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Abstract. The XOR of two independent permutations (XoP) is a well-
known construction for achieving security beyond the birthday bound
when implementing a pseudorandom function using a block cipher (i.e.,
a pseudorandom permutation). The idealized construction (where the
permutations are uniformly chosen and independent) and its variants
have been extensively analyzed over nearly 25 years.

The best-known asymptotic information-theoretic indistinguishabil-
ity bound for the XoP construction is O(q/21.5n), derived by Eberhard
in 2017.

A generalization of the XoP construction outputs the XOR of r ≥ 2
independent permutations, and has also received significant attention in
both the single-user and multi-user settings. In particular, for r = 3, the
best-known bound (obtained by Choi et al. [ASIACRYPT’22]) is about
q2/22.5n in the single-user setting and

√
uq2max/22.5n in the multi-user set-

ting (where u is the number of users and qmax is the number of queries
per user).

In this paper, we prove an indistinguishability bound of q/2(r−0.5)n

for the (generalized) XoP construction in the single-user setting, and a
bound of

√
uqmax/2(r−0.5)n in the multi-user setting. In particular, for

r = 2, we obtain the bounds q/21.5n and
√

uqmax/21.5n in single-user and
multi-user settings, respectively. For r = 3 the corresponding bounds are
q/22.5n and

√
uqmax/22.5n. All of these bounds hold assuming q < 2n/2

(or qmax < 2n/2).
Compared to previous works, we improve all the best-known bounds

for the (generalized) XoP construction in the multi-user setting, and the
best-known bounds for the generalized XoP construction for r ≥ 3 in the
single-user setting (assuming q ≥ 2n/2). For the basic two-permutation
XoP construction in the single-user setting, our concrete bound of q/21.5n

stands in contrast to the asymptotic bound of O(q/21.5n) by Eberhard.
Since all of our bounds are matched (up to constant factors) for

q > 2n/2 by attacks published by Patarin in 2008 (and their general-
izations to the multi-user setting), they are all tight.

We obtain our results by Fourier analysis of Boolean functions. Most
of our technical work involves bounding (sums of) Fourier coefficients
of the density function associated with sampling without replacement.
While the proof of Eberhard relies on similar bounds, our proof is ele-
mentary and significantly simpler.
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1 Introduction

Many cryptosystems such as encryption modes, MAC algorithms and authen-
ticated encryption schemes require pseudorandom functions to achieve security.
However, in practice, pseudorandom functions are typically implemented by
block ciphers, which are pseudorandom permutations that are only secure up
to the birthday bound of q = 2n/2 queries (where n is the block length). In order
to overcome this limitation, achieving security beyond the birthday bound has
become a prominent research area, initiated by the seminal papers by Bellare,
Krovetz, and Rogaway [2], and by Hall, Wagner, Kelsey, and Schneier [18].

1.1 The XoP Construction

One of the main constructions analyzed in the literature for achieving secu-
rity beyond the birthday bound is the XOR of permutations (XoP) construc-
tion, which has two main variants. One variant uses two permutations π1, π2 :
{0, 1}n �→ {0, 1}n to define fπ1,π2 : {0, 1}n �→ {0, 1}n by f(x) = π1(x) ⊕ π2(x).
In practice, π1 and π2 are implemented using a block cipher, instantiated with
independent keys. In the following, we simply refer to this variant as the XoP
construction. Another variant uses a single permutation π : {0, 1}n �→ {0, 1}n

to define fπ : {0, 1}n−1 �→ {0, 1}n by f(x) = π(0‖x) ⊕ π(1‖x) (where ‖ denotes
concatenation). We refer to this construction as a single-permutation XoP con-
struction. Similarly to the two-permutation variant, π is implemented using a
block cipher. However, in information-theoretic security proofs, the block ciphers
in both variants are replaced by idealized random permutations.

We note that there are other variants of the XoP construction defined in
the literature that we do not deal with in this paper. For example, the recent
result [16] by Gunsing et al. analyzes a variant where the underlying permuta-
tions are public and the adversary is allowed to query them. Previous works that
analyze additional variants include [3,4,7,17].

Previous Results. There have been several works on the security of the (ide-
alized) XoP construction [1,20,24,26], analyzing one or both of its variants. Yet,
a simple and verifiable proof that the XoP construction variants achieve secu-
rity up to q = O(2n) queries was only published in 2017 in a paper by Dai,
Hoang, and Tessaro [10]. Specifically, [10] proved that any adversary that makes
q queries to the (two-permutation) XoP construction can distinguish it from a
truly random function with advantage of at most (about) q1.5

21.5n .
Independently, in [13, Thm. 1.5] Eberhard proved a substantially better indis-

tinguishability bound of O( q
21.5n ), relying and extending results of [14] in addi-

tive combinatorics. The bound was given in asymptotic form with an unspecified
constant. An additional paper that analyzed the XoP construction is [12].

For the single-permutation XoP variant, the distinguishing advantage was
bounded in [10,12] by about q

2n . The works of [8,12], essentially confirm (and
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improve) the results obtained earlier by Patarin [24,26] (using the so-called mir-
ror theory technique).

The indistinguishability bound q
2n for the single permutation XoP con-

struction variant is essentially tight. Indeed, it is matched by a simple attack
based on the observation that since π is a permutation, for all x ∈ {0, 1}n−1,
f(x) = π(0‖x) ⊕ π(1‖x) �= �0, while for a random function, �0 is output with
probability 2−n for each query.

The attack above does not work for the variant where the permutations are
independent, and indeed the bound O( q

21.5n ) of [13] for this variant is much better
(particularly when q is large). This bound is matched by an attack published by
Patarin [25,27], which obtains distinguishing advantage of about q

21.5n , assuming
q = O(2n). Note that if q = 2n, then the distinguishing advantage is close to 1
since the XOR of the outputs of all inputs to f(x) = π1(x) ⊕ π2(x) is �0.

Multi-user Setting. The XoP construction also recently received attention in
the multi-user setting in [6,7]. A trivial extension of the result in [13] gives a
bound of O(u·qmax

21.5n ) in the multi-user setting, where u is the number of users and
qmax is the allowed number of queries to each user.

In terms of attacks, one can generically extend the attacks by Patarin [25,27]
to the multi-user setting by independently applying the single-user attacker to
each user, and then taking the majority of answers (which attempt to deduce
whether the oracle is the XoP construction or a random function). Applying
a standard Chernoff bound, the attack achieves a distinguishing advantage of
about

√
uqmax
21.5n .

Generalized XoP Construction. A natural generalization of the XOR con-
struction defines f by XORing together r ≥ 2 permutations, where r is a (small)
parameter. As in the case of r = 2, the generalized construction also has two
variants, but we focus on the case where all permutations are independent.

Previous Results. This construction was first analyzed by Lucks [20] and this
analysis was improved by Cogliati, Lampe, and Patarin [9], who proved security
up to roughly 2rn/(r+1) queries (also see [22]). More recently, this analysis has
been improved in [10], which obtained an indistinguishability bound to about
( q
2n )1.5�r/2� using the generic amplification technique of Maurer, Pietrzak, and

Renner [21]. The specific case of k = 3 was analyzed in [7] by Choi et al., who
proved an indistinguishability bound of about

√
uq2

max
22.5n in the multi-user setting.

On the other hand, the best known attacks on the generalized XoP construc-
tion, published in [25,27], obtained distinguishing advantage of about q

2(r−0.5)n .
One can also consider attacks on the generalized XoP construction in the multi-
user setting. Similarly to the case of r = 2, the best known attack is the generic
extension of the single-user attack by Patarin [25,27] to the multi-user setting,
which achieves advantage of about

√
u·qmax

2(r−0.5)n .
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1.2 Our Contribution

Our Results. In this paper, we prove an indistinguishability bound of q
2(r−0.5)n

for the (generalized) XoP construction in the single-user setting, and a bound of√
uqmax

2(r−0.5)n in the multi-user setting. Specifically, for the basic two-permutation XoP

construction, we obtain a bound of q
21.5n in the single-user setting and

√
uqmax
21.5n

in the multi-user settings. All of these bounds have no hidden constants. They
hold as long as q < 2n/2 (or qmax < 2n/2 in the multi-user setting), assuming
2n ≥ 1000.

Compared to previous results, we improve all the best-known bounds for the
(generalized) XoP construction in the multi-user setting, and the best-known
bounds for the generalized XoP construction for r ≥ 3 in the single-user setting
(assuming q ≥ 2n/2). For the basic XoP construction (with r = 2), our concrete
bound of q/21.5n in the single-user setting stands in contrast to the asymptotic
bound of O(q/21.5n), derived in [13].

All of our bounds are tight assuming q ≤ 2n/2, as they match (up to constant
factors) the single-user attacks published by Patarin in [25,27], as well as their
trivial generalization to the multi-user setting.

Our Techniques. Similarly to [13,14], the main framework that we use to
obtain our results is Fourier analysis (of Boolean functions). This is a stan-
dard tool for analyzing probability distributions in mathematics, yet it is not
commonly used as a main framework in information-theoretic security proofs in
symmetric-key cryptography. For example, [5] used Fourier analysis as an aux-
iliary tool in order to prove an internal lemma, but not as the main framework.
The application of Fourier analysis in the more recent work [19] is somewhat
more related to ours. We summarize the main ideas of our proof below.

First, the distinguishing advantage of the adversary is bounded by the statis-
tical distance between the distribution generated by the XoP construction and
the uniform distribution. Consider a sample in F

q×n
2 composed of q elements in

{0, 1}n, generated by the XoP construction. We can bound the statistical dis-
tance of this distribution from the uniform distribution in the “Fourier domain”
by bounding the bias (i.e., Fourier coefficient) of each of the 2q·n possible masks
(i.e., linear equations over F2) applied to the bits of the sample. To gain intuition,
note that for the uniform distribution over F

q×n
2 , all non-empty linear equations

have 0 bias (i.e., hold with probability 1/2), and thus a distribution that is close
to uniform has biases (Fourier coefficients) that are very close to 0.

Our task is thus to bound the Fourier coefficients for the distribution function
generated by the XoP construction.1 Next, we use standard techniques to reduce
this task to the task of bounding the Fourier coefficients for the distribution gen-
erated by the underlying primitive, namely, a random permutation. Specifically,
we consider k elements (for any 1 ≤ k ≤ q) drawn uniformly without replace-

1 More accurately, the task is to bound the Fourier coefficients for the normalized
distribution function (i.e., density function) generated by the XoP construction.
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ment. Our goal is reduced to bounding two quantities of Fourier coefficients on
masks that involve all of these k elements (called level-k coefficients).

1. The maximal level-k Fourier coefficient in absolute value.
2. The level-k Fourier weight, which is equal to the sum of squares of all Fourier

coefficients of level k.

Intuitively, level-k (Fourier) weight is a measure of dependence between k ele-
ments drawn from the distribution. For example, the level-k Fourier weight of a
q-wise uniform distribution is 0 for any 1 ≤ k ≤ q. We remark that calculating
the above two Fourier quantities for various levels has the additional advantage
of hinting at the best attack strategy. In particular, we show that for the XoP
construction, level-2 Fourier coefficients are dominant. This suggests that the
best attack strategy should consider pairwise relations, and indeed, the optimal
attacks by Patarin [25,27] count pairwise collisions.

Most of our technical work involves bounding the two quantities above, which
is non-trivial due to intricate dependencies among the bits of the sample. This
analysis does not directly deal with the XoP construction, but rather derives
fundamental Fourier properties of the sampling without replacement distribu-
tion.

Bounding the Quantities. We briefly summarize the main ideas used to bound
each of the above quantities. Fix a mask involving bits from exactly k elements.
In order to bound the associated bias of the linear equation (in absolute value),
we devise an algorithm that allows to partition a subset of the sample space into
sample couples with opposite signs (i.e., one satisfies the linear equation and
one does not). Thus, the bias (in absolute value) is bounded by the fraction of
samples that are not coupled. This fraction is bounded by probabilistic analysis
of the algorithm. We note that our analysis does more than merely bound the
maximal level-k Fourier coefficients. It actually classifies them into types (or
groups) and obtains a refined bound for each type.

Our bound on the maximal level-k Fourier coefficient is tight, yet by itself, it
is not sufficient in order to derive tight indistinguishability bounds for the XoP
construction. For this purpose, we bound the level-k Fourier weight of the sam-
pling without replacement distribution. While an exact expression for the weight
is relatively easy to derive, this expression is a complex sum of terms, and there-
fore not immediately useful. Hence, we manipulate this expression in two main
steps. First, we show how to compute the level-k Fourier weight via a recursive
formula, and then we bound this weight by induction. Overall, although the
weight is bounded by elementary analysis, it requires insight which is somewhat
non-trivial.

Remark 1. Our bounds on the level-k Fourier weight can be formulated in terms
of the so-called Efron-Stein orthogonal decomposition [23, Ch. 8] of the density
function of sampling without replacement. This decomposition is independent
of a specific Fourier basis, and thus these bounds apply more generally to the
density function of sampling without replacement from an arbitrary set.



38 I. Dinur

Technical Comparison to Previous Works. Below, we compare our tech-
niques to those of [13,14]. Comparison to additional proof techniques is given in
the full version of this paper [11].

Comparison to [13,14]. The papers [13,14] obtained several results in additive
combinatorics. One of them is [13, Thm. 1.5], which gives an asymptotic indis-
tinguishability bound of O( q

21.5n ) for the two-permutation XoP construction. We
compare our techniques to the ones of [13,14], focusing on the aforementioned
result.

Both our proof and the one of [13,14] use Fourier analysis and (in our
language) bound the (sums of) Fourier coefficients of the density function of
sampling without replacement. However, the proof of [13, Thm. 1.5] is signifi-
cantly more complicated. In particular, it relies on several bounds which are not
required to obtain our result. Moreover, it uses complex analysis, whereas our
proof is completely elementary.

The two bounds that we use (mentioned above) have comparable bounds
in [13,14]. The analog of our first bound (the maximal level-k Fourier coefficient
in absolute value) is [13, Lem. 4.1]. After normalization, our bound is identical
for even k and slightly better for odd k. It is proved using a completely different
technique. The analog of our second bound (the level-k Fourier weight) is [13,
Thm 2.3] ([14, Thm. 5.1]). After normalization, our bound is somewhat inferior
for small k (e.g., for k ≤ 2n/3), and becomes better for large k (e.g., denoting
N = 2n, it is better by a factor of 2Ω(N) for k ≥ Ω(N)). However, such an
improvement seems insignificant to the asymptotic results of [13,14]. Our proof
of the second bound begins by deriving an exact expression for the weight, as
the proof of [14, Thm. 5.1]. On the other hand, our analysis of this expression
is elementary, while the one of [14] is based on complex analysis.

In terms of generality of results, [13, Thm. 1.5] was proved for a (general-
ized variant of the) XoP construction defined over an arbitrary additive abelian
group. While our results only apply to the original XoP construction, it is
not difficult to extend them to the variant defined over an arbitrary abelian
group. In fact, our second bound is already independent of the actual group (see
Remark 1), and it only remains to modify the proof of the first bound. However,
we leave this to future work.

1.3 Paper Structure

The rest of this paper is organized as follows. We describe preliminaries in Sect. 2.
In Sect. 3, we summarize our bounds on the two Fourier properties of sampling
without replacement, and use them to prove indistinguishability bounds for the
XoP construction. Finally, we prove these bounds in Sect. 4 and Sect. 5. Specif-
ically, in Sect. 4 we bound the maximal (absolute value of the) level-k Fourier
coefficient of the sampling without replacement density function, while in Sect. 5,
we bound its level-k Fourier weight.



Tight Indistinguishability Bounds for the XOR 39

2 Preliminaries

For a natural number m, denote [m] = {1, 2, . . . ,m}. For natural numbers m1

and m2 such that m1 ≤ m2, denote [m1,m2] = {m1,m1 + 1, . . . , m2}. For a set
A, denote its size by |A|. For any integer k > 0 and a real number t, define the
falling factorial as (t)k = t(t − 1) . . . (t − (k − 1)). Further define (t)0 = 1.

Let F be a field and v ∈ F
k1×k2 a matrix of elements in F. We index the

elements of v in a natural way, namely, for i ∈ [k1], vi ∈ F
k2 is the i’th row of v

and for j ∈ [k2], vi,j ∈ F is its j’th entry.
For two vectors v, u ∈ F

k, we denote by 〈u, v〉F =
∑

i∈[k] uivi their inner
product. Similarly, for matrices v, u ∈ F

k1×k2 , 〈u, v〉F =
∑

(i,j)∈[k1]×[k2]
ui,jvi,j .

In this paper, we typically deal with matrices x ∈ F
k×n
2 , where n is consid-

ered a parameter and k may vary. We denote N = 2n. We further denote by
(e1, e2, . . . , en) the standard basis vectors of F

n
2 .

2.1 Probability

Definition 1 (Density function). A (probability) density function on F
q×n
2

is a nonnegative function ϕ : F
q×n
2 �→ R

≥0 satisfying Ex∈F
q×n
2

[ϕ(x)] = 1, where

x ∈ F
q×n
2 is uniformly chosen.

We write x ∼ ϕ to denote that x is a random string drawn from the associated
probability distribution, defined by

Pr
x∼ϕ

[x = y] = ϕ(y)/2n·q for every y ∈ F
q×n
2 .

In particular, the uniform probability density function over F
q×n
2 is the constant

function 1, and we denote it by 1q·n.
Let A ⊆ F

q×n
2 . We write x ∼ A to denote that x is selected uniformly at

random from A.

Definition 2 (Collision probability). The collision probability of a density
function ϕ : F

q×n
2 �→ R

≥0 is

Col[ϕ] = Pr
x,x′∼ϕ

independently

[x = x′].

Definition 3 (Convolution). Let f, g : F
q×n
2 �→ R. Their convolution is the

function f ∗ g : F
q×n
2 �→ R defined by

(f ∗ g)(x) = E
y∼F

q×n
2

[f(y)g(x ⊕ y)].

For a function f : F
q×n
2 �→ R and a natural number r ≥ 2, we denote the r-fold

convolution of f with itself by f (∗r) = f ∗ f ∗ . . . ∗ f (in particular f (∗2) = f ∗ f).
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Proposition 1 ([23], Proposition 1.26). If ϕ,ψ : F
q×n
2 �→ R

≥0 are density
functions, then so is ϕ ∗ ψ. It represents the distribution over F

q×n
2 given by

choosing y ∼ ϕ and z ∼ ψ independently and setting x = y ⊕ z.

Definition 4 (Statistical distance). The statistical distance between two
probability density functions ϕ,ψ : F

q×n
2 �→ R

≥0 is

SD(ϕ,ψ) = 1/2 · E
x∼F

q×n
2

|ϕ(x) − ψ(x)|.

2.2 Fourier Analysis

We define the Fourier-Walsh expansion of functions on the Boolean cube,
adapted to our setting, and state the basic results that we will use. These results
are taken from [23].

Definition 5 (Fourier expansion). Given α ∈ F
q×n
2 , define χα : F

q×n
2 �→

{−1, 1} by

χα(x) = (−1)〈α,x〉F2 =
∏

i∈[q]

(−1)〈αi,xi〉F2 =
∏

i∈[q],j∈[n]

(−1)αi,j ·xi,j .

The set {χα}α∈F
q×n
2

is an orthonormal basis for the set of functions {f |
f : F

q×n
2 �→ R}, with respect to the normalized inner product 1

|Fq×n
2 | 〈f, g〉R =

Ex∼F
q×n
2

[f(x)g(x)]. Hence each {f | f : F
q×n
2 �→ R} can be decomposed to

f =
∑

α∈F
q×n
2

f̂(α)χα,

where f̂(α) = E[χαf ], and in particular, f̂(0) = E[f ].
Each element in {χα}α∈F

q×n
2

is called a character. We refer to α as a mask,

and to f̂(α) as the Fourier coefficient of f on α. To distinguish the domain of
characters from the input domain we write it as F̂

F
q×n
2

, and thus

f(x) =
∑

α∈̂F
q×n
2

f̂(α)χα(x).

For a mask α ∈ F̂
q×n
2 , we write

supp(α) = {i | αi �= 0} and #α = |supp(α)|.
We call #α the level of α, and f̂(α) is a Fourier coefficient of level #α.

Definition 6 (Fourier weight and maximal magnitude). For a function
f : F

q×n
2 �→ R, we define the Fourier weight of f at level k to be

W=k[f ] =
∑

α∈̂F
q×n
2

#α=k

f̂(α)2.
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The Fourier weight of f up to level k is W≤k[f ] =
∑k

i=0 W=i[f ].
The maximal magnitude of a level-k Fourier coefficient of f is

M=k[f ] = max
α∈̂F

q×n
2

#α=k

{|f̂(α)|}.

Finally, let M≥1[f ] = maxα∈̂F
q×n
2

α�=0

{|f̂(α)|} denote the maximal magnitude of a

Fourier coefficient on a non-zero mask.

Proposition 2 ([23], Fact 1.21). If ϕ : F
q×n
2 �→ R

≥0 is a density function
and f : F

q×n
2 �→ R, then

E
x∼ϕ

[f(x)] = E
x∼F

q×n
2

[ϕ(x)f(x)].

Proposition 3 ([23], Theorem 1.27 – Fourier coefficients of convolu-
tion). Let f, g : F

q×n
2 �→ R. Then for all α ∈ F̂

q×n
2 , f̂ ∗ g(α) = f̂(α)ĝ(α).

Proposition 4 ([23], Exercise 1.23 – relation between Fourier weight
and collision probability). For a density function ϕ : F

q×n
2 �→ R

≥0,

W≤q[ϕ] = Col[ϕ] · 2q·n.

Proposition 5 ([23], Proposition 1.13 – variance). The variance of f :
F

q×n
2 �→ R is

Var[f ] = E[f
2
] − E[f ]

2
=

∑

α∈̂F
q×n
2

α �=0

̂f(α)
2
=

q
∑

k=1

W
=k

[f ].

Proposition 6 ([23], Exercise 1.23 – bound on statistical distance from
uniform). Let ϕ : F

q×n
2 �→ R

≥0 be a density function. Then

SD(ϕ,1q·n) ≤ 1
2

√
Var[ϕ].

We prove two additional basic results regarding variance.

Proposition 7 (Variance reduction by convolution). Let ϕ : F
q×n
2 �→ R

≥0

be a density function. Let r1, r2 be integers such that 0 < r2 < r1. Then,

Var[ϕ(∗r1)] ≤ (M≥1[ϕ])2(r1−r2) Var[ϕ(∗r2)].

Proof. By Proposition 5 and Proposition 3,

Var[ϕ
(∗r1)

] =
∑

α∈̂F
q×n
2

α �=0

̂ϕ(∗r1)(α)
2
=

∑

α∈̂F
q×n
2

α �=0

ϕ̂(α)
2r1

≤ (M
≥1

[ϕ])
2(r1−r2)

∑

α∈̂F
q×n
2

α �=0

ϕ̂(α)
2r2 = (M

≥1
[ϕ])

2(r1−r2)
Var[ϕ

(∗r2)
].

�
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Proposition 8 (Variance of independent samples). Let ϕ : F
q×n
2 �→ R

≥0

be a density function. Let u be a natural number and let ϕ×u : F
(q·u)×n
2 �→ R

≥0

be the density function obtained by concatenating u independent samples drawn
from ϕ. Then,

Var[ϕ×u] ≤ 2u · Var[ϕ], assuming u · Var[ϕ] ≤ 1/2.

Proof. By independence of the u samples, we have Col[ϕ×u] = Col[ϕ]u. Applying
Proposition 4 and Proposition 5,

W≤q·u[ϕ×u] = Col[ϕ×u] · 2q·n·u = (Col[ϕ] · 2q·n)u = (W≤q[ϕ])u =
(
ϕ̂(0)2 + Var[ϕ]

)u

.

Writing z = Var[ϕ] and noting that ϕ̂(0)2 = 1 since ϕ is a density function, we
have W≤q·u[ϕ×u] = (1+z)u = 1+

∑u
i=1

(
u
i

)
zi. The ratio between two consecutive

terms in the sum
∑u

i=1

(
u
i

)
zi is upper bounded by u·z ≤ 1/2 (by the assumption).

Thus, the sum is upper bounded by a geometric series with ratio 1/2 (i.e., twice
the first term). We conclude that

W≤q·u[ϕ×u] ≤ 1 + 2u · z = ϕ̂×u(0)2 + 2u · z.

Hence, by Proposition 5, Var[ϕ×u] =
∑q·u

k=1 W=k[ϕ×u] ≤ 2u · z.

�

2.3 Cryptographic Preliminaries and Sampling Without
Replacement

We use the standard notion of PRF security, as defined below. Let H : K ×
{0, 1}m1 �→ {0, 1}m2 be a family of functions and Func(m1,m2) be the set of all
functions g : {0, 1}m1 �→ {0, 1}m2 . Let A be an algorithm with oracle access to
a function f : {0, 1}m1 �→ {0, 1}m2 . The PRF advantage of A against H is

Advprf
H (A) =

∣
∣
∣
∣ Pr
K∼K

[AHK(·) ⇒ 1] − Pr
f∼Func(m1,m2)

[Af(·) ⇒ 1]
∣
∣
∣
∣ .

We also define the optimal advantage

OptprfH (q) = max{Advprf
H (A) | A makes q queries}.

In this paper we also consider the multi-user setting, where we have u users,
each with an independent instantiation of the cryptosystem. The adversary can
issue (up to) qmax queries to each user with the goal of distinguishing the u
instantiations of the cryptosystem from u instantiations of a random function.
Extending the single-user definitions, we define the PRF advantage of A against
H in the multi-user setting as

Advmu-prf
H,u (A) =

∣
∣ Pr

K1,...,Ku∼K
[AHK1 (·),...,HKu (·) ⇒ 1]

− Pr
f1,...,fu∼Func(m1,m2)

[Af1(·),...,fu(·) ⇒ 1]
∣
∣
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We further define the optimal advantage

Optmu-prf
H,u (qmax) = max{Advmu-prf

H,u (A) | A makes qmax queries to each user}.

The XoP[r, n] Construction and Sampling Without Replacement. Let
Perm(n) be the set of all permutations on {0, 1}n (i.e., the set of all π : {0, 1}n �→
{0, 1}n). For natural numbers r, n such that r ≥ 2, define the family of functions
XoP[r, n] : (Perm(n))r × {0, 1}n �→ {0, 1}n by

XoP[r, n](π1, . . . , πr, i) = π1(i) ⊕ π2(i) ⊕ . . . ⊕ πr(i).

The main goal of this paper is to bound OptprfXoP[r,n](q) as a function of the param-
eters r, n, q. By symmetry of the randomly chosen permutations π1, . . . , πr, an
adversary against XoP[r, n] obtains the XOR of r independent samples, each con-
taining q elements of {0, 1}n, chosen uniformly without replacement (regardless
of the actual queries). Below, we formalize this statement.

Definition 7 (Density function of sampling without replacement). For
natural numbers n, q such that 1 ≤ q ≤ 2n, let μn,q : F

q×n
2 �→ R

≥0 be the density
function associated with the process of uniformly sampling q elements from F

n
2

without replacement. Specifically, for x ∈ F
q×n
2 ,

μn,q(x) =

{
(N−q)!

N ! · Nq if xi �= xj for all i, j ∈ [q] (i �= j),
0 otherwise.

Furthermore, define μn,0 to be the constant 1.

Then, by Proposition 1 an adversary against XoP[r, n] that makes q distinct
queries obtains a sample from μ

(∗r)
n,q . By well-known properties of statistical dis-

tance,

OptprfXoP[r,n](q) ≤ SD(μ(∗r)
n,q ,1q·n). (1)

Therefore, our task reduces to upper bounding SD(μ(∗r)
n,q ,1q·n).

We further consider the multi-user setting. Observe that in this setting, an
adversary against XoP[r, n] obtains a sample of (μ(∗r)

n,qmax)×u : F
(qmax·u)×n
2 �→

R
≥0, where (μ(∗r)

n,qmax)×u is the density function obtained by concatenating u

independent samples drawn from μ
(∗r)
n,qmax . Similarly to the single-user setting,

Optmu-prf
XoP[r,n],u(qmax) ≤ SD((μ(∗r)

n,qmax
)×u,1u·qmax·n). (2)

Therefore, in this setting our task reduces to upper bounding
SD((μ(∗r)

n,qmax)×u,1u·qmax·n).

3 Indistinguishability Bounds for XoP[r, n] Using Fourier
Properties of Sampling Without Replacement

In this section we derive tight indistinguishability bounds for XoP[r, n] and then
extend them to the multi-user setting. For this purpose, we start by stating the
fundamental Fourier properties of μn,k that we prove in this paper.
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3.1 Basic Properties of μn,k

We will obtain bounds for the maximal magnitude of Fourier coefficients by level,
namely M=k[μn,q], and Fourier weight by level, namely W=k[μn,q]. First, note
that if x ∼ μn,q, then for every set of k distinct indices {i1, i2, . . . , ik} ⊆ [q],
(xi1 , . . . , xik

) are k elements that are marginally sampled without replacement
from F

k×n
2 , namely, (xi1 , . . . , xik

) ∼ μn,k. Therefore, for 1 ≤ k ≤ q, we have
M=k[μn,q] = M=k[μn,k] and

W=k[μn,q] =
∑

α∈̂F
q×n
2

#α=k

μ̂n,q(α)2 =
∑

{i1,...,ik}⊆[q] distinct

∑

β∈̂F
k×n
2

supp(β)={i1,...,ik}

μ̂n,k(β)2

=
∑

{i1,...,ik}⊆[q] distinct

W=k[μn,k] =
(

q

k

)

W=k[μn,k].

Consequently, our main results bound M=k[μn,k] and W=k[μn,k]. Lemma 1 below
is proved in Sect. 4, while Lemma 2 is proved in Sect. 5.

Lemma 1 (Bounds on magnitude of level-k Fourier coefficients). We
have M=2[μn,2] ≤ 1

N−1 . Generally,

M=k[μn,k]2 ≤
⎧
⎨

⎩

1

(N
k) if k < N/2 is even,
1

(N
k) · k+1

N−k < 1

(N
k) if k < N/2 is odd.

Note that the bound M=2[μn,2] ≤ 1
N−1 is slightly better (by a factor of about√

2) than the generic bound for k = 2. The quantity M=2[μn,2] plays a significant
role in our analysis, as it is the maximal magnitude of a Fourier coefficient with
a non-zero mask (M=1[μn,1] = 0 can be deduced from Lemma 2 below).

Lemma 2 (Bounds on weight of level-k Fourier coefficients). We have

W=1[μn,1] = 0,W=2[μn,2] =
1

N − 1
, and W=3[μn,3] =

4
(N − 1)(N − 2)

.

Generally,

W=k[μn,k] ≤
⎧
⎨

⎩

(N(k−1))k/2

(N)k
≤ ΨN (k) if k ≥ 2 is even,

(N(k−1))(k+1)/2

(N)k+1
≤ ΨN (k + 1) if k ≥ 3 is odd,

where

ΨN (k) =
(

k

N − k

)k/2

exp
(

− k(k − 2)
8N(N − k) + 2 · k2

)k/2

.

Remark 2. The fact that W=1[μn,1] = 0 is obvious since μn,1 is the uniform
distribution over {0, 1}n, and thus all non-empty linear equations on these bits
are unbiased.
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Remark 3. For k < N/2, k
N−k < 1. Therefore, the lemma shows that the Fourier

weight of μn,k at level k is exponentially small in k up to k < N/2. In particular,
in the extreme case of k ≈ N/2, we have

exp

(
− k(k − 2)

8N(N − k) + 2 · k2

)k/2

≈ exp

(
− N2/4

4N2 + N2/2

)N/4

= e−N/72 ≈ e−k/36.

Nevertheless, we will only use a simpler bound of the form W=k[μn,k] ≤
(

k
N−k

)k/2

in our application. Furthermore, since W=k[μn,q] =
(

q
k

)
W=k[μn,k],

the number of queries q obviously also plays a significant role in the analysis.

3.2 Application to Indistinguishability Bounds for XoP[r, n]

We now use the results about μn,k in our main application to derive indistin-
guishability bounds for XoP[r, n], starting with r = 2.

Theorem 1. For N ≥ 1000 and q < N/2,

OptprfXoP[2,n](q) ≤ q

2 · (N − 1)3/2
<

q

N3/2
.

Proof. Using (1), and applying Proposition 6,

OptprfXoP[2,n](q) ≤ SD(μn,q ∗ μn,q,1q·n) ≤ 1
2

√
Var[μn,q ∗ μn,q].

Thus, it remains to prove that

Var[μn,q ∗ μn,q] ≤ q2

(N − 1)3
. (3)

Applying Proposition 5, and then Proposition 3, we have

Var[μ(∗2)
n,q ] =

∑

α∈̂F
q×n
2

α�=0

̂μn,q ∗ μn,q(α)2 =
∑

α∈̂F
q×n
2

α�=0

μ̂n,q(α)4 =
q∑

k=1

∑

α∈̂F
q×n
2

#α=k

μ̂n,q(α)4

≤
q∑

k=1

M=k[μn,q]2
∑

α∈̂F
q×n
2

#α=k

μ̂n,q(α)2 =
q∑

k=1

M=k[μn,q]2 · W=k[μn,q]

=
q∑

k=1

M=k[μn,k]2 ·
(

q

k

)

W=k[μn,k],
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where the final equality exploits the symmetry of μn,q. Next, applying Lemma 1,
and using the fact that W=1[μn,1] = 0 (by Lemma 2),

Var[μ(∗2)
n,q ] ≤ 1

(N − 1)2
·
(

q

2

)

· W=2[μn,2] +
q∑

k=3

(
q
k

)

(
N
k

)W=k[μn,k]

≤ q2

(N − 1)2
· (1/2) · W=2[μn,2] +

q∑

k=3

(q)(q − 1) . . . (q − (k − 1))
(N)(N − 1) . . . (N − (k − 1))

W=k[μn,k]

≤ q2

(N − 1)2
· (1/2) · W=2[μn,2] +

q∑

k=3

(q/N)k · W=k[μn,k]

≤ q2

(N − 1)2

(

(1/2) · W=2[μn,2] +
q∑

k=3

(q/N)k−2 · W=k[μn,k]

)

We now apply Lemma 2. We will also separate the term W=3[μn,3] = 4
(N−1)(N−2)

from the sum of terms for k ≥ 4. For these we use a simple bound

W=k[μn,k] ≤
(

k + 1
N − k − 1

)k/2

≤
(

2(k + 1)
N

)k/2

,

which holds both for even and odd k, and uses the fact that k ≤ q < N/2. We
will further split the remaining sum at k = 4n and use once again the fact that
q/N < 1/2. Thus, Var[μ(∗2)

n,q ] is upper bounded by

q2

(N − 1)2
·
(
(1/2) · W=2[μn,2] + (q/N) · W=3[μn,3] +

4n∑
k=4

(q/N)k−2 · W=k[μn,k]

)

+

q∑
k=4n+1

(q/N)k · W=k[μn,k]

≤ q2

(N − 1)2
·
(

1

2(N − 1)
+

2

(N − 1)(N − 2)
+ 4

4n∑
k=4

2−k ·
(
2(k + 1)

N

)k/2
)

+

q∑
k=4n+1

2−k

≤ q2

(N − 1)2
·
(

1

2(N − 1)
+

2

(N − 1)(N − 2)
+ 4

4n∑
k=4

(
k + 1

2N

)k/2
)

+ N−4.

We now upper bound
∑4n

k=4

(
k+1
2N

)k/2
. The (inverse) squared ratio between two

consecutive terms is

((k + 1)/2N)k

((k + 2)/2N)k+1
=

(
k + 1
k + 2

)k

· 2N

k + 2
=

(

1 − 1
k + 2

)k

· 2N

k + 2

≥ e−2k/(k+2) 2N

k + 2
≥ e−2 2N

k + 2
≥ 2N

(4n + 2)e2
.

where we have used the inequality 1 − (x/2) > e−x, which holds for 0 < x ≤ 1,
as well as the fact that k ≤ 4n in the analyzed sum. Since 2N

(4n+2)e2 ≥ 4 holds
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for N ≥ 1000, the sum is upper bounded by the sum of a geometric series with
ratio at most 1/2. Hence,

∑4n
k=4

(
k+1
2N

)k/2 ≤ 2
(

5
2N

)2 = 25
2N2 . Also, noting that

N−4 ≤ (q2/(N − 1)2) · 1/N2, we plug these into the above bound and obtain

Var[μ(∗2)
n,q ] ≤ q2

(N − 1)2
·
(

1
2(N − 1)

+
2

(N − 1)(N − 2)
+

50
N2

+
1

N2

)

.

As each one of the last three summands is bounded by 1
8(N−1) assuming N ≥

1000, we conclude that Var[μ(∗2)
n,q ] ≤ q2

(N−1)3 as in (3).

�
Next, we generalize Theorem 1 to derive indistinguishability bounds for

XoP[r, n] for arbitrary r ≥ 2.

Theorem 2. For N ≥ 1000, q < N/2 and r ≥ 2,

OptprfXoP[r,n](q) ≤ q

2 · (N − 1)r−(1/2)
<

q

Nr−(1/2)
,

where the last inequality assumes r ≤ N/2.

Proof. By (1) and Proposition 6, OptprfXoP[r,n](q) ≤ SD(μ(∗r)
n,q ,1q·n) ≤

1
2

√

Var[μ(∗r)
n,q ], and thus it remains to prove that

Var[μ(∗r)
n,q ] ≤ q2

(N − 1)2r−1
. (4)

Applying Proposition 6 and then Proposition 7 (with r2 = 2),

Var[μ(∗r)
n,q ] ≤ (M≥1[μn,q])2r−4 · Var[μ(∗2)

n,q ] = ( max
0<k≤q

{M=k[μn,k]})2r−4 · Var[μ(∗2)
n,q ],

where the final equality is by symmetry of μn,q. Next, note from Lemma 1 that
(the bound on) M=k[μn,k] is maximized for k = 2 assuming q < N/2, and
M=2[μn,2] ≤ 1

N−1 . Moreover Var[μ(∗2)
n,q ] ≤ q2

(N−1)3 by (3). Hence,

Var[μ(∗r)
n,q ] ≤ 1

(N − 1)2r−4

q2

(N − 1)3
=

q2

(N − 1)2r−1
.

�

The Multi-user Setting. We extend Theorem 2 to derive indistinguishability
bounds for XoP[r, n] in the multi-user setting.

Theorem 3. For N ≥ 1000, q < N/2 and r ≥ 2,

Optmu-prf
XoP[r,n],u(qmax) ≤

√
u/2 · qmax

(N − 1)r−(1/2)
≤

√
u · qmax

Nr−(1/2)
,

assuming
√

u/2·qmax

(N−1)r−(1/2) ≤ 1/2 (and r ≤ N/3 for the last inequality).
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Proof. By (2) and Proposition 6,

Optmu-prf
XoP[r,n],u(qmax) ≤ SD((μ(∗r)

n,qmax
)×u,1u·qmax·n) ≤ 1

2

√

Var[(μ(∗r)
n,qmax)×u],

and thus is remains to prove that Var[(μ(∗r)
n,qmax)×u] ≤ 2u·q2

max
(N−1)2r−1 .

Applying Proposition 8 (assuming u · Var[μ(∗r)
n,qmax ] ≤ 1/2), we have

Var[(μ(∗r)
n,qmax

)×u] ≤ 2u · Var[μ(∗r)
n,qmax

] ≤ 2u · q2max

(N − 1)2r−1
,

where the final inequality is by (4). Finally, note that by (4), u · Var[μ(∗r)
n,qmax ] ≤

u·q2
max

(N−1)2r−1 , so the condition for applying Proposition 8 is assured if u·q2
max

(N−1)2r−1 ≤
1/2, namely

√
u/2·qmax

(N−1)r−(1/2) ≤ 1/2.

�

4 Bounding M=k[μn,k] (Proof of Lemma 1)

The goal of this section is to prove Lemma 1. We first bound the Fourier coef-
ficients on a specific subset of masks (called masks of type K = (k)). We will
later generalize these results to all mask.

4.1 Bounding |μ̂n,k(α)| for α of Type K = (k)

Definition 8 (Mask of type K = (k)). Let α ∈ F̂
k×n
2 be a non-zero mask

such that #α = k (i.e., αi �= 0 for all i ∈ [k]). We define the type of α to be
K = (k), if for every i ∈ [k], αi,1 = 1.

In other words, α is of type K = (k) if the first bit of all of its k elements
is 1. The bounds on the Fourier coefficients are formulated using the following
function.

Definition 9. For natural numbers a, b such that b is even and a ≥ b let

Γ (a, b) =
∏

i=1,3,...,b−1

b − i

a − i
.

The main result of this section is as follows.

Proposition 9. Let α ∈ F̂
k×n
2 be of type K = (k). Then,

|μ̂n,k(α)| ≤ Γ (N, k) =
∏

i=1,3,...,k−1

k − i

N − i

if k is even and 0 otherwise.
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In particular,

|μ̂n,1(α)| = 0, |μ̂n,2(α)| ≤ 1
N − 1

, |μ̂n,3(α)| = 0, |μ̂n,4(α)| ≤ 3
(N − 1)(N − 3)

,

etc. We need the following definitions.

Definition 10 (Pairing of two elements). Two elements a, b ∈ F
n
2 are paired

on bit j ∈ [n] if a ⊕ b = ej (where ej ∈ F
n
2 is the j’th vector of the standard

basis).

Definition 11 (Pairing of a sequence of elements). Let x = (x1, . . . , xk) ∈
F

k×n
2 . Then, x is self-paired on bit j ∈ [n] if (x1, . . . , xk) are distinct (i.e.,

xi1 �= xi2 for i1 �= i2), and for every i1 ∈ [k], there exists i2 ∈ [k] such that
(xi1 , xi2) are paired on bit j.

Note that since (x1, . . . , xk) are distinct, each element xi cannot be paired to
more than one other element on bit j, and thus if x is self-paired (on any j ∈ [n]),
then k is even.

In order to prove Proposition 9, we define the following algorithm.
1. Sample x ∼ μn,k.
2. If x is self-paired on bit 1, return 1. Else, return 0.

Define the random variable T (x) for the output of the algorithm.
We will prove the following two claims, whose combination immediately

implies Proposition 9.

Proposition 10 (Magnitude of Fourier coefficient bounded by success
probability). |μ̂n,k(α)| ≤ Prx∼μn,k

[T (x) = 1].

Proposition 11 (Bound on success probability).

Pr
x∼μn,k

[T (x) = 1] =

{
Γ (N, k) if k is even,
0 if k is odd.

Proof (of Proposition 10). By Proposition 2,

|μ̂n,k(α)| = | E
x∼F

n
2

[μn,k(x)χα(x)]| = | E
x∼μn,k

[χα(x)]|

= | Pr
x∼μn,k

[T (x) = 1] E
x∼μn,k

[χα(x) | T (x) = 1]

+ Pr
x∼μn,k

[T (x) = 0] E
x∼μn,k

[χα(x) | T (x) = 0]|
≤ | Pr

x∼μn,k

[T (x) = 1] E
x∼μn,k

[χα(x) | T (x) = 1]|
+ | Pr

x∼μn,k

[T (x) = 0] E
x∼μn,k

[χα(x) | T (x) = 0]|
≤ | Pr

x∼μn,k

[T (x) = 1] E
x∼μn,k

[|χα(x)| | T (x) = 1]|
+ | Pr

x∼μn,k

[T (x) = 0] E
x∼μn,k

[χα(x) | T (x) = 0]|
= Pr

x∼μn,k

[T (x) = 1] + | Pr
x∼μn,k

[T (x) = 0] E
x∼μn,k

[χα(x) | T (x) = 0]|.

(5)
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Next, we prove that Ex∼μn,k
[χα(x) | T (x) = 0] = 0, which concludes the proof.

This is proved by partitioning the sample space of the algorithm conditioned on
T (x) = 0 into couples of the form (x, x′) such that χα(x) = −χα(x′). Since all
samples in the space (conditioned on T (x) = 0) have identical probability, the
total contribution of each couple to the expectation is χα(x)+χα(x′) = 0, which
proves that Ex∼μn,k

[χα(x) | T (x) = 0] = 0.
We now define how to couple the samples. Assume that T (x) = 0. Then,

there exists an element of x that is not paired. Define in(x) ∈ [k] to be the
index of the first unpaired element in [k]. Then, x′ = (x1, . . . , xin(x)−1, xin(x) ⊕
e1, xin(x)+1, . . . , xk) is a valid sample from the space (conditioned on T (x) = 0).
We couple together (x, x′). Note that we need to prove that this is a valid
coupling, i.e., if x is coupled to x′, then x′ is coupled to x. This indeed holds
since in(x′) = in(x), as x and x′ only differ on the element with index in(x).

Finally, we prove that χα(x) = −χα(x′) or χα(x)χα(x′) = −1. As α ∈ F̂
k×n
2

is of type K = (k), then αi,1 = 1 for any i ∈ [k]. Therefore,

χα(x)χα(x′) = (−1)〈α,x〉F2 (−1)〈α,x′〉F2 = (−1)〈α,x⊕x′〉F2

= (−1)〈αin(x),e1〉F2 = (−1)1·1 = −1.

�

Proof (of Proposition 11). First, if k is odd, then x cannot be self-paired. Hence,
Prx∼μn,k

[T (x) = 0] = 1 and Prx∼μn,k
[T (x) = 1] = 0.

Next, assume that k is even and consider x1. There is a single element it can
be paired to on bit 1, which is x1 ⊕ e1. The probability that x1 ⊕ e1 appears
among x2, . . . , xk is k−1

N−1 . Next, assuming x1 is paired, continue by induction
after removing the pair from the set of available elements. We obtain

Pr
x∼μn,k

[T (x) = 1] =
k − 1
N − 1

k − 3
N − 3

. . .
1

N − k + 1
= Γ (N, k),

as claimed. �

4.2 Classification of Masks

Towards proving bounds on the magnitude of Fourier coefficients on general
masks, we define two basic operations on masks and prove that they preserve
Fourier coefficients. These operations will allow us to focus on a subset of masks
whose associated Fourier coefficient is easier to bound. Bounds on the magnitude
of Fourier coefficients on the remaining masks will follow by preservation of
Fourier coefficients.

Proposition 12 (Permuting elements preserves Fourier coefficients).
Let α ∈ F̂

k×n
2 . Let π : [k] �→ [k] be a permutation and define the mask απ ∈ F̂

k×n
2

by απ
i = απ(i) for i ∈ [k]. Then, μ̂n,k(απ) = μ̂n,k(α).
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Proof. Similarly to the definition of απ, for x ∈ F
k×n
2 , define xπ ∈ F

k×n
2 by

xπ
i = xπ(i) for i ∈ [k]. Observe that since π merely permutes the elements of x, it

preserves equality and inequality among elements, and thus μn,k(x) = μn,k(xπ).
Furthermore χα(x) = χαπ (xπ) as inner product in invariant under permutation
of elements of α and x. Combining these observations,

μ̂n,k(α) = E
x∼F

k×n
2

[μn,k(x)χα(x)] = E
x∼F

k×n
2

[μn,k(xπ)χαπ (xπ)]

= E
y∼F

k×n
2

[μn,k(y)χαπ (y)] = μ̂n,k(απ).

�

Proposition 13 (Invertible element-wise linear operations preserve
Fourier coefficients). Let α ∈ F̂

k×n
2 . Let L : F

n×n
2 �→ F

n×n
2 be an invert-

ible matrix and define the mask αL ∈ F̂
k×n
2 by αL

i = αi · L for i ∈ [k] (where we
view αi as a row vector in F

n
2 , multiplied with L). Then, μ̂n,k(αL) = μ̂n,k(α).

Proof. For x ∈ F
k×n
2 , define xL ∈ F

k×n
2 similarly to the definition of αL. By the

properties of the inner product, for any a, b ∈ F
n
2 ,

〈a, b〉F2 = 〈a · L · L−1, b〉F2 = 〈a · L, b · L−T 〉F2 ,

where LT is the transpose of L and L−T is the inverse of LT . Hence, χα(x) =
χαL(xL−T

). Furthermore, since L−T is an invertible transformation on the ele-
ments of x, it preserves equality and inequality among elements, and thus
μn,k(x) = μn,k(xL−T

). Therefore,

μ̂n,k(α) = E
x∼F

k×n
2

[μn,k(x)χα(x)] = E
x∼F

k×n
2

[μn,k(xL−T

)χαL(xL−T

)]

= E
y∼F

k×n
2

[μn,k(y)χαL(y)] = μ̂n,k(αL).

�
These two propositions motivate the following definition.

Definition 12 (Equivalence of masks). Masks α, β ∈ F̂
k×n
2 are called equiv-

alent (with respect to μn,k) if β can be obtained from α by permuting its elements
and performing invertible element-wise linear operations.

By invertibility of the basic operations, equivalence of masks is a well-defined
equivalence relation. By the above propositions, if α and β are equivalent, then
μ̂n,k(α) = μ̂n,k(β) (and obviously #α = #β).

We now define a classification of masks that will later be used to bound their
associated Fourier coefficients.

Definition 13 (Rank of mask). Let α ∈ F̂
k×n
2 be a non-zero mask. We define

the rank of α as its rank when viewed as a k × n matrix over F2.
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The following definition generalizes Definition 8.

Definition 14 (Type of mask). Let α ∈ F̂
k×n
2 be a mask such that #α =

k > 0. Let K = (k1, k2, . . . , kt) be a t-tuple of natural positive indices such that
kj < kj+1 for all j ∈ [t − 1] and kt = k. Define k0 = 0. We define the type of α
to be K, if for every j ∈ [t], the following two conditions hold:

1. For every i ∈ [kj−1 + 1, kj ], αi,j = 1.
2. For every i ∈ [kj + 1, k], αi,j = 0.

If α is not of type K for any tuple K, then we define its type to be NULL.

In other words, α is of type K = (k1, k2, . . . , kt) if the first bit of its first k1
elements is 1, and the first bits of elements xk1+1, . . . , xk is 0. Next, bit 2 of
elements xk1+1, . . . , xk2 is 1, while bit 2 of elements xk2+1, . . . , xk is 0, and so
forth.

Example 1. Let n = 4 and k = 3 and assume the leftmost bit
is the first bit. Then, the mask (1011, 1101, 1001) is of type (3),
(1011, 0110, 0101) is of type (1, 3), (1011, 0110, 0011) is of type (1, 2, 3),
while (1011, 0101, 1001), (1011, 0010, 0101) and (1011, 0110, 0001) are all of type
NULL.

While many non-zero masks have type NULL, they can be easily transformed
to a non-NULL type by basic operations. More specifically, the following holds.

Proposition 14 (Every non-zero mask is equivalent to a mask of non-
NULL type). Let α ∈ F̂

k×n
2 have #α = k > 0 and rank r. Then, α is equivalent

to some β ∈ F̂
k×n
2 of type K = (k1, . . . , kt), such that kt = k and t = r.

Proposition 14 thus allows us to focus on bounding the Fourier coefficients on
masks of non-NULL type.

Proof. We transform α to β by basic operations as follows. First, since the rank
of α is r, it contains r linearly independent elements. Define and apply to α
an invertible linear transformation that maps the first r linearly independent
elements (in lexicographical order) to the first r vectors of the standard basis of
F

n
2 , e1, . . . , er. Denote the outcome by α′.

Next, permute the elements of α′ by moving all elements α′
i such that α′

i,1 = 1
to be first, and elements with α′

i,1 = 0 to be last. Let k1 be the index such that
α′

i,1 = 1 if i ≤ k1 and α′
i,1 = 0 if i > k1. Note that k1 ≥ 1 since the first

bit of e1 is 1 and k1 ≤ k − r + 1, as the first bit of all the elements e2, . . . , er

is 0. If r = 1, then since #α = k we must have k1 = k (otherwise, α has
two linearly independent elements). Thus, define β = α′, which is of type (k),
and we are done after 1 step. If r > 1, define k2 after permuting the elements
α′

k1+1, . . . , α
′
k according to their second bit and continue inductively. After the

process terminates, define β = α′.
Denote by t the total number of steps in the process. The process cannot end

with t < r as the first bit set to j in ej has index j, and thus ej will be among
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the elements α′
kj−1+1, . . . , α

′
kj

. On the other hand, the process cannot end with
t > r steps, since vectors α′

k1
, . . . , α′

kt
are linearly independent. Therefore, t = r.

Furthermore, kt = k since #α = k. We conclude that α is equivalent to β = α′

of type K = (k1, . . . , kt) such that kt = k and t = r. �

4.3 Bounding |μ̂n,k(α)| for General α

In this section we prove bounds on the magnitude of Fourier coefficients on
general masks. The main result of this section is the following.

Proposition 15 (Bounds on Fourier magnitude for general masks).
We have

M=k[μn,k] ≤
{

Γ (N, k) if k < N/2 is even,
Γ (N, k − 1) · k

N−k if k < N/2 is odd.

Equivalently, let α ∈ F̂
k×n
2 have #α = k. Then,

|μ̂n,k(α)| ≤
{

Γ (N, k) if k < N/2 is even,
Γ (N, k − 1) · k

N−k if k < N/2 is odd.

Lemma 1 (stated in Sect. 3) is proved in Appendix A based on this proposition
by a straightforward bound on Γ (N, k).

Proposition 15 is a consequence of the following proposition.

Proposition 16 (Bounds on Fourier magnitude for masks of non-
NULL type). Let α ∈ F̂

k×n
2 be of type K = (k1, . . . , kt) where kt = k. Then,

|μ̂n,k(α)| ≤
{

Γ (N, k) if k < N/2 is even,
Γ (N, k − 1) · k

N−k if k < N/2 is odd.

Proof (of Proposition 15). Let α ∈ F̂
k×n
2 have #α = k. Then, by Proposition 14,

it is equivalent to some β ∈ F̂
k×n
2 of type K = (k1, . . . , kt) where kt = k (with

the same rank as α). This proposition follows by applying Proposition 16 to β.

�
It remains to prove Proposition 16. We need the following additional defini-

tion.

Definition 15 (Pairing of a subsequence of elements). Let x =
(x1, . . . , xk) ∈ F

k×n
2 . Let k′ ∈ [k]. Define (xk′ , . . . , xk) as paired within x =

(x1, . . . , xk) on bit j ∈ [n] if (x1, . . . , xk) are distinct (i.e., xi1 �= xi2 for i1 �= i2),
and for every i1 ∈ [k′, k], there exists i2 ∈ [k] such that (xi1 , xi2) are paired on
bit j.
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We define the following algorithm that generalizes the algorithm of Sect. 4.1
to handle a mask with arbitrary non-NULL type. It takes as input the tuple
K = (k1, . . . , kt) (recall the k0 = 0 by definition).

1. Sample x ∼ μn,k.
2. For all j ∈ [t]:

(a) If (xkj−1+1, . . . , xkj
) are paired within (x1, . . . , xkj

) on bit j, continue
by incrementing j.

(b) Otherwise, return 0.
3. Return 1.

For j ∈ [t], define the random variable Tj(x) to be equal to 1 if the algorithm has
not returned 0 in iterations 1, . . . , j, and let Tj(x) = 0 otherwise. Furthermore,
define T (x) = Tt(x) to be the output of the algorithm.

We need the following definition.

Definition 16. For integers a, b ≥ 0, c ≥ 1 such that a ≥ b + c (a > b + c if c is
odd), define

Λ(a, b, c) =

{∏
i=1,3...,c−1

b+c−i
a−b−i = b+c−1

a−b−1
b+c−3
a−b−3 . . . b+1

a−b−c+1 if c is even,
∏

i=1,3...,c
b+c−i
a−b−i = b+c−1

a−b−1
b+c−3
a−b−3 . . . b

a−b−c if c is odd.

Note that for even k, Γ (N, k) = Λ(N, 0, k).
Proposition 16 immediately follows from the three propositions below (that

refer to the type of α, namely K = (k1, . . . , kt)).

Proposition 17 (Magnitude of Fourier coefficient bounded by success
probability). |μ̂n,k(α)| ≤ Prx∼μn,k

[T (x) = 1].

Proposition 18 (Bound on success probability). If k1 is even, then

Pr
x∼μn,k

[T (x) = 1] ≤ Γ (N, k1) ·
t∏

j=2

Λ(N, kj−1, kj − kj−1),

while if k1 is odd then, Prx∼μn,k
[T (x) = 1] = 0.

Proposition 19. For even k1, we have

Γ (N, k1) ·
t∏

j=2

Λ(N, kj−1, kj − kj−1) ≤
{

Γ (N, k) if k = kt < N/2 is even,

Γ (N, k − 1) · k
N−k

if k = kt < N/2 is odd.

In the rest of this section we will prove Proposition 17 and Proposition 18.
Proposition 19 is proved in the full version of this paper [11] by elementary
analysis.

Proof (of Proposition 17). The proof is a generalization of the proof of Proposi-
tion 10, and we focus on the differences. As in (5),

|μ̂n,k(α)| ≤ Pr
x∼μn,k

[T (x) = 1] + | Pr
x∼μn,k

[T (x) = 0] E
x∼μn,k

[χα(x) | T (x) = 0]|,
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and it remains to prove that Ex∼μn,k
[χα(x) | T (x) = 0] = 0. Once again this is

proved by partitioning the sample space conditioned on T (x) = 0 into couples
(x, x′) that satisfy χα(x) = −χα(x′). However, this time the coupling depends
on the iteration j ∈ [t] which the algorithm executed and returned 0, namely,
T�(x) = 1 for 
 ∈ [j − 1] and Tj(x) = 0. Fix this iteration j ∈ [t], let in(x) ∈
[kj−1+1, kj ] be the index of the first unpaired element among (xkj−1+1, . . . , xkj

).
We now consider two cases depending on whether xin(x) ⊕ ej appears among

xkj+1, . . . , xk (note that it does not appear among (x1, . . . , xkj
) since xin(x) is

not paired to any of these elements).
If xin(x) ⊕ej does not appear among (xkj+1, . . . , xk), then it does not appear

among (x1, . . . , xk), and thus we couple x and x′ = (x1, . . . , xin(x)−1, xin(x) ⊕
ej , xin(x)+1, . . . , xk), as in the proof of Proposition 10. Specifically, in this case
we have in(x) = in(x′). Moreover, since α is of type K, then αi,j = 1 for all
i ∈ [kj−1 + 1, kj ], and in particular, αin(x),j = 1. Since xin(x),j �= x′

in(x),j and
they are they equal otherwise, χα(x) = −χα(x′). The proof of this case is thus
essentially the same as the one of Proposition 10.

We remain with the case that there exists i ∈ [kj + 1, k] such that xi =
xin(x) ⊕ ej . In this case, we couple (x, x′), where x′ is defined by exchanging the
positions of elements xin(x) and xi in x, namely, x′

in(x) = xi, x′
i = xin(x) and

x′
� = x� for all 
 /∈ {in(x), i}.

This is indeed a valid coupling since the execution of the algorithm on x′

returns 0 for the same iteration j and in(x) = in(x′). Moreover, since α is of
type K, then αin(x),j = 1, but αi,j = 0 (as i ∈ [kj + 1, k]). Thus,

χα(x)χα(x′) = (−1)〈α,x⊕x′〉F2 = (−1)〈αin(x),ej〉F2 (−1)〈αi,ej〉F2 = −1 · 1 = −1,

i.e., χα(x) = −χα(x′). This concludes the proof. �

Proof (of Proposition 18). First, if k1 is odd then already T1(x) = 0 and
Prx∼μn,k

[T (x) = 1] = 0.
Next, assume that k1 is even. We prove by induction on j ∈ [t] that

Pr
x∼μn,k

[Tj(x) = 1] ≤ Γ (N, k1) ·
j∏

�=2

Λ(N, k�−1, k� − k�−1).

The result then follows since T (x) = Tt(x).
For the base case of j = 1, we have Prx∼μn,k

[T1(x) = 1] ≤ Γ (N, k1) as in the
proof of Proposition 11. For the induction step, we have

Pr
x∼μn,k

[Tj(x) = 1] = Pr
x∼μn,k

[Tj−1(x) = 1] · Pr
x∼μn,k

[Tj(x) = 1 | Tj−1(x) = 1].

Thus, we need to prove that

Pr
x∼μn,k

[Tj(x) = 1 | Tj−1(x) = 1] ≤ Λ(N, kj−1, kj − kj−1).
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Fix any values for x1, . . . , xkj−1 which have positive probability. We prove
the above inequality by taking the probability only over the selection of
xkj−1+1, . . . , xkj

(which we may assume are only selected in iteration j of the
algorithm).

We show that Λ(N, kj−1, kj − kj−1) is an upper bound on the probability
to pair (xkj−1+1, . . . , xkj

) within (x1, . . . , xkj
) on bit j. For this purpose, we

assume that all x1, . . . , xkj−1 are available for pairing on bit j, namely, they are
not paired among themselves on bit j (this assumption can only increase the
success probability of the algorithm, i.e., its pairing probability).

We upper bound Prx∼μn,k
[Tj(x) = 1 | Tj−1(x) = 1] as follows: the prob-

ability that the first element in (xkj−1+1, . . . , xkj
) is paired with one of the

kj − 1 other elements in x1, . . . , xkj
is (at most) kj−1

N−kj−1−1 . Assuming this
occurs, we remove both of these elements and then the probability that the
next element in (xkj−1+1, . . . , xkj

) is paired is either kj−3
N−kj−1−3 (if the first ele-

ment was paired among (xkj−1+1, . . . , xkj
) or kj−3

N−kj−1−2 (if the first element was

paired among (x1, . . . , xkj−1). In any case, this probability is at most kj−3
N−kj−1−3 .

Continue this way until all elements in (xkj−1+1, . . . , xkj
) are paired. Clearly, if

kj −kj−1 is even, then at least (kj −kj−1)/2 pairings are required (which occurs
if (xkj−1+1, . . . , xkj

) are only paired among themselves).
Taking the product of the corresponding (kj − kj−1)/2 terms,

Pr
x∼μn,k

[Tj(x) = 1 | Tj−1(x) = 1]

≤ kj − 1
N − kj−1 − 1

kj − 3
N − kj−1 − 3

. . .
kj−1 + 1

N − kj + 1
= Λ(N, kj−1, kj − kj−1),

as claimed. If kj −kj−1 is odd, then at least (kj −kj−1+1)/2 pairing are required.
Similarly,

Pr
x∼μn,k

[Tj(x) = 1 | Tj−1(x) = 1]

≤ kj − 1
N − kj−1 − 1

kj − 3
N − kj−1 − 3

. . .
kj−1

N − kj
= Λ(N, kj−1, kj − kj−1).

�

5 Bounding W=k[μn,k] (Proof of Lemma 2)

The goal of this section is to prove Lemma 2. We start by deriving an exact (but
unwieldy) expression for W=k[μn,k].

Proposition 20.

For 0 ≤ k ≤ 2n, W=k[μn,k] =
k∑

i=0

(−1)k−i

(
k

i

)
N i

(N)i
.
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Proof. For any integer 0 ≤ i ≤ k, Col[μn,i] = Prx,x′∼μn,i
[x = x′] = (N−i)!

N ! =
1

(N)i
. Hence, by Proposition 4,

W≤i[μn,i] = Col[μn,i] · N i =
N i

(N)i
. (6)

For a subset S ⊆ [k] of size |S|, define the functions h(S) = W=|S|[μn,|S|]
and g(S) = W≤|S|[μn,|S|]. Then, g(S) =

∑
R⊆S h(R), and by the

inclusion-exclusion principle [15, Pg. 1049], h(S) =
∑

R⊆S(−1)|S|−|R|g(R) =
∑

R⊆S(−1)|S|−|R|W≤|R|[μn,|R|]. Therefore,

W=k[μn,k] = h([k]) =
∑

S⊆[k]

(−1)k−|S|W≤|S|[μn,|S|] =
k∑

i=0

(−1)k−i

(
k

i

)

W≤i[μn,i]

=
k∑

i=0

(−1)k−i

(
k

i

)
N i

(N)i
,

where the third equality is by the symmetry of μn,k, and the final equality is
by (6). �

The following definition will be useful in deriving a useful bound on
W=k[μn,k] for all k.

Definition 17. For a positive integer N and non-negative integers k, a such
that N ≥ k + a, let

FN (k, a) =
k∑

i=0

(−1)k−i

(
k

i

)
N i

(N − a)i
.

Note that by Proposition 20, W=k[μn,k] = FN (k, 0). We now derive a recursive
formula which will allow to analyze W=k[μn,k].

Proposition 21 (Recursive formula for level-k weight). For k ≥ 2,
FN (k, a) satisfies the recurrence relation

FN (k, a) =
a

N − a
· FN (k − 1, a + 1) +

(k − 1)N
(N − a)(N − a − 1)

· FN (k − 2, a + 2),

with the starting conditions FN (0, a) = 1 and FN (1, a) = N
N−a − 1 = a

N−a .

Proof. The starting conditions are easily checked by plugging in the parameters
into the explicit formula for FN (k, a). We now prove the recurrence relation holds
assuming k ≥ 2.

To simplify notation, denote Gi = Ni

(N−a)i
and write FN (k, a) =

∑k
i=0(−1)k−i

(
k
i

)
Gi. For 1 ≤ i ≤ k − 1, substitute

(
k
i

)
=

(
k−1

i

)
+

(
k−1
i−1

)
and
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(
k
0

)
=

(
k−1
0

)
,
(
k
k

)
=

(
k−1
k−1

)
into the expression, which divides each term into a pair

of terms. We obtain

FN (k, a) =
k∑

i=0

(−1)k−i

(
k

i

)

Gi

=
(

(−1)k

(
k − 1

0

)

· G0 + (−1)k−1

(
k − 1

0

)

G1

)

+
(

(−1)k−1

(
k − 1

1

)

G1 + (−1)k−2

(
k − 1

1

)

G2

)

+ . . . +
(

(−1)k−(k−1)

(
k − 1
k − 1

)

Gk−1 + (−1)k−k

(
k − 1
k − 1

)

Gk

)

=
k∑

i=1

(−1)k−i

(
k − 1
i − 1

)

(Gi − Gi−1) .

We have Gi = Gi−1 · N
N−a−(i−1) , so Gi − Gi−1 = Gi−1 · ( N

N−a−(i−1) − 1) =

Gi−1 · a+(i−1)
N−a−(i−1) . Therefore, the above expression is equal to

k∑

i=1

(−1)k−i

(
k − 1
i − 1

)

Gi−1 · a + (i − 1)
N − a − (i − 1)

=
k∑

i=1

(−1)k−i

(
k − 1
i − 1

)
(a + (i − 1))N i−1

(N − a)(N − a − 1) . . . (N − a − (i − 1))

=
1

N − a
·

k∑

i=1

(−1)k−i

(
k − 1
i − 1

)
(a + (i − 1))N i−1

(N − a − 1)i−1

=
1

N − a
·

k−1∑

i=0

(−1)k−1−i

(
k − 1

i

)
(a + i)N i

(N − a − 1)i

=
a

N − a
·

k−1∑

i=0

(−1)k−1−i

(
k − 1

i

)
N i

(N − a − 1)i

+
1

N − a
·

k−1∑

i=1

(−1)k−1−i

(
k − 1

i

)
i · N i

(N − a − 1)i

=
a

N − a
· FN (k − 1, a + 1)

+
N

(N − a − 1)(N − a)
·

k−1∑

i=1

(−1)k−1−i

(
k − 1

i

)
i · N i−1

(N − a − 1)i−1
.

To complete the proof, it remains to show that

k−1∑

i=1

(−1)k−1−i

(
k − 1

i

)
i · N i−1

(N − a − 1)i−1
= (k − 1) · FN (k − 2, a + 2).
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Observe that i · (
k−1

i

)
= (k − 1) · (

k−2
i−1

)
. Therefore,

k−1∑

i=1

(−1)k−1−i

(
k − 1

i

)
i · N i−1

(N − a − 1)i−1

= (k − 1) ·
k−1∑

i=1

(−1)k−1−i

(
k − 2
i − 1

)
N i−1

(N − a − 1)i−1

= (k − 1) ·
k−2∑

i=0

(−1)k−i

(
k − 2

i

)
N i

(N − a − 2)i

= (k − 1) · FN (k − 2, a + 2).

This completes the proof. �

Next, we use the recurrence relation to bound FN (k, a).

Proposition 22.

FN (k, a) ≤
⎧
⎨

⎩

(N(a+k−1))k/2

(N−a)k
if k is even,

(N(a+k−1))(k−1)/2·(a+k−1)
(N−a)k

if k is odd.

Proof. We prove the result using Proposition 21 by induction on k. It is easy to
verify that it holds for k = 0 and k = 1 by the starting conditions. We prove the
induction step.

If k is odd, then by the assumption

FN (k, a) =
a

N − a
· FN (k − 1, a + 1) +

(k − 1)N
(N − a)(N − a − 1)

· FN (k − 2, a + 2)

≤ a

N − a
· (N(a + k − 1))(k−1)/2

(N − a − 1)k−1

+
(k − 1)N

(N − a)(N − a − 1)
· (N(a + k − 1))(k−3)/2(a + k − 1)

(N − a − 2)k−2

= a · (N(a + k − 1))(k−1)/2

(N − a)k
+ (k − 1) · (N(a + k − 1))(k−1)/2

(N − a)k

=
(N(a + k − 1))(k−1)/2 · (a + k − 1)

(N − a)k
,
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as desired. If k is even, then

FN (k, a) ≤ a

N − a
· (N(a + k − 1))(k−2)/2 · (a + k − 1)

(N − a − 1)k−1

+
(k − 1)N

(N − a)(N − a − 1)
· (N(a + k − 1))(k−2)/2

(N − a − 2)k−2

= a · (N(a + k − 1))(k−2)/2 · (a + k − 1)
(N − a)k

+ (k − 1)N · (N(a + k − 1))(k−2)/2

(N − a)k

=
(N(a + k − 1))(k−2)/2

(N − a)k
· (a(a + k − 1) + (k − 1)N).

It remains to prove that a(a+k−1)+(k−1)N ≤ N(a+k−1) or a+k−1 ≤ N ,
which indeed holds (as the quantity a + k is preserved throughout the recursive
calls).

�
Finally, Lemma 2 is proved in the full version of this paper [11] by straight-

forward manipulation of the bound on FN (k, a) of Proposition 22, and based on
the fact that by Proposition 20, W=k[μn,k] = FN (k, 0).

Acknowledgements. The author was supported by the Israel Science Foundation
through grant no. 1903/20. The author would like to thank Samuel Neves for pointing
him to the prior works [13,14].

A Missing Proofs from Section 4

Proof (of Lemma 1). We use Proposition 15 to bound M=k[μn,k]. First we have
M=2[μn,2] ≤ Γ (N, 2) = 1

N−1 .
Next, for even k, by Proposition 15,

M=k[μn,k]2 ≤ Γ (N, k)2 =
(

k − 1
N − 1

)2 (
k − 3
N − 3

)2

. . .

(
1

N − (k − 1)

)2

≤ k

N

k − 1
N − 1

k − 2
N − 2

k − 3
N − 3

. . .
2

N − (k − 2)
1

N − (k − 1)
=

1
(
N
k

) .

Similarly, for odd k,

M=k[μn,k]2 ≤ Γ (N, k − 1)2 ·
(

k

N − k

)2

≤ 1
(

N
k−1

) ·
(

k

N − k

)2

=
1

(
N
k

) · N − (k − 1)
k

(
k

N − k

)2

=
1

(
N
k

) · N − (k − 1)
N − k

k

N − k

<
1

(
N
k

) · N − (k − 1)
N − k

k + 1
N − (k − 1)

=
1

(
N
k

) · k + 1
N − k

.

�
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