keys K[g], sk[g] are the only
inputs to SS.VerDec not directly chosen by the adversary querying the VerDec
oracle. The VerDec oracle disallows queries with corrupt group keys; if an
adversary knows a group’s key then it can decrypt ciphertexts for the group on
its own. If SS.VerDec recovers a non-⊥ message m and the end of the VerDec
oracle is reached, then the challenge bit is meant to be revealed through returning
m if b = 1 and ⊥ otherwise. However, this intuition is not precise; it depends on
how VerDec responds to queries that are identified as being trivially forgeable.
Similarly to how trivial forgeries were handled in the IUF game, here VerDec
builds z = ((g, u, n,m, ad), c) and uses a ciphertext-triviality predicate predsectrivial

to check z against the set C from SigEnc. If z is considered not trivially obtain-
able from the information in C, then VerDec proceeds to its last instruction

296 J. Jaeger et al.

that returns ⊥ or m depending on the challenge bit. Otherwise, VerDec should
return an output that does not depend on the challenge bit to prevent triv-
ial wins. Such an output is produced by the output-guarding function funcsecout,
i.e. VerDec returns the output of funcsecout(z,Q). We now describe the syntax
and variants of funcsecout.

Output-Guarding Functions. The OAE game can be parameterized by dif-
ferent choices of an output-guarding function funcsecout. We define funcsecout to take
a tuple z = ((g, u, n,m, ad), c) and a set Q as input, where Q contains tuples
with the format ((g, u, n,m0,m1, ad), c). Here z describes the input-output val-
ues of a single query to the VerDec oracle, and each element of C specifies
the input-output of a prior SigEnc oracle query. At a high level, z contains the
message m that was recovered during an ongoing VerDec call, and m is the
only value in z,Q not necessarily known by the adversary. One might want to
define VerDec to return m whenever the input is identified as a trivial forgery,
but m could potentially trivially reveal the challenge bit. So one could roughly
think of funcsecout as the function that should enable VerDec to return m when
possible. However, it should determine – from z and Q – if m would trivially
help the adversary win and then “guard” VerDec against returning this m.

func⊥
out(z, Q)

Return ⊥
funcsilence-with-m1

out [predtrivial](z, Q)

For each ((g, u, n, m0, m1, ad), c) ∈ Q do
If m0 = m1 then

If predtrivial(z, {((g, u, n, m0, ad), c)}) then return m1

If predtrivial(z, {((g, u, n, m1, ad), c)}) then return m1

((g, u, n, m, ad), c) ← z ; Return m

Fig. 8. Sample output-guarding functions func⊥
out and funcsilence-with-m1

out . Function
funcsilence-with-m1

out is parameterized by a ciphertext-triviality predicate predtrivial.

In Fig. 8 we define two output-guarding functions. The function func⊥
out always

returns ⊥. This provides no useful information to the adversary and so captures a
comparatively weaker security notion. The function funcsilence-with-m1

out [predtrivial] is
parameterized by an arbitrary ciphertext-triviality predicate predtrivial and cap-
tures the following logic. For every element in Q that describes a challenge
encryption (i.e. m0 �= m1) performed by SigEnc, this function checks whether
z is trivially forgeable based on the information that the adversary could have
learned from the corresponding response. This is checked if z would be triv-
ially forgeable for both choices of b ∈ {0, 1} or only for only one choice of b.
The output-guarding function returns m1 when this condition passes. If no ele-
ment of Q triggered the above, then the output-guarding function returns the
m contained in z, i.e. the actual message recovered in VerDec.

The Use of funcsilence-with-m1
out in OurWork. We target funcsilence-with-m1

out [predtrivial]
as the output-guarding function that provides the strongest possible security guar-
antees for the schemes that we analyze in this work. For every predtrivial we use,

Symmetric Signcryption and E2EE Group Messaging in Keybase 297

BoxMessage.SigEnc(g, Kg, u, sku, n, mbody, ad) // where n = (nbody, nheader)

cbody ← XSalsa20-Poly1305.Enc(Kg, nbody, mbody)
hbody ← SHA-256(nbody cbody)
mheader ad, u, g, hbody

cheader ← SealPacket.SigEnc(g, Kg, u, sku, nheader, mheader, ε)
Return (cbody, cheader)

SealPacket.SigEnc(g, Kg, u, sku, n, m, ad) // where ad = ε

h ← SHA-512(m) ; ms ← “Keybase-Chat-2” Kg, n, h
s ← Ed25519.Sig(sku, ms) ; me ← s m
c ← XSalsa20-Poly1305.Enc(Kg, n, me)
Return c

Fig. 9. The BoxMessage and SealPacket algorithms used in Keybase for encrypting chat
messages from a user to a group. Here g is the group’s identifier, Kg is the symmetric
key shared by all group members, u is the sender’s identifier, and sku is the sender’s
signing key.

predtrivial(z, {((g, u, n,m∗, ad), c)}) can only be true when z contains m∗. So for ele-
ments of Q with m0 �= m1 only one of the two if conditions can pass, meaning it
is necessary to silence the output. Otherwise the adversary can trivially win the
game by building z,Q and evaluating predtrivial to distinguish between b = 0 or
b = 1. (This attack assumes the adversary can always compute predtrivial(z, C) for
SS, in spite of not knowing the challenge bit b that is needed to explicitly build C.
This is true in all of our proofs.)

3.3 Symmetric Signcryption from Encryption and Signatures

In the full version, we introduce a provably secure version of Sign-then-Encrypt
(StE). Its signcryption algorithm signs s ←$ DS.Sig(sku, 〈g, n,m, ad〉) then out-
puts ciphertext c ← NE.Enc(Kg, n, s ‖m, 〈u, ad〉). We prove bounds of the form
AdvIUFStE,predsuftrivial

(AIUF) ≤ AdvSUFCMA
DS (ASUFCMA) and AdvOAE

StE,predsuftrivial,func
⊥
out
(AOAE) ≤

AdvAEADNE (AAEAD).

4 Keybase Chat Encryption as Symmetric Signcryption

We analyze the security of the cryptographic algorithm BoxMessage that Key-
base uses to encrypt and authenticate chat messages from a sender to a
group. BoxMessage combines multiple cryptographic primitives to offer end-
to-end encrypted messaging. In particular it uses XSalsa20-Poly1305, SHA-256,
SHA-512, and Ed25519 as building blocks. Within BoxMessage, the SealPacket
subroutine encrypts and authenticates message headers. We show the pseu-
docode for these algorithms in Fig. 9. We omit the decryption algorithms

298 J. Jaeger et al.

BoxMessage.VerDec and SealPacket.VerDec from Fig. 9 as Keybase’s implemen-
tation of these algorithms follows naturally from the corresponding SigEnc algo-
rithms. We define the VerDec algorithms explicitly in our formalazation of
BoxMessage and SealPacket.

To formalize the security of BoxMessage, it is crucial to first identify the for-
mal primitive underlying this algorithm and the security goals it aims to achieve.
None of the existing primitives in literature seem to aptly model this object, but
it is naturally captured by the symmetric signcryption primitive that we defined
in Sect. 3. Similarly, SealPacket can also be modeled as a symmetric signcryp-
tion scheme from which BoxMessage is built. In this section, we present modular
constructions that cast BoxMessage and SealPacket as symmetric signcryption
schemes. We first provide a general overview of the two algorithms.

The BoxMessage Chat-Encryption Algorithm. The BoxMessage.SigEnc
algorithm accepts the following inputs – group’s identifier g, symmetric group
key Kg, sender identifier u, sender signing key sku, nonce n = (nbody, nheader),
message mbody, and associated data ad. It performs the following steps. First it
calls XSalsa20-Poly1305.Enc to encrypt mbody using key Kg and nonce nbody, and
obtains the ciphertext cbody. It builds header plaintext mheader as 〈ad, u, g, hbody〉
(a unique encoding of ad, u, g, and hash hbody = SHA-256(nbody ‖ cbody)). It
then invokes SealPacket.SigEnc to encrypt mheader using sku, Kg, and nheader,
and obtains the ciphertext cheader. Finally, it returns (cbody, cheader). To decrypt
ciphertext (cbody, cheader), the algorithm BoxMessage.VerDec (not shown) ensures
that cheader decrypts into the header plaintext mheader that is equal to the unique
string 〈ad, u, g, hbody〉 composed from the inputs of BoxMessage.VerDec. In Key-
base, the sender identifier u is their username and the group identifier g is con-
structed canonically from the usernames of the group members.

The SealPacket Header-Encryption Algorithm. The SealPacket algorithm
accepts the same inputs as BoxMessage, except it does not take associated data
ad as input. We capture this by setting SealPacket.AD = {ε}, meaning ad =
ε is always true When SealPacket.SigEnc is called from BoxMessage.SigEnc, it
encrypts chat headers. To encrypt m with nonce n, it starts by hashing m to
obtain h = SHA-512(m). Then it builds an input ms to the Ed25519 signature
scheme by concatenating the prefix string “Keybase-Chat-2” with the unique
encoding 〈Kg, n, h〉 of Kg, n, and h. It invokes Ed25519.Sig to produce a signature
s over ms using the signing key sku. Finally it calls XSalsa20-Poly1305.Enc to
encrypt me = s ‖m using the key Kg and nonce n, and obtains the ciphertext c
which is returned To decryption ciphertext c, the SealPacket.VerDec algorithm
(not shown) first recovers me from c and then parses me to obtain s ‖m. Note
that me can be unambiguously parsed into s ‖m because Ed25519 produces
fixed-length signatures. Then SealPacket.VerDec reconstructs ms and ensures
that s verifies as a valid signature for ms under the sender’s public key vku. We
study the security of SealPacket in the context of the BoxMessage algorithm, but
this is not the only context in which Keybase uses SealPacket. It is also used
independently for the encryption of long strings and attachments. In the full
version we detail other uses of SealPacket in Keybase.

Symmetric Signcryption and E2EE Group Messaging in Keybase 299

Analysis Challenges. The descriptions of BoxMessage and SealPacket that we
have given so far already present the following challenges in their analysis.

Key Reuse in BoxMessage. The same symmetric key Kg is used in BoxMessage
and SealPacket. This violates the principle of key separation, which says that
one should always use distinct keys for distinct algorithms and modes of opera-
tion. Without context separation, this potentially allows an attacker to forward
ciphertexts produced by one algorithm to another. There is no explicit context
separation, so our analysis will “extract” separation by making assumptions of
Ed25519 and using low-level details of how messages are encoded.

Cyclic Key Dependency in SealPacket. The message ms signed in SealPacket
is derived from the symmetric group key Kg which is also used to encrypt the
signature. This produces what is known as an “encryption cycle”, a generalization
of encrypting one’s own key [19]. Standard AEAD security does not guarantee
security when messages being encrypted depend on the key used for encryption.
We use an extension of AEAD security allowing key-dependent messages and
prove (in the random oracle model) that XSalsa20-Poly1305 achieves it for the
particular key-dependent messages required.

Lack of Group/User Binding in SealPacket. By looking at the SealPacket algo-
rithm in Fig. 9 we can see that the inputs u and g are never used by the algorithm.
This means that a SealPacket ciphertext does not, in general, bind to the group’s
or user’s identifiers. This could potentially allow a malicious user to impersonate
another group member. When SealPacket is used within BoxMessage, it is always
invoked on a message that contains the group’s and the user’s identifier, so the
lack of group/user binding in SealPacket is not consequential there.

Nonce Repetition in Keybase. XSalsa20-Poly1305 is not secure when nonces
repeat so our security analysis disallows nonce repetition between BoxMessage
and/or SealPacket. The Keybase implementation uses uniformly random nonces,
making collisions highly unlikely. Moreover, our results show that BoxMessage
is robust to accidental non-uniformity in randomness as long nonces do not
repeat. The XSalsa20-Poly1305 authenticated encryption scheme combines the
XSalsa20 stream cipher and the Poly1305 one-time message authentication code.
The stream is derived from the key and nonce and is used for keying Poly1305,
so if nonces repeat then privacy and integrity may both be broken.

Message Encryption Scheme BM. Our modular symmetric signcryption con-
struction BM models the BoxMessage chat-encryption algorithm as follows.

Construction 1. Let M ⊆ {0, 1}∗. Let NE be a nonce-based encryption scheme.
Let H be a hash function. Let SP be a deterministic symmetric signcryp-
tion scheme. Then BM = BOX-MESSAGE-SS[M,NE,H,SP] is the determinis-
tic symmetric signcryption scheme as defined in Fig. 10, with message space
BM.MS = M and associated-data space BM.AD = {0, 1}∗. We require the fol-
lowing. The group key taken by BM is used as the key for both NE and SP, so
BM.gkl = NE.kl = SP.gkl. The nonce taken by BM is a pair containing a separate
nonce for each of NE and SP, so BM.NS = {0, 1}NE.nl × SP.NS.

300 J. Jaeger et al.

BM.UserKg
(sk, vk) ←$ SP.UserKg ; Return (sk, vk)

BM.SigEnc(g, Kg, u, sku, n, mbody, ad) // Kg ∈ {0, 1}256

(nbody, nheader) ← n // nbody, nheader ∈ {0, 1}192

// Encrypt the message body
cbody ← NE.Enc(Kg, nbody, mbody) // NE = XSalsa20-Poly1305
// Create and encrypt the message header
hbody ← H(nbody cbody) ; mheader ad, u, g, hbody // H = SHA-256
cheader ← SP.SigEnc(g, Kg, u, sku, nheader, mheader, ε) // SP = SEAL-PACKET-SS
Return (cbody, cheader)

BM.VerDec(g, Kg, u, vku, n, c, ad)

(nbody, nheader) ← n ; (cbody, cheader) ← c
// Recover and verify the message header
mheader ← SP.VerDec(g, Kg, u, vku, nheader, cheader, ε)
hbody ← H(nbody cbody)
If mheader = ad, u, g, hbody then return ⊥
// Recover and return the message body
mbody ← NE.Dec(Kg, nbody, cbody) ; Return mbody

Fig. 10. Symmetric signcryption scheme BM = BOX-MESSAGE-SS[M,NE,H, SP]. The
right-aligned comments provide a guideline for modeling Keybase.

SP.UserKg
(sk, vk) ←$ DS.Kg ; Return (sk, vk)

SP.SigEnc(g, Kg, u, sku, n, m, ad) // Kg ∈ {0, 1}256, n ∈ {0, 1}192, ad = ε

h ← H(m) // H = SHA-512
ms ← “Keybase-Chat-2” Kg, n, h
s ← DS.Sig(sku, ms) ; me ← s m // DS = Ed25519
c ← NE.Enc(Kg, n, me) ; Return c // NE = XSalsa20-Poly1305

SP.VerDec(g, Kg, u, vku, n, c, ad) // ad = ε

me ← NE.Dec(Kg, n, c)
If me = ⊥ then return ⊥
s m ← me // s.t. |s| = DS.sl, |m| ≥ 0
h ← H(m)
ms ← “Keybase-Chat-2” Kg, n, h
If ¬DS.Ver(vku, ms, s) then return ⊥ else return m

Fig. 11. Symmetric signcryption scheme SP = SEAL-PACKET-SS[H,DS,NE]. The
right-aligned comments provide a guideline for modeling Keybase.

Header Encryption Scheme SP. Our modular symmetric signcryption con-
struction SP models the header-encryption algorithm SealPacket as follows.

Symmetric Signcryption and E2EE Group Messaging in Keybase 301

Construction 2. Let H be a hash function. Let DS be a deterministic digi-
tal signature scheme. Let NE be a nonce-based encryption scheme. Then SP =
SEAL-PACKET-SS[H,DS,NE] is the symmetric signcryption scheme as defined in
Fig. 11, with group-key length SP.gkl = NE.kl, nonce space SP.NS = {0, 1}NE.nl,
message space SP.MS = {0, 1}∗, and associated-data space SP.AD = {ε}.

5 Security Analysis of Keybase Chat Encryption

In this section we analyze the security of the symmetric signcryption schemes BM
and SP defined in Sect. 4. In Sect. 5.1, we show the in-group unforgeability of BM
and SP. In Sects. 5.2 and 5.3, we show the out-group AE security of BM and SP.
This requires us to introduce two weaker variants of the OAE security notion,
one each for BM and SP, by relaxing the level of nonce-misuse requirements
of the OAE game defined in Fig. 6. The SP analysis requires two new security
notions, M-sparsity for digital signature schemes and authenticated encryption
for key-dependent messages for nonce-based encryption schemes.

5.1 In-Group Unforgeability of BoxMessage and SealPacket

In-Group Unforgeability of BoxMessage. In-group unforgeability of BM =
BOX-MESSAGE-SS[M,NE,H,SP] reduces to the security of SP and H. A BM
ciphertext is a pair (cbody, cheader) comprising an NE ciphertext cbody and an SP
ciphertext cheader, which encrypts 〈ad, u, g, hbody〉. The adversary’s objective is
to forge a BM ciphertext by either forging cbody or cheader. The adversary can
use a corrupt group key Kg, so cbody ciphertexts are easily forged. However, this
does not suffice to produce a BM forgery because cheader encrypts the hash of
cbody. Therefore, it would need to forge a corresponding cheader ciphertext. The
IUF security of SP prevents the adversary from forging cheader ciphertexts. As
a result, the adversary can only reuse honestly generated cheader from its prior
queries to SigEnc in its forgery attempts. Since an honest cheader effectively
commits to ad, u, g, hbody, and nheader, using an old cheader to construct a new
BM ciphertext requires finding a new NE nonce-ciphertext pair that hashes to
the same hbody under H. Collision resistance of H prevents this. The formal proof
of Theorem 1 is in the full version.

Theorem 1. Let BM = BOX-MESSAGE-SS[M,NE,H,SP] be the symmetric
signcryption scheme built from some M,NE,H,SP as specified in Construction 1.
Let predsuftrivial and predsuf-except-grouptrivial be the ciphertext-triviality predicates as defined
in Fig. 7. Let AIUF-of-BM be any adversary against the IUF security of BM with
respect to predsuftrivial. Then we can build adversaries AIUF-of-SP and ACR such that

AdvIUFBM,predsuftrivial
(AIUF-of-BM) ≤ AdvIUF

SP,predsuf-except-grouptrivial

(AIUF-of-SP) + AdvCRH (ACR).

In-Group Unforgeability of SealPacket. In-group unforgeability of the sym-
metric signcryption scheme SP = SEAL-PACKET-SS[H,DS,NE] reduces to the

302 J. Jaeger et al.

Fig. 12. A summary of the reductions that we provide for the wOAE security of SP
and the bwOAE security of BM.

security of DS and H. We parameterize the IUF security of SP to aim for a relaxed
version of strong unforgeability because SP ciphertexts do not directly depend
on the group’s identifier g (even though it depends on the group key Kg).

An SP ciphertext encrypts s ‖m under Kg. The adversary can use a corrupt
Kg, but forging an SP ciphertext still requires the signature s. So the adversary
must either forge a new signature or reuse an honest signature from a prior
SigEnc query. The SUFCMA security of DS prevents the former. An honest
signature s is computed over “Keybase-Chat-2” ‖ 〈Kg, n, h〉 where h is the hash of
the message m. Hence reusing an honest signature could use a new SP ciphertext
that encrypts s ‖m with Kg, n, but the tidiness of NE prevents this. So reusing
an honest signature requires finding a new message that hashes to the same h
under H. Collision resistance of H prevents this. The formal proof of Theorem 2
is in the full version.

Theorem 2. Let SP = SEAL-PACKET-SS[H,DS,NE] be the symmetric sign-
cryption scheme built from some H, DS, and NE as specified in Construction
2. Let predsuf-except-grouptrivial be the ciphertext-triviality predicate as defined in Fig. 7.
Let AIUF-of-SP be any adversary against the IUF security of SP with respect to
predsuf-except-grouptrivial . Then we can build adversaries ASUFCMA and ACR such that

AdvIUF
SP,predsuf-except-grouptrivial

(AIUF-of-SP) ≤ AdvSUFCMA
DS (ASUFCMA) + AdvCRH (ACR).

5.2 Out-Group AE Security of BoxMessage

Out-group AE security of BM = BOX-MESSAGE-SS[M,NE,H,SP] reduces to
the security of its underlying primitives as summarized by the rightmost arrows
of Fig. 12. At a high level, we show that BM achieves a variant of OAE secu-
rity (bwOAE) if SP achieves another variant of OAE security (wOAE) and H is
collision-resistant. Because NE = XSalsa20-Poly1305 in Keybase (which is not
nonce-misuse resistant), both variants disallow nonce repetition.

Intuition. An BM ciphertext is a pair (cbody, cheader) consisting of an NE cipher-
text cbody and an SP ciphertext cheader. One way the adversary could learn the
challenge bit is by querying its VerDec oracle on a forged BM ciphertext that
decrypts successfully. In order to accomplish that, the adversary must either
forge the underlying SP ciphertext cheader or reuse an honestly generated cheader.

Symmetric Signcryption and E2EE Group Messaging in Keybase 303

The former is prevented by the out-group AE security of SP. The latter is pre-
vented by the collision resistance of H because of the following. An honestly
generated cheader effectively commits to ad, u, g, hbody, and nheader. In order
to reuse cheader, an adversary must find a new NE nonce-ciphertext pair that
hashes to hbody, hence producing a collision. It follows that the VerDec oracle
is essentially useless to the adversary; it can only serve to decrypt non-challenge
ciphertexts that were previously returned by SigEnc. So it remains to show
that the adversary cannot learn the challenge bit solely based on the BM cipher-
texts that it receives from SigEnc. For any ciphertext (cbody, cheader) returned by
SigEnc, the SP ciphertext cheader encrypts a hash of cbody but otherwise does not
depend on the challenge bit. So the adversary gains no advantage from observing
cheader. Finally, the AEAD security of NE guarantees that cbody does not reveal
the challenge bit.

Because the header encryption scheme SP and the body encryption scheme
NE use the same symmetric key Kg, we require integrity of SP ciphertexts pro-
duced using Kg hold even when the adversary can obtain other NE encryptions
under the same key. Similarly, the NE ciphertexts generated using the symmet-
ric key Kg should be indistinguishable even when the adversary can obtain SP
encryptions and decryptions under the same key. We introduce a variant of the
OAE game in Definition 3 to capture these joint requirements.

Restrictions on Nonce Misuse in BM and SP. We now define new variants
of out-group AE security for our analysis of Keybase. The BM and SP schemes in
Keybase are not nonce-misuse resistant so we modify the OAE game to disallow
nonce repetition. We start with wOAE security for SP.

Definition 1. Let SS be a symmetric signcryption scheme. Consider the OAE
security game for SS of Fig. 6 (w.r.t. any predsectrivial, func

sec
out). We define a new

variant of this game as follows. The instruction preventing nonce misuse
require ∀d ∈ {0, 1}, (g, u, n, md, ad) �∈ Nd is replaced with require (g, n) �∈ N .

In addition, the instructions updating the nonce set
N0 ← N0 ∪ {(g, u, n, m0, ad)}
N1 ← N1 ∪ {(g, u, n, m1, ad)} are replaced with N ← N ∪ {(g, n)}.

We denote the resulting game (and security notion) by wOAE. It is a weak variant
of OAE that does not require nonce-misuse resistance. We define an adversary’s
advantage in breaking the wOAE security of SS in the natural way.

Now we define bwOAE security for BM. The nonce of BM is a pair of two
separate nonces n = (nbody, nheader). The bwOAE security game independently
applies the group-nonce uniqueness condition introduced in Definition 1 to each
of (g, nbody) and (g, nheader), and it also requires that nbody �= nheader. This is a nec-
essary because BM calls NE.Enc on (g, nbody), and SP calls NE.Enc on (g, nheader).
In Keybase both NE schemes are XSalsa20-Poly1305 using the same key.

Definition 2. Let X ,Y be any sets. Let SS be a symmetric signcryption scheme
with the nonce space SS.NS = X × Y. Consider the OAE security game for SS
of Fig. 6 (w.r.t. any predsectrivial, func

sec
out). We define a new variant of this game as

follows. The instruction preventing nonce misuse

304 J. Jaeger et al.

require ∀d, (g, u, n, md, ad) �∈ Nd is replaced with
(nbody, nheader) ← n
If nbody = nheader then return ⊥
If (g, nbody) ∈ N then return ⊥
If (g, nheader) ∈ N then return ⊥.

In addition, the instructions updating the nonce set
N0 ← N0 ∪ {(g, u, n, m0, ad)}
N1 ← N1 ∪ {(g, u, n, m1, ad)} are replaced with N ← N ∪ {(g, nheader)}

N ← N ∪ {(g, nbody)}.
We denote the resulting game (and security notion) by bwOAE. Beyond being
defined for SS with a bipartite nonce space, this variant of OAE is weak in that
it does not require nonce-misuse resistance. We define an adversary’s advantage
in breaking the bwOAE security of SS in the natural way.

The Joint Security Required of SP and NE. Here we define the security
notion required from SP when it is used in the presence of arbitrary NE encryp-
tions under the same symmetric group keys that are used by SP. We call this
notion wOAE[Enc[M,NE]]. It is a parameterized version of the wOAE game
defined in Definition 1. We use it for our analysis of the bwOAE security of BM.

At the start of this section we discussed that the security reduction for BM
intuitively requires that it is hard to forge an SP ciphertext (without knowing the
corresponding group key Kg) in the presence of NE encryptions. Our definition
of wOAE[Enc[M,NE]] captures this by providing the adversary access to an NE
encryption oracle Enc in addition to the SigEnc and VerDec oracles in the
out-group AE security game of SP. We stress that proving the security of BM
does not, in principle, require us to provide the SigEnc oracle to the adversary.
We choose to require this stronger level of security from SP because of the
following reasons. On the one hand, in Sect. 4 we explained why it is beneficial
to prove that SP satisfies a strong security notion, going beyond what is required
by BM. On the other hand, this stronger security notion that we require from
SP will not come at the cost of introducing additional assumptions or achieving
looser concrete-security bounds in our analysis of BM.

Definition 3. Let SS be a symmetric signcryption scheme. Let M ⊆ {0, 1}∗.
Let NE be a nonce-based encryption scheme. Consider the wOAE security game
for SS as defined in Definition 1 (w.r.t. any predsectrivial, funcsecout). We define a
variant of this game by adding an oracle that is defined as follows.

Enc[M,NE](g, nbody, mbody,0, mbody,1)

require K[g] �= ⊥ and |mbody,0| = |mbody,1|
require (g, nbody) �∈ N and mbody,0, mbody,1 ∈ M
If mbody,0 �= mbody,1 then

If group_is_corrupt[g] then return ⊥
chal[g] ← true

cbody ← NE.Enc(K[g], nbody, mbody,b)
N ← N ∪ {(g, nbody)} ; Return cbody

It shares set N , bit b, and the tables K, group_is_corrupt, chal with the rest
of the security game. We denote the resulting game (and security notion) by
wOAE[Enc[M,NE]]. It simultaneously requires out-group AE security of SS

Symmetric Signcryption and E2EE Group Messaging in Keybase 305

(without nonce repetition) and an IND-style security of NE. We define an adver-
sary’s advantage in breaking this security notion in the natural way.

Note that we require the messages that the adversary queries to the Enc
oracle to be in M. Intuitively, in our security analysis of BM, an adversary will
only be able to obtain NE encryptions of messages in the message space of BM.
So in the security reduction for BM we will use M = BM.MS.

Out-Group AE Security of BoxMessage. We prove bwOAE security of BM.
The formal proof of Theorem 3 is in the full version.

Theorem 3. Let BM = BOX-MESSAGE-SS[M,NE,H,SP] be the symmetric
signcryption scheme built from some M,NE,H,SP as specified in Construc-
tion 1. Let predsuftrivial and predsuf-except-usertrivial be the ciphertext-triviality predicates
as defined in Fig. 7. Let func⊥

out be the output-guarding functions as defined in
Fig. 8. Let wOAE[Enc[M,NE]] be the security notion as defined in Definition
3. Let AbwOAE-of-BM be any adversary against the bwOAE security of BM with
respect to predsuftrivial and funcsecout. Then we build adversaries AwOAE-of-SP and ACR

such that

AdvbwOAE
BM,predsuftrivial,func

⊥
out
(AbwOAE-of-BM) ≤ Adv

wOAE[Enc[M,NE]]

SP,predsuf-except-usertrivial ,func⊥
out

(AwOAE-of-SP)

+ AdvCRH (ACR).

Note that we prove the security of BM with respect to predsuftrivial and func⊥
out.

As discussed in Sect. 3, predsuftrivial essentially requires BM to have ciphertext
integrity. Our result relies on the security of SP with respect to predsuf-except-usertrivial

and func⊥
out. Recall that predsuf-except-usertrivial basically requires SP to have ciphertext

integrity, except it allows for an honest ciphertext to be successfully decrypted
even with respect to a wrong user identifier; the latter is not considered a “valid”
forgery. This does not translate to an attack against BM because it only uses
SP to encrypt header messages mheader = 〈ad, u, g, hbody〉 that contain u, and
the BM.VerDec algorithm verifies that the group identifier it received as input
matches the one that was parsed from mheader.

5.3 Out-Group AE Security of SealPacket

Out-group AE security of SP = SEAL-PACKET-SS[H,DS,NE] reduces to the
security NE and DS (see Fig. 12). In particular, wOAE[Enc[M,NE]] security
holds if NE provides authenticated encryption for key-dependent messages and
DS produces M-sparse signatures. We introduce these security notions below.

Intuition. Recall that in the wOAE[Enc[M,NE]] game, the adversary is pro-
vided with (un)signcryption oracles SigEnc and VerDec for SP, and an encryp-
tion oracle Enc for NE. Each of these returns output based on a challenge bit
that is shared between them. The adversary can use three approaches to learn
the challenge bit. It can (a) attempt SP forgeries by calling its SP decryption

306 J. Jaeger et al.

oracle VerDec; (b) make left-or-right queries to its NE encryption oracle Enc;
(c) make left-or-right queries to its SP encryption oracle SigEnc.

The adversary is allowed to expose users’ signing keys so it could attempt
to forge an SP ciphertext using an exposed DS signing key and its Enc oracle.
The adversary would then query the resulting ciphertext to its VerDec oracle
in an attempt to trivially win the game. We show that the adversary is unable
to accomplish this. The Enc oracle is defined to only produce encryptions of the
messages from the set M. In the implementation of Keybase, the messages from
M have a specific encoding; we will rely on this property in our proof. In contrast,
any ciphertext successfully decrypted by VerDec must encrypt a message of
the form me = s ‖m where s is a valid DS signature. So the adversary needs to
find a signature s that is consistent with the message encoding that is permitted
by Enc. The M-sparseness of DS signatures, which we formalize below, prevents
this. It follows that the VerDec oracle does not help the adversary to win the
game by querying ciphertexts that were previously returned by Enc.1

Now we can reimagine the Enc and SigEnc oracles as producing NE encryp-
tions of key-dependent messages. The SigEnc oracle requires messages to be
derived as a specific function of the symmetric group key Kg. The Enc oracle
can be thought of as allowing to messages that are derived from “constant” func-
tions, meaning the chosen messages do not depend on Kg. We can also view the
VerDec oracle as an NE decryption oracle that prevents the adversary from triv-
ially winning the game by merely querying the ciphertexts it previously obtained
from either Enc or SigEnc. We define the AE security of NE for key-dependent
messages and show that the adversary can only win the wOAE[Enc[M,NE]]
game against SP if it can win the KDMAE game against NE.

Reliance on the Message Encoding in Keybase. We mentioned in the intu-
ition that we rely on the encoding of messages in M in our proof. We emphasize
that avoiding this dependency is non-trivial. The cyclic key dependency within
SP and the key reuse between BM and SP pose significant challenges when con-
sidering the possibility of an alternate proof.

M-sparse Signatures. Consider game GSPARSE of Fig. 13, defined for a dig-
ital signature scheme DS, a set M ⊆ {0, 1}∗, and an adversary ASPARSE. The
advantage of ASPARSE in breaking the M-SPARSE security of DS is defined as
AdvSPARSEDS,M (ASPARSE) = Pr[GSPARSE

DS,M (ASPARSE)]. Intuitively, this game captures the
inability of an adversary to produce a signature that conforms to the message
space M even though the adversary chooses the public key used to verify the
signature. More formally, the adversary wins if it is able to return (vk,m, s, γ)
such that s verifies as a signature over the message m under the verification key
vk and s ‖ γ ∈ M. We stress that the adversary is allowed to choose an arbitrary
– possibly malformed – verification key. The adversary is not required to know
the corresponding signing key, and such a key may in fact not exist.

1 The wOAE[Enc[M,NE]] game itself also prevents the adversary from trivially win-
ning by querying VerDec on a ciphertext that was previously returned by SigEnc.

Symmetric Signcryption and E2EE Group Messaging in Keybase 307

We verify our intuition about the M-sparsity of the Ed25519 signature
scheme underlying SP in the full version. Ed25519 is a deterministic signa-
ture scheme introduced by Bernstein, Duif, Lange, Schwabe, and Yang in [17]. It
is obtained by applying the commitment-variant of the Fiat-Shamir transform
to an identification scheme. Therefore a signature produced by Ed25519 consists
of the commitment and response of the identification scheme. The adversary
can only win the SPARSE game of Ed25519 if it is able to produce an accepting
conversation transcript for the identification scheme such that the corresponding
commitment conforms to M. Commitments in the identification scheme under-
lying Ed25519 are elements of a prime-order group. We prove that finding such
a commitment is only possible if the adversary is able to find a group element
and its discrete logarithm such that the group element is in M which we show
is hard in the generic group model.

SPARSE
DS,M (ASPARSE)

(vk, m, s, γ) ←$ ASPARSE

win0 ← DS.Ver(vk, m, s)
win1 ← (s γ ∈ M)
Return win0 and win1

Fig. 13. Game defining M-sparsity of a
digital signature scheme DS for a set M.

The Message Space M. Keybase
uses the MessagePack serialization for-
mat [21] to encode plaintext mes-
sages. Plaintext messages are repre-
sented using a custom data structure
in Keybase. So the serialized Mes-
sagePack encoding of a plaintext is a
byte sequence that not only stores the
plaintext itself but also some metadata
about the data structure that represents
it. For messages encrypted by BM, the metadata about the data structure hap-
pens be located in the first 17 bytes of the encoding. This means that the
encoding of every plaintext encrypted by BM contains a fixed 17-byte prefix.
Let this 17-byte prefix be pre. Then we define the message space of BM by
BM.MS = {pre ‖ ν

∣
∣ ν ∈ {0, 1}∗}.

Message-Deriving Functions. Let φ be any function that takes a symmetric
key K as input and uses it to derive and return some message m. We call φ a
message-deriving function and will consider some classes (i.e. sets) Φ of message-
deriving functions. We require that the length of an output returned by φ must
not depend on its input; we denote the output length of φ by ‖φ‖.

AE Security of NE for Key-Dependent Messages. Consider game GKDMAE

of Fig. 14, defined for a nonce-based encryption scheme NE, a class of message-
deriving functions Φ, and an adversary AKDMAE. The advantage of AKDMAE

in breaking the Φ-KDMAE security of NE is defined as AdvKDMAE
NE,Φ (A) = 2 ·

Pr[GKDMAE
NE,Φ (A)]− 1. This game can be thought of as a modification of the AEAD

security game for NE (Fig. 4) which does not require nonce-misuse resistance.
The core difference is that the Enc oracle now takes message-deriving functions
φ0, φ1 ∈ Φ as input. The challenge message is derived as mb ← φb(K[g]) for
b ∈ {0, 1}, where K[g] is the symmetric group key associated to g. Trivial attacks
are prevented by requiring that φ0, φ1 have the same output length and that
φ0 = φ1 whenever Enc is called for a corrupt group. Our definition is based
on prior work [6,12,13,19]. There are strong impossibility results [12] regarding

308 J. Jaeger et al.

Game KDMAE
NE,Φ (AKDMAE)

b ←$ {0, 1} ; b ←$ AG,Enc,Dec
KDMAE

Return b = b

Dec(g, n, c)

require K[g] = ⊥ and ¬group is corrupt[g]
require (g, n, c) C
m ← NE.Dec(K[g], n, c)
If b = 0 then return ⊥ else return m

Enc(g, n, φ0, φ1)

require K[g] = ⊥ and (g, n) N
require φ0, φ1 ∈ Φ and φ0 = φ1

If φ0 = φ1 then
If group is corrupt[g] then return ⊥
chal[g] ← true

mb ← φb(K[g]) ; c ← NE.Enc(K[g], n, mb)
N ← N ∪ {(g, n)} ; C ← C ∪ {(g, n, c)}
Return c

NewHonGroup(g)

require K[g] = ⊥
K[g] ←$ {0, 1}NE.kl

ExposeGroup(g)

require K[g] = ⊥ and ¬chal[g]
group is corrupt[g] ← true
Return K[g]

NewCorrGroup(g, K)

require K[g] = ⊥
group is corrupt[g] ← true
K[g] ← K

Fig. 14. Game defining authenticated-encryption security of NE for Φ-key-
dependent messages, where Φ is a class of message-deriving functions and G =
{NewHonGroup,ExposeGroup,NewCorrGroup}.

the existence of schemes that are secure with respect to very large classes of
message-deriving functions Φ. We sidestep these results by considering a very
narrow and simple class ΦSP that we define below.

The Class of Message-Deriving Functions ΦSp Earlier we discussed that in
the wOAE[Enc[M,NE]] security game for SP, the SigEnc and Enc oracles can
be thought of as returning an NE ciphertext that encrypts an output of some
message-deriving function. We now define the class ΦSP containing all message-
deriving functions that are used by either SigEnc or Enc.

Construction 3. Let NE be a nonce-based encryption scheme. Let H be a hash
function. Let DS be a digital signature scheme. Let SIGENC-DER and ENC-DER
be the parameterized message-deriving functions that are defined as follows, each
taking an NE key K ∈ {0, 1}NE.kl as input.

SIGENC-DER[NE,H,DS, m, n, sk](K)

h ← H(m) ; ms ← “Keybase-Chat-2” ‖ 〈K, n, h〉
s ← DS.Sig(sk, ms) ; me ← s ‖ m ; Return me

ENC-DER[m](K)

Return m

Then ΦSP = MSG-DER-FUNC[NE,H,DS] is the class of all message-deriving
functions of these forms.

Note that SIGENC-DER only uses K as a part of the message ms signed
by DS.Sig. Keybase instantiates DS with Ed25519 which computes two SHA-512
hashes of ms (mixed with other inputs). The resulting signature does not depend
on ms in any other way. Using this observation and an indifferentiability result of
Bellare, Davis, and Di [10] (for SHA-512 with output reduced modulo a prime) we
capture SIGENC-DER as a special class of message-deriving functions for which
we can prove security in the random oracle model.

Symmetric Signcryption and E2EE Group Messaging in Keybase 309

KDMAE Security for Messages Derived from a Hashed Key. Let H be
a hash function. Let Φ be a class of message-deriving functions such that each
φ ∈ Φ on input K is only allowed to derive messages from the hash value H(K),
and never directly from K. We will roughly show that every AEAD-secure nonce-
based encryption scheme NE is also Φ-KDMAE-secure, provided that H is mod-
eled as a random oracle. We formalize this class of functions as follows.

Definition 4. We say Φ derives messages from a hashed key if there exists a set
Γ and a function H (modeled as a random oracle) such that Φ = {φγ

∣
∣ φγ(·) =

γ(H(·)), γ ∈ Γ}.

In the full version we show how to capture ΦSP as satisfying this definition.
Thereby, the following result will give us ΦSP-KDMAE security.

Proposition 1. Let NE be a nonce-based encryption scheme. Let Φ be a class of
message-deriving functions that derives messages from a hash key. Let AKDMAE

be an adversary against the Φ-KDMAE security of NE making qNewHonGroup
queries to its NewHonGroup oracle. Then we can build adversaries AKR and
AAEAD such that (in the random oracle model)

AdvKDMAE
NE,Φ (AKDMAE) ≤ 2 · AdvKRNE(AKR) + AdvAEADNE (AAEAD) +

q2NewHonGroup

2NE.kl
.

The constructed adversaries will not repeat (g, n) across Enc queries, so non-
nonce-misuse resistant NE suffices. To prove this, we first assert that a Φ-KDMAE
adversary AKDMAE can never directly query the random oracle on any of the
(non-exposed) honest keys; otherwise, we could use AKDMAE in order to break
the key-recovery security of AEAD. But then AKDMAE cannot distinguish between
messages derived from H(K[g]) or from some H∗(g). Here H is the actual random
oracle and H∗ is a simulated random oracle whose output depends on a group’s
identifier g instead of this group’s key K[g]. We switch from using H(K[g])
to H∗(g), thus breaking the dependency of each challenge message on the corre-
sponding NE key. The AEAD security of NE then guarantees that AKDMAE cannot
guess the challenge bit. The formal proof of Proposition 1 is in the full version.

Out-Group AE Security of SealPacket. We prove wOAE security of SP. The
formal proof of Theorem 4 is in the full version.

Theorem 4. Let M ⊆ {0, 1}∗. Let SP = SEAL-PACKET-SS[H,DS,NE] be the
symmetric signcryption scheme built from some H,DS,NE as specified in Con-
struction 2. Let predsuf-except-usertrivial be the ciphertext-triviality predicate as defined
in Fig. 7. Let func⊥

out be the output-guarding function as defined in Fig. 8. Let
wOAE[Enc[M,NE]] be the security notion as defined in Definition 3. Let ΦSP =
MSG-DER-FUNC[NE,H,DS] be the class of message-deriving functions defined in
Construction 3. Let AwOAE-of-SP be an adversary against the wOAE[Enc[M,NE]]
security of SP with respect to predsuf-except-usertrivial and func⊥

out. Then we can build
adversaries AKDMAE and ASPARSE such that

Adv
wOAE[Enc[M,NE]]

SP,pred
suf-except-user
trivial

,func⊥
out

(AwOAE-of-SP) ≤ AdvKDMAE
NE,ΦSP

(ANE) + 2 · AdvSPARSEDS,M (ASPARSE).

310 J. Jaeger et al.

The OAE security results in Theorems 3 and 4 used the weaker output
guarding function func⊥

out. In the full version of this paper, we show that for
SS ∈ {BM,SP}, the OAE security of SS with respect to func⊥

out implies its OAE
security with respect to the stronger output guarding function funcsecout.

6 Conclusions

Combining Theorem 1 with Theorem 2 and Theorem 3 with Theorem 4 estab-
lishes the in-group unforgeability and out-group authenticated encryption secu-
rity of Keybase’s BoxMessage algorithm. These results rely on some stan-
dard security assumptions (unforgeability of Ed25519 and collision resistance of
SHA-256) as well as some non-standard assumptions (key-dependent message
security of XSalsa20-Poly1305 and sparsity of Ed25519). These non-standard
assumptions arose, respectively, from the key cycle in SealPacket and the key
reuse without explicit context separation BoxMessage. While we were able to
justify these assumptions, we consider them brittle as they are not well stud-
ied, their justifications required ideal models, and (in the case of sparsity) they
required properties of the specific messaging encoding format used by Keybase.

The comparative simplicity of our Sign-then-Encrypt construction speaks
to the value of formalizing the syntax and security of symmetric signcryption.
Explicit goals allow designing schemes in parallel with writing proofs to identify
precisely what is needed.

References

1. Albrecht, M., Dowling, B., Jones, D.: Device-oriented group messaging: a formal
cryptographic analysis of matrix’core. In: IEEE S&P 2024 (2023)

2. Albrecht, M.R., Celi, S., Dowling, B., Jones, D.: Practically-exploitable crypto-
graphic vulnerabilities in matrix. In: 2023 IEEE Symposium on Security and Pri-
vacy (SP), pp. 1419–1436. IEEE Computer Society (2022)

3. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Modular design of secure group
messaging protocols and the security of MLS. In: Vigna, G., Shi, E. (eds.) ACM
CCS 2021, pp. 1463–1483. ACM Press, November 2021. https://doi.org/10.1145/
3460120.3484820

4. Alwen, J., Janneck, J., Kiltz, E., Lipp, B.: The pre-shared key modes of HPKE. In:
Guo, J., Steinfeld, R. (eds.) Advances in Cryptology - ASIACRYPT 2023. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-981-99-8736-8_11

5. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_6

6. Backes, M., Pfitzmann, B., Scedrov, A.: Key-dependent message security under
active attacks - BRSIM/UC-soundness of symbolic encryption with key cycles. In:
Sabelfeld, A. (ed.) CSF 2007 Computer Security Foundations Symposium, pp. 112–
124. IEEE Computer Society Press (2007). https://doi.org/10.1109/CSF.2007.23

7. Balbás, D., Collins, D., Gajland, P.: WhatsUpp with sender keys? Analysis,
improvements and security proofs. In: Guo, J., Steinfeld, R. (eds.) Advances
in Cryptology - ASIACRYPT 2023, pp. 307–341. Springer, Heidelberg (2023).
https://doi.org/10.1007/978-981-99-8733-7_10

https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1007/978-981-99-8736-8_11
https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1109/CSF.2007.23
https://doi.org/10.1007/978-981-99-8733-7_10

Symmetric Signcryption and E2EE Group Messaging in Keybase 311

8. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon,
K.: The Messaging Layer Security (MLS) Protocol. RFC 9420, July 2023. https://
doi.org/10.17487/RFC9420

9. Barnes, R., Bhargavan, K., Lipp, B., Wood, C.A.: Hybrid Public Key Encryption.
RFC 9180, February 2022. https://doi.org/10.17487/RFC9180

10. Bellare, M., Davis, H., Di, Z.: Hardening signature schemes via derive-then-
derandomize: stronger security proofs for EdDSA. In: Boldyreva, A., Kolesnikov,
V. (eds.) PKC 2023, Part I. LNCS, vol. 13940, pp. 223–250. Springer, Heidelberg
(2023). https://doi.org/10.1007/978-3-031-31368-4_9

11. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press,
October 1997. https://doi.org/10.1109/SFCS.1997.646128

12. Bellare, M., Keelveedhi, S.: Authenticated and misuse-resistant encryption of key-
dependent data. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 610–
629. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_35

13. Bellare, M., Meiklejohn, S., Thomson, S.: Key-versatile signatures and applica-
tions: RKA, KDM and joint Enc/Sig. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 496–513. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5_28

14. Bellare, M., Stepanovs, I.: Security under message-derived keys: Signcryption in
iMessage. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS,
vol. 12107, pp. 507–537. Springer, Heidelberg (2020). https://doi.org/10.1007/978-
3-030-45727-3_17

15. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760_3

16. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68351-3_8

17. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed
high-security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 124–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23951-9_9

18. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012). https://doi.org/10.1007/
s13389-012-0027-1

19. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7_6

20. Brendel, J., Cremers, C., Jackson, D., Zhao, M.: The provable security of Ed25519:
theory and practice. In: 2021 IEEE Symposium on Security and Privacy, pp. 1659–
1676. IEEE Computer Society Press, May 2021. https://doi.org/10.1109/SP40001.
2021.00042

21. Furuhashi, S.: Messagepack. https://msgpack.org/
22. Keybase: Keybase Book. https://book.keybase.io/
23. Keybase: Keybase Book—Chat—Crypto. https://github.com/keybase/book-

content/blob/master/D-docs/04-chat/01-crypto.md?plain=1#L89-L93
24. Keybase: Keybase client. https://github.com/keybase/client
25. Keybase: Keybase client—boxer.go—BoxMessage. https://github.com/keybase/

client/blob/v6.2.2/go/chat/boxer.go/#L1564-L1566

https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9180
https://doi.org/10.1007/978-3-031-31368-4_9
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/978-3-642-22792-9_35
https://doi.org/10.1007/978-3-642-55220-5_28
https://doi.org/10.1007/978-3-642-55220-5_28
https://doi.org/10.1007/978-3-030-45727-3_17
https://doi.org/10.1007/978-3-030-45727-3_17
https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1109/SP40001.2021.00042
https://doi.org/10.1109/SP40001.2021.00042
https://msgpack.org/
https://book.keybase.io/
https://github.com/keybase/book-content/blob/master/D-docs/04-chat/01-crypto.md?plain=1#L89-L93
https://github.com/keybase/book-content/blob/master/D-docs/04-chat/01-crypto.md?plain=1#L89-L93
https://github.com/keybase/client
https://github.com/keybase/client/blob/v6.2.2/go/chat/boxer.go/#L1564-L1566
https://github.com/keybase/client/blob/v6.2.2/go/chat/boxer.go/#L1564-L1566

312 J. Jaeger et al.

26. Keybase: Keybase client—codec.go—Design Notes. https://github.com/keybase/
client/blob/v6.2.2/go/chat/signencrypt/codec.go/#L95-L110

27. Keybase: Keybase stats. https://web.archive.org/web/20200207065125/https://
keybase.io/. Accessed 28 Feb 2024

28. Marlinspike, M.: Private group messaging, May 2014. https://signal.org/blog/
private-groups/

29. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B.K., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-25937-4_22

30. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23

31. Ryan, K., Pornin, T., Fitzgerald, S.: Keybase protocol security review, Febru-
ary 2019. https://keybase.io/docs-assets/blog/NCC_Group_Keybase_KB2018_
Public_Report_2019-02-27_v1.3.pdf

32. Shrimpton, T.: A characterization of authenticated-encryption as a form of chosen-
ciphertext security. Cryptology ePrint Archive, Report 2004/272 (2004). https://
eprint.iacr.org/2004/272

33. Wallez, T., Protzenko, J., Beurdouche, B., Bhargavan, K.: TreeSync: authenti-
cated group management for messaging layer security. In: 32nd USENIX Security
Symposium, pp. 1217–1233. USENIX Association, Anaheim, CA, August 2023

34. WhatsApp: Whatsapp encryption overview: Technical white paper, September
2023. https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

35. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption)
� cost(signature) + cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0052234

36. Zoom: Zoom acquires keybase and announces goal of developing the most broadly
used enterprise end-to-end encryption offering, May 2020. https://blog.zoom.
us/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-
used-enterprise-end-to-end-encryption-offering/

https://github.com/keybase/client/blob/v6.2.2/go/chat/signencrypt/codec.go/#L95-L110
https://github.com/keybase/client/blob/v6.2.2/go/chat/signencrypt/codec.go/#L95-L110
https://web.archive.org/web/20200207065125/https://keybase.io/
https://web.archive.org/web/20200207065125/https://keybase.io/
https://signal.org/blog/private-groups/
https://signal.org/blog/private-groups/
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/11761679_23
https://keybase.io/docs-assets/blog/NCC_Group_Keybase_KB2018_Public_Report_2019-02-27_v1.3.pdf
https://keybase.io/docs-assets/blog/NCC_Group_Keybase_KB2018_Public_Report_2019-02-27_v1.3.pdf
https://eprint.iacr.org/2004/272
https://eprint.iacr.org/2004/272
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://doi.org/10.1007/BFb0052234
https://doi.org/10.1007/BFb0052234
https://blog.zoom.us/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://blog.zoom.us/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://blog.zoom.us/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/

	Symmetric Signcryption and E2EE Group Messaging in Keybase
	1 Introduction
	2 Preliminaries
	2.1 Standard Security Notions in a Multi-key Setting

	3 Symmetric Signcryption
	3.1 In-Group Unforgeability
	3.2 Out-Group Authenticated Encryption
	3.3 Symmetric Signcryption from Encryption and Signatures

	4 Keybase Chat Encryption as Symmetric Signcryption
	5 Security Analysis of Keybase Chat Encryption
	5.1 In-Group Unforgeability of BoxMessage and SealPacket
	5.2 Out-Group AE Security of BoxMessage
	5.3 Out-Group AE Security of SealPacket

	6 Conclusions
	References

