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Abstract. The partial sums cryptanalytic technique was introduced in
2000 by Ferguson et al., who used it to break 6-round AES with time
complexity of 252 S-box computations — a record that has not been beaten
ever since. In 2014, Todo and Aoki showed that for 6-round AES, partial
sums can be replaced by a technique based on the Fast Fourier Trans-
form (FFT), leading to an attack with a comparable complexity.

In this paper we show that the partial sums technique can be com-
bined with an FFT-based technique, to get the best of the two worlds.
Using our combined technique, we obtain an attack on 6-round AES with
complexity of about 245 additions. We fully implemented the attack
experimentally, along with the partial sums attack and the Todo-Aoki
attack, and confirmed that our attack improves the best known attack
on 6-round AES by a factor of more than 32.

We expect that our technique can be used to significantly enhance
numerous attacks that exploit the partial sums technique. To demon-
strate this, we use our technique to improve the best known attack on
7-round Kuznyechik by a factor of more than 80.

1 Introduction

The partial sums cryptanalytic technique was introduced by Ferguson et al. [21]
as a tool for enhancing the Square attack [16] on AES [1]. Informally, the Square
attack requires computing the XOR of 232 8-bit values extracted from partially
decrypted ciphertexts under each of 240 candidate subkeys, which amounts to
272 operations. The partial sums technique divides the attack into several steps
where at each step, the adversary guesses several key bits and computes a ‘partial
sum’, which allows reducing the number of partially decrypted values whose
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XOR should be computed. As a result, the overall complexity of the attack is
significantly reduced to 2°2 operations.

In the 23 years since the introduction of the partial sums technique, it was
shown to enhance not only the Square attack but also several other attacks (e.g.,
integral, linear, zero-correlation linear, and multi-set algebraic attacks, see [4,6,
8,12,17]) in various scenarios, and was applied to attack numerous ciphers (AES,
Kuznyechik, MISTY1, CLEFTA, Skinny, Zorro, Midori, and LBlock, to mention
a few). Yet, its best known application remained the original one — the attack
on 6-round AES which remained the best attack on 6-round AES, despite many
attempts to supersede it (see Table 2).

In 2014, Todo and Aoki [30] showed that an FFT-based technique can replace
partial sums in enhancing the Square attack. The idea is to represent the XOR
of the 232 partially decrypted ciphertexts which the adversary has to compute
as a convolution of two tailor-made functions and then to use the Fast Fourier
Transform (FFT) in order to compute this value for all guessed subkeys at once,
at the cost of about 4 - 232 .10g(232) addition operations. While at a first glance,
this technique seems clearly advantageous over partial sums, subtle practical
difficulties counter its advantages, making the two techniques comparable. First,
the technique can be applied only after guessing 8 bits of the key. Secondly, as
the output of the FFT is an element in Z and not an element in the finite field
GF(28), one has to repeat the procedure for each of the 8 bits in which the XOR
should be computed. Thirdly, while partial sums can exploit partial knowledge of
the subkeys the adversary needs to guess, it seems that the FFT-based technique
does not gain anything from partial knowledge. According to the authors of [30],
the complexity of their attack on 6-round AES is 6 - 2°° addition operations,
which is roughly equal to the complexity of the partial sums attack.

In the last decade, the Todo-Aoki technique was used as a comparable alter-
native of partial sums, with several authors mentioning advantages of each attack
technique in different scenarios (see [4,6,15,32]). Yet, it seemed that one has to
choose between the benefits of the two techniques in each application.

In this paper we show that one can combine partial sums with an FFT-based
technique, getting the best of the two worlds in many cases. The basic idea behind
our technique is to use the general structure of partial sums, but to replace
particular key-guessing steps used in partial sums (or combinations of several
such steps) by FFT-based steps, which include embedding finite field elements
into Z. We show that this allows computing the XOR in all 8 output bits at once,
exploiting partial key knowledge, and even packing several computations together
in the same 64-bit word addition and multiplication operations. As a result,
we obtain the speedup of FFT over key guessing, without the disadvantages it
carries in the Todo-Aoki technique. In addition, the new technique allows for
much more flexibility, as we may choose which steps we group together and in
which steps we use FF'T instead of key guessing. The choice depends on multiple
step-dependent parameters, such as the number of subkey bits guessed in the
step, the ability to pre-compute some of the operations required for the FFT,
and partial knowledge of subkey bits. Thus, the flexibility may be very helpful.
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Table 1. Cost comparison of three best attacks on 6-Round AES in Amazon’s AWS

Attack (Source) AWS Instance | Running Time | Total Cost

(in minutes) (in USS)
Square & Partial sums [21] m6i.32xlarge | 4859 497
Square & FFT [30] r6i.32xlarge 3120 418
Square & Partial sums & FFT (Sect.3.5) | m6i.32xlarge |48 5

We use our technique to mount an improved attack on 6-round AES. We
obtain an attack which requires 233 chosen plaintexts (compared to 234® in the
partial sums attack of [21]), time complexity of about 2464 additions (com-
pared to 2°? S-box computations in partial sums), and memory complexity of
227 128-bit blocks (roughly the same as in partial sums). As it is hard to com-
pare additions with S-box applications, we experimentally compared the attacks
by fully implementing our attack, the partial sums attack, and the Todo-Aoki
attack, using Amazon AWS servers. We optimized the instance which best fits
the attacks (optimizing for performance/cost tradeoff). Our experiments show
that our attack takes 48 minutes (and costs 5 US$), the partial sums attack
takes 4859 minutes (and costs 497 USS$), and the Todo-Aoki attack takes 3120
minutes (and costs 418 US$). Thus, our attack provides a speedup by a factor
of more than 65 over both the partial sums attack and Todo-Aoki’s attack, and
allows breaking 6-round AES in about 48 minutes at the cost of only 5 US$. This
breaks a 23-year old record in practical attacks on 6-round AES. Table 1 sum-
marizes the costs of running the attacks. The source code is publicly available
at the following link

https://github.com/ShibamCrS/Partial Sums Meet  FFT.

Our attack improves the partial sums attack of [21] on 7-round AES by the
same factor. In addition, it might be applicable to other primitives that use
6-round AES as a component like the tweakable block cipher TNT-AES [5].

Due to the flexibility of our technique, it can be used to improve various
attacks that use the partial sums technique. We demonstrate this applicability by
presenting improved attack on Kuznyechik [18] the Russian Federation encryp-
tion standard. The best-known attack on Kuznyechik is a multiset-algebraic
attack on 7 rounds (out of 9) with the complexity of 2!°4® encryptions, pre-
sented by Biryukov et al. [12]. We show that this attack can be improved by a
factor of more than 80 to about 2148 encryptions, thus providing the best-known
attack on Kuznyechik. A comparison of our results on 6-round AES and reduced
Kuznyechik with previously known results is presented in Table 2.

The full version of this paper [19] presents our techniques with two other
targets MISTY1 and CLEFIA. We improve the Bar-On and Keller [8] attack
by a factor 6 (to 267) and obtain the best known attacks against full MISTY1.
We also improved multiple attacks against CLEFIA [13,23,28] for 11, 12, and 14
rounds. Most strikingly, we improve the 12-round attack of Sasaki and Wang [2§]
by a factor of about 23°.
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Table 2. Comparison of our results with previous key recovery attacks on 6-Round
AES and reduced Kuznyechik. The results are listed in chronological order.

Cipher Rounds Data Time Technique and Source
AES 6 232 CP 27! Enc. Square [16]

6-2°2 CP  2°2 S-box Eval.  Square & Partial sums [21]

271 AcPC 27! Enc. Boomerang [11]

233 CpP 2°2 S-box Eval.  Square & Partial sums [31]

6-2%2 CP 252 Add. Square & FFT [30]

226 CP 289 Enc. Mixture Differential [7]

2°° ACPC 289 Enc. Retracing Boomerang [20]

277 ACPC 27® Enc. Boomeyong [27]

2°9 ACPC  2%! Enc. Truncated Boomerang [9]

233 CP 2464 Add. Square & Partial sums & FFT (Sect. 3)
Kuznyechik 7 2128 Kp 21545 g, Integral & Partial sums [12]

2128 Kp 2148 Enc. Integral & Partial sums & FFT (Sect. 4)

6 2120 cp 2146-5 e, Integral & Partial sums [12]
2120 cp 2140-9 Ene. Integral & Partial sums & FFT (Sect. 4)

The paper is organized as follows. In Sect. 2, we describe the structure of the
AES, the Square attack, and the two previously known methods for enhancing
it — partial sums and the Todo-Aoki FFT-based method. Section 3 presents our
new technique, along with its application to 6-round AES. Section4 presents
application of the new technique to the cipher Kuznyechik.

2 Background

2.1 Description of AES

AES [1] is a 128-bit block cipher, designed by Rijmen and Daemen in 1997
(originally, under the name Rijndael). In 2001, it was selected by the US National
Institute of Standards (NIST) as the Advanced Encryption Standard, and since
then, it has gradually become the most widely used block cipher worldwide.

AES is a Substitution-Permutation Network operating on a 128-bit state
organized as a 4 x 4 array of 8-bit words. The encryption process is composed of
10, 12, or 14 rounds (depending on the key length: 10 rounds for 128-bit keys,
12 rounds for 192-bit keys, and 14 rounds for 256-bit keys). Each round of AES
is composed of four operations, presented in Fig. 1.

SUBBYTES. Apply a known 8-bit S-box independently to the bytes of the state;

SHIFTROWS. Shift each row of the state to the left by the position of the row;

MixCoLUMNS. Multiply each column by the same known invertible 4-by-4
matrix over the finite field GF(28);

ADDROUNDKEY. Add a 128-bit round key computed from the secret key to
the state, using a bitwise XOR operation.
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Fig.1. An AES Round

An additional ADDROUNDKEY operation is applied before the first round, and
the last MIXCOLUMNS operation is omitted. As properties of the key schedule
of AES are not used in this paper, we refer the reader to [1] for its description.

The rounds are numbered from 0 to Nr — 1, where Nr is the number of
rounds. The subkey used in the ADDROUNDKEY operation of round / is denoted
by k*, and the j’th byte in its 4’th row is denoted by kﬁjﬂ-. The whitening key
added before the initial round is denoted by k~!. The j’th byte in the i’th row of
the state before the SUBBYTES, SHIFTROWS, MixCOLUMNS, ADDROUNDKEY
operations of round ¢ is denoted by xfijﬂ-, yfijﬂ-, zﬁjﬂ», and wfijﬂ, respectively.
A set of bytes {v;,v;, v} is denoted by v; j .

2.2 The Square Attack on AES

AES was designed as a modification of the block cipher Square [16], which came
together with a dedicated attack, called ‘the Square attack’. This attack, in its
basic application to AES, uses the following observation.

Lemma 1. Consider the encryption by 3-round AES of a set of 256 plaintexts,
Py, P1,..., Pyss, which are equal in all bytes except for a single byte, such that
the single byte assumes each possible value exactly once. Then the corresponding
ciphertexts Cy, C1, ..., Cass satisfy @fi% C; =0.

As was shown in [16], this property can be used to attack 6-round Square, and
also 6-round AES, with a complexity of about 23° S-box computations. The
adversary asks for the encryption of 232 plaintexts which are equal in all bytes
except for the main diagonal (i.e., bytes 0,5,10,15) and assume all 232 possible
values in the main diagonal. Then, he guesses bytes 0, 5,10,15 of k~!, and for
each guess, he partially encrypts the plaintexts through round 0 and finds a set of
28 inputs to round 1 which satisfy the assumption of Lemma 1. Then, he partially
guesses the subkeys k*, k°, partially decrypts the 28 corresponding ciphertexts
through rounds 4,5 and checks whether the XOR of the 2% corresponding values
at the state z3 (i.e., at byte 0 before the SUBBYTES operation of round 4) is
zero, as is stated by Lemma 1. If not, the subkey guess is discarded.

While it seems that in order to compute byte z3 from the ciphertext, the
adversary must know 64 subkey bits (specifically, key bytes kg”mo’lg and ké’l_gyg),
in fact knowing 40 subkey bits is sufficient. Indeed, since MIXCOLUMNS is a linear
operation, it can be interchanged with the ADDROUNDKEY operation after it, at
the cost of replacing k* with the equivalent subkey k* = MixCoLUMNS ! (k*).
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The knowledge of the key bytes kf ;10,3 and kg is sufficient for computing
the state byte zg from the ciphertext of 6-round AES.! Each check whether 28
values XOR to zero provides an 8-bit filtering, and hence, checking several sets is
sufficient for discarding all wrong subkey guesses. The attack recovers 9 subkey
bytes (kg 3 10,155 ko> ko.7.10.13) With complexity of about 232 - 210 28 = 289 S hox
computaﬁions. '

In [21], Ferguson et al. observed that the Square attack can be improved by
replacing Lemma 1 with the following lemma on 4-round AES.

Lemma 2. Consider the encryption by 4-round AES of a set of 232 plaintexts,

Py, P1, ..., Pys2_q, which are equal in all bytes except for the main diagonal (i.e.,
bytes 0,5,10,15), such that the diagonal assumes each possible value exactly once.

32
Then the corresponding ciphertexts Co, C1, . ..,Cos2_1 satisfy 69222071 C; =0.

Lemma 2 can be used to attack 6-round AES using the same strategy described
above. The adversary asks for the encryption of a few sets of 232 plaintexts which
satisfy the assumption of Lemma 2. Then, for each set, he guesses subkey bytes
kg, k§ 7.10.13 and checks whether the XOR of the 2 intermediate values at the
state byte x¢ is zero, as is stated by Lemma 2. The attack recovers 5 subkey bytes
(k§, K 7.10.13) and its complexity is about 232 . 240 = 27 S-hox computations.

2.3 The Partial Sums Attack

In the same paper [21], Ferguson et al. showed that the complexity of the Square
attack described above can be significantly reduced, by dividing the key guessing
and partial decryption into several steps and gradually reducing the number of
values whose XOR should be computed. By the structure of AES, the state byte

x§ is computed from the ciphertext C' using the following formula:

zy =S5 (kg ® 0ex-S™(Co @ kj) @ 095 - S™H(Cr @ k)@

@ 0dy - S (Cro @ kTy) @ Obe - S™(Ci3 @ ki), W
where the coefficients Oe,, 09y, 0d,, 0b, come from the inverse MIXCOLUMNS
operation and the multiplication is performed in the finite field GF(28).

Note that the right hand side of (1) depends only on bytes 0,7,10,13 of the
ciphertext. This means that if two ciphertexts are equal in these four bytes, then
their contributions to the XOR of 3 values cancel each other. Thus, we may
replace the list of ciphertexts with a list A of 232 binary indices which indi-
cates whether each of the 23 possible values of bytes 0,7,10,13 of the ciphertext
appears an even or an odd number of times in the list of ciphertexts. The goal
of the subsequent steps is to reduce the number of needed binary indices, in
parallel to guessing subkey bytes.

! Here and in the sequel, we assume that in 6-round AES, the MixCOLUMNS operation
of round 5 is omitted. If this operation is not omitted, the attack works almost
without change; we only have to replace the key k° with the equivalent key k° =
MixCorumns ! (k?).
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At the first step, the adversary guesses bytes 0,7 of k®, and reduces the size of
the list to 22. Denote a1 = Oe,- S~ (Co@kj)®09,- S~ (Cr&k2). Observe that if
two ciphertexts are equal in the bytes ay, C1g, C13, then their contributions to the
XOR of z§ values cancel each other. As the guess of bytes k8’7 allows computing
ap for each ciphertext, the adversary can construct a list A; of 224 binary values
which indicates whether each possible value of (aq,Cio,C13) appears an even or
an odd number of times in the list of intermediate values. The complexity of this
step is about 26 . 232 = 248 S_.hox evaluations.

At the second step, the adversary guesses the byte kP, and reduces the list
to a list Ay of size 216 that corresponds to the possible values of (ag, C13), where
az = a3 ®0dy - S™H(Cr0 @ k3y). At the third step, the adversary guesses the byte
k?5 and reduces the list to a list Az of size 2% that corresponds to the possible
values of a3, where a3 = as @ 0by - S™(C13 D k};). Finally, at the fourth step, the
adversary guesses the byte k3, computes @{xe{o,l}ngg[x]=1}571(l_fé @ ), which
is equal to the right hand side of (1), and checks whether it is equal to zero. The
complexity of each step is about 2*® S-box computations, and thus, the overall
complexity for a single set of 232 plaintexts is 2°° S-box computations.

As the attack recovers 5 subkey bytes, six sets of 232 plaintexts are required
to recover their value uniquely with a high probability. Note that after the check
of the first set, only about 24° . 278 = 232 suggestions for the 40 subkey bits
remain undiscarded. This means that for each possible value of k8’7’10’13, at
most a few values of k§ that correspond to them are expected to remain. Hence,
when examining the second set of 232 plaintexts, the complexity of the fourth
step becomes negligible as it is performed only for a few values of k§. Similarly,
when examining the third set, the two last steps become negligible, etc. In total,
the complexity of checking all six plaintext sets of size 232 is equivalent to the
cost of 4 +3 4+ 2+ 1 = 10 steps, or 2°3 S-box computations.?

The attack is given as Algorithm 1. To simplify the notation, we rewrite
equation (1) in a more generic way, using Sy for Oe, - S71(+), S; for 09, - S~1(-),
Sy for 0dy - S71(+), S3 for Ob, - S~1(-), and renaming the keys and the ciphertext
bytes to kg, k1, k2, ks, k4 and cq, c1, co, c3, Tespectively:

aq = S_l (k4 (o) So(C() & k(]) b 51(01 (o) kl) (o) SQ(CQ P kg) b Sd(Cd & kd)) . (2)

Reducing the Data Complexity. In [31], Tunstall observed that the data com-
plexity of the attack can be reduced to 233 chosen plaintexts by examining two
sets of 232 plaintexts instead of six sets. The idea is to check an analogue of
Eq. (1) for three additional bytes — z2, z1,, and z7}; — using the same set of 232
plaintexts. Note that in order to compute each of these three bytes from the
ciphertext, the adversary needs the subkey bytes k§ ; 1013 (which are the same
as in Eq. (1)), along with a different byte of £*. When two sets are checked at

2 We note that in [21], the authors performed a similar analysis and concluded that
the complexity is 252 S-box computations. This value was used in all subsequent
papers. For the sake of consistency, we use the same value in Table 2, but note that
the actual complexity is lower, as is shown here, and use the lower estimate when
comparing the partial sums attack with our new attack.
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Algorithm 1. Partial-sum algorithm for key recovery [21].

1: Input: Array A of bits such that the j*® value of A denotes the parity of the number
of occurrences of j in the list of ciphertexts

2: for all ko, k1 do

3 Declare an empty bit-array A; of size 2%*

4 for all co, c1,c2,c3 do

5: if Alco,c1,c2,c3] =1 then

6: a1+ So(co ® ko) ® S1(c1 @ k1)

7 Ailar, ca, 3]« Ailar, c2,c3] @1

8 for all k2 do

9: Declare an empty bit-array As of size 2*°
10: for all a1, cz,c3 do
11: if Aifa1,c2,c3]) =1 then
12: a2 «—— a1 b 52(02 D kz)
13: AQ[CLQ, 63} — Az[ag, 03] D1
14: for all k3 do
15: Declare an empty bit-array As of size 28
16: for all a2, c3 do
17: if Az[ag, 03] =1 then
18: asz < az O 53(03 D k}f;)
19: Aslas] « Aslaz]® 1
20: for all k4 do
21: asg — 0
22: for all a3 do
23: if Asfas] =1 then
24: as — as® S~ (ka @ as)
25: if a4 # 0 then
26: ko, k1, k2, ks, ka is not a valid key candidate

the same byte, they provide a 16-bit filtering, which in particular yields an 8-bit
filtering on the value k8$7710713 which is common to all examined bytes. Hence,
information from different bytes can be combined to recover kg ;1013 with a
high probability.

The data complexity can be further reduced to 232 by examining a single
set and checking the XOR in all 16 bytes of *. The algorithm is more complex
and uses a meet-in-the-middle procedure based on the properties of the AES key
schedule. We omit the description here, as it will not be needed in the sequel.

In [31], it is claimed that when the same set of plaintexts is used to check
the parity in several bytes, the complexity of checking the first byte is dominant,
as some of the computations performed for computing the XOR in different
bytes are identical. However, this claim seems incorrect, as in the variant of
Eq. (1) for other bytes, the order of the coefficients Oe,, 094, 0dx, Ob, which stems
from the inverse MIxCOLUMNS operation is changed, and hence, the operations
performed for different bytes are not identical and only knowledge of subkeys
can be ‘reused’. Therefore, the complexity of the attack that uses two sets is
about (4 +3+2+2+1+1)-2% = 2517 S.hox computations, and the attack
that uses one set takes about 16 - 2°0 = 254 S-box computations.
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The idea of using two sets of size 232 instead of six was independently sug-
gested in [2] by Alda et al., who also experimentally verified it.

2.4 The FFT-Based Attack of Todo and Aoki

The general idea of using the Fast Fourier Transform (FFT) for speeding up
cryptanalytic attacks on block ciphers goes back to Collard et al. [14] who used
the FFT to speed up linear cryptanalysis. This idea was extended to several other
techniques, including multi-dimensional linear attacks [25,26], zero-correlation
attacks [13], differential-linear attacks [10], etc.

In [30], Todo and Aoki proposed to replace the partial sums technique by
an FFT-based technique. The basic idea behind the Todo-Aoki technique is that
the sum of the values in the right hand side of Eq. (1) which we want to compute
can be written in the form of a convolution of tailor-made functions, as seen in
Algorithm 2.

Consider a set S of ciphertexts for which we want to compute the XOR
of the intermediate values at the state byte 3. Like in the partial sums attack,
denote by A a bit array of size 232, such that A(co,c1,c2,c3) = 1 if and only if
Co.710,13 = (co,¢1,¢2,c3) holds for an odd number of ciphertexts in S. Let f :
{0,1}32 — {0, 1} be the indicator function of the array, that is, f(co,c1,c2,c3) =
1(A(co,c1,c2,c3) = 1). Assume that the subkey k4 was guessed, and let g; :
{0,1}32 — {0, 1}, for 0 < i < 7, be defined by

232

gi(to, t1, b2, t3) = [S™1 (ks ® So(to) & Si(t1) & Sa(ta) ® Ss(ts))],,  (3)

where [S71(#)]; denotes the 4’th bit of S~!(¢). Then, denoting by
[x(C, ko, k1, ko, k3)]; the ¢’th bit of the value x% corresponding to the ciphertext
C for a given guess of ko, k1, ko, k3 (see Eq. (2)), we have

@[x(ako,/ﬁ,kz,%)]i = @ gi(co ® ko, c1 ® ki, c2 ® ka,c3 D k3)

ces {(co,c1,c2,c3):Alco,c1,c2,c3]=1}
= @f(COaclaC%CB) - gi(co ® ko, c1 ® k1, ca @ k2, c3 @ ks3)
€p,C1,€2,C3

= (f * gi)(ko, k1, k2, k3).

Therefore, we can compute the sum for all 232 possible guesses of (ko, k1, k2, k3)

at once by guessing the byte k4 and computing the convolution of two functions
on 32 bits, that takes time of about 4 - 232 log,(23?) additions, as was shown by
Collard et al. [14]. As the summation is performed for each bit separately, the
complexity of examining a single set S of 232 ciphertexts is 8-28.4-232 log, (23?) =
250 additions, which is roughly equal to the number of operations required for
examining a single set of ciphertexts in the partial sums attack.

A disadvantage of the Todo-Aoki technique, compared to the partial sums
attack, is that it cannot use partial knowledge of the subkey to obtain a speedup.
Indeed, as the computation is performed for all values of (ko, k1, k2, k3) at the
same time, partial knowledge (e.g., knowledge of k3) cannot be exploited. As
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Algorithm 2. FFT-based algorithm for key recovery [30]. The blue colored
step has naive complexity 232 x 232, but can be replaced by several Hadamard
transformations of size 232 with complexity 237 each.

1: Input: Array A of bits such that the jt value of A denotes the parity of the number of
occurrences of j in the list of ciphertexts

2: for all k4 do

3: for all ko,kl,kg,k;g do

4: Al[k(),kl,kmks]H@A[Cmchcmcs]-sfl
€0,C1,¢2,¢3
for all k:o, k:l, ]{32, k:3 do
if Al[ko, k1, ko, kg] # 0 then
ko, k1, k2, k3, ks is not a valid key candidate

k4 @ So(co @ ko) ® S1(c1 @ k1)
P©S2(c2 @ ka) ® S3(c3 ® ki)

a result, when six sets of 232 ciphertexts are examined, the complexity of the

Todo-Aoki attack becomes 6 -2°° = 2526 additions, while the overall complexity
of partial sums is only 2°!3 S-box computations, as was shown above.

The question, whether there is a way to use partial knowledge of the key in
an FFT-based attack, was explicitly mentioned as an open question in [30].

Using Precomputation of the FFT to Speed Up the Attack. In the eprint version
of the same paper [29], Todo showed that the complexity of the attack can be
reduced by precomputing some of the Fast Fourier Transforms that should be
computed in the course of the attack.

Recall that the computation of the convolution of f,¢ : {0,1}" — {0,1}
using the FFT consists of three stages:

1. Computing the Fourier transforms f, 9:{0,1}" — Z.

2. Computing the pointwise product h : {0,1}" — Z defined by h(z) = f(z) -
9(x).

3. Computing the inverse Fourier transform (which is the same as computing
the Fourier transform and dividing by 2") to obtain fxg=h-27".

Here, we use the convention that the Fourier transform f is obtained from f by
writing f as a 2"-dimensional vector and multiplying it by the Hadamard matrix
H,, defined recursively as H,, = (f[:: fﬁ,’;_ll ), where Hy = (1 ).

The cost of each computation of the FFT is n2™ addition operations. In order
to avoid overflow the additions should have at least 2n bits of precision, but since
we only want one bit of the result the computation can be done with n+1 bits of
precision. For the 6-round AES attack we have n = 32 and the FFT will typically
be implemented with 64-bit additions. The cost of the pointwise product is about
2™ multiplication operations, which is not much more than the cost of 2" addition
operations for small n (in particular for a software implementation with n < 32,
as in the attack on 6-round AES).> Hence, the overall cost of the convolution
computation in our case is about 3 - 32 - 232 additions.

3 We note that in [30], the authors conservatively estimate that pointwise multipli-
cation of two vectors of size 2" whose entries are n-bit integers takes n2" addition
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Todo observed that the Fourier transforms f and § can be precomputed. As
the function f does not depend on the guess of k4, one can compute it once,
store the result (which requires at most 232 64-bit words), and re-use it for
each value of k4. As the cost of this FFT computation is 32 - 232 additions, the
amortization over guesses of k4 makes it negligible. The function g cannot be
precomputed since it depends on k4. On the other hand, as it does not depend
on the ciphertexts, it can be reused for other sets of ciphertexts. Therefore, the
complexity of computing the XOR for a single set of 232 ciphertexts is reduced
to about 8 - 2% -2.32-232 = 249 addition operations, and the complexity of
computing the XOR for six sets is reduced to about 2%° + 524 = 250-8 5ddition
operations. If only two sets are examined and the XOR is computed in four
bytes (as was described above), then the complexity becomes 249 4-7.248 = 2512
addition operations. This complexity seems a bit lower than the complexity of
partial sums, but it is still quite close and the different types of operations make
comparison between the techniques tricky.

3 The New Technique: Partial Sums Meet FFT

In this section, we describe our new technique which allows combining the advan-
tages of the partial sums technique with those of the Todo-Aoki FFT-based tech-
nique. We begin with a basic variant of the technique in Sect. 3.1, then we show
how the complexity can be reduced significantly by packing several FFT compu-
tations together in Sect. 3.2, afterward, we present several additional enhance-
ments and other variants of the basic technique in Sect. 3.3, and we conclude this
section with a comparison of our technique with partial sums and the Todo-Aoki
technique in Sect. 3.4. For the sake of concreteness, we present the attack in the
case of 6-round AES and reuse the notations of Sect. 2. It will be apparent from
the description how our technique can be applied in general.

3.1 The Basic Technique

Our basic observation is that we can follow the general structure of the par-
tial sums attack, and replace each step by computing a convolution of properly
chosen functions. This is shown in Algorithm 3 which is a rearrangement of the
operations of Algorithm 1, making convolution appear. As we use somewhat dif-
ferent convolutions for different steps of the attack, we present them separately.

First Step. As described in Sect. 2.3, before the first step of the partial sums
attack, the list of ciphertexts is replaced with a list A of 232 binary indices which
indicate whether each of the 232 possible values of the bytes cg, c1, ca, c3 appears
an even or an odd number of times in the list of ciphertexts. At the first step, the
adversary guesses the bytes ko, k1, and replaces the list by a list A; of size 224
which corresponds to the bytes aq, ca, c3, where a1 = So(co @ ko) @ S1(c1 @ k1).

operations. For the sake of consistency with [30] and fairness, we use the conservative
estimate in the table of results and the less conservative estimate when we compare
the Todo-Aoki technique to our technique.
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We observe that the list A; can be computed for all values kg, k1 simulta-
neously by computing a convolution. Let x : {0,1}*? — {0,1} be the indica-
tor function of the list A. That is, x(co,c1,c2,¢3) = 1 if and only if the value
(Co, C7,C10,C13) = (co, €1, 2, c3) appears an odd number of times in the list of
ciphertexts. For any ¢y, c3 € {0,1}%, define x}, .. (co,c1) = x(co, 1, ¢2,¢3).

For any a; € {0,1}®, let I} (z,y) = 1(So(z) ® Si(y) = a1). Both x}, ., and
I are indicator functions on {0,1}'. For any as, ¢z, cs € {0,1}®, we have

(Xirz,cs Ia kOa kl Z Xc2 c3 COv Cl Ill (CO @ kOa GRS kl)
co,c1 €40, 1}8

= ZX(CO, c1,¢,c3) - 1(So(co ® ko) ® S1(c1 @ k1) = aq).
00,016{0,1}8

Therefore, the entry which corresponds to (a1, ¢z, ¢3) in the list A;[kg, k1] created
for the subkey guess (ko, k1) is

Ai[ko, ka][ar, e, €3] = ((Xeyep * Lo, ) (Ko, k1)) mod 2. (4)

(Formally, we define Aj, which is a list of size 22* that depends on two key
bytes, as an array of size 216 x 224 which includes the guessed bytes.) As was
shown in Sect. 2.4, the computation of this convolution requires 3-16-2'6 addition
operations for each value of ay, ¢z, 3, or a total of 48-240 additions. This compares
favorably with the first step of the partial sums attack which requires 2% S-box
computations. As we shall see below, the actual advantage of our technique is
significantly larger. However, this requires to store the full A; for all values of
(ko, k1), of size 240 bits.

Second Step. At the second step of the partial sums attack, the adversary
guesses the byte ks and reduces the list A; to a list A, of size 215 that corresponds
to the possible values of (as, ¢3), where as = a1 ® Sa(ca @ ko).

We compute the entries of the list As using a convolution, as follows. For any
ko, k1,c3 € {0,1}8, define

Xivo b es (01, ¢2) = L(Ar[ko, krllar, ca,c3])  IP(x,y) = 1z = Sa(y)).

Both Xio,kl,% and I? are indicator functions on {0,1}'6. For any ko, ki, c3 €
{0,1}8, we have

2 2
(X bres ¥ 1) (@2, k2) =D XRo ke (a1, 02) - I (a1 ® az, c2 @ ka)
al,CZG{O 1}8

= Z 1( A1 [ko, k1][a1, ca, c3]) - L(ag & ag = Sa(ca & k2))
al,CQE{O,l}S

=" 1(Ai[ko, krlar, c2, c3)) - Laz = a1 & Salca @ ka)).
111,026{0,1}8
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Therefore, the entry which corresponds to (as, ¢3) in the list Ay created for the
subkey guess (ko, k1, k2) is

As[ks]las, 3] = (X ke * 1) (a2, k2)) mod 2. (5)

(Note that formally, we define Ay, which is a list of size 2!¢ that depends on
three key bytes, as an array of size 28 x 26 which depends on kg, k1). As above,
the complexity of this step is 48 - 240 additions.

Third Step. This step is similar to the second step. Thus, we present it briefly.
At the third step of the partial sums attack, the adversary guesses the byte k3
and reduces the list Ay to a list Az of size 2% that corresponds to the possible
values of ag, where a3 = as ® S3(cs @ k3). We obtain the list A3 by defining

Xrooks ke (02, €3) = 1(Az[k2][az, c3]) and Pz, y) = 1(z = Ss(y)),
and setting

Az[ksllas] = (O k1 ks * ) (a3, k3)) mod 2. (6)

(Note that formally, we define Az as an array of size 2% x 28 which depends on
ko, k1, ko). As above, the complexity of this step is 48 - 249 additions.

Fourth Step. At the fourth step of the partial sums attack, the adversary
guesses the byte k4, and computes @{x€{071}s:A3[x]=1}S*1(k4 @x), which is equal
to the right hand side of (2), and checks whether it is equal to zero.

We cannot compute this XOR directly using a convolution, since in order to
apply the FFT we need functions whose output is an integer and not an element
of GF(28). A basic solution, that was adopted by Todo and Aoki [30], is to
compute the XOR in each bit separately. To this end, we define the functions
Xi07k17k2,k3,14’j :{0,1}® — {0,1} for j =0,1,...,7 by

Xig,kl,kg,kg (a3) = 1(Az[ks][as]) and I (z) = [S7' (@),
where [S™!(z)]; denotes the j'th bit of S~!(z). We have

(Xho ey o ks * I7) () = Z X o1 ez ks (@3) - T (a3 @ ka)
az€{0,1}8

=3 1(Asfksllas)) - [S 7 (as @ k)]

az€{0,1}8

Therefore, the j’th bit of the XOR we would like to compute for the key guess
(ko, k1, ko, k3, k4) is equal to

(ko ey has * I57)(K4)) mod 2. (7)
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Algorithm 3. The following is the Algorithm for key recovery. The function 1
is the indicator function. All the blue colored steps are of complexity 2'6 x 216
and can be replaced by a 3 Hadamard transformations of size 2!¢ with total
complexity 3 x 220, The red colored step has complexity 28 x 2%, which can be
replaced by 3 Hadamard transformations of size 28 with total complexity 3 x 2'1.

1: Input: Array A of bits such that the j*" value of A denotes the parity of ciphertext
J

2: Declare an empty 2D bit-array A; of size 216 x 2%4; > 2%° memory

3: for all a1, c2,c3 do

4: for all ko, k1 do

51 Al[ko, 141'1”(117 C2, 63] — @ A[C(), C1,C2, 03} . ﬂ.(So(Co EB k()) EB 51(61 @ kl) = a1)
€p,C1
6: for all ko, k1 do
T Declare an empty 2D bit-array Az of size 28 x 216;
8: for all ¢35 do
9: for all k2, a2 do
10: Ao [kz”az, 03} — @ Al[klo, k1][a1, ca2, 03] . ]l(a1 D SQ(CQ D kg) = (12)
ay,co

11: for all k2 do

12: Declare an empty 2D bit-array Az of size 28 x 28;
13: for all ks, a3 do
14: As [k‘g}[ag} — @Ag[k‘g][az, Cg] . ﬂ(az (&) 33(63 D I€3) = (13)
az,c3
15: for all k3 do
16: Declare an empty 1D byte-array A4 of size 25;
17: for all k4 do
18: Aglks] — @A.‘s [ka][as] - 571((13 ® ka)
as
19: for all k4 do
20: if A4 [k4] 75 0 then
21: ko, k1, k2, ks, ka4 is not a valid key candidate

Hence, we can check the XOR by initializing a list of 2% binary indicators which
corresponds to the possible values of (ko, k1, ko, ks, k4), computing the convolu-
tions X%?(J,k1,k2,k3 #I*J for j = 0,1,...,7, and discarding all keys (ko, k1, ka2, k3, k4)
for which at least one of the results of (7) is not equal to zero modulo 2.

The complexity of this step is 232-8-(3-8-2%) = 192240 additions, which is
slightly better than the complexity of the fourth step of the partial sums tech-
nique. As we shall show below, the complexity can be reduced significantly, by
using a new method to pack several FFTs together, and exploiting enhancements
from previous attacks based on the re-use of computations.

3.2 Packing Several FFTs Together by Embedding into Z

We now show that the complexity of the basic attack can be significantly
reduced by packing several convolution computations into a single convolution.
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We assume that the attack is implemented using 64-bit operations, which is
typical for a software implementation. For reference, the 6-round AES attack of
Todo and Aoki requires 64-bit additions to avoid overflow.

Improving the Fourth Step of the Attack. Consider the fourth step of our
basic attack described above. The step consists of computing the convolution
of the function Xéo,]fhk?mkS with the eight functions I*7 (j = 0,1,...,7). These
eight convolutions can be replaced by a single computation of convolution.

Let s be a ‘separation parameter’ that will be determined below, and define
a function I*: {0,1}® — Z by I*(z) = 237‘:0 298[S71 ()],

We claim that for an appropriate choice of s, the convolution xj ;. p 4, * I*
allows recovering the value of the XOR in all 8 bits we are interested in, with a
high probability. Indeed, we have

(X%o,kl,kg,kg « 1) (ky) = Z Xﬁo,kl,kmkg (as) - I*(as @ k4)

az€{0,1}®

7
= 1(As[ks][as]) - Y 2[5 (as @ ka));
az€{0,1}8 Jj=0

=>27 ) WAslks]las]) - [S(as @ ka)];

j=0 az€{0,1}8
7 . .
= Z 2% (Xég,kl,k’Qﬂcg * I4J)(k4)a
j=0

where the penultimate equality uses the change of the order of summation.
Recall that for each value of ks, we want to compute the eight parity
bits (Xio k) koks * 17 (Ka)) mod 2. Let us reformulate our goal, for the sake
of convenience. Denoting b; = X%O,kl’k%ks % I*9 (ky), we have X?‘%O,kl,kz,k?. *
I(ky) = Z;‘:o 2%7b;. Thus, for non-negative integers by, b1, ..., by, we are given
237‘:0 2%7b; and we want to compute from it the eight parity bits (b;) mod 2.
Observe that if for all 0 < j < 7, we have b; < 2°, then the multiplications

by 2% separate the values b;, and thus, we can simply read the values (b;) mod 2
from 2%7b;, as in this case,

7
Vi[> 2%b;| = [2Yb;]y; = (b;) mod 2.
j=0

s

How Large Should s be so that b; < 2° Holds with a High Probability for All
J’s? Note that each b; is the sum of 128 elements, which correspond to the 128
values of ¢ such that [S™!(c3 © k4)]; = 1. Each such element is X5 1 1, x,(C3),
which can be viewed as a randomly distributed indicator. Hence, b; is distributed
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like Bin(128,1/2). The expectation of such a variable is 64, and its standard
deviation is 41/2. This means that the values b; are strongly concentrated around
64, and the probability Pr[b; > 27] is extremely small. Therefore, by taking s = 7,
we can derive the eight parity bits (b;) mod 2 from the sum Z;:o 287 b;, easily
and with a very low error probability.

How Small Should s be in Order to Perform the Entire Computation with 64-bit
Words? For the sake of efficiency, we compute the convolution using 64-bit word
operations and disregard overflow beyond the 64’th bit. If s is too large, this may
cause an error in the computation of the sum 2]7':0 287 bj, and consequently, in
the computation of the parity bits (b;) mod 2.

To overcome this, note that in the computation of a convolution of f,g :
{0,1}"™ — Z, all operations are additions and multiplications, except for division
by 2™ at the last step. Hence, when we neglect overflow beyond the 64’th bit,
this causes an additive error of m - 264 for some m € Z until the last step, and
an additive error of m - 264=" at the final result. Assuming that b; < 2° for all
J, this error does not affect the parity bits as long as 7s < 64 — n (as the error
affects only the top n bits of Z;:o 257b;).

In our case, n = 8 and hence, for all s < 7, the possible error does not affect
the parity bits we compute.

Reducing s Even Further. Note that we can allow random errors in the convo-
lution computations that do not correspond to the right subkey guess, as such
random errors do not increase the probability of a wrong key guess to pass the
filtering. Hence, we only have to make sure that for the right key, we obtain the
correct value of the parity bits with a high probability.

As was explained above, the values b; are concentrated around 64. Formally,
by evaluating the cumulative distribution function of the binomial law, we have
Pr[48 < b; < 80] > 0.99, and thus, 0 < b; —48 < 2° with a very high probability.
To make use of this concentration, we subtract from the value ijo 257b; the

integer u = 48 Z;’:o 257 to obtain

7

7 7
3209, - S 48299 = S (b; - 48)2%.
j=0 j=0

J=0

Since 0 < b; —48 < 2%, we can compute the parity bits (bj) mod 2 also for s =6
and for s = 5, with a very low error probability.

Summary of improving the fourth step. To summarize, the eight convolutions can
be computed using a single convolution of functions over {0,1}%. This reduces
the complexity of this step to 232 -3 -8 28 = 24 .29 gperations.

Improving the Other Steps of the Attack. Once we acquired the ability to
compute several convolutions in parallel, we can use it at the other steps of the
attack as well. The idea is to pack the convolutions that correspond to several
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subkey guesses into a single convolution. We exemplify this approach by showing
how the first step of the attack can be improved; the improvement of the second
and the third steps are similar.

Recall that at the first step of our attack, for any values ca,c3 € {0,1}%, we
compute the parity of the convolution (x¢, ., *Ia, )(ko, k1), for all ko, k1 € {0,1}%.
We may pack up to seven such computations in parallel. For example, in order to
pack four computations, we write cy = (c4,c}), where ¢} denotes the two most
significant bits of ¢, and is identified with an integer between 0 and 3, via the
binary expansion. We define

3
! (co,c1) = x(co, ¢1,¢2,¢3), and x! :EQsjl
Xeb b eq \ €05 €1 X\¢€o, €1,C2,C3), Xl cs Xjches®
i=0

Then, for any c, € {0,1}5, and ko, k1, c3 € {0,1}®, we compute the convolu-

tion ()‘(%)CS 17 )(ko, k1), and using the technique described above we derive from

it the four parity bits ((x2, ., *1a,)(ko, k1)) mod 2 with ¢z € {(0,¢b),...,(3,ch)}.

To see what is the maximal value of s we may take, note that each convolution
value V' = (x¢, o, *1a, ) (Ko, k1) is the sum of 256 elements, which correspond to the
256 values of (cg, ¢1) such that So(co @ ko) ®S1(c1 k1) = a1. Each such element
can be viewed as a randomly distributed indicator. Hence, b’ is distributed like
Bin(256,1/2). When analyzing step 4, we could tolerate a low probability of
errors for the right key, but in the first step, there are 224 values of A; that are
involved in the computation for the right key, and we want all of them to be
correct. Therefore, we use s > 7, since Pr[64 < &' < 192] > 1 — 2750, Hence,

by subtracting 64 - Z?:o 27% from the convolution value (Y, L * 12 (ko k1), we
29

can correctly compute the parity bits ((x3,.c, * Is,)(ko, k1)) mod 2 with a very
high probability for s > 7, and the 224 relevant values are simultaneously correct
with probability at least 1 — 2726,

Unfortunately, with s = 7 we can only pack 7 parallel convolutions within
64-bit words. Indeed, at this step, the convolution is computed for functions
over {0,1}!¢ (instead of 8-bit functions in the fourth step), and thus, we need
7s < 64 — 16 = 48 in order to pack 8 FFTs and avoid errors due to overflow.
(We exemplified the idea of packing 4 parallel convolutions for the sake of con-
venience).

This reduces the complexity of the first step of the attack from 224.3.16-2'6 =
48 - 240 t0 48/7 - 240 addition operations. The complexity of the second step can
be reduced similarly from 48-2 to 48/7-24°. For the third step, we can actually
use s = 6 and pack 8 parallel convolutions within a 64-bit word, because we only
need 28 correct computations, and we have Pr[96 < b < 160]?°¢ > 0.98; the
complexity is reduced from 48 - 240 to 6 - 249,

C.

Improving the Fourth Step Even Further. Finally, we can reduce the
complexity of the fourth step even further by packing 12 FFTs in a 64-bit word
with s = 5. This requires changing as described above the way we do the packing:
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instead of packing 8 different I*7 with a fixed x*, we consider each function I*-
separately and pack a fixed I*7 with 12 yx* functions corresponding to different
key guesses. This reduces the complexity of the fourth step from 24-24° to 16-24°.

3.3 Enhancements and Other Variants of the Basic Technique

In this section, we present two enhancements that reduce the complexity of
the attack, along with another variant of the technique that provides us with
flexibility that will be useful in the application of our technique to other ciphers.

Precomputing Some of the FFT Computations. At each step of the
attack, we perform three FFT computations. As was described in Sect.2.4
regarding the FFT-based attack of Todo and Aoki, some of these computations
do not depend on the guessed key material, and hence, they can be precomputed
at the beginning of the attack, thus reducing the overall time complexity.

Specifically, the functions 12,13, I, and I;l (for all a; € {0,1}®) do not
depend on any guessed subkey bits, and thus, their FFTs can be precomputed
with overall complexity of about 28 - 16 - 216 = 228 addition operations, which
is negligible compared to other steps of the attack. The results can be stored in
lists that require about 224 64-bit words of memory.

The function Xé%cg does not depend on the value of ay, and thus, its FFT
can be computed once (for each value of (cq,c3)) and reused for all values of
ay. This reduces the time complexity of this FFT computation (in total, for all
values of ¢z, c3) to 216 .16 - 216 = 236 additions, which is negligible compared
to other steps of the attack. As we need to store in memory at each time only
the result of the FFT that corresponds to a single value of ¢o, c3, the memory
requirement of this step is 2'¢ 64-bit words of memory.

These precomputations reduce the time complexity of the first step (in which
two FFTs can be precomputed) from 48/7 - 240 to 16/7 - 240 additions, the time
complexity of the second, third, and fourth steps (in which one FFT can be
precomputed) to 32/7 - 240 4. 240 and 32/3 - 24 additions, respectively.

If the fourth step is implemented by packing 12 x* functions together, as
was described above, we can reduce its complexity further by precomputing the
FFT of the function ¥* which represents the ‘packed’ function and reusing it
for computing convolutions with the eight functions I*J (j = 0,1,...,7). This
reduces the time complexity of the fourth step to (16 + (16/8))/3 - 240 = 6 - 240
additions.

Therefore, the time complexity of examining a set of
to 249 (16/7 4+ 32/7 + 4 + 6) ~ 16.9 - 210 ~ 2441 additions.

232 plaintexts is reduced

Lower Cost for Examining Additional Sets of Plaintexts. As was
described in Sect.2.3 regarding the partial sums attack, when we check the
XOR of additional sets of 232 values at a byte which we already checked for
one set, the complexity of the check is reduced. Indeed, after the first set was
checked, we expect that for each value of (k§, k3, k3o, k33), only a few values of
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k¢ are not discarded. Hence, instead of performing the fourth step of the attack
by computing a convolution, we can simply compute the sum directly for each
of the remaining candidate subkeys. The average complexity of such a step is
232.1.27 = 239 S-box evaluations and the same number of XORs, which is
equivalent to about 1 -2%° addition operations. Note that since the fourth step
is the most time consuming step of our attack, this gain is more significant than
the gain which the partial sums attack achieves in the same case.

After two sets were checked, we expect that for each value of (k§, k2, k9,),
only a few values of (k93,k3) are not discarded. Hence, instead of performing
the third and the fourth steps of the attack by computing convolutions, we can
simply perform each of them for each of the remaining candidate subkeys. This
reduces the complexity of the third step to 240 additions and the complexity of
the fourth step to 232 additions.

Attack that Ezamines Sixz Sets of 232 Plaintexts. By continuing the reasoning
in the same manner, we see that the complexity of considering six sets of 232
ciphertexts and computing the XOR, of the values z¢ that correspond to them,
is about

16 + 32 16 + 32 16 + 32 16
24°-<<f+4+6>+( - +4+1)+( - +1)+(7+1>+1)

~ 40.8 - 240 =~ 2454 additions.

Attack that Examines Two Sets of 232 Plaintexts. If we consider two sets of 232
ciphertexts and examine 4 different bytes (as was suggested by Tunstall [31] for
the partial sums attack), then we may begin with checking the XOR of both
sets at the byte z¢, which requires 249(16.9 + 11.9) additions as was described
above. Then, we must move to another byte, and it seems that we have to pay
a ‘full price’ again. However, note that after the first two filterings, for each
value of (k§, k2, k9,) we are left with one value of k75 on average. As these four
subkey bytes are reused in the examination of the XOR in the byte x3 (along
with a different byte from k%), we can replace the third step by computing the
sum directly for each remaining value of k95 and replace the fourth step by
computing the sum directly for each remaining value of (k?5, k7). This reduces
the complexity of each of these two steps to 24 additions. When we examine
the second set of 232 ciphertexts at the byte z2, the complexity of the fourth
step can be further reduced to 232 additions, since for any value of (k§, k2, k%)
we are left with one value of (k,, k}) on average.

Continuing in the same manner, we see that the complexity of considering
two sets of 232 ciphertexts and computing the XOR of the values x5 1915 that
correspond to them, is about

16 + 32 16 + 32 16 + 32
240-((;+4+6)+( J; +4+1)+( J; +1+1>+

16 + 32 16 16
( ; + 1) T (7 i 1) 1 (7 n 1) n 1) ~ 62.8 - 240 ~ 296 additions.
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Attack that Examines One Set of 232 Plaintexts. As was explained in Sect. 2.3,
in this case we examine each byte with only a single set of ciphertexts, and
thus, we do not obtain information that can be reused in other computations.
Therefore, the complexity of our attack in this case is 16 - 16.9 - 240 = 2481
addition operations, which is 16 times the complexity of checking a single set
of ciphertexts (like in the partial sums and the Todo-Aoki attacks with only a
single set of 232 ciphertexts examined).

Alternative Way of Performing the First Step. Recall that at the first
step we are given a list A of 232 binary indices which correspond to (cg, 1, ¢z, ¢3)
and our goal is to compute the 224 entries of the list A; which corresponds to
triples of the form (a1, ¢2, c3) where a3 = Sp(co ® ko) ® S1(c1 ® k1), for all values
of (ko, k1). We may divide this step into two sub-steps as follows:

— Step 1.1: At this sub-step, we guess the subkey kg and update the list A
into a list Ay of 232 binary indices that correspond to (ag,c1, ca,c3), where
aog = So(co @ ko). The complexity of this step is about 232 - 28 = 240 S-box
computations.

— Step 1.2: At this sub-step, performed for each guess of kg, our goal is to replace
the list Ay with a list of size 22 that corresponds to the values (a1, ¢z, c3)
where a; = ag ® S1(c1 ® k1), for each value of kq. This task is exactly the
same as the task handled at the second and third steps of our attack described
above, and hence, it can be performed in exactly the same way. Specifically,
the convolution we have to compute is

Ailko, k1][ar, c2, ¢3] = ((Xkg.ep.es * 1) (a1, k1)) mod 2, (8)

where

21160702703(a0a01) = 1(140(&0,61,62,63) = 1)7 and I_l(xvy) = ]l(.]? = Sl(y))

Like in the second step of our attack described above, we can precompute
one FFT and perform the computation of 7 FFTs in parallel. Hence, the
complexity of this sub-step is 32/7 - 240 additions.

The alternative version of the attack is presented in Algorithm 4.

Formally, the complexity of the alternative way is higher than the complexity
of the original way of performing this step described above—39/7 - 240 additions
instead of 16/7 - 240 additions. As a result, the complexity of the attack with
two sets of 232 plaintexts becomes about 82.5 - 249 ~ 246-4 additions (which is
the complexity we mention in the introduction). However, this alternative has
several advantages:

1. Lower memory complexity. In the attack described above, the most memory-
consuming part is the first step which requires a list of 2%° bit entries. Thus,
its memory complexity is about 232 128-bit blocks.

The alternative way reduces the memory complexity of the first step to 232
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Algorithm 4. Low-memory version of the attack.

1: Input: Array A of bits such that the j*" value of A denotes the parity of ciphertext

J
2: for all kg do
3: Declare an empty 1D bit-array Ao of size 232; > 232 memory
4: for all co,c1,c2,c3 do
5: ao — So(co @ ko)
6: Aolao, c1, 2, c3] «— Alco, c1, 2, 3]
7 Declare an empty 2D bit-array A; of size 2% x 224; > 232 memory
8: for all ¢z, c3 do
9: for all k1,a1 do
10: A [kﬂ[al, ca, 03} — @ Ao[ao, c1,C2, Cg} . ]l(ao (&) Sl(cl (&) kl) = al)
ap,c1
11: for all k1 do
12: Declare an empty 2D bit-array As of size 28 x 216;
13: for all cs do
14: for all k2, a2 do
15: AQ[kQHCLQ, 03] — @fh[kl][al, c2, Cg] . ]l(a1 ) SQ(CQ (a2} kQ) = ag)
ay,c2
16: for all ks do
17: Declare an empty 2D bit-array As of size 28 x 2%;
18: for all k3, a3 do
19: Ag[kg][ag] — @AQ[kQ][GQ, 03] . ]].(az (&%) 53(03 (& kg) = a3)
ag,c3
20: for all k5 do
21: Declare an empty 1D byte-array Ay of size 28;
22: for all k4 do
23: Aulka] — @D Aslks)[as] - S~ (a3 @ ka)
ag
24: for all k4 do
25: if A4 []4:4} 75 0 then
26: ko, k1, k2, ks, ks is not a valid key candidate

bits. We observe that all other steps of the attack can be performed with at
most 234 bits of memory. Indeed, all ciphertexts can be transformed immedi-
ately into entries of the table A whose size is 232 bits. The table Ay (which
should be stored for one value of kg at a time) requires 232 bits. The subse-
quent tables used in the attack are smaller, and the arrays used in the FFTs
are also smaller (as all FFTs are performed on 16-bit or 8-bit functions).
By checking two sets of 232 plaintexts in parallel, we reduce the number of
remaining keys after examining the byte x§ to 224, and then the storage of
these keys requires less than 230 bits of memory. Therefore, the total memory
complexity of the attack is reduced to about 2 - 232 4 232 < 234 bits, i.e., 227
128-bit blocks.

2. Lower average-case time complexity. While it is common to measure the
complexity of attacks using the worst-case scenario (e.g., the complexity of
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exhaustive search over an n-bit key is computed as 2", although on average,
the attack finds the key after 2"~! trials), the average-case complexity has
clear practical significance. In the partial sums attack and in the Todo-Aoki
attack, the average-case time complexity is half of the worst-case complexity,
since the attack is applied for 28 ‘external’ guesses of a subkey, and the right
key is expected to be found after trying half of these subkeys. In the original
version of our attack, since the last step is performed for all keys in parallel,
our average-case complexity is no better than the worst-case complexity, and
so, we lose a factor of 2. In the alternative way described here, the attack is
performed for each guess of the subkey k§, and hence, we regain the factor 2
loss in the average-case complexity.

Practical effect on the time complezity. The lower memory complexity of the
alternative variant of the attack is expected to have an effect on the time
complexity as well. Indeed, our experiments show that the memory accesses
to the 240-bit sized array slow down our attack considerably. As the alternative
variant requires only 234 bits of memory, it may be even faster in practice
than the original variant.

The alternative way of performing the first step is also used in our improved
attack on the full MISTY1 [24] presented in the full version of this paper [19].

3.4 Owur Technique vs. Partial Sums and the Todo-Aoki Technique

In this section, we present a comparison between our new technique and the par-
tial sums technique and the Todo-Aoki FFT-based technique. First, we discuss
the case of 6-round AES, and then we discuss applications to general ciphers.

The Case of 6-Round AES. Here, we considered three attacks:

1.

Attack with 6 structures of 232 chosen plainters. The partial sums attack
requires 2°'3 S-box computations, the Todo-Aoki attack requires 2°°-® addi-
tions, and our attack requires 2%°4 additions. Hence, our attack is at least
32 times faster than both previous attacks. In the experiments presented in
Sect. 3.5, the advantage of our attack was even bigger.

Attack with 2 structures of 232 chosen plainters. The partial sums attack
requires 2°*7 S-box computations, the Todo-Aoki attack requires 2°!-? addi-
tions, and our attack requires 246 additions. Hence, our attack is at least 32
times faster than both previous attacks.

Attack with 1 structure of 232 chosen plaintezs. The partial sums attack
requires 2°4 S-box computations, the Todo-Aoki attack requires 2°% additions,
and our attack requires 248! additions. Hence, our attack is almost 32 times
faster than both previous attacks.

General Comparison. The speedup of our technique over the partial sums
technique stems from two advantages: First, we replace key guessing steps with
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computation of convolutions. Second, we may pack the computation of several
convolutions in a single convolution computation. The effect of the first advan-
tage depends on the number of subkey bits guessed at the most time consuming
steps of the attack: For a 4-bit subkey guess our gain is negligible, for an 8-bit key
guess we get a speedup by a factor of more than 10 (without using packing), and
for a 32-bit key guess our speedup factor may be larger than 22° as demonstrated
in our attack on CLEFIA [22] presented in the full version of this paper [19].
The effect of the second advantage is also dependent on the number of guessed
subkey bits (since it determines the size of the functions whose convolution we
have to compute, which in turn affects the number of convolutions we may pack
together). Usually, between 4 and 8 convolutions can be packed together, which
leads to a speedup by a factor of at least 4. Interestingly, when the number
of guessed subkey bits is small (e.g., 4 bits), more convolutions can be packed
together, and hence, a stronger effect of the second advantage compensates for
a weaker effect of the first advantage.

The speedup of our technique over the Todo-Aoki technique stems from two
advantages: First, our attack provides us with more flexibility, meaning that
instead of replacing the whole attack by a single FFT-based step, we can consider
each step (or a few steps) of the partial sums procedure separately and decide
whether it will be better to perform it with key guessing or with an FFT-based
technique. Second, we may pack the computation of several convolutions in a
single convolution computation. The first advantage allows us to make use of
partial knowledge of the subkey. A particular setting in which this advantage
plays a role is analysis of additional plaintext sets after one set was used to
obtain some key filtering. While our technique and the partial sums technique
can make use of this partial knowledge, the Todo-Aoki technique must repeat the
entire procedure. In the case of 6-round AES, this makes our attack 6 times faster
than the Todo-Aoki attack without using packing. A more complete comparison
between our method and the Todo-Aoki technique is available in the full version
of this paper [19].

The second advantage provides a speedup by a factor of at least 4, as
was described above. Yet another advantage that is worth mentioning is that
while the Todo-Aoki technique applies the FFT to functions in high dimensions
(e.g., dimension 72 in the Todo-Aoki attack on 12-round CLEFIA-128 presented
in [30]), our technique applies the FFT to functions of a significantly lower
dimension (e.g., dimension 16 in our improved attack on 12-round CLEFIA-128
presented in Appendix B of the full version of this paper [19]). Computation
of the FFT in high dimensions is quite cumbersome from the practical point of
view, and hence, avoiding this is a practical advantage of our technique. More-
over, higher dimension FFTs require additions with more precision; without using
packing the Todo-Aoki attack on 6-round AES requires 64-bit additions while
our attack can use 32-bit additions.

Two advantages of the partial sums technique and the Todo-Aoki technique
over our technique are a somewhat lower memory complexity (about 227 128-
bit blocks for partial sums and about 23! 128-bit blocks for Todo-Aoki) and
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the fact that on average, the attack finds the right key after trying half of the
possible keys while our attack must try all keys. However, both advantages can
be countered by implementing the first step of our attack in the alternative way
presented in Sect. 3.3, which makes the memory complexity equal to that of
the partial sums attack and regains the ‘lower average-case complexity’, as was
explained in Sect. 3.3.

3.5 Experimental Verification of Our Attack on 6-Round AES

We have experimentally verified our attack on Amazon’s AWS infrastructure.
For comparison, we also implemented the partial sums attack of [21] and the
Todo-Aoki attack [30]. All implementations in C are publicly available at the
following link:

https://github.com/ShibamCrS/Partial Sums Meet FFT.

We note that the FFT implementations were based on the “Fast Fast Hadamard
Transform” library [3].

The AWS Instances Used in the Experiment. For each attack we had
to pick the most optimal AWS instance, depending on the computational and
memory requirements.

The partial sums attack is quite easy to parallelize, and its memory require-
ment is low. (Specifically, the memory requirement is 234 bits, or 16GB, as
was shown above. Furthermore, only an 232-bit list that stores the parities
of (ep,c1,c,c3) combinations should be stored in a memory readable by all
threads). As a result, we took the Intel-based instance (that has the AES-NI
instruction set) with the maximal number of cores per USS$. At the time the
experiment was performed (January, 2023) this was the m6i.32xlarge instance.*

For our attack (in its original variant) and for the Todo-Aoki attack, we
needed instances that support a larger amount of memory. The optimal choice
for our attack was the same instance as the one for the partial sums attack—
the m6i.32xlarge instance. For the Todo-Aoki attack, we needed 64 GB of RAM
for each thread of the attack. Hence, the optimal instance we found was the
r6i.32xlarge instance.” We note that in the Todo-Aoki attack, we do not exploit
all the vCPUs, but we do exploit the whole memory space (of 1 TB of RAM).

Experimental Results. The partial sums attack took 4859 minutes to com-
plete, and its cost was 497 US$ (we used the US-east-2 region (Ohio) which
offered the cheapest cost-per-hour for a Linux machine of 6.144 USS$, before
VAT). The Todo-Aoki approach took 3120 minutes to complete, and its cost
was 418 US$ (at 8.064 US$ per hour). We note that due to the costs of these

4 The m6i.32xlarge instance has 128 Intel-based vCPUs and 512GB of RAM.
5 The r6i.32xlarge instance has 128 Intel-based vCPUs and 1024 GB of RAM.
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attacks, they were run only once, but none of those attacks (nor our attack) is
expected to show high variance in the running time.

To evaluate the running time of our attack, we ran Algorithm 3 and Algo-
rithm4 ten times each. In both algorithms, we used only 4 FFTs packed in
parallel at each of Steps 1,2,3 and 8 FFTs packed in parallel at Step 4, for ease
of implementation. The average running time of Algorithm 3 is 90 minutes, and
its average cost is 9.21 US$. The average running time of Algorithm 4 is 48 min-
utes and its cost is 5 US$. Hence, in the experiment our attack was 83-times
cheaper and 65 times faster than both partial sums and Todo-Aoki’s attacks.

4 Improved Attack on Kuznyechik

The flexibility of our techniques improves attacks against various other ciphers
that use the partial sums technique. In this section, we demonstrate this by
presenting an attack on 7-round Kuznyechik, which improves over the multiset-
algebraic attack on the cipher presented in [12] by a factor of more than 80. In
the supplementary material of the full paper [19], we present improved attacks
on the full MISTY1, and variants of CLEFIA-128 with 11 and 12 rounds. Our
attacks on Kuznyechik and MISTY1 are the best known attacks on these ciphers.

4.1 The Structure of Kuznyechik

The block cipher Kuznyechik [18] is the current encryption standard of the Rus-
sian Federation. It is an SPN operating on a 128-bit state organized as a 4 x 4
array of 8-bit words. The key length is 256 bits, and the encryption process is
composed of 9 rounds. Each round of Kuznyechik is composed of three opera-
tions:

Substitution. Apply an 8-bit S-box independently to every byte of the state;
Linear Transformation. Multiply the state by an invertible 16-by-16 matrix
M over GF(2%);

Key Addition. XOR a 128-bit round key computed from the secret key to
the state.

An additional key addition operation is applied before the first round. As prop-
erties of the key schedule of Kuznyechik are not used in this paper, we omit its
description and refer the reader to [18].

4.2 The Multiset-Algebraic Attack of Biryukov et al.

In [12], Biryukov et al. presented an algebraic attack on up to 7 rounds of
Kuznyechik. The attack is based on the following observation:

Lemma 3. Consider the encry%t?ion by 4-round Kuznyechik of a set of 2127 dis-
tinct plaintexts, PY,P',..., P2 =1 which form a subspace of degree 127 of

127 .
{0,1}128. Then the corresponding ciphertexts satisfy @?:0 “loi=o.
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The attack uses Lemma3 in the same way as the Square attack on AES uses
Lemma 1. The adversary asks for the encryption of the entire codebook of 2128
plaintexts. Then he guesses a single byte of the whitening subkey and for each
guess, he finds a set of 27 values in that byte such that the corresponding values
after the substitution operation form a 7-dimensional subspace of {0,1}%. By
taking these values along with all 2'20 possible values in the other 15 bytes,
the adversary obtains a set of 2127 plaintexts, whose corresponding intermediate
values after one round satisfy the assumption of Lemma 3.

By the lemma, the XOR of the corresponding values at the end of the 5’th
round is zero. In order to check this, the adversary guesses some subkey bytes in
the last two rounds and partially decrypts the ciphertexts to compute the XOR
in a single byte at the end of the 5th round. The situation is similar to the
AES, with the ‘only’ difference that since the linear transformation is a 16-by-16
matrix (and not a 4-by-4), one has to guess all 16 bytes of the last round subkey.
The adversary guesses the last round subkey and one byte of the equivalent
subkey of the penultimate round, partially decrypts the ciphertexts, and checks
whether the values XOR to zero. Biryukov et al. suggested to significantly speed
up this procedure using partial sums. Borrowing the notation from Sect. 2.3, the
value of the byte in which the XOR should be computed can be written as:

x(s) = S_l(];g P 60-5_1(00 (S kg) (&) €1 - S_l(Cl G k?) D...

-1 6 -1 6 )

Be- S (Cradkly) ®es- S (Cis B kls)),
where the constants eg, eq,...,e1s are obtained from the matrix M ! and the
multiplication is defined over GF(2®). In the attack of Biryukov et al., the sum
in the right hand side of (9) is computed using 16 steps of partial sums, where we
begin with a list of 2'28 binary indices which indicate the parity of occurrence of
each ciphertext value, and at each step, another subkey byte k9 is guessed and
the size of the list is reduced by a factor of 28. Like in the partial sums attack on
the AES, the two outstanding steps are the first step in which two subkeys are
guessed and the list is squeezed to a list of size 2!2°, and the last step in which
the XOR of 28 values is computed under the guess of 17 subkey bytes.

The complexity of each step is 2'4* S-box computations, and hence, the com-
plexity of the entire procedure is 2!48 S-box computations. Since the procedure
provides only an 8-bit filtering, the adversary has to repeat it for each of the 16
bytes (and for each guess of the subkey byte at the first round). Therefore, the
total time complexity of the attack is 28 - 16 - 2148 = 2160 S_hox computations,
which are equivalent (according to [12]) to 2!%4® encryptions.

The authors of [12] present also an attack on 6-round Kuznyechik. In this
attack, they use the fact that for 3-round Kuznyechik, taking a vector space
of degree 120 of plaintexts (instead of degree 127 above) is sufficient for guar-
anteeing that the ciphertexts XOR to zero. Hence, in order to attack 6-round
Kuznyechik, an adversary can ask for the encryption of 2'29 plaintexts which
are equal in a single byte and assume all possible values in the other bytes. The
corresponding intermediate values after one round form a vector space of degree
120, and hence, the corresponding intermediate values after 4 rounds XOR to
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zero. This allows applying the same attack like above, where the overall com-
plexity is reduced by a factor of 28 since there is no need to guess a subkey byte
at the first round. Hence, the overall data complexity is 2'2° chosen plaintexts
and the time complexity is 21465 encryptions.

The attacks of [12] are the best known attacks on reduced-round Kuznyechik.

4.3 Improvement Using Our Technique

Just like for AES, we can replace each step of the partial sums procedure per-
formed in [12] by computing a convolution. We can compute several convolutions
in parallel by embedding into Z as well as precompute two FFTs required for the
first step and one FFT required for each subsequent step. However, we can only
compute 6 FFTs in parallel rather than 7, as we need 2'2° values to be correct
in the first step. This requires s > 8 and cannot accommodate 7 parallel FFTs;
instead we use 6 parallel FFTs with s = 9 which guarantees no overflow. The
complexity of the first step is reduced to 2120.16-216 /6 = 8/3-2!36 additions and
the complexity of the subsequent steps is reduced to 212°.2-16-216 /6 = 16/3.2136
additions. At the last step (which computes the XOR of the values) we have to
compute FFTs for the 8 bits of the SBox individually, but we use FFTs on 8-bit
functions (instead of 16-bit ones), we can pack 8 computations in parallel, and we
can precompute an additional FF'T and reuse it for the computations of the eight
bits. Hence, its amortized complexity is 2128+ (14-(1/8))-8-28 = 9-2136 additions.
We conclude that the analysis of a single set of 2'27 ciphertexts, with a given
guess of the whitening key, takes (8/3 4 14-16/3 +9)2136 = 259/3 . 2136 = 21424
additions.

Instead of examining the other 15 bytes using the same set of cipher-
texts, we may construct additional sets of 2'27 ciphertexts by taking other 127-
dimensional subspaces at the end of the first round (which is possible since we
ask for the encryption of the entire codebook and guess a subkey byte at the
first round) and examining their XOR at the same byte at the end of the 5’th
round. Like in the case of AES, when we examine the XOR at the same byte for
a second set of ciphertexts, the complexity of the last step becomes negligible (as
it is performed only for a few possible values of the subkey). When a third set
of ciphertexts is examined, the two last steps become negligible, etc. By using
seven sets of 2'27 ciphertexts and examining each of them in three bytes, the
complexity of the attack becomes

2127

2%.2196.1/3. ((259 + 232 + 216 + 200 + 184 + 168 + 152)+
+ (136 + 136 + 120 + 104 + 88 4 72 4 56) + (40 + 40 + 24 + 8))

_ 2144 .T45 = 215345
additions, which are equivalent to about 2'*8 encryptions — a speedup by a factor
of more than 80 compared to the attack of [12].
The attack on 6-round Kuznyechik can be improved similarly. The only dif-
ference is that we cannot use additional sets of plaintexts without increasing
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the data complexity. Hence, for the same data complexity, the time complexity
is reduced to 2'464 additions, which are equivalent to 2!4% encryptions — a
speedup by a factor of more than 40.

5 Summary

In this paper we showed that the partial sums technique of Ferguson et al. [21]
and the FFT-based technique of Todo and Aoki [30] can be combined into a
new technique that allows enjoying the best of the two worlds. The combination
improves over the best previously known attacks on 6-round AES by a factor of
more than 32, as we verified experimentally.

Furthermore, the new technique allows improving other attacks—most
notably, we improve the best known attack against Kuznyechik [18] by a fac-
tor of more than 80. Our method also yields the best known attack against the
full MISTY1 [24] where we improve previous best result by a factor of 6, and
improve the partial sums attacks against reduced-round CLEFTA [22] by varying
factors (including a huge factor of 23°, on 12-round CLEFIA-128) as shown in
the full version of this paper [19]. We expect that our new technique will be used
to improve other cryptanalytic attacks, and will (again) highlight the strength
and potential of FFT-based techniques in improving cryptanalytic attacks.
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