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Abstract. Differential cryptanalysis is an old and powerful attack
against block ciphers. While different techniques have been introduced
throughout the years to improve the complexity of this attack, the key
recovery phase remains a tedious and error-prone procedure. In this work,
we propose a new algorithm and its associated tool that permits, given a
distinguisher, to output an efficient key guessing strategy. Our tool can be
applied to SPN ciphers whose linear layer consists of a bit-permutation
and whose key schedule is linear or almost linear. It can be used not only
to help cryptanalysts find the best differential attack on a given cipher
but also to assist designers in their security analysis. We applied our tool
to four targets: RECTANGLE, PRESENT-80, SPEEDY-7-192 and GIFT-64. We
extend the previous best attack on RECTANGLE-128 by one round and the
previous best differential attack against PRESENT-80 by 2 rounds. We
improve a previous key recovery step in an attack against SPEEDY and
present more efficient key recovery strategies for RECTANGLE-80 and GIFT.
Our tool outputs the results in only a second for most targets.

Keywords: differential cryptanalysis · key recovery · automatic tool ·
SPEEDY · GIFT · PRESENT · RECTANGLE

1 Introduction

Differential cryptanalysis is an old and powerful technique introduced in 1990
by Biham and Shamir [5]. Soon after its discovery this technique allowed to
successfully break some of the most important block ciphers and hash functions
of that time, such as FEAL [6], Snefru, Khafre, LOKI [7] and DES [8], to cite just
a few. The success of this attack against the cryptosystems of the 70s and 80s,
forced the designers of the succeeding ciphers to develop strategies to ensure
the resistance of the new designs against this attack. This is how Daemen and
Rijmen proposed the wide-trail strategy [16] and used it to design the AES or
why Vaudenay invented the decorrelation theory [35].
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Differential attacks are based on the existence of a high-probability differen-
tial, that is an input difference that propagates after some rounds to an output
difference with a probability much higher than what would be expected for a
random permutation. In the case of block ciphers, the existence of one or more
such differentials can usually be exploited to recover the secret key through a key
recovery procedure. A differential attack against a block cipher can thus be seen
as a two-step approach. First, a high-probability differential must be exhibited.
Then, this differential is extended to some rounds to permit to recover the secret
key or parts of it. The first part of the attack has been, and continues to be,
extensively studied and many interesting algorithms and approaches have been
proposed. One can cite for example the dynamic programming approach of [21]
to find good differential characteristics for AES-128 in the related-key setting,
the MILP-based approach of [33] for bit-oriented block ciphers, the constraint
programming (CP)-based method of [31] for all versions of Rijndael or the SAT-
based method of [32] applicable to many ciphers. It can be seen that this step of
differential attacks can be automatized and almost all the approaches that have
been proposed lately are based on automatic tools.

All of the above cited algorithms and tools to find good differential dis-
tinguishers are exclusively dedicated to this step and there have not been
approaches to optimize both steps at the same time. This would be benefi-
cial, as it is not always the best distinguisher that leads to the best attack.
There have been efforts in this direction for other families of cryptanaly-
sis, e.g., impossible differential, zero-correlation, integral, meet-in-the-middle,
boomerang and rectangle attacks, where tools combining both steps have been
proposed [10,17,22,30,39]. However, most of these approaches use heuristics for
the key recovery part, by providing for example a rough estimation for the num-
ber of involved key bits, and are not guaranteed to lead to the most optimal
attack. To build a complete tool for differential cryptanalysis, the key recovery
process of these attacks must be well understood. Yet, this step is very technical
and error-prone, see for example [34]. Moreover, it is very difficult to come up
with an optimal key recovery procedure, as demonstrated by differential attacks
published against block ciphers, whose key recovery step was improved by fol-
lowing works. Such examples include attacks against the block ciphers GIFT [32]
and RECTANGLE [38] whose key recovery was later improved in [14] and [13]
respectively.

Throughout the years, a series of techniques have been proposed to improve
the key recovery step of differential attacks. These techniques and improve-
ments, some of which were introduced for other related attacks but are still
applicable to differential cryptanalysis, include the early abort technique [25]
to gradually reduce the number of plaintext/ciphertext pairs, the conditional
differential cryptanalysis [23], the dynamic key-guessing technique [29,37], other
key-guessing strategies [18] or techniques to avoid unnecessary key guesses [2].
Another idea, proposed in [13] for S-box-based designs, was to take advantage
of the structure of the S-box in order to reduce the number of necessary key
guesses. However, despite the existence of these techniques a global treatment
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of the key recovery step is still missing and it remains very difficult to combine
the different techniques together to end with a generic efficient procedure.

The lack of a generic and optimal procedure for the key recovery has direct
consequences on the design of new ciphers. While most of the newly proposed
designs come with claims on the resistance against differential attacks, this is
usually done by applying branch-and-bound arguments to determine the highest
number of rounds covered by a differential and then, the key recovery added by
the designers, if any, is rarely optimal. This can lead then to an erroneous esti-
mation of the security margin and to the choice of a too small number of rounds
for the design. This happened recently with the block cipher SPEEDY-7-192 [24]
that provided a wrong estimation of the number of rounds on which key recovery
was possible [12].

The main problem one has to solve during the key recovery phase of a differen-
tial attack is finding the best key guessing order. This is a difficult combinatorial
problem and doing this step by hand is time consuming and there is no guar-
antee that the followed process is optimal, or even error-free. The existence of a
fully automated procedure for this step would be of great help for cryptanalysts
but also for designers. Indeed, the existence of such a tool could assist designers
in choosing a well suited number of rounds. A first attempt for building such a
tool was made by Nageler in [26] and permitted to improve a differential attack
on 5-round MANTIS. However, this approach had several limitations, as it could
only handle bit-permutation key schedules and output basic key recoveries.

Our Contributions. We propose in this paper the first generic algorithm to
find efficient key recovery strategies in differential attacks under some reasonable
assumptions, as well as an automatic tool that implements it. Our algorithm
captures an efficient key recovery strategy by taking into account many possible
optimizations. This algorithm is then transformed into an automated tool that
we implemented in C++. Our tool takes as input a very simple description of the
cipher and a given differential and outputs an efficient order for the key guesses
together with the associated time complexity. For each execution of the tool,
the user must indicate the number of key recovery rounds to add on both sides.
By gradually increasing the number of rounds, the user can get a more precise
estimation of the longest valid differential attack that a concrete distinguisher
can lead to. This can notably allow designers to choose the best suited number
of rounds for their primitive. For this, we focused on SPN ciphers with a bit-
permutation as linear layer. We applied our tool to RECTANGLE, PRESENT-80
and SPEEDY-7-192 in the single-key model and to GIFT-64 in the related-key
model by using differential distinguishers that have been previously given in
the literature. Note that we have not verified the validity of the characteristics
ourselves as this is out of scope for our work. The correctness of the attacks
depends on the validity of these underlying characteristics. Under the assumption
that the given characteristic is correct, we improve the best known attack on
RECTANGLE-128 by one round. Further, we slightly improve the best previous key
recovery on SPEEDY. As for PRESENT-80, we extend the best previous differential
attack by 2 rounds. Last but not least, we obtain efficient key recovery strategies
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for GIFT-64 (in the related-key model) and RECTANGLE-80, but do not manage
to improve the best previous differential attacks as our tool does not incorporate
yet techniques such as the “tree-based graphs” or the “key-absorption” technique
used in [13] or [14]. We however beat all previous key recovery procedures that
do not use these techniques, such as the attack of [38] on RECTANGLE-80 and
the attack of [32] on GIFT-64. We refer to Table 1 for a summary of our results.
Furthermore, the tool is easy to use, as only a very basic description of the cipher
is needed. It is also fast as, for most of the attacks, the results were outputted
in one second. The code of our tool can be found here:

https://gitlab.inria.fr/capsule/kyrydi

The rest of the paper is organized as follows. Section 2 describes the key
recovery procedure in differential attacks. Section 3 introduces our modelization
of the problem and discusses important optimizations and features we have taken
into account, taking as example a toy cipher. Then, Sect. 4 introduces our new
algorithm and describes the related tool. Finally, Sect. 5 presents our applications
to RECTANGLE, PRESENT-80, SPEEDY-7-192 and GIFT-64.

2 The Key Recovery Problem in Differential
Cryptanalysis

We start this section by introducing differential attacks and the key recovery
process. We also describe the type of primitives we will consider in our work,
and describe a toy cipher that will be useful to illustrate our algorithm.

2.1 Differential Cryptanalysis

As for most cryptanalysis techniques against symmetric primitives, building a
differential attack requires two separated, though non-independent, steps. First,
an attacker must be able to exhibit a property of the cipher that allows him
to distinguish EK , for any K, from a permutation chosen uniformly at random.
In differential cryptanalysis, the distinguisher consists of a pair of differences
(δin, δout) ∈ F

n
2 ×F

n
2 such that the difference δin propagates to the difference δout

through a reduced number of rounds with probability strictly higher than 2−n.
In a second step, the attacker extends the differential by some rounds, usually to
both directions. The appended rounds are called the key recovery rounds. They
permit to determine which (partial) keys allow a high number of plaintext pairs
and their corresponding ciphertext pairs to follow the differential. An overview of
a classical differential attack against a block cipher is depicted in Fig. 1. As can
be seen in this figure, an attacker first finds a differential (δin, δout) over rδ < r
rounds of the block cipher E that has probability 2−p > 2−n. The difference δin

(resp. δout) propagates with probability 1 to a difference in a set Din, rin rounds
before (resp. Dout, rout rounds after). The attack can be symmetrically done in
both directions. However, without loss of generality, we focus here on the case
where the attacker makes calls to an encryption oracle.

https://gitlab.inria.fr/capsule/kyrydi
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Fig. 1. A differential attack against a block cipher.

Number of Needed Plaintext Pairs. A classical method to efficiently build
the plaintext pairs in differential and other related attacks is to use structures.
This technique, introduced in [8], permits to reduce the data complexity. A
structure is a set of plaintexts that have a fixed value on the inactive bits of
Din. Each structure has size |Din| = 2din , and thus allows to build 22din−1 pairs.
For the attack to work, the attacker must be able to generate 2p pairs that have
difference δin after rin rounds. Since each pair in Din satisfies n − din necessary
conditions, we approximate the probability that a pair in Din has difference
δin after rin rounds by 2−din . Thus, we need to build 2p+din pairs to get one
satisfying the differential with a reasonable probability. This can be done by
using 2s = 2p−din+1 structures, corresponding to a data of D = 2p+1.

Key Recovery. The goal of this step is to find, for each pair, the possible keys
that would partially encrypt the pair to the difference δin and partially decrypt it
to the difference δout. However, some of the pairs cannot satisfy the differential,
independently of the key, e.g., pairs such that their ciphertext difference does not
belong to Dout. To only work with plaintext pairs whose ciphertext difference
belongs to Dout, the data of each structure is stored in a hash table indexed
by the n − dout inactive bits on the ciphertext. The attacker then looks for
collisions on this inactive part. At the end, we can thus build N = 2p+din−n+dout

pairs with a time complexity of max(2p+1, 2p+din−n+dout) simple operations and
a memory complexity of 2din plaintext/ciphertext pairs. For each of these N
pairs, we associate the candidate values for the key material involved in the
attack and thus generate candidate triplets (P, P ′, k), where k ∈ Kin ∪ Kout,
with Kin (resp. Kout) being the part of the key to be guessed in the first (resp.
last) key recovery rounds. We introduce the parameter CS to denote the average
cost of this step per triplet. At the end of this procedure, if the total number
of triplet candidates is smaller than the number of involved key bits, then the
attack is considered as successful. Indeed, we can then test the remaining key
candidates by completing the missing key bits for a lower cost than that of the
exhaustive search. On the other hand, if the number of triplets is higher than the
number of involved key bits, we have to consider more data so that the right key
will be the one that appears the highest number of times. In this case, one has
to take a vector for storing the number of times each candidate key appears, but
this makes no difference for the key recovery algorithm we are going to propose.
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Alternatively, one can also use rounds inside the differential distinguisher to get
additional filtering.

As shown in [12], the time (T ), data (D), and memory (M) complexities of
the attack can be computed in the following way:

T =
(
2p+1 + 2p+1 CS

CE
+ 2p−n+din+dout

CKR

CE

)
CE , D = 2p+1, M = 2din ,

where CE is the cost of one encryption and CKR is the average cost of the key
recovery step per pair. In the time complexity, the first term corresponds to the
cost of generating the N pairs, the second term is the complexity of the sieving
step and the last term is the complexity of the key recovery step on the remaining
2p−n+din+dout pairs. This last term is the one we want to optimize in this work.

2.2 Efficient Key Recovery

The key recovery step of a differential attack is traditionally solved by tedious
and error-prone procedures. This step is often done by hand and can lead to non-
optimal complexities, e.g., [32,36,38]. In this paper, we propose an algorithm
that allows to optimize the key recovery step, together with an associated tool.
To present our algorithm, we first need to detail further how to perform the key
recovery, that is, how to build candidate triplets (P, P ′, k), with k ∈ Kin ∪Kout,
as described in the previous section. We must also define what it means for an
attack to be efficient. We do so in the rest of this section.

To obtain triplets (P, P ′, k), the attacker must consider each active S-box
of the key recovery rounds, and take into account the differential constraints
of this S-box. For each pair, the attacker must determine whether this pair can
respect the differential constraints, and, if yes, under which conditions on the key.
Under what we denote by solving this S-box, the attacker obtains a list of triplets
containing the kept pairs and a partially determined key, with fixed values on
the key bits corresponding to this S-box, i.e. the key bits added before (resp.
after) the S-box on the plaintext (resp. ciphertext) side. The goal of the attack
is thus to efficiently reduce as early as possible the number of pairs considered
whilst maximizing the number of key bits of Kin ∪ Kout that are fixed.

An attack is optimal when it has the lowest time complexity.1 What deter-
mines the complexity of the key recovery is threefold. First, the order in which
each S-box is solved impacts the complexity. For example, if an S-box allows
to reduce significantly the number of pairs whilst fixing all key bits, it is often
better to solve this S-box early to reduce the overall time complexity. Second, it
is possible to solve several S-boxes at the same time, which can also help reduce
the overall time complexity. Last but not least, S-boxes and sets of S-boxes can
be solved in parallel, as described later on. It comes that finding an efficient key
recovery procedure consists in choosing an efficient partition of the S-boxes with

1 The attack must also have a reasonable memory complexity, but we will detail how
we take this into account later.
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an associated order on each element of the partition. We will detail these three
techniques further in Sect. 3.

Note that we can exhibit a natural upper bound for the complexity of the
key recovery step. This bound is min(2κ, N · 2|Kin∪Kout|), where κ is the bit-size
of the secret key. This corresponds to the naïve procedure for which an attacker
would guess for each pair (P, P ′) all the key bits in Kin ∪ Kout to see which
pairs and associated key guess lead to the differential. On the other hand, we
can also show a lower bound for the key recovery procedure. This lower bound
is N + N · 2|Kin∪Kout|−din−dout , where N · 2|Kin∪Kout|−din−dout corresponds to
the number of expected solutions, i.e. the number of pairs and associated partial
keys that are obtained at the end of the key recovery procedure. An efficient key
recovery algorithm allows us to reach a time complexity for this step as close as
possible to this lower bound.

2.3 Considered Ciphers

As determining an efficient key recovery procedure is a complex combinatorial
problem, it is difficult to solve it once and for all types of symmetric primitives.
For this reason, we decided to start with analyzing this problem for the simplest
type of SPN constructions, that is, block ciphers such that their round function
is composed of an XOR with the round key, a non-linear layer composed of the
parallel application of an S-box and a bit-permutation playing the role of the
linear layer. This is already a complex case with many applications and will serve
as basis for future extensions. Furthermore, we focused on ciphers with linear
or almost linear key schedules. Examples of block ciphers that belong to this
category are notably PRESENT [9], RECTANGLE [38] and GIFT [1]. Furthermore,
we can add to this category ciphers with more complex linear layers as long as
this operation is not involved in the key recovery rounds. This is the case of
the SPEEDY block cipher [24], whose 7-round variant was broken by a differen-
tial attack [12] where only 1.5 round was added to the distinguisher and this
1.5 round did not include the complex linear operation, due to the particular
construction of the round function.

Toy Cipher. We now describe a toy cipher whose design is inspired by GIFT [1],
and that belongs to the above category. We will use this toy cipher throughout
the paper to explain the way our algorithm and its associated tool work. The
structure of the cipher together with the description of a differential attack on it
can be seen in Fig. 2. The block and key length of the toy cipher are 16 and 80
bits respectively. There are 7 rounds, and each round is composed of a bit-wise
key addition, an S-box layer, and a permutation layer. The S-box is the one of
GIFT:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 1 10 4 12 6 15 3 9 2 13 11 7 5 0 8 14

and the linear layer P is a bit-permutation given as:
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Fig. 2. Our toy cipher and a differential attack against it. S-boxes in green are active.
Bits with a difference Δ are active bits, while bits in blue are bits with an unknown
difference (0 or 1). Bits in a circle correspond to key bits. Those in blue, are the ones
that need to be guessed during the attack. (Color figure online)

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 4 5 2 3 12 13 10 11 0 1 6 7 8 9 14 15

We consider the bit 0, i.e. the least significant bit, to be on the right for both
the state and the round keys. Furthermore, and similarly to GIFT, we consider the
key addition to be partial and only applied to the two rightmost bits before each
S-box. Last, we suppose that there is no key schedule and we treat all round keys
as independent. For this toy cipher, we consider the input difference δin = 0x0001
that propagates after 1 extended round (permutation, addition of K3, S-box
layer, permutation, addition of K4) to the output difference δout = 0x0800 as
depicted in Fig. 2. The difference δin can be propagated three rounds backwards
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with probability one to give Δin = F
16
2 . Similarly, the difference δout can be

propagated three rounds forwards with probability one to give Δout = F
16
2 . The

active S-boxes, i.e. the ones which have a non-zero input difference, are colored
in green.

Our goal is to determine an efficient algorithm to determine in which order
and manner we have to guess these subkey bits, as described in Sect. 2.2.

3 Modeling the Key Recovery Problem

In this section, we present how we model the key recovery problem. A good
modeling plays a crucial role in finding an algorithm to solve the problem in the
most efficient way. We also describe three techniques that are used in our tool
to obtain an improved key recovery strategy: the S-box sieving technique, the
precomputation of partial solutions and the use of parallel computations.

3.1 Our Modelization

To model the problem of finding an efficient key recovery for a given differential,
we use a directed graph. On this graph, each node represents an active S-box.
The graph is then constructed as follows. On the plaintext side, a vertex goes
from an S-box SA at round r to an S-box SB at round r + 1 if the input bits
of SB depend on the output bits of SA. Similarly, for the key recovery rounds
on the ciphertext side, a vertex goes from an S-box SA at round r to an S-box
SB at round r − 1 if the output bits of SB depend on the input bits of SA. An
example of such a graph, built to model the toy cipher of Fig. 2, is represented in
Fig. 3. We can see in this graph that the number of vertices going to an internal
node is always two, as the four output bits of any S-box affect only two S-boxes
in the following round, and as all round keys are considered independent.

Once the graph is built, the key recovery problem corresponds to choosing a
specific partition of the nodes together with an associated order. A partition of
the nodes divides the original graph into subgraphs and the order indicates in
which order the different subgraphs must be treated. A graph representing a key
recovery strategy for the toy cipher of Fig. 2, can be visualized in Fig. 3. Each S-
box of the same color belongs to the same subgraph, and the order is represented
by a number of the same color. Each partition implies certain subsets of partial
solutions and a cost for merging them to obtain the final global solution. The
goal is to come up with an algorithm that will output the partition associated
with the lowest possible cost.

In the next section, we describe some classical techniques in differential crypt-
analysis that impact the modelization of the key recovery problem. Before doing
so, we will need some definitions that we introduce below.

Definitions. Let S be an S-box in the key recovery rounds that must sat-
isfy the differential constraint νin → νout. We call solution to S any tuple
(x, x′, S(x), S(x′)) such that x⊕x′ = νin and S(x)⊕S(x′) = νout. We denote by
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input solutions (resp. output solutions) any pair of values (x, x′) (resp. (y, y′))
such that (x, x′, S(x), S(x′)) (resp. (S−1(y), S−1(y′), y, y′)) is a solution. When
it is clear from the context, we sometimes use the term solutions to denote input
or output solutions.

This definition can be generalized to a subgraph in the following manner. A
solution to a subgraph is a tuple containing:

– a solution to an S-box in the subgraph that is situated in the first or last
key recovery round, i.e. that takes as input a part of the plaintext or the
ciphertext.

– a partial solution to an S-box linked to an S-box outside the subgraph. The
term partial means that we only consider the bits linked to an external S-box.

For example, a solution to the blue subgraph in Fig. 3, is a tuple containing
a solution to S0,1, a solution to S0,3 and a solution to S2,0, truncated to its two
leftmost bits.

S0,0 S0,2 S0,1 S0,3

S1,2

S2,0

S6,2 S6,3 S6,0 S6,1

S5,1 S5,0

S4,2

3 1 24

S1,0

Fig. 3. Graph example and associated partitions of a key recovery strategy for an
attack on the toy cipher represented in Fig. 2.

3.2 Sieving of the Pairs Using the Differential Constraints
of the S-Boxes

Let N be the number of pairs that the attacker is using for the key recovery.
Although N impacts the complexity of the key recovery as this number is mul-
tiplied by CKR (i.e. average cost of the key recovery step per pair), the choice
of an optimal key recovery strategy does not depend on the value of N .2

To keep CKR as low as possible, it is smart to try to reduce the number
of pairs/triplets as quickly as possible. A very classical technique in differential
cryptanalysis is to perform a sieving (or filtering) step on the initial N pairs,

2 This is assuming N is reasonably big, as we work using average values. We remind
the reader that N = 2p+din−n+dout ..
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using the differential constraints of the S-boxes of the first and last round. This
sieving step, that we will call pre-sieving allows the attacker to further keep only
the pairs that can satisfy the differential constraints, and to discard those that
cannot, as early on as possible. If N ′ is the number of pairs remaining after the
pre-sieving (N ′ ≤ N), the attacker performs the rest of the key recovery on those
N ′ pairs.

To perform the pre-sieving, the attacker typically precomputes the solutions
to each S-box of the external rounds. However, the attacker does not necessarily
store all the solutions. Instead, he builds offline a sieving list in the following
way: on the bits where a key addition is applied, only the difference is stored;
on the bits where there is no key addition, the value of each element in the
pair is stored. For instance, if the key is XORed to the whole state, only the
differences that satisfy the transition are stored. During the online phase, this
sieving step consists, for each pair and each S-box, of checking whether the pair
is consistent with the sieving list. The filter of the sieving step for that S-box
is then computed as the size of the sieving list divided by the total number of
possible differences/pairs of values. Note that for this second sieving step we
only consider S-boxes that reduce the size of N .

We give an example of this step on the toy cipher of Fig. 2. We consider
the first S-box of the first round, namely S0,0. The differential constraints for
this S-box are of the form: (* * * *) → (* * 0 0) and only the first two
input bits to this S-box have key bits XORed to them. Thus, for any solu-
tion (x3x2x1x0, x′

3x
′
2x

′
1x

′
0) that satisfies this differential transition, we store the

corresponding 6-bit word (x3x′
3x2x

′
2||x1⊕x′

1 ||x0⊕x′
0) in a list L0,0. After building

L0,0, one can see that for this particular S-box this list has length 36. On the
other hand, a 6-bit word can take up to 26 values. This provides then a filter
of 36/26 = 2−0.83 for this S-box. Using the same reasoning, we obtain the same
filter for S0,1, as well as a filter 2−0.48 for S0,3 and S0,2. On the ciphertext side,
the filter for S6,0 and S6,2 is of 2−0.83 and it is of 2−0.68 for the S-boxes S6,1

and S6,3. In conclusion for this example, the pre-sieving step allows to work with
N ′ = 2−5.63 · N pairs instead of N .

Compensation of Pre-sieving. One important point is that the pre-sieving
described in the above paragraph and performed in the initial steps must be
taken into account later on in the key recovery procedure. Take for instance the
example of the S-box S0,0 of the toy cipher. This S-box has 26 solutions, and
each solution fixes a value on the two leftmost bits, and a difference on the two
rightmost bits (because of the key addition). On the other hand, an online pair
can take 24 values on the two leftmost bits, and 22 differences on the two right-
most bits. An online pair thus has probability 26/26 = 1 to match a solution.
Since each solution is a pair of values, a match on a solution fixes the key bits.
On the other hand, with the pre-sieving, we initially filter out 2−0.83 of the pairs,
but when determining the key bit values we will get 20.83 possibilities per pair
on average, thus canceling locally out the gain of the pre-sieving. This example
shows that sieving on a single S-box and solving this S-box immediately after
is not a good strategy. Nevertheless, there is often a significant advantage when
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the pre-sieving is applied to all the S-boxes very early on: as the compensation
is gradual, the time complexity is overly reduced. Indeed, the attacker will still
work with less pairs during the different steps than if no pre-sieving was applied.
For example, if we apply the pre-sieving step to all S-boxes but S0,0 in the toy
cipher, we start by working with 20.83 · N ′ = 2−4.8 · N pairs, the cost of solving
S0,0 is 2−4.8 · N , and we keep only 2−4.8 · N pairs after solving S0,0.

Generalization to Any Active S-Box. Note that it is also possible to sieve later
by using S-boxes of other key recovery rounds, as long as we have reached a
point in the key recovery procedure where the input of these S-boxes is fixed.
This sieving must not be confused with the pre-sieving that only applies to the
external key recovery rounds.

3.3 Precomputing Partial Solutions

Besides the pre-sieving method described above, an attacker can also apply
another technique to reduce the time complexity. The idea of this technique
is to precompute the partial solutions to some subgraph(s). However, such pre-
computations can impact the memory complexity of the attack and increase the
offline time of the attack. Thus, the optimal key recovery strategy depends on
how much memory and offline time are allowed. For this, we introduce a param-
eter M which corresponds to the maximum memory complexity (aside from
storing the pairs) and the maximum allowed precomputation time complexity.
The result obtained will directly depend on this parameter. We give an example
of such a precomputation phase on the toy cipher of Fig. 2.

Precomputing the Solutions to S0,0, S0,2 and S1,0. We compute the number of
solutions to a subgraph containing as nodes the S-boxes S0,0, S0,2 and S1,0. The
differential constraints of S1,0 are as follows: (* * * *) → (1 * 0 0). There
are 25(= 22×4−3) output solutions to this S-box, and thus 25 input solutions.
Looking at the input before the key addition, each input solution determines the
value of the pair on the two leftmost input bits and the difference on the two
rightmost ones, i.e. the ones concerned by the key addition.

We now consider a fixed input solution to S1,0, and look at S0,0. Two output
bits of S0,0 are fixed by this solution. However, the two rightmost bits, which
have the only constraint of having a zero difference, can take up to 22 values.
This means that for a solution to S1,0, there are 22 possibilities at the output
of S0,0, and thus 22 solutions at its input. For each solution, the information at
the input of S0,0 is fixed in value on the two leftmost bits, and in difference on
the two rightmost bits because of the key addition.

Still using a fixed solution to S1,0, we investigate S0,2. The two rightmost
output bits have their difference fixed by the solution to S1,0, whilst the two
leftmost output bits have a 0-difference by propagation of the differential. There
are therefore 24 possibilities for the output pairs for this S-box, and thus 24

input solutions. Note that each solution fixes the bits added at the input of S1,0.
As for the previous S-box, each solution completely fixes the value of the two
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leftmost input bits (where there is no key addition), and the difference on the
other two.

In total we have 25 · 22 · 24 = 211 solutions at the input of S0,0 and S0,2.
Each solution is a fixed pair of values after the first key addition. Thus, when
considering an online pair, for this pair to be kept whilst solving S0,0, S0,2 and
S1,0, it must match a solution in value on the two leftmost bits of each S-box
(which can take 22·2·2 = 28 values), and in difference on the two rightmost bits
(which can take 22·2 = 24 differences). The average probability of a match is
thus 211/212 = 2−1. Since a match fixes the solution, and thus the value after
key addition, each match fixes the key bits at the input of S0,0, S0,2 and S1,0.

This represents a filter of 2−1 on the online pairs. By letting N ′′ to be the
number of solutions before this subgraph, the number of pairs remaining after
solving it is 2−1 · N ′′. If we have already applied a pre-sieving on S0,0 and S0,2,
then this sieving must be compensated. Thus, the number of remaining pairs is
21.3 · 2−1 · N ′′ = 20.3 · N ′′. Further, each of the N ′′ · 20.3 new triplets has a fixed
value on the key bits at the input of S0,0, S0,2 and S1,0. Testing each of the N ′′

pairs, that is, checking whether each pair belongs to the pre-computed table of
solutions, can be done with a time complexity of N ′′ · 20.3 using hash tables.3 In
this example, the precomputation is not too costly as it requires 211 applications
of the S-box, and the storage of 211 pairs of length 4 · 2 · 2 + 2 · 3 = 22 bits (the
pairs of input values of S0,0 and S0,1, as well as all the key bits).

We can compare the use of the precomputation technique here to the use
of a sequential solving. In this example, we suppose that among the N ′′ pairs,
a pre-sieving on S0,0 and S0,2 has already been applied. If we want to advance
sequentially further in the graph, we need to determine the key bits of S0,0 and
S0,2 before solving S1,0. Determining those key bits costs 21.3N ′′, whilst the 2−1

filter from S1,0 is only applied in a second step. On the other hand, if we use
the precomputed list of solutions, we can directly compute the N ′′ · 21.3 · 2−1 =
N ′′ · 20.3 solutions for a cost of N ′′ · 20.3 < N ′′ · 21.3.

This example shows how the amount of memory complexity allowed can
impact the complexity of the key recovery step. We invite the reader to use our
tool on the toy cipher using different memory/offline time complexity constraints
and to compare the results.

3.4 Computing in Parallel

An attacker can perform certain steps in parallel to improve the complexity of
the attack. We give an example using the first step of the key recovery on the
toy cipher. We consider the problem of solving in parallel S6,2, S6,3, S5,1 and
S4,2 on one hand, and S6,0, S6,1 and S5,0 on the other hand. This corresponds
to the purple and green subgraphs in Fig. 3 respectively. Further, we consider
that we have started our key recovery procedure by applying a pre-sieving on
all S-boxes of the first and last round, leaving us with N ′ = 2−5.63 · N pairs.

3 In fact, once divided by the cost of the toy cipher, the time complexity is smaller
than N ′′ · 20.3.
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The Purple Subgraph. We begin by computing the remaining number of pairs
after solving the S-boxes of the purple group. There are 26 solutions to S6,2.
Taking into account the sieving step, the number of triplets remaining after
solving this S-box is thus (26+0.83/26) · N ′ = 20.83 · N ′ = 2−4.8 · N , and each
triplet has a fixed value on the bits added at the input of S6,2. Using the same
reasoning, it follows that the number of pairs remaining after solving S6,3 and
S5,1 is 20.83+0.68 · N ′′ = 2−4.12 · N . There are 24 solutions to S4,2. After solving
S5,1, only 2 bits are fixed, and there are 24 possibilities for the remaining 2 bits.
The filter obtained by solving S4,2 is thus (24+4/28) · N = 1. The number of
solutions after solving the purple is thus 2−4.12 · N . This step can be done at a
cost 2−4.12 · N using precomputations using a memory 216.

The Green Subgraph. Using a similar reasoning, the number of pairs remaining
after solving S6,0 and S6,1 is 2−4.12N . This fixes the 4 input bits to S5,0, and thus
the number of solutions remaining after solving S5,0 is also 2−4.12 · N . Solving
these S-boxes can also be done at a cost of 2−4.12 · N using precomputations
with a memory of 212.

Merging the Two Subgraphs. We now merge the solutions of the green group with
those of the purple group. Solving the green group has fixed two output bits of
S5,0, whilst solving the purple group has fixed the same two input bits of S4,2,
but after the key addition. Thus, the probability that a solution of the purple
group is also a solution to the green group is the probability that the difference
on these two bits is equal. This probability is thus 2−2. Further, each newly
computed solution fixes the key bits. Thus, after merging the two subgraphs,
the number of pairs remaining is 2−2+2·0.83+2·0.68 · N ′ = 2−4.61 · N . This can
be done at a cost of 2 · 2−4.12 · N (the size of each subgraph), by for example
starting by solving the purple subgraph using pre-computed partial solutions
to that subgraph and then merging the result with the pre-computed partial
solutions of the green subgraph.

Using a sequential attack would have been less efficient here. For example,
if one would have first solved S6,0, S6,1, S6,2, S6,3, S5,0 and S5,1 before solving
S4,2, then the cost of solving S4,2 would have been about 22·0.83+2·0.68 · N ′′ =
23.02 · N ′ = 2−2.61 · N (the number of solutions remaining after solving those
S-boxes), which is strictly greater than the cost using parallelization.

4 Algorithm and Its Associated Tool

We provide in this section a description of our tool which captures an efficient
key recovery strategy. We begin by presenting the algorithm, on which the tool
is based, in a high-level manner. Then, we describe how we incorporate the
techniques of Sect. 3. Finally, we give the parameters of the tool and discuss the
limitations of our algorithm.



A Generic Algorithm for Efficient Key Recovery in Differential Attacks 231

4.1 High-Level Description of Our Algorithm

Using the modelization described in Sect. 3.1 it is quite straightforward to
describe an algorithm ready to be implemented. Given a distinguisher and a
number of key recovery rounds, we start by identifying all active S-boxes involved
in the key recovery. As they correspond to the nodes of the graph, we will some-
times denote them by nodes in this section. For each S-box, we compute its
solutions, and compute the resulting filter as described in Sect. 3.2.

Then, our algorithm considers what we call strategies. Given a subgraph
X, a strategy SX for the subgraph X is a divide-and-conquer procedure that
allows to enumerate all the possible values that the S-boxes of X can take under
the differential constraints imposed by the distinguisher. The most important
parameters of a strategy SX are

– its number of solutions, which in fact does not depend on the strategy itself
but only on the subgraph X;

– its online time complexity, that is, the average time complexity it takes to
check whether an online pair is consistent with the differential constraints of
the subgraph .

A strategy can be further refined with extra information such as the memory
complexity and the offline time complexity needed to attain the online time
complexity.

The output of the tool is an efficient graph strategy, i.e. a strategy for the
whole graph. This strategy corresponds to an efficient algorithm associating to
each online pair the key values that partially encrypt/decrypt this pair to the
distinguisher differences. It is built using basic strategies, that is strategies for a
single S-box. Given those basic strategies, and by incorporating the techniques of
Sect. 3 as described in Sect. 4.2, the tool finds the most efficient order in which to
combine all basic subgraphs, aiming to minimize the complexity of the resulting
strategy. The algorithm is schematically described in Algorithm1.

Comparing Strategies. To look for the best strategy, our tool must be able to
compare them. It only makes sense to compare strategies for a common subgraph,
at least initially. Considering a subgraph X, and two strategies S1

X and S2
X for

X, these strategies necessarily possess the same number of solutions. To compare
them, we thus compare their second parameter, that is, their time complexity.
Of course, the best strategy has the lowest complexity. When taking into account
the memory complexity, if two strategies have the same online time complexity,
then the strategy with the lowest memory complexity is considered to be the
best.

Merging Strategies. To build a global strategy from the basic ones, we must
precisely define what is the complexity of the strategy SX∪Y obtained by merging
together two strategies SX and SY . As the number of solutions of a subgraph
strategy depends only on the subgraph, the number of solutions of SX∪Y only
depends on X ∪Y . We evaluate this number of solutions by summing (assuming
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a logarithmic representation) the number of solutions of each node from X ∪ Y ,
and by subtracting the number of bit-relations between these nodes, including
relations obtained from the key schedule. Note that we restricted ourselves to
linear key schedules and thus computing the relations between the round key bits
involved in a strategy is as simple as computing the dimension of some vector
space. The time and memory complexity are easily computed as follows:

– Time online/offline: T (SX∪Y ) ≈ max(T (SX), T (SY ), Sol(SX∪Y ))
– Memory: M(SX∪Y ) ≈ max(M(SX),M(SY ),min(Sol(SX), Sol(SY )))

This is because the actual procedure behind the combination of two strate-
gies is to first run the one with the smallest number of solutions, store these
solutions in a hash table indexed by the bit relations between the two sub-
graphs, run the second one, and look for matches into the hash table. Note that
the real complexities of a strategy have to be multiplied by the number of S-
boxes it enumerates, and thus the real formula we use is T (SX∪Y ) × |X ∪ Y | ≈
max(T (SX)×|X|, T (SY )×|Y |, Sol(SX∪Y )×|X∪Y |). This formula is quite accu-
rate since most often, optimal strategies are built from disjoint sub-strategies.

It is important at this point to notice that the online time complexity of a
strategy resulting from a merge only depends on the time complexities of the two
merging strategies. It comes that an optimal strategy can always be obtained by
merging two optimal strategies: if a strategy for X (resp. Y ) has the lowest online
time complexity possible, then necessarily the maximum of these two values is
also the lowest possible. Thus, the strategy for X ∪Y obtained by merging these
two strategies is necessarily the most efficient. This justifies using a bottom-
up approach, merging first the strategies with the smallest time complexity to
reach a graph strategy with a minimal time complexity. We can rely on dynamic
programming-related techniques to ensure that, for any subgraph X, we only
keep one optimal strategy to enumerate it. Furthermore, note that we can extend
the cases in which two strategies can be compared. Indeed, if X contains Y and
if the number of solutions of X is not higher than the number of solutions of Y ,
then we can freely replace any strategy for Y by a strategy for X as long as it
has a better or similar time complexity.

While this reduces a lot the number of merges to perform, there are still,
assuming n nodes,

∑n
i=2

(
n
i

) ∑i−1
j=1

(
i
j

)
merge combinations to try for, which is

intractable. Thus, to limit the number of allowed merges, our tool only considers
merges for which there is at least one bit relation between the two subgraphs.
Graphically, this corresponds to the existence of at least one vertex between two
nodes of the subgraph, or a common S-box. For instance, looking at Fig. 3, our
tool does not allow the merge of S1,0 together with S0,1 since these two S-boxes
are not related.

4.2 Taking into Account the Techniques of Section 3

It can be easily seen that the algorithm as described above already outputs
strategies taking parallel computations into account. However, other techniques
such as pre-sieving and precomputations require some adaptation.
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Algorithm 1. Key recovery algorithm
Ldone ← ∅
Lcurrent ← basic strategy for each node of the graph
while Lcurrent �= ∅ do

Let S be the strategy from Lcurrent with the smallest time complexity
for every S ′ in Ldone allowed to be merged with S do

Let S ′′ be the merge between S and S ′

if no strategy from Ldone nor Lcurrent is similar or better than S ′′ then
Update S ′′ for free (by merging with basic strategies)
Remove from both Ldone and Lcurrent all strategies worst than S ′′

Add S ′′ to Lcurrent
end if

end for
Remove S from Lcurrent and add it to Ldone

end while

Sieving. To take into account the sieving, the tool uses in practice a modelization
that is slightly more complex than the one described so far where each S-box
was seen as a single node. In this modelization, each S-box is fully described
by two nodes. The first node corresponds to the sieving step on this S-box (it
contains the sieving list defined in Sect. 3.2), whilst the second node contains
the full S-box (i.e. all the solutions). Thus, a subgraph containing the sieving
node but not the second node describes a step in the key recovery in which the
attacker has performed a sieving on this S-box but does not want to enumerate
its actual values to avoid increasing the number of solutions at this step of the
key recovery. Note that to merge the second node to a subgraph, we require the
sieving node to belong to this subgraph.

Precomputations. Our algorithm distinguishes between online and offline strate-
gies. Online strategies depend on the data (their online time complexity is
expressed as a coefficient that multiplies N), while offline ones do not (in fact,
they do not possess an online time complexity). This attribute has one main
effect regarding the merge of two strategies and slightly modifies the formula
used to compute the inner complexities of the resulting one. Let SX and SY be
respectively an online and an offline strategy. The complexities of the strategy
obtained by merging both of them, i.e. SX∪Y , are defined as follows:

– Time online: Ton(SX∪Y ) ≈ max(Ton(SX), Sol(SX∪Y ))
– Time offline: Toff (SX∪Y ) ≈ max(Toff (SX), Toff (SY ))
– Memory: M(SX∪Y ) ≈ max(M(SX),M(SY ), Sol(SY ))

In other words, in this particular scenario, the offline strategy is selected to be
the one stored into the hash table while the solutions of the online strategy will
be generated on the fly.

The user can set an upper bound on the time spent offline and this bound
can be higher than the bound for the online time (a feature that could be useful
depending on the attack scenario the key recovery is a part of).
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Restricting Merges. To decrease the number of merges to consider, we add an
additional restriction on the allowed merges. Our idea is to force that a non-
filtering node can be merged with an online strategy if and only if either the
node is obtained for free (i.e. it does not increase the current number of solutions
of the strategy) or it is computed by partially encrypting/decrypting the data.
For instance, if S1,2 was not filtering then we would not allow to merge S0,1 with
it, and only a strategy enumerating both S0,1 and S0,3 would be allowed to do
so.

4.3 Parameters and Limitations

To provide the best key recovery strategy, our tool must take as input a descrip-
tion of the cipher and the distinguisher.

The Block Cipher. To describe the block cipher, the user must provide the
specification of the S-box S, the bit-permutation P, the number of rounds nR

and the key schedule. Note that for now, only linear key schedules are allowed.
For non-linear key schedules, the user can either replace S(k) by a new variable
(i.e. omitting the relation between k and S(k)) or replace it by L(k) for a random
invertible linear function L. These two options give the user an upper and a lower
bound respectively on the complexity of the key recovery.

The Distinguisher. To specify the distinguisher, the user must provide the input
difference δin and the output difference δout of the distinguisher, the number
of key recovery rounds nrp to prepend to the differential (plaintext side) and
the number of key recovery rounds nrc to append to the differential (ciphertext
side). Note that for our tool, a round corresponds to the XOR of the round key
to the state, the S-box layer and then the permutation layer, always taken in
this exact order. Last but not least, if the attack is in the related-key model, the
attacker must specify the difference on each round key.

An Option to Control the Propagation. The user can optionally specify some
differential constraints on the last S-box transition preceding the distinguisher.
This can be done by specifying a difference on some or all bits at the input of
the last S-box application before entering the distinguisher. Similarly, the user
can optionally specify a difference on some or all bits at the output of the first
S-box after the distinguisher. This is a way for the attacker to be able to control
part of the propagation if they wish to do so.

The above parameters are given as input to the program in the form of a
.txt file containing a very simple description of the above parameters.

Constraints on the Precomputation. Finally, the program allows for optional
constraints on the memory complexity and on the offline time complexity in a
precomputation phase. This is done thanks to options specified during the exe-
cution, as described in the README.md file that can be found in the git repository
of our tool.
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An Option to Accelerate the Search. Our tool can be used either to find the
most efficient key recovery strategy using the maximum amount of memory
and or precomputation specified by the user or simply to find a key recovery
strategy that has complexity under a given security parameter, to verify whether
there is an attack that exists. While the tool is in general very efficient, in
some cases, when several key recovery rounds are appended, the running time
could be too high. In this case, using a particular option specified in the above
mentioned README.md file, permits the user to quickly check whether an attack
exists, without asking the tool to find the most efficient key recovery strategy.

Minimizing the Memory Complexity. We have described up to now only paral-
lel merges, in which the memory depends on the smallest number of solutions
between the two strategies involved in the combination. However, let X, Y and Z
be 3 subgraphs and assume we have access to a strategy for each of them. If the
optimal strategy, in terms of time complexity, to enumerate X ∪ Y ∪ Z requires
to merge SX∪Y and SX∪Z , it might be interesting to construct both of them
with sequential merges to minimize the memory complexity. In other words, we
would like to first enumerate all the possible values for X and then, for each of
them, compute the possible values for both Y and Z in parallel and after that
look for matches. This might be very efficient to reduce the memory complexity
of the final strategy. However, doing so makes the search for the best strategy
much harder, especially since the order in which merges were performed inside a
strategy does matter for future merges, forbidding to use an approach based on
dynamic programming. Thus we do not optimize on the memory complexity and
only keep at most one strategy per subgraph. Still, among the strategies con-
structed during the search procedure, we will always keep the ones minimizing
the memory complexity.

Parallel Matching Algorithms. In several key recovery procedure, like in [14] and
in [12], a complex algorithm for efficiently matching partial solutions that were
computed in parallel is used: the parallel matching [15,27] permits to find with
an efficient complexity the total number of solutions with respect to non-linear
relations. Actually, this technique can be seen as a merge of three strategies in
one step while we only described how to merge two strategies. We did not take
this technique into account for two reasons. First, it would make the search space
much bigger since the number of possible combinations increases exponentially.
Second, when the third strategy is composed of two sub-strategies (which is
the case for all of them but the basic ones enumerating a single S-box), we
experimentally found that merging them 2 by 2 always led to the same overall
time complexity (though usually to higher memory needs). Additionally, in the
remaining case of a third strategy enumerating a single S-box or its associated
filter, the gain over our merging process is marginal, due to both the small
number of solutions enumerated and the small filter that basic strategies offer.
Still, it would be a nice future work to identify precisely the cases in which we
should switch to the parallel matching technique instead of the simple merge
procedure.
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Accuracy of the Complexity. In order to evaluate the complexity of a given
strategy, we need to be able to compute the number of solutions outputted
by each sub-strategy it is composed of. This is a difficult problem in general
as it corresponds to the evaluation of the number of solutions of a complex
polynomial system over F2. Thus we use the common assumption that a system
of n linearly independent polynomial equations involving m variables on F2 has
approximately 2m−n solutions. Taking into account that the non-linear part of
the polynomial equations all come from the S-boxes involved in the target cipher,
that all the S-boxes are permutations and that the number of pairs on which
is performed the key recovery is most often much higher than the size of the
S-boxes, this assumption should hold in most scenario. Actually the same one
was for instance used in [10] in which the authors verified its accuracy on some
examples involving the AES S-box.

We provide a comparison with previous works in the full version of our arti-
cle [11].

5 Applications

We describe the application of our tool to four block ciphers: RECTANGLE,
GIFT-64, PRESENT-80 and SPEEDY-7-192. The three first ones have a bit-
permutation as linear layer, whilst SPEEDY has two types of linear operations: a
bit-permutation and a more complex one, represented by a matrix multiplica-
tion. However, this second operation is not involved in the key recovery rounds
of the attack we are going to analyze. Thus, our tool can still be applied to it.
SPEEDY and GIFT, have a linear key schedule, whilst PRESENT and RECTANGLE do
not. Since our tool does not handle non-linear schedules, we apply it to PRESENT
by replacing the S-box involved in the key schedule by a randomly generated
matrix. Then, we verified by hand that the proposed attack still worked with
the original key schedule of PRESENT as there is only a single S-box application
per round. For RECTANGLE, as the key schedule is more complex, we consider
that all round keys are independent.

The four applications we considered demonstrate the applicability of our
tool to primitives with different characteristics. Once a differential distinguisher
is provided, it is very easy to determine the highest number of rounds that can
be attacked by trying different configurations for the key recovery rounds. This
allowed us to mount a 19-round differential attack on RECTANGLE-128 with a
differential distinguisher provided by the designers [38], while designers as well as
cryptanalysts who improved this same attack [13] missed this possible extension
and stopped at 18 rounds. While it has been shown in [4] that the underlying
differential distinguisher is only valid for half of the keys, our application still
demonstrates the facility of our tool to check for the existence of attacks on
any number of rounds once a differential distinguisher is given. It will be easily
applied if better valid distinguishers are provided in the future for this cipher. For
PRESENT, differential attacks are not the best existing attacks. On the other hand,
the differential attack of Wang [36] on 16-round PRESENT-80 has been known for
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more than 15 years now and has not been significantly improved since. We show
here that using the same differential distinguisher with an improved efficient key
recovery strategy, one can mount an attack on two extra rounds. This result was
very easy to find by simply applying our tool for all relevant configurations of
the key recovery rounds. The particular case of GIFT is very interesting, and a
comparison with previous attacks will be described in detail. Finally, for SPEEDY
we slightly improve the complexity of the key-recovery part of the attack in [12]
by launching the tool on this cipher and analyzing the produced key recovery
graph. This only took one second to the tool, while the authors of [12] found the
key recovery strategy by hand through a very tedious procedure.

For each application, we briefly provide the specification of the cipher as
well as the previous best known differential attack on it. In each case, we keep
the same differential distinguisher as the one given in the original cryptanalysis
papers. Indeed, our goal is not to improve the differential search step, but to
ameliorate the key recovery procedure (or at least to find an equivalent one
effortlessly). We will present our different applications. The graph produced for
each attack can be visualized on the Git repository we provide. The complexity
of the key recovery step for each analyzed cipher is summarized in Table 1.

Table 1. Summary of the previous best attacks, and of how our results impact them,
on RECTANGLE, PRESENT-80, SPEEDY-7-192 and GIFT-64. CKR corresponds to the cost
of the key recovery, while T represents the total time complexity of the attack. *The
complexities in the attack on SPEEDY are given with the cost of one encryption as unit,
that is estimated to 27. We use the same unit here. †These attacks are in the related-key
model.

Cipher # Rounds N N × CKR T Ref

RECTANGLE-80 18 250.83 N · 227.84 278.67 [38]
RECTANGLE-80 18 250.83 N · 213.27 264 [13]
RECTANGLE-80 18 250.83 N · 219 269.83 Section 5.2
RECTANGLE-128 19 278.83 N · 243 2121.83 Section 5.2
PRESENT-80 16 228 N 265 [36]
PRESENT-80 18 258 N · 2 259 Section 5.3
SPEEDY-7-192* 7 2190.32 N · 22.83 2187.84 [12]
SPEEDY-7-192* 7 2190.32 N 2187.38 Section 5.5
GIFT-64† 26 2115.96 N · 27.27 2123.23 [32]
GIFT-64† 26 2115.96 N 2115.96 Section 5.4

5.1 Validity and Experiments

We applied our tool to differential distinguishers that have been described in
the literature for the different ciphers to show how much our tool can improve
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previous key recoveries. We also verified by hand the key recovery of the new
attacks given in Table 1. More precisely, we checked that the strategies outputted
by our tool are coherent (e.g. no missing nodes, realistic costs, ...) and then we
computed by hand the number of solutions at each step of the process as we did
in Sect. 3 for the toy example. For concision reasons, we do not include these
descriptions in this work.

We also emphasize that we did not check whether the theoretical proba-
bilities of the distinguishers match the experimental ones as this was out of
scope for the current work. Therefore, our attacks (and actually all differential
attacks in the literature) can be considered as valid only under the assumption
that the underlying distinguishers are valid themselves. In particular, Beyne
and Rijmen showed that the differential characteristic used in the attack against
RECTANGLE-80 only holds for at most half of the keys [4]. The recent work of
Peyrin and Tan [28] also suggests that the differential characteristics used in
other lightweight ciphers should be carefully checked.

5.2 RECTANGLE

RECTANGLE is a block cipher designed by Zhang, Bao, Lin, Rijmen, Yang and
Verbauwhede in 2015 [38]. It is based on an SPN construction and uses a state
of 64 bits. The state can be seen as a concatenation of 16 nibbles. The round
function consists of an XOR with the round key, the application of a 4-bit S-box
in parallel to each nibble of the state and a bit-permutation that plays the role of
the linear layer. The round function is iterated 25 times. The key of RECTANGLE
can be 80-bit or 128-bit long. We do not describe the key schedule here as we
consider all subkeys to be independent.

The Differential Attack of [38]. The designers of RECTANGLE described a
differential attack on 18-round RECTANGLE for both versions of the cipher. This
attack is based on a 14-round differential distinguisher of probability 2−62.83.
Two key recovery rounds are added on both sides (see Fig. 2 for the propagation
of the differences). This attack has a data complexity of 264, a time complexity
of 278.67 and a memory complexity of 272 key counters. An improvement of the
time complexity of the original attack was however later given in [13]. In this
last article, the authors used several advanced techniques, such as the “tree-based
graphs” and the key-absorption technique, which allowed them to improve the
time complexity to 264 in a non-automated, very technical and hard to verify way.
While we would have liked to reach the same complexity, this example shows
that our tool can only be beaten by using very sophisticated techniques and
permit to researchers to focus on them. Note however, that Beyne and Rijmen
showed in [4] that the distinguisher on which both the attacks of [38] and [13]
are based is valid for at most half of the keys only.

Application of Our Tool. We applied our tool to RECTANGLE by adding 2 key
recovery rounds in both directions as done in the original attack of [38]. As the
probability of the distinguisher is 2−p = 2−62.83, the data complexity of the
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Table 2. Differential attack on (14+x)-round RECTANGLE based on the 14-round distin-
guisher from [38], where x ∈ 4, 5. ΔIr and ΔOr are respectively the states before and
after the S-box layer of round r. The symbol ‘.’ stands for a non-active bit, ‘1’ for an
active bit, and ‘*’ stands for a bit with an unknown difference. Finally, ‘0’ corresponds
to a bit with 0 difference but whose value needs to be known for the key-recovery.

S-box 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ΔIr−3 **** **** **** **** **** **** **** **** **** *11* 0000 **** **** ****
ΔOr−3 **0* ***. *... ...* .*** *1** *.*. .... ...* ..** ..1. .0.. 0*.. *... .... .*.0
ΔIr−2 **** **** **** **** **** *11* 0000
ΔOr−2 * ...* .1* * ...* ..1 .0
ΔIr−1 *0** *11*
ΔOr−1 .11 ..1
ΔIr ..1 .11
14-round distinguisher
ΔIr+14 .1 ..1
ΔOr+14 **11 ****
ΔIr+15 * .*1 ...1 * .* ..* ...*
ΔOr+15 **** **** **1* **** **** **** ****
ΔIr+16 *.* **** .*1* ...* ..* *.** **** .*.* * *.* .* ..* ..** ...*
ΔOr+16 **** **** **** **** **** **** **** **** **** **** **** **** **** ****

attack is D = 2p+1 = 263.83. The number of pairs can be computed based on the
related spaces Din and Dout (see Sect. 2). For the 18-round attack, din = 24 and
dout = 28. Thus, by using the encryption oracle, we can form 2p+din = 286.83

pairs, and among them N = 2p+din−(n−dout) = 250.83 should survive the filtering
by the ciphertext difference. Our tool outputted a complexity for the key recovery
phase equal to N · 219 = 269.83. This is the dominant term in the complexity
of our attack, yet, it is much lower than the complexity of the key recovery in
the original attack of [38]. As the execution of the tool for the above instance
was very fast, we decided to test whether this distinguisher could be extended to
more rounds in each direction. Thus, we tried to prepend one more round at the
beginning or to append one more round at the end, or both. The propagation of
the differences is shown in Table 2. In this table, round r is the round on which
the differential starts. For the attack of [38] with 2 prepended rounds r = 2,
while if we prepend 3 rounds then r = 3.

Table 3 summarizes the results. The best configuration for a concrete total
number of rounds is shown in blue. We see for example, that when adding 2 key
recovery rounds at the beginning and 3 at the end, it is possible to obtain a
valid attack on RECTANGLE-128. Indeed, in this case din = 52, dout = 28, so N =
2p+din−(n−dout) = 278.83. For this configuration, the tool returned a key recovery
complexity of 243. This complexity is optimal in the sense that it corresponds
to the number of expected solutions. This gives an attack with time complexity
278.83+43 = 2121.83, which is smaller than the exhaustive search for the 128-
bit key version. This would lead to the first attack on RECTANGLE-128 reaching
19 rounds in the single-key setting if there would have been no problem with
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the differential distinguisher. As can be seen from Table 3 we also launched the
tool with three added key recovery rounds in both directions, but the returned
complexity of 270 was too high to lead to a valid attack.

Table 3. Summary of the results on RECTANGLE. The column CKR corresponds to the
cost of the key recovery given by our tool and should be multiplied by the number
of pairs N . If (N · CKR) < 80 then we get a valid attack against both versions of
RECTANGLE. If furthermore (N · CKR) < 128, then we obtain a valid attack against
RECTANGLE-128. Best attacks are highlighted in blue.

Cipher nrp nrc #Rounds
(14 + nrp + nrc)

din dout N
(2p+din+dout−n)

CKR

(·N)
Valid attack

RECTANGLE-80 2 2
18

24 28
250.83 219

�

RECTANGLE-128 2 3 19 24 56 278.83 246 �
RECTANGLE-128 3 2

19
52 28

278.83 243
�

RECTANGLE-128 3 3 20 52 56 2106.83 270 ✗

5.3 PRESENT

The PRESENT block cipher was designed by Bogdanov, Knudsen, Leander, Paar,
Poschmann, Robshaw, Seurin and Vikkelsoe in 2007 [9]. Similar to RECTANGLE, it
uses a 64-bit state where the state can be seen as a concatenation of 16 nibbles.
Its round function also consists of an XOR with the round key, the application of
a 4-bit S-box in parallel to the state and a bit-permutation. The round function
is iterated 31 times with a final whitening subkey. PRESENT supports keys of
80 or 128 bits. We provide the key schedule of PRESENT-80 together with the
description of the other components of the cipher in [11].

The best attacks on PRESENT are linear attacks reaching 28 rounds [20] and
29 rounds [19] on the 80-bit and 128-bit versions respectively. To illustrate the
efficiency of our tool, we consider here the best known differential attacks. Indeed,
PRESENT is a very interesting example as it shows that our tool can be efficient
with not only linear but almost linear key schedules. To analyze PRESENT, we
considered an alternative linear key schedule. We replaced the S-box by a matrix
multiplication with a randomly generated non-singular matrix in M4(F2). Once
the tool found an efficient key recovery strategy, we adapted the attack to the
real key schedule of PRESENT, and verified our result by hand.

The Differential Attack of [36]. In 2007, Wang presented a differential attack
against 16-round PRESENT-80. This attack was based on the 14-round differential
distinguisher

0700 0000 0000 0700 −→14r 0000 0009 0000 0009,
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of probability 2−62. Two rounds were appended to this distinguisher on the
ciphertext side. This led to an attack with data complexity 264 and time com-
plexity of 265 (measured in number of memory accesses).4

We applied our tool to PRESENT-80 with this distinguisher and tried different
configurations for the key recovery rounds. More precisely, we tried to append
up to 4 rounds to the end and to prepend at most 4 rounds in the beginning.
The propagation of the differences is shown in Fig. 4. As before, in this table,
r is the round number on which the differential starts. For the original attack
of Wang with 0 prepended rounds r = 0, while if we prepend 1 round (resp. 2
or 3 rounds), r = 1 (resp. r = 2, 3). The state before the S-boxes application of
round r is denoted by ΔIr, while that after the S-boxes and before the linear
layer is denoted by ΔOr.

Table 4. Differential attack on (14 + x)-round PRESENT based on the 14-round distin-
guisher from [36]. ΔIr and ΔOr are respectively the states before the S-box layer of
round r. The symbol ‘.’ stands for a non-active bit, ‘1’ for an active bit, and ‘*’ stands
for a bit with an unknown difference (active of inactive). Finally, ‘0’ corresponds to a
bit with 0 difference but whose value needs to be known for the key recovery.

S-box 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ΔIr−4 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
ΔOr−4 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
ΔIr−3 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
ΔOr−3 .*** .*** .*** *** .*** .*** .*** .*** .*** .*** .*** *** .*** .*** .*** .***
ΔIr−2 **** **** **** **** **** **** **** **** **** **** **** ****
ΔOr−2 .* .* .* .* .* .* .* .* .* .* .* .*
ΔIr−1 **** **** ****
ΔOr−1 1..1 1..1 1..1
ΔIr .111 .111
14-round distinguisher
ΔIr+14 1..1 1..1
ΔOr+14 ***0 ***0
ΔIr+15 ...* ...* ...* ...* ...* ...* ...0 ...0
ΔOr+15 **** **** **** **** **** **** 0000 0000
ΔIr+16 .*.* .*.* .*.* .0.0 .*.* .*.* .*.* .0.0 .*.* .*.* .*.* .0.0 .*.* .*.* .*.* .0.0
ΔOr+16 **** **** **** 0000 **** **** **** 0000 **** **** **** 0000 **** **** **** 0000
ΔIr+17 ***0 ***0 ***0 ***0 ***0 ***0 ***0 ***0 ***0 ***0 ***0 ***0 ***0 ***0 ***0 ***0
ΔOr+17 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
ΔIr+18 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
ΔOr+18 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****

For all the relevant configurations we first computed the number of pairs
based on the related spaces Din and Dout (see Sect. 2). Then, we launched the

4 Tezcan claimed later in [34] that there were errors in the key recovery procedure,
providing a corrected attack for the same number of rounds with the same distin-
guisher.
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tool with this number of pairs to see if a solution was found. As for most of the
configurations the execution took a few seconds only, it was easy to automatically
test all the attack scenarios. For the configuration with nrp = 4 and nrc = 0
the execution was slow so we ran the tool with the option - time x, for x the
smallest value such that log2(N) + x ≥ 80. This option allows to search only for
attacks with time complexity ≤ N ·2x and greatly accelerates the research. This
permitted us to check that there was no valid attack in this setting. We also
checked all configurations that would permit to reach an attack on 19 rounds of
PRESENT-80 for this distinguisher and confirmed that it is not possible to obtain
a valid attack on this number of rounds.

Parameters and Complexities of the Attacks. For all the attacks, as the probabil-
ity of the distinguisher is 2−p = 2−62, the data complexity is 2p+1 = 263 accord-
ing to the formulas of Sect. 2. For each configuration (number of nrp prepended
rounds and nrc appended rounds), we determine the number of initial pairs N
the attack should start with and provide the complexity given by the tool. For
the notation of the parameters, we refer to Sect. 2.

Our results against PRESENT-80 are summarized in Table 5.

Table 5. Summary of the results on PRESENT-80. The column CKR corresponds to the
cost of the key recovery given by our tool and should be multiplied by the number of
pairs N . An attack against PRESENT-80 is valid if the complexity of the key recovery
is lower than 280. The best attacks are highlighted in blue.

Cipher nrp nrc #Rounds
(14 + nrp + nrc)

din dout N
(2p+din+dout−n)

CKR

(·N)
Valid attack

PRESENT-80 0 2
16

6 24
228 1

�

PRESENT-80 0 3 17 6 48 252 1 �
PRESENT-80 1 2

17
12 24

234 24
�

PRESENT-80 2 1 17 48 6 252 28 �
PRESENT-80 3 0 17 64 4 262 210.62 �
PRESENT-80 0 4 18 6 64 268 > 212 ✗

PRESENT-80 1 3
18

12 48
258

21 �

PRESENT-80 2 2 18 48 24 270 1 �
PRESENT-80 3 1 18 64 6 268 29 �
PRESENT-80 4 0 18 64 4 266 > 214 ✗

As can be seen from Table 5 we managed to extend the previous best differ-
ential attack on PRESENT-80 by 2 rounds. Notably for 18 rounds, the complexity
of the key recovery stage given by our tool is CKR = 259. In this case, as only 1
round is appended in the beginning, and as the 3 active input S-boxes are contin-
uous, the attack applies directly to the real key schedule, so to PRESENT-80 with
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18 rounds. By guessing one extra key bit, that then gets canceled out before
the bottleneck of the process, we manage to recover all the key bits with the
non-linear key schedule.

5.4 GIFT-64

GIFT-64 is a member of the GIFT family of lightweight block ciphers designed
by Banik, Pandey, Peyrin, Sasaki, Sim and Todo [1]. It is a 64-bit block cipher
with a 128-bit key and is composed of 28 rounds. It is a classical SPN cipher
whose state can be divided into 16 nibbles. First, the round key is XORed to the
state. A particularity of GIFT is that the key is only added to half of the state,
and more precisely to all bits at position b such that b = 0 (mod 4) or b = 1
(mod 4). Then, a 4-bit S-box is applied in parallel to all nibbles of the state and
this application is followed by a bit-permutation. The key schedule consists in
a bit-permutation of the master key and is described together with the other
components of the cipher in the long version of this article [11].

The Related-Key Differential Attack of [32]. Sun et al. provided a differ-
ential attack on 26 rounds of GIFT-64 in the related-key setting. This attack
was based on a 18-round related-key differential distinguisher of probability
2−p = 2−58:

0000 6000 0000 0600 −→18r 0000 0014 0000 0041.

The difference on the 128-bit master key is taken to be as follows:5

0000 1400 0000 0000 0000 0000 0000 0000.

The authors prepended 3 key recovery rounds in the beginning and appended 5
key recovery rounds at the end to mount an attack with data, time and memory
complexities equal to D = 260.96, T = 2123.23,M = 2102.86. The differential
propagation on the key recovery rounds can be visualized in Table 6.

Application of Our Tool and Comparison with the Attack of [32]. Using
the same distinguisher and attack parameters as in [32], our tool outputted a key
recovery strategy of complexity N = 2115.96, that is also the global complexity
of the attack. This strategy improved thus the attack of [32] by a factor of 27.27.
Based on the same setup, the work of [14] improved the complexity of the attack
of [32] with a very tedious procedure. It is important to note that while this
attack uses refined techniques such as tree-based key recovery techniques and
key absorption from [13], our tool was able to derive a more efficient procedure.

5 Note that in [32] the least significant bit (LSB) was taken on the left, contrary to
the original cipher’s description [1]. Here, we stick to the original notation and place
the LSB on the right.
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Table 6. Differential attack on 26-round GIFT-24 based on the 18-round related-key
distinguisher from [32].

S-box 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ΔI0 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
ΔO0 **** **** **** **** 1*** 11** *1** **** *1** **** 1*** 11** **** **** **** ****
ΔI1 **** **** 11 **** **** **** 11 **** **** 11 **** **** **** 11 **** ****
ΔO1 ...* 1 .1 ..* ...* * .1 ..* 1 .1 ..* ...* * .1 ..* ...*
ΔI2 11** *1** 11** *1**
ΔO2 .1 ..1 .1 ..1
ΔI3 .11 .11
18-round related-key differential distinguisher
ΔI21 ...1 .1 .1 ...1
ΔO21 **** ***1 ***1 ****
ΔI22 .** .** ..*1 ..** *..* *..1 ** **
ΔO22 **** **** **** **** **** **** **** ****
ΔI23 .*.* .*.* .*.* .*.* .*.* .*.* .*.* .*.* .*.* .*.* .*.* .*.* .*.* .*.* .*.* .*.*
ΔO23 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
ΔI24 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
ΔO24 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
ΔI25 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
ΔO25 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****

5.5 Application to SPEEDY-7-192

SPEEDY-7-192 is a member of the SPEEDY family of low-latency block ciphers
introduced by Leander, Moos, Moradi and Rasoolzadeh at CHES 2021 [24]. Last
year, a differential attack on the full version of SPEEDY-7-192 was published [12].
This attack exploited a 5.5-round differential of probability 2−p = 2−183.59 that
was extended to one round backwards and half a round forwards. The key recov-
ery in [12] was done by hand, requiring a particularly tedious procedure. We
decided to launch our tool on this cipher, keeping the same parameters as in [12],
in order to show the applicability of our tool on a different cipher and to see
if the key recovery complexity could be improved. Note however that in a very
recent note [3], subsequent to ours, the authors claim that the distinguisher used
is not valid due to the existence of quasidifferentials cancelling the probability.
Our tool outputted a complexity for the key recovery phase equal to N improv-
ing thus by a factor of 22.83 the key recovery complexity of [12]. As this term was
not the bottleneck of the attack, the improvement in the overall time complexity
is small: 20.5. This application shows however that our tool can complete in a
few seconds a procedure that would be extremely long by hand. Our tool will
be automatically applicable to any new and valid differential distinguisher that
gets presented for this cipher in the future. More details can be found in the
long version of our article [11].
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6 Conclusion and Open Problems

In this paper, we have proposed a new algorithm (and an automatic tool that
implements it) to find efficient key recovery strategies in differential attacks.
This permitted us to find efficient key recovery strategies for the attacks on
many ciphers. We believe that our tool, which will be publicly available, will be
of great help to cryptanalysts, but also to designers, as it will assist them in
mounting attacks and in choosing optimal parameters for their construction.

We believe that the proposed tool is the first step towards a fully automated
treatment of differential attacks. Many extensions and improvements can be
considered. Indeed, our tool can for the moment only handle block ciphers with
a bit-permutation linear layer and a linear or almost-linear key schedule. A
natural extension is to adapt the tool such that it applies to ciphers with more
complex linear layers, based for example on an MDS multiplication. Another
improvement would be to adapt the tool to ciphers with non-linear key schedules
as currently, our tool needs the user to either linearise non-linear key schedules
or replace non-linear equations with new variables. Another interesting direction
is to adapt the tool to take into account tree-based key recovery techniques by
exploiting the structure of the involved S-boxes, as those proposed in [13].

Finally, the ultimate goal would be to combine this tool with algorithms that
search for differential distinguishers to propose a complete tool for differential
cryptanalysis that would produce attacks based on differential distinguishers that
are the best adapted for the key recovery. This is a challenging but particularly
important task, as it is known that the best distinguisher does not always lead
to the best attack.
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