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Abstract. Since the seminal works by Sasaki and Aoki, Meet-in-the-
Middle (MITM) attacks are recognized as an effective technique for
preimage and collision attacks on hash functions. At Eurocrypt 2021,
Bao et al. automated MITM attacks on AES-like hashing and improved
upon the best manual result. The attack framework has been furnished
by subsequent works, yet far from complete. This paper introduces three
key contributions dedicated to further generalizing the idea of MITM and
refining the automatic model on AES-like hashing. (1) We introduce S-
box linearization to MITM pseudo-preimage attacks on AES-like hashing.
The technique works well with superposition states to preserve informa-
tion after S-boxes at affordable cost. (2) We propose distributed initial
structures, an extension on the original concept of initial states, that
selects initial degrees of freedom in a more versatile manner to enlarge the
search space. (3) We exploit the structural similarities between encryp-
tion and key schedule in constructions (e.g., Whirlpool and Streebog) to
model propagations more accurately and avoid repeated costs. Weaponed
with these innovative techniques, we further empower the MITM frame-
work and improve the attack results on AES-like designs for preimage
and collision. We obtain the first preimage attacks on 10-round AES-
192, 10-round Rijndael-192/256, and 7.75-round Whirlpool, reduced
time and/or memory complexities for preimage attacks on 5-, 6-round
Whirlpool and 7.5-, 8.5-round Streebog, as well as improved collision
attacks on 6- and 6.5-round Whirlpool.
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1 Introduction

1.1 Hash Functions

Hash functions map arbitrary long inputs to fixed-length hash values and have
been used in a myriad of applications. There are three fundamental security
requirements for a cryptographic hash function to fulfill, namely preimage,
second-preimage, and collision resistance. This work focuses on the notion of
preimage resistance: given a hash function H and a random hash value t, it
should be computationally infeasible to find a preimage x such that H(x) = t.

To make use of the coexistence of encryption and hashing in embedded sys-
tems, a conventional strategy is to construct a hash function from a secure block
cipher to minimize hardware or software costs: the encryption function of a block
cipher is first transformed into a one-way compression function and then iterated
following the Merkle-Damg̊ard design. In 1993, Preneel, Govaerts, and van de
Walle [33] identified 12 secure modes for the encryption-compression-function
conversion, later known as the PGV modes.

The strategy is highly practical if the underlying block cipher is widely used
and has seen a long record of withstanding cryptanalysis, which makes AES the
perfect candidate. The MMO mode (one of the PGV modes) instantiated with
AES-128 have been standardized by the Zigbee [2] protocol suite and ISO/IEC
[24]. Given the high security of AES, several dedicated hash functions are designed
with AES-like structures, e.g., the ISO standards Whirlpool [9,23] or the ISO
and GOST standard Streebog [1,15,25], which are collectively referred to as
AES-like hashing.

1.2 Meet-in-the-Middle Attacks on Block-Cipher-Based Hashing

The Meet-in-the-Middle (MITM) attack is well-known for its effectiveness in
cryptanalysis of Double-DES [14] and key recovery. In a series of pioneer works
[4,5,36,37], Sasaki and Aoki enlightened the community with MITM attacks
applied to the security analyzation of cryptographic hash functions. The core
attack framework had been extended ever since by numerous techniques, such
as splice-and-cut [4], initial structures [37], indirect and partial matching [4,37],
biclique as a formalization of initial structures [26], sieve-in-the-middle [11] and
match-boxes [17].

MITM attack on block-cipher-based hash functions is, in essence, a pseudo-
preimage attack: the attack splits the computation of the compression function
into two chucks, the forward and the backward chunk, so that two portions of
input bits, called neutral bits, affect only one of the sub-functions. In such a
setting, the chunks are computed independently and end at a common state
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where their (partial) values are matched. Usually, a third set of bits is shared by
both chunks, which is captured in the notion of a 3-subset MITM attack [10].

Sasaki was the first to apply this to a preimage attack on AES hashing modes
[35]. However, to avoid the complex relations from the round keys, the key was
still fixed to a constant. Sasaki et al. then introduced the guess-and-determine
strategy [38]. Bao et al. [6] revisited the attacks by introducing the degree of
freedom from the key space.

At Eurocrypt 2021, Bao et al. [7] automated the search for efficient MITM
preimage attacks with Mixed-integer Linear Programming (MILP) and applied
it to AES hashing modes and Haraka v2. Dong et al. [16] later extended this
automation model to search for key-recovery and collision attacks and introduced
nonlinear constraints for the neutral bits. Later in 2022, Bao et al. [8] brought
up the concept of superposition bytes, which allowed forward and backward
neutral words to propagate simultaneously and independently at a common byte
through linear operations in the encryption and key schedule. They also proposed
bi-directional attribute propagation and cancellation, i.e., the known values in
each chunk are propagated not only in the direction of the chunk but in both
directions. Moreover, they integrated the guess-and-determine method into their
models. Hua et al. [22] then combined guess-and-determine with nonlinearly
constrained neutral words in their search for preimage attacks. More recently,
Qin et al. [34] applied the new framework to Sponges. As a contrast to those
very detailed frameworks, Schrottenloher and Stevens proposed a simpler MILP-
modeling approach for preimage attacks against keyless permutations [39] and
was later extended to ciphers with very light key schedule [40]. While their model
was considerably more lightweight and applicable to AES-like permutations, its
exclusion of the key schedule made it less effective against the AES than the
detailed frameworks.

1.3 Gaps

While previous works on automating MITM on AES-like hashing already pro-
vided a groundlaying seminal framework [7,8,16,34], the complexity of the task
has left several gaps. Among those, we identified three core challenges:

1. The preimage security evaluation on AES-like hashing has always been at
byte-level as the S-box details are abstracted away. Recently, Zhang et al.
[42] studied the field inversion S-box with algebraic properties and thus can
consider the S-box details. However, quoting their words, this linearizes the
non-linear layer of AES, but unfortunately, no attacks better than the current
state-of-the-art has been found based on this fact.

2. The selection of initial states in previous works was limited to two full states,
one of them in the encryption function and the other in the key schedule.
Initial states could be more scattered, even across several intermediate states.
Thus, the artificial limits on initial states had discarded a fraction of the
solution pool.
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3. It has been a long endeavor to address the dependencies in the model that lead
to incorrect measures on the degree of freedom consumption. Particularly, the
dependencies due to the structural similarity between the encryption and key
schedule in some designs have been overlooked and may lead to duplicate
costs.

1.4 Our Contributions

In this work, we have proposed and incorporated three techniques to fill the gaps
and improve the state-of-the-art attacks. We would like to point out that the
core ideas behind the techniques are fairly generic and expected to have more
applications beyond this paper.

Linearizing S-Boxes. We introduce S-box linearization (LIN) to MITM attacks
on AES-like hashing and efficiently incorporate it with the superposition struc-
ture. Both propagations at a superposition byte are preserved through the S-box
at the cost of guessing over a small pool of hints. Making use of the linear relation
between propagations, LIN checks if a guessed hint is correct efficiently using
for- and backward values at S-box input.

In comparison, the study in [42] exploited the algebraic properties of field
inversion S-boxes thus resulting in guess-and-determine and announced no
improved result on AES. A similar conclusion on their work was also drawn
by Liu et al. in [29]. The checking phase in plain guess-and-determine requires
full information on forward and backward neutral bytes and leads to a cost on
degrees of matching, while LIN in our proposal uses only local information and
spares such cost. To conclude, LIN serves as a lightweight alternative to plain
guess-and-determine and introduces a new trade-off rule. The technique enables
us to mount the first bit-level preimage attacks on AES-like hashing and improve
the state-of-the-art.

Distributed Initial Structures. In this work, we further generalize the con-
cept of initial structures, originally proposed by Sasaki and Aoki [37]. We lift the
artificial limitation on selecting two full states as initial states and introduce dis-
tributed initial structures (DIS). We now allow the initial states to be distributed
in a combination of encryption states and round keys, as long as the total initial
degrees of freedom remain the same. An important reflection of this idea is to
assign more superposition bytes in the AES key schedule. As only a portion of
bytes is propagated through the AES S-box in each key schedule round, more
superposition information can be allowed in round keys by the introduction of
DIS. This has expanded the solution pool by adding more alternatives to the
invocation of constraints and allowing more valid propagation patterns.

Structural Similarities. The structural similarities (SIM) between encryption
and key schedule may lead to dependencies across multiple rounds. We observe
that values injected into an encryption state by round key addition may propa-
gate through similar sets of operators in encryption and key schedule. Therefore,
certain costs of degrees of freedom can be traced back to the same constraints
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and previous attacks may be suboptimal due to double counting such costs. By
modeling the degree consumption more accurately, we enlarged the search space
by sparing unnecessary double costs of earlier approaches. Moreover, the app-
roach potentially finds attacks with high concentrations of constraints around the
starting points, which could help reduce the memory complexity of the attack.

1.5 Application Results

Our results are as summarized in Table 1. The effectiveness of our proposed tech-
niques is well demonstrated through improved attacks on standards including
AES-192 hashing, Whirlpool, and Streebog, as well as the Rijndael hashing
family. We argue that the techniques are significant and essential to the break-
throughs.

Both LIN and DIS are critical for attacking one additional round of AES-192
hashing, i.e. excluding either technique would not yield an attack. Simply using
guess-and-determine strategy combined with the AES S-box property also could
not improve the attack on Rijndael-192/256. Moreover, the attack advantage
on (pseudo-)preimage is non-trivial, i.e., proportional to the size of a subset
rather than a fixed constant.

Incorporating SIM, we improve the (pseudo-) preimage attacks on 5- and 6-
round Whirlpool in terms of time and/or memory complexity. In particular, we
achieve a memoryless attack on 5-round Whirlpool. Besides, we present the first
preimage attack on 7.75-round Whirlpool, which extends the state-of-the-art by
almost a full round while maintaining the same time complexity. What is more,
our efficient MILP-based search model improves the 6-round collision attack on
Whirlpool and extends it to 6.5 rounds. For Streebog, our approach reduces
the time and/or memory complexity on 7.5- and 8.5-round Streebog compared
to previous best (pseudo-)preimage attacks.

1.6 Organization

The remainder of this work is structured as follows. In Sect. 2, we provide pre-
liminaries on the MITM attacks and the target designs. Then we elaborate the
proposed techniques and their significance in Sect. 3. Thereupon, we present the
enhanced MITM framework and MILP modeling in Sect. 4. We detailed pseudo-
preimage results of the first attack on 10-round AES-192 hashing and the mem-
oryless attack on 5-round Whirlpool in Sect. 5. Furthermore, other attacks and
details of Whirlpool, Rijndael, 8-round AES-192 and Streebog are provided
in the full version [12]. Finally, we conclude and discuss in Sect. 6.

2 Preliminaries

2.1 MITM Attacks: Notations and Principle

We provide a high-level overview of MITM pseudo-preimage attacks in Fig. 1
and a list of notations common in all our attack descriptions in Table 2.
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Table 1. Results of our improved attacks on AES-like Hashing.

Preimage Attacks

Cipher (target) #Rounds T1
† T2

‡ Memory Essential technique(s) References

AES-192

8/12 2112§ 2116 216 MITM [6]

(Hash)

8/12 2100 2115 296 LIN, DIS, BiDir∗ [12, App. B]¶

9/12 2120 2125 − MILP [7]

9/12 2112 2121 − BiDir [8]

10/12 2124 2127 2124 LIN, DIS, BiDir Sect. 5.1

Rijndael-192/192 9/12 2184 2189 − BiDir [43]

(Hash) 9/12 2180 2187 2180 LIN, BiDir [12, App. C.1]

Rijndael-192/256 9/12 2168 2181 − BiDir [43]

(Hash) 10/12 2180 2187 2180 LIN, BiDir [12, App. C.2]

Whirlpool

5/10 2416 2448 296 Dedicated [38]

(Hash)

5/10 2352 2433 2160 BiDir, MulAK∗ [8]

5/10 2320 2417 O(1) SIM, BiDir Sect. 5.2

6/10 2448 2481 2256 Dedicated, GnD∗ [38]

6/10 2440 2477 2192 GnD [8]

6/10 2416 2465 2288 SIM, BiDir, GnD [12, App. D.1]

7/10 2480 2497 2128 GnD, MulAK [8]

7.75/10 2480 2497 2256 SIM, BiDir, GnD [12, App. D.2]

Streebog-512

7.5/12 2496 − 264 Dedicated method [30]

(Compression)

7.5/12 2441 − 2192 GnD, MulAK [22]

7.5/12 2433 − 2177 SIM, GnD [12, App. E.1]

8.5/12 2481 − 2288 GnD, MulAK [22]

8.5/12 2481 − 2129 SIM, GnD [12, App. E.2]

Streebog-512

7.5/12 − 2496 264 Dedicated method [30]

(Hash)

7.5/12 − 2478.25 2256 MITM + Multi-collision� [22]

7.5/12 − 2474.25 2256 MITM + Multi-collision [12, App. E.1]

8.5/12 − 2498.25 2288 MITM + Multi-collision [22]

8.5/12 − 2498.25 2256 MITM + Multi-collision [12, App. E.2]

Collision Attacks

Cipher (target) #Rounds Time Memory Essential technique(s) References

Whirlpool

4.5/10 2120 216 Rebound [31]

(Hash)

4.5/10 264 216 Rebound [28]

5/10 2120 264 Super-SBox [18,27]

5.5/10 2184−s 2s Rebound [28]

6/10 2228 2228 Quantum [20]

6/10 2248 2248 MILP, MITM [16]

6/10 2240 2240 New MILP model, MITM [12, App. A]

6.5/10 2240 2240 New MILP model, MITM [12, App. A]

† T1 represents the time complexity of the pseudo-preimage attack on compression function.
‡ T2 represents the time complexity of the preimage attack on hash function.
§ We list only single-target result in [6] for comparison in this table.
∗ BiDir, MulAK and GnD are techniques introduced to the MITM framework in [8], respectively,
short for bi-directional attribute propagation and cancellation, multiple ways of AddRoundKey
and guess-and-determine.
¶ Please refer to the full version of this paper on ePrint [12].
� The attack on the compression function of Streebog is converted into a preimage attack on

its hash function using the technique from [3].
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Fig. 1. A high-level overview of MITM attacks [35].

In block-cipher-based hashing, the MITM technique is often used to mount
only a pseudo-preimage attack, i.e., a preimage that uses a chaining value differ-
ent from the fixed initial value of the hash function specification. The pseudo-
preimage is later transformed into a preimage on the hash function.

The MITM attack divides the computations into two independent chunks,
forward and backward. A byte is called neutral if its value is used only (i.e., is
known only) in one of the chunks and has a constant influence on the respective
other. Both chunks end at E+ and E−, respectively, which are the input and
output of a matching operation M . Note that the attack exploits the feed-forward
of start and end values in block-cipher-based compression functions. Based on
the properties of M , an MITM attack can invoke certain constraints to filter
ineligible candidates, which are called partial-match constraints. Those pairs
that satisfy these constraints are checked thereupon on larger parts of their
states if their combination constitutes a valid pseudo-preimage.

The MITM attack framework [8] with guess-and-determine is described in
the following. Without loss of generality, we assume dB + gB ≤ dR + gR:

1. Assign arbitrary values to the constants in pre-defined constraints.
2. Compute V + and V − based on the constants.
3. For all tuples (v+, g+, g) ∈ V + × G+ × G, compute to E+, obtain m+ for

matching, store (v+, g+) in T+[m+, g]. We have |T+| = 2dB+gB+gBR

4. For all tuples (v−, g−, g) ∈ V − × G− × G, compute to E−, obtain m− for
matching.

5. For all (v+, g+) in T+[m−, g], compute to check if (g+, g−, g) is compatible
with v+ and v−.

6. For compatible (v+, v−), check for a full match.
7. If a full match is discovered, compute and return the preimage. Otherwise,

revert to Step 1, change the arbitrary values, and repeat the rest.

The computational complexity of the MITM pseudo-preimage attacks is

2n−(dB+dR) · (
2dB+gB+gBR + 2dR+gR+gBR + 2dB+gB+dR+gR+gBR−dM

)

� 2n−min(dB−gR−gBR,dR−gB−gBR,dM−gB−gR−gBR) := 2l .
(1)
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Table 2. Common notations.

DoF Degree(s) of freedom

SENC Starting state in the encryption

SKSA Starting state in the key schedule

E+/E− Ending states of forward and backward computations, respectively

M Matching operation between E+ and E−

dB/dR DoF of the forward and backward chunk, respectively

gB/gR/gBR DoF of guessed values in the forward, backward, and in both chunks,
respectively

dM Degrees of matching

V +/V − Sets of values for forward and backward neutral bytes satisfying the
predefined constraints, with |V +| = 2dB and |V −| = 2dR , respectively

G+/G−/G Sets of guessed values in forward/backward/both chunk(s), with
|G+| = 2gB , |G−| = 2gR , and |G| = 2gBR

T+/T− Lookup tables constructed at E+/E−

BKSA/RKSA/GKSA Sets of indices of forward neutral, backward neutral, and constant bytes
in SKSA, respectively

BENC/RENC/GENC Sets of indices of forward neutral, backward neutral, and constant bytes
in SENC, respectively

−→ι /←−ι Initial DoF of the forward and backward chunk, respectively, with−→ι = |BENC| + |BKSA| and ←−ι = |RENC| + |RKSA|
−→σ /←−σ The consumed DoF of the forward and backward chunk, respectively

A pseudo-preimage attack with a computational complexity of 2l (l < n −
2) can be converted to a preimage attack with a computation complexity of
2(n+l)/2+1 [32]. First, a total of 2(n−l)/2 pseudo-preimages is obtained. Then,
a total of 2(n+l)/2+1 random values are inserted after the initialization vector
IV to obtain 2(n+l)/2+1 chaining values. Then, one can expect a match between
a chaining value and a pseudo-preimage with non-negligible probability, which
yields a preimage for the hash function.

2.2 AES-Like Hashing

To start with, we list some common notations in AES-like hashing:

– Nb/Nk: number of columns of a state in the encryption procedure or the secret
key. When Nb and Nk are identical, we will denote both by NCOL.

– NROW: number of rows in an encryption or key state.

AES-like hashing refers to hash functions whose compression function follows an
AES-like round structure. In this section, we will focus on recalling the necessary
details of AES and Whirlpool that are used in this work.

AES. In 2001, the NIST selected a subset of the Rijndael family of block ciphers
[13] with a block size of 128 bits and key sizes of 128, 192, or 256 bits (Nb = 4,
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Nk ∈ {4, 6, 8}, and NROW = 4) as the Advanced Encryption Standard. Conven-
tionally, the transposed of a column is referred to as a word, and the word size
is thus fixed to 4 × 8 = 32 bits. As shown in Fig. 2, an AES round consists of the
following operations:

– SubBytes (SB): A non-linear byte-wise substitution.
– ShiftRows (SR): A cyclic left shift on the i-th row by i bytes, for i ∈

{0, 1, 2, 3}.
– MixColumns (MC): A column-wise left multiplication of a 4-×-4 maximum-

distance-separable matrix.
– AddRoundKey (AK): A bitwise XOR of the round key to the state.

The final round differs in the sense that it omits the MixColumns operation.
Before the first round, a whitening key is added to the plaintext.

#SBi

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

SB

#SRi

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

SR

#MCi

MC

#AKi #RKi #SBi+1

Fig. 2. AES-like round function.

The round keys are expanded from the master key key : Let w be an array
of bytes, when i < Nk, the key words are derived directly from the secret key
w[i] = key[i]. Otherwise, w[i] is calculated as follows:

⎧
⎪⎨

⎪⎩

w[i − Nk] ⊕ Rot(S(w[i − 1])) ⊕ C[i/Nk] i mod Nk ≡ 0 and Nk < 8
w[i − Nk] ⊕ S(w[i − 1]) i mod Nk ≡ 4 and Nk = 8
w[i − Nk] ⊕ w[i − 1] otherwise,

(2)

where S denotes the AES S-box, Rot is a left rotation of the input by one byte,
and C represents the list of round constants.

The AES-128 in the Matyas-Meyer-Oseas (MMO) mode is used in the stan-
dards of the Zigbee protocol suite [2] and ISO/IEC [24]. The MMO mode is
defined as the mapping f : f(Hi,Mi) = EHi

(Mi) ⊕ Mi, where Hi stands for the
i-th chaining value, Mi as the i-th message block, and Ek stands for the block
cipher encryption under key k.

Whirlpool. In 2000, Rijmen and Barreto [9] designed Whirlpool as a submission
to the NESSIE competition that was later tweaked and adopted as an ISO/IEC
standard [23]. Whirlpool is a block-cipher-based hash function with a 512-bit
hash value, which adopts a 10-round AES-like block cipher with 8×8-byte (NROW =
NCOL = 8) keys and plaintexts in Miyaguchi-Preneel mode [33] (MP mode) as its
compression function (CF). The MP mode is defined as f(Hi,Mi) = EHi

(Mi)⊕
Mi⊕Hi. It takes the 512-bit chaining value Hi as the key and the 512-bit message
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block Mi as its plaintext input. Encryption and key schedule essentially use the
same round function, except for the fact that the key state has additions with
round constants and the encryption state sees additions with the round keys.
The round function is depicted in Fig. 3 and consists of:

– SubBytes (SB): applies the Substitution-Box to each byte.
– ShiftColumns (SC): cyclically shifts the j-column downwards by j bytes.
– MixRows (MR): multiplies each row of the state by an MDS matrix.
– AddRoundKey (AK): XORs the round key to the state.

#SBi
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S
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S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
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S
S
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S
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S
S
S

S
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S
S
S
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S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

SC

#MRi

MR

#AKi #RKi #SBi+1

Fig. 3. The round function of Whirlpool.

Note that the final round is a complete round unlike that in the AES; a
whitening key is added before the first round of encryption as in the AES. How-
ever, in the MP mode, the whitening key cancels in splice-and-cut MITM attacks
due to the feed-forward operation. The key schedule shares the same operations,
but replaces AddRoundKey by AddRoundConstants (AC), which XORs the round
constants to the first row of the key state before the result of AC is used as the
round key that is added to the state. For more details, we refer the readers to
the design paper [9].

Remark 1. Given that the transposition between row and column has no impact
on attack results, for convenience, we use ShiftRows and MixColumns instead of
ShiftColumns and MixRows in the rest of paper for Whirlpool hereafter. Thus,
the states will be transposed to correspond with the states of Whirlpool.

Remark 2. In the remainder, we will denote a state by the operation that it is
used as the direct input for, and will superscript the round index. For example,
#SBi denotes the state before the SB operation in Round i, as is shown in Figs. 2
and 3.

Remark 3. The Russian national standard Streebog follows a similar structure
as Whirlpool, due to the space limit, we provide the specification of Streebog
in the full version [12, Appendix E].

3 Advanced Techniques in MITM Attacks

We advance the existing automated MITM frameworks with three generic tech-
niques. Here, we detail the ideas and integration into the augmented framework.
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3.1 S-Box Linearization (LIN)

In MITM attacks, we have two sets of states V + = (v+
0 , . . ., v+

2db −1
) and V − =

(v−
0 , . . ., v−

2dr −1
) propagating through the cipher. The superposition structure

allows any cell of any state vi,j to be represented as the sum of its forward and
backward neutral components: vi,j = v+

i ⊕ v−
j , such that the components v+

i

and v−
j can be propagated independently through linear operations. Though,

the nonlinear operations, i.e., an S-box S in AES-like ciphers, prevent such trivial
linear combinations.

Earlier works in the series of automated MITM attacks on AES-like ciphers
had to define propagation rules which either lost knowledge about the cell after
the S-box or which consumed one byte degree of freedom for forcing at least one
neutral value to be constant before and after the nonlinear operation. We can
linearize certain S-boxes partially or fully by restricting the input space or by
guessing a hint from a set that is smaller than the input space.

In this work, we consider full linearization with a hint. Thus, we aim at
finding a decomposition of S, more precisely, functions F,G,H : Fb

2 × F
b
2 → F

b
2

with F and G being linear over F2 such that

S(v+ ⊕ v−) = F (v+,H(v+, v−)) ⊕ G(v−,H(v+, v−)) .

The range of H is the set of space of hints. Assuming balancedness of H, i.e.,
dL = dim(range(H)), then 2dL elements have to be guessed at most to linearize
S, which is beneficial if we find such a function H with dL < b. Then, we add a
complexity term of 2dL to the attack for guessing the hint for each combination
of (v+

i , v−
j ) but can propagate a superposition through the S-box.

The S-box of the AES is given by S(v) = A · v254 ⊕ 0x63 for a fixed A ∈
F
8×8
2 . The power map and the XOR is in the field F28 with a fixed irreducible

polynomial; only the affine layer A is not defined over this field. At Asiacrypt
2023, Zhang et al. [42] observed that one can decompose 254 into 17 · 14 + 16
and obtain

(v+ + v−)254 = ((v+ + v−)17)14 · (v+ + v−)16

= (H(v+, v−))14 · ((v+)16 + (v−)16) ,

where the last equality holds since exponentiation with any power of 2 is linear
over F2. Then according to the following Theorem 1, the hint H(v+, v−) can
take |range(H)| = |{v17 : v ∈ F28} = 16 values (including the zero element).
Thus, one can linearize the AES S-box by guessing at most 16 candidates.

Theorem 1. Let d be a divisor of |F∗
q | = pn − 1 where q = pn, and let X =

{xd : x ∈ F
∗
q}. The size of X is |X| = |F∗

q |/d = (pn − 1)/d.

3.2 Distributed Initial Structures (DIS)

It has been a common approach in MILP-based MITM models to select two
independent initial states: SENC in the encryption function and SKSA in the key
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schedule, as the generation of round keys is independent of the encryption in
most designs. In this work, we generalize the selection of initial states.

In essence, the initial states in MITM attacks are composed of some inter-
mediate bytes in the compression function where we distribute initial DoFs for
forward and backward computations. There should be no limitations on where
the initial DoF is located, as long as the values of those states can be chosen
independently of each other in the actual attack. In other words, the initial DoFs
can be distributed to several scattered intermediate states, rather than rigidly
selecting two full states in encryption and key schedule, respectively. Previous
models implicitly limited the key bytes to depend only on SKSA and not on SENC,
and consequently, shrunk the solution pool.

Fig. 4. Conceptual strategies of distributing initial states in two states and a key byte.

Consider an intuitive toy example in Fig. 4. Assume x and y denotes bytes
in the encryption and k denote a byte in the key, and we distribute initial DoF
in this system for forward and backward computation. The whole system has a
total initial DoF of 2. We use −→ι and ←−ι to denote the initial DoF for forward and
backward respectively, and the color green to denote a byte in superposition.
Without loss of generality, there are three possible scenarios as depicted in Fig. 4.
The previous models covered the first two cases while excluding the third one,
wherein the key byte is dependent on the initial DoF from the encryption.

#AKi−1 #SBi

SB

#SRi

SR

#MCi

MC

#AKi #SBi+1

#Kj

#RKi #RKi+1

Fig. 5. Example of a distributed initial structure on AES-192.

We extend the above insight to MITM attacks by the introduction of DIS.
We now distribute the initial DoF to several intermediate states in the compres-
sion function, provided that the bytes are independent and there is sufficient
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information to define all the round keys and all the intermediate encryption
states. For example, Fig. 5 describes an example to distribute initial DoF in
AES-192. We will distribute initial DoFs in #AKi, #SBi+1 and the rightmost
two columns of #Kj . In this way, we have straightforwardly defined a full inter-
mediate encryption state #SBi+1, and we can squeeze out a full #Kj for key
schedule propagations.

The technique is useful in AES, since the key schedule has relatively low
confusion and more linear relations can be preserved. In this work, we realize
DIS in a heuristic manner. We still select SENC and SKSA respectively to search
for attack configurations, but make the exception that superposition bytes are
now allowed in SKSA and remain refrained from SENC. When a configuration is
obtained, we check if the initial states can be equivalently chosen to properly
define the superposition bytes in SKSA within the maximum available DoF of the
target cipher. Our realization of DIS, though heuristic, is more tailored to the
key schedule and helps extend the analysis of AES-192 by one round.

3.3 Structural Similarities (SIM)

The models by Bao et al. and Dong et al. could find longer attacks than the
manual attacks e.g., by Sasaki [35] since the former effectively used the degree of
freedom in key space to obtain reductions in the encryption state. From the XOR
of the state with a round key, state bytes in superposition could become single-
colored, and forward or backward neutral bytes could become constants. Such
concessions are useful and often necessary before and after non-linear operations
so that the knowledge of a byte can be propagated further. However, they come
at the price of consuming a degree of freedom from the possible solution space.

In previous works, the effects of multiple round-key additions on the state
have been usually modeled to be independent from each other and the state
values. However, constraints from some consecutive rounds may stem from the
same source of the neutral words in the key and state, e.g., as depicted in Fig. 6,
constraints in states Y r0 and Y r1 are set on the same neutral words in states
Xr and Kr′

. Thus, tracing constraints back to such shared sources may enlarge
the search space by avoiding duplicate DoF consumption. However, modeling
all such dependent constraint relations can become challenging since the rela-
tions between all state and key bytes would have to be considered, which can
render models infeasible to compute. Nevertheless, we can efficiently model cer-
tain special cases, and consider here the structural similarities of encryption
and key schedule, e.g., Whirlpool and Streebog use almost the same functions
for updating key and message, differing only in the usage of round constants.
Considering previous best MITM attacks on Whirlpool [8], Bao et al. already
observed such dependency between encryption and key schedule, however, in
their 7-round attacks on Whirlpool, they only used it in a post-processing step
to generate the solution space of neutral words. In this work, we include this
structural similarity explicitly in our MILP models.

General Concept. For SPNs, we can write the round function as a composition
of a nonlinear S-box layer SB, an affine layer A, and a key addition. Assume, the
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Xr0

R−1

...

Xr

...

red

blue

Xr1

R

red blue gray

red blue gray

Y r0

AK

DoF Costs Constraints

...

red blue gray
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Y r1

AK

Saved DoF Costs Constraints

Kr0

...

(R
′)

(
r
1 −

r
0
)

Kr′

...

red
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Kr1

Fig. 6. High-level view of the different constraints connected by key schedule.

key schedule employs the same S-box layer SB, an affine layer A′, and a constant
addition. Consider an interval of rounds from i to i + 1 and assume that we can
split the key #Ki and the state in the encryption #AKi into an active part,
subscripted by a, and a constant part subscripted by c, each: #Ki = #Ki

a‖#Ki
c

and #AKi = #AKi
a‖#AKi

c. Figure 7 illustrates this setting. If the active parts
of the key and encryption state are equal before the S-box layer, then the same
values will also be the results in both the encryption and key schedule:

#SBi+1
a = #Ki+1

a ⇔ #Ai+1
a = #A′i+1

a .

If #Ai+1
a and #A′i+1

a are mapped to the same positions of the state after A
and A′, respectively, then the nonlinear contributions will cancel. Thus, we can
define a nonlinear function G and a linear function H such that the active part
of the message after the round is given by

#SBi+1
a = G(#Ki

a) ⊕ H(#Ki
c,#Ki

a,#AKi
c) .

Note that it does not depend on #AKi
a.

#Ki
a

#SBi+1
a

A′

A

S

S

#Ki+1
a

#SBi+2
a

#A′i+1
a

#Ai+1
a

= =

···

···

#Ki
c

#SBi+1
c

S

S

A′

A

#Ki+1
c

#SBi+2
c

···

···

Fig. 7. Exploiting similar operations in the encryption and key schedule.

We can generalize this observation to multiple rounds if the similarities
between key schedule and message schedule allow. Given that the diffusion of
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AES-like ciphers is usually strong, i.e., an MDS matrix, the number of subse-
quent rounds where this approach can be employed seems limited to two or
three rounds, depending on the round constants and the linear layers. However,
it will enlarge the search space and lead to high concentrations of constraints
around the starting points, which could help reduce the memory complexity of
the attack, as we will demonstrate later in our application results.

4 Enhanced Attack Framework and MILP Model

This section demonstrates our enhanced attack framework, that we call the
exceptional MITM framework, and the equipped MILP-based search model.

4.1 Exceptional MITM Framework

We append the following two new notations to Table 2 to reflect the use of LIN
(Table 3):

Table 3. Additional notations.

dL DoF consumed by S-Box linearizations

H Space or set of hints from linearized S-boxes, with |H| = 2dL

Again, without loss of generality, we assume dB + gB ≤ dR + gR. The excep-
tional MITM attack framework is formulated as follows:

1. Assign arbitrary values to the constants in pre-defined constraints.
2. Compute V + and V − based on the constants.
3. For all tuples (v+, g+, g, h+) ∈ V + × G+ × G × H, compute to E+, obtain

m+ for matching, store (v+, g+) in T+[m+, g, h+].
4. For all tuples (v−, g−, g, h−) ∈ V − × G− × G × H, compute to E−, obtain

m− for matching.
5. For all (v+, g+) in T+[m−, g, h−] and (v+, v−) consistent with h−, compute

to check if (g+, g−, g) is compatible with (v+, v−).
6. For compatible (v+, v−), check for a full match.
7. If a full match is discovered, compute and return the preimage. Otherwise,

revert to step 1, change the arbitrary values, and repeat the rest.

The computational complexity of the above attack is evaluated as follows:

2n−(dB+dR) · (
2dB+gB+gBR+dL + 2dR+gR+gBR+dL + 2dB+gB+dR+gR+gBR−dM

)

� 2n−min(dB−gR−gBR−dL,dR−gB−gBR−dL,dM−gB−gR−gBR) .
(3)
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4.2 MILP-Based Search Model

Now we introduce an enhanced MILP model to integrate proposed techniques,
including new coloring schemes and corresponding propagation rules in detail.

Color-Encoding Scheme of Neutral Words. We encode different byte types
in the superposition structure with three binary variables b, r, and w:.

– A blue cell denotes a forward neutral byte, encoded as (b, r, w) = (1, 0, 0).
– A red cell denotes a backward neutral byte, encoded as (b, r, w) = (0, 1, 0).
– A white cell denotes an arbitrary byte, encoded as (b, r, w) = (0, 0, 1).
– A gray cell denotes a constant byte, encoded as (b, r, w) = (0, 0, 0).
– A green cell denotes a superposition byte, encoded as (b, r, w) = (1, 1, 0).

In the encoding system, b = 1 and r = 1 denote that a byte contains forward
and backward neutral information, respectively. And w = 1 uniquely identifies
an arbitrary byte, whose value is unknown, against other byte types. Such con-
struction has high clarity and interpretability, rather than a simple enumeration
of the five possible byte types in the superposition structure , and allows a more
straightforward realization of propagation rules and efficient counting of DoF.
For example, we can easily obtain the initial DoFs |BENC|, |RENC|, |BKSA|, and
|RKSA| by simply summing up b, r encoders in corresponding states.

Our model achieves high efficiencies and makes it possible for better attacks
on designs with large state sizes. The new model can formulate attacks on
Whirlpool and Streebog in full-sized versions (8× 8), while Bao et al. ’s attack
on Whirlpool is limited to 4 × 4 versions with symmetry patterns [8]. Specif-
ically, our improved MITM attack configurations for Whirlpool can be found
within 200 s, and the optimization of MITM collision attack models of 6-round
Whirlpool can be finished within just 300 s1.

In the rest of this chapter, notions bα, rα, and wα are used to represent the
encoders of a byte α.

Propagations Through SubBytes. We formulate the SB-rule, a byte-wise
propagation rule for SubBytes, with LIN integrated.

– When the input byte is not green, the color of the output byte is identical to
that of the input byte.

– When the input byte is green, the output byte is either white by default or
green with one cost of linearization (dL incremented by one).

Modeling the SB-rule requires both encoders of the input and output byte as
well as one additional encoder to indicate linearization cost. The rule can be
converted to MILP constraints with the convex-hull method [41].

Propagations Through MixColumns. The MixColumns operation takes a col-
umn as input and outputs a column. Assume that the input is a mix of nb blue
1 We ran our MILP models with Gurobi 9.5.2 on a desktop computer with 3.6 GHz

Intel Core i9 and 16GB 2667 MHz DDR4.
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bytes, nr red bytes, nc gray bytes, ng green bytes, and nw white bytes, the basic
rule for the MixColumns operation, MC-rule in short, is formulated as follows:

– When nw > 0, the output contains only white bytes.
– When nw = 0 and nb + nr + ng = 0, the output contains only gray bytes.
– When nw = nr = 0 and nb + ng > 0, the output contains n′

b blue bytes and
n′

c gray bytes, with n′
c consumed DoF from the forward chunk.

– When nw = nb = 0 and nr + ng > 0, the output contains n′
r red bytes and

n′
c gray bytes, with n′

c consumed DoF from the backward chunk.
– Otherwise, the output is a mix of n′

b blue bytes, n′
r red bytes, n′

c gray bytes,
and n′

g green bytes, with n′
b + n′

c consumed DoF from the backward chunk
and n′

r + n′
c consumed DoF from the forward chunk.

We use α to denote a byte in the input column and β in the output. To realize
the above functionality, we introduce three column-wise encoders Eb, Er, and
Ew, which is constructed based on the encoding of input bytes:

Eb = max
α

bα, Er = max
α

rα, and Ew = max
α

wα . (4)

Let further −→σβ and ←−σβ be binary variables that respectively track the DoF
consumption at byte β (in the output column) for the forward and backward
chunk. Then, the MC-rule can be formulated as:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
β wβ = NROW · Ew

∑
α bα +

∑
β bβ = NROW · (Eb − Ew)

∑
α rα +

∑
β rβ = NROW · (Er − Ew)

NROW · (Eb − Ew) ≤ ∑
β bβ +

∑
β

−→σβ ≤ NROW · min(Eb, 1 − Ew)
NROW · (Er − Ew) ≤ ∑

β rβ +
∑

β
←−σβ ≤ NROW · min(Er, 1 − Ew)

. (5)

Integrating Guess-and-Determine Into MixColumns. We introduce a light-
weight realization of GnD by integrating its functionality into MC-rule, which
is named GnD-MC-rule. We introduce four GnD encoders for an input byte α,
gw

α , gb
α, gr

α, and gbr
α , which satisfy:

wα = gw
α + gb

α + gr
α + gbr

α . (6)

The simple constraint ensures that, when an input byte α is non-white, all GnD
encoders are 0, meaning no GnD is incurred. Otherwise, when α is white, exactly
one GnD encoder equals to 1 with the following meaning:

– gw
α = 1: GnD is not activated and byte α remains unknown,

– gb
α = 1: α is guessed as blue for forward propagation,

– gr
α = 1: α is guessed as red for backward propagation,

– gbr
α = 1: α is guessed as green for both forward and backward propagations.
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The GnD-MC-rule is formulated based on MC-rule by a simple tweak on the
construction of the column-wise encoders:

Eb′ = max
α

{bα, gb
α, gbr

α }, Er′ = max
α

{rα, gr
α, gbr

α }, and Ew′ = max
α

gw
α . (7)

We count the guessed DoF by summing up the GnD encoders. Moreover, GnD
can be turned off easily for efficiency by adding a simple constraint wα = gw

α .

XOR with Two Inputs. The XOR-rule models the propagation of variables
through a simple XOR operation with two inputs:

– When the input involves a white byte, the output is white.
– When the input contains only gray bytes, the output is gray.
– When the input contains only blue bytes, the output is either blue with no

consumption of DoF or gray consuming one DoF from the forward chunk.
– When the input contains only red bytes, the output is either red with no DoF

consumption or gray consuming one DoF from the backward chunk.
– When the input is a mixture of red and blue bytes or involves green bytes,

the output is green.

Generating the constraints to account for the XOR-rule in MILP is well under-
stood and therefore omitted here.

XOR with Multiple Inputs. In addition to sequentially deriving the round keys
following Eq. (2), we propose a new approach to model the AES key schedule. We
find the expression of intermediate bytes in terms of bytes in KSA by invoking a
sourcing function, which is designed to recursively obtain the parents of an inter-
mediate byte and cancels whenever a byte is XORed an even number of times.
Then we propose the n-XOR-rule to determine the coloring of an intermediate
byte and the consumed DoF, detailed as follows:

– When the input involves a white byte, the output is white.
– When the input contains only gray bytes, the output is gray.
– When the input contains only blue bytes, the output is either blue with no

DoF consumed or gray with 1 DoF consumed from the forward chunk.
– When the input contains only red bytes, the output is either red with no DoF

consumed or gray with 1 DoF consumed from the backward chunk.
– When the input contains both red and blue bytes, the output is one of the

following:
– green, with no consumption of DoF,
– blue, with 1 DoF consumed from the backward chunk,
– red, with 1 DoF consumed from the forward chunk, or
– gray, with 1 DoF consumed from each forward and backward chunk.

We denote a byte in the expression of an intermediate byte as γ and introduce
three encoders Pb, Pr, and Pw for the intermediate byte that satisfy:

Pb = max
γ

bγ , P r = max
γ

rγ , and Pw = max
γ

wγ . (8)

The constraints for the n-input XOR rule can be obtained by using the convex-
hull method on Pb, Pr, Pw, the encoders of the intermediate byte, and two
encoders for DoF costs.
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Matching. We deploy two types of matching in our attacks: the XOR-match
and the MC-match. The XOR-match is used at the feed-forward that checks E+,
E−, and #RK−1 byte by byte. If wα = 0 holds for position α in E+, E−, and
#RK−1, then mα = 1. Otherwise, mα = 1. Then, dXORM results from:

dXORM =
∑

α

mα . (9)

Besides, the MC-match takes the input and output of a MixColumns operation
as E+ and E− and counts the cumulative non-white bytes at a common column
index. Let Δ be a column index and denote the cumulative non-white bytes in
E+

Δ and E−
Δ as tΔ. If there exist tΔ > NROW, then we have a tΔ −NROW degrees for

matching at column Δ. Otherwise, there are no degrees of matching at column
Δ. Then dMCM is given by the sum over all columns:

dMCM =
∑

Δ

max(0, tΔ − NROW) . (10)

Objective Function. Our search model aims to maximize:

min{dB − gR − gBR − dL, dR − gB − gBR − dL, dM − gB − gR − gBR} (11)

According to Eq. (3), min{−→db ,
←−
dr ,

→←
m } determines the complexity of an

MITM attack. Thus, the search for the optimal MITM attack pattern of given
config is converted to a maximization problem on objective τObj:

5 Applications to AES and Whirlpool

In this section, we briefly describe the first 10-round MITM pseudo-preimage
attack on the compression function of AES-192 and the memoryless 5-round
MITM pseudo-preimage attack on the compression function of Whirlpool.

5.1 First MITM Pseudo-preimage Attack on 10-Round AES-192

The previous best MITM pseudo-preimage attack on AES-192 reaches 9 rounds
[8]. Adopting LIN and DIS, we obtain the first MITM pseudo-preimage attack
on 10-round AES-192, which is provided in Fig. 8 and summarized below:

– Initial DoF for forward neutral words −→ι ( ): 39 bytes (16 in #AK5, 15 bytes
in #SB6, and 8 bytes #K4[16 . . . 23]);

– Initial DoF for backward neutral words ←−ι ( ): 1 byte (#SB6[2]);
– Consumed DoF in forward computation −→σ : 38 bytes;
– Consumed DoF in backward computation ←−σ : zero bytes;
– Guessed bytes for blue, red, and both colors gB, gR, gBR: gR = gBR = 0

bytes and gB = 0 bytes;
– Guessed byte equivalents for linearization: dL = 0.5 bytes.
– Matching DoF dM: 1 byte between #AT9 and #SB0.
– Remaining DoF: dB − dL = 1 − 0.5 = 0.5 and dR − dL = 1 − 0.5 = 0.5.
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Fig. 8. An MITM pseudo-preimage attack of 10-round AES-192.



418 S. Chen et al.

Algorithm 1: Computing forward neutral words (blue) for 10-round
AES-192.
1 Initialize a table T neutral

blue ;
2 Fix 6 bytes #K2[1, 2, 6, 7, 12, 13], 6 cells in #AK2, 3 bytes #MC2[8, 9, 11], 2

bytes #MC1[8, 15] and #AK3[8..15] be all zero.
3 for 4 blue cells #K4[4, 5, 6, 7] ∈ (F8

2)
4 do

4 Use 4 constants #K2[6, 7, 12, 13] to derive #K4[12, 13], #K3[20, 23];
5 for 3 blue cells #K3[18, 19, 22] ∈ (F8

2)
3 do

6 Use 2 constant #K2[1, 2] to derive #K4[1, 2];
7 for 6 blue cells #K4[8, 9, 10, 11, 14, 15] ∈ (F8

2)
6 do

8 Derive #RK2[14, 15] from #K4[6, 7, 14, 15];
9 Use 1 constant #MC1[15] to derive #K3[21] from

#K1[20..23] = #K4[12..15] ⊕ #K4[8..11] ⊕ #K3[20..23] and
MC−1 · #K1[20..23] = (∗, ∗, ∗, 0);

10 Derive #RK2[4, 5] from #K4[4, 5], #K3[21, 22];
11 Use 4 constant #AK2[4, 5, 14, 15] and #RK2[4, 5, 14, 15] to derive

#SB3[4, 5, 14, 15];
12 for 2 blue cells #K4[3], #K3[16] ∈ (F8

2)
2 do

13 Derive #RK2[3] from #K3[16, 20], #K4[3];
14 Use 1 constant #AK2[3] to derive #SB3[3];
15 Use 1 constant #MC1[8] to derive #K3[17] from

#K1[16..19] = #K3[16..19] ⊕ #K4[4..7] ⊕ #K4[8..11] and
MC−1 · #K1[16..19] = (0, ∗, ∗, ∗);

16 Derive #K4[16..23];
17 Use 4 constants #AK2[0], #MC2[8, 9, 11] to derive

#K4[0], #SB3[0, 9, 10] by solving 4 linear Equation (12);
// Now we know all blue cells in #SB3 and #K4

18 Derive the blue part of #SR2[2];
// Linearization of S-boxes

19 for 28×0.5 values of c0 = (#SR2[2])17 do
20 Compute 14 constants (#MC0[11], #MC1[2, 5], #SB6[2],

#SB7[8..11, 14], #SB8[0, 5, 10, 15], #K6[3]) = (c1,. . . , c14);

21 Update the table T neutral
blue [c0, . . . , c14]

+
= ( in #K4 and

#SB3);

// For each value of (c0, . . . , c14), 28×(15.5−14.5) = 28×1

candidates expected

22 return T neutral
blue ;

Compute Initial Values Forward Neutral Bytes (Blue). Note that the value of
a byte in this phase represents the value computed from the blue parts. For
example, fixing #K2[2] to zero means that the blue initial bytes have a zero
impact on this byte. To get the initial values of the blue neutral bytes, the
following constraints among states #SB3,#K4,#K3 will be enforced.
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

#SB3[0] ⊕ #K4[0] ⊕ S(#K3[21]) ⊕ S(#K3[17] ⊕ #K3[21]) = #AK2[0]

MC−1 ·

⎛

⎜
⎜
⎜
⎝

#K4[0] ⊕ #K4[8]

#SB3[9] ⊕ #K4[1] ⊕ #K4[9]

#SB3[10] ⊕ #K4[2] ⊕ #K4[10]

#K4[3] ⊕ #K4[11]

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

#MC2[8]

#MC2[9]

∗
#MC2[11]

⎞

⎟
⎟
⎟
⎠

, (12)

where #AK2[0] and #MC2[8, 9, 11] are fixed as zeroes. Algorithm 1 generates
the solution space of blue neutral words. The time complexity is upper bounded
by 28×15.5 = 2124 operations.

The MITM Attack Procedure for 10-Round AES-192 . For backward neutral
words ( cells), we will iterate over #SB6[2]. We provide the main attack pro-
cedure derived from Fig. 8 in Algorithm 2.

The Attack Complexity. The time complexity of the above MITM pseudo-
preimage attack of 10-round AES-192 is about 2128−8×min(0.5,0.5,1) = 2124.
The table T+ dominates the memory complexity with 28×1.5 ≈ 212. The pre-
computation table T neutral

blue dominates the memory complexity with 28×15.5 =
2124.

5.2 Improved MITM Preimage Attacks of Whirlpool

We use the SIM technique to search for attack configurations of Whirlpool,
improved MITM (pseudo-)preimage attacks are obtained for both 5- and 6-
round Whirlpool. In particular, we could find an attack on 5-round Whirlpool
with O(1) memory and present the first MITM attack on 7.75-round Whirlpool,
including the SB, SR, and MC operations in the last round. The previous best
(pseudo-)preimage attacks are the 7-round MITM attacks on Whirlpool pre-
sented by Bao et al. [8] at Crypto 2022.

Improved and Memoryless Preimage Attack of 5-Round Whirlpool.
We directly perform search on the full-size 8 × 8 version for Whirlpool, and our
improved search result for 5-round Whirlpool is given in Fig. 9. Compared to
the previous best result of 5-round Whirlpool found by Bao et al. [8, Figure 13],
GnD is still not required but BiDir is utilized (48 cost at Round 0). However,
the DoF cost for neutral words is more concentrated at the starting point, e.g., 48
red cells canceled at Round 0 (48 bytes DoF cost will be compensated at Round
1), and another 24 red cells will be canceled at the MC operation for #KMC2,
which makes it more efficient to generate the red neutral words and can improve
our attack on 5-round Whirlpool further to memoryless when combined with
the same color match. We elaborate on the attack configuration below.

– Initial DoF for forward neutral words −→ι ( ): 24 bytes (8 blue cells in #SB1

and 16 blue cells in #KK0);
– Initial DoF for backward neutral words ←−ι ( ): 48 bytes (48 red cells in #KK0

are set to be equal to the corresponding cells in #SB1, then all red bytes can
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Algorithm 2: MITM attack on 10 rounds of the AES-192 compression
function.
1 for (c1, . . . , c14) ∈ (F8

2)
14 do

2 Initialize T+;
// For blue neutral words

3 for the 28×0.5 values c0 of the hint pool do

4 Lookup the table T neutral
blue [c0, · · · , c14] to get candidates of blue cells in

#K4 and #SB3;
5 for the values of 28×1 in #K4 and #SB3 do
6 Derive m+ (the blue part of #AT9[7] = #RK9[7] ⊕ #RK−1[7]) and

update the table T+[m+, c0]
+
= [blue neutral bytes];

// 28×0 entries for each index in T+

// For red neutral words

7 for the 28×0.5 values of c0 do
8 for #SB6[2] ∈ F

8
2 do

9 Compute m− (the red part of #AT9[7] ⊕ #SB0[7]), which equals the
blue part of #AT9[7] ;

10 Check for entries in T+[m−, c0] to derive 1 blue neutral byte;
11 Check if the red and blue parts of #SR2[2] produce c0;

// 28×(14+0.5+1+1−1−0.5) = 28×15 candidates expected

12 Compute the full #AT9 and #SB0 in both colors to check the
remaining 15 cells;

13 if the full match is found then

// 28×(15−15) = 1 candidate expected

14 Output the preimage and stop;

be canceled to constants marked as zero constant2 0 in #AK0 and #AK1,
with just 48 bytes DoF cost for XOR operation);

– Consumed DoF for forward −→σ : zero;
– Consumed DoF for backward ←−σ : 24 bytes for #KMC2 MC−−→ #KK2;
– Guessed bytes for blue, red and both colors gB, gR, gBR: all zero byte;
– Matching DoF dM: 24 bytes between #MC2 and #AK2.

Then, the remaining DoF for the MITM attack is dB = 24, dR = 24, dM = 24.

Compute Initial Values for Forward Neutral Words (Blue). As there is no DoF
cost for blue neutral words, to obtain the corresponding initial values, one only
needs to enumerate values of 24(16 + 8) blue cells in #KK0 and #SB1.

2 The AddRoundConstant in the key schedule of Whirlpool is the last operation for
each round (SB, SR, MC, AC), that is the subkey added into the encryption already
involved with the round constant. When using the SIM technique, the corresponding
cells related to the XOR compensation here will be canceled to all zero constants.
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KMC(−0 , −0 )

#KK2

KMC(−0 , −24 )
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#KK4
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• (−→ι , −←ι ) = (8+16)=24 , (48+0)=48 )

• (dB, dR, dM, gB, gR, gBR) = (+24 , +24 , +24 , +0 , +0 , +0 )

• (dB−gR, dR−gB, dM−gB−gR−gBR) = (24, 24, 24)

Fig. 9. An MITM pseudo-preimage attack of 5-round Whirlpool.

Compute Initial Values for Backward Neutral Bytes (Red). To get the initial
values of red neutral words, the constraints among #KMC2 and #KK2 are as
below

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 − − a9 − a15 − −
− a3 − − a12 − a18 −
− − a6 − − a16 − a21
a1 − − a10 − − a19 −
− a4 − − a13 − − a22
a2 − a7 − − a18 − −
− a5 − a11 − − a21 −
− − a8 − a14 − − a23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= MC ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

#KMC2
0 #KMC2

8 · · · #KMC2
48 #KMC2

56
#KMC2

1 − · · · #KMC2
49 #KMC2

57
− − · · · #KMC2

50 #KMC2
58

− #KMC2
11 · · · #KMC2

51 −
#KMC2

4 #KMC2
12 · · · − −

#KMC2
5 #KMC2

13 · · · − #KMC2
61

#KMC2
6 #KMC2

14 · · · #KMC2
54 #KMC2

62
#KMC2

7 #KMC2
15 · · · #KMC2

55 #KMC2
63

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

where ai (0 ≤ i ≤ 23) are the chosen constants for #KK2.

The MITM Attack Procedure for 5-Round Whirlpool . We provide the memory-
less attack procedure derived from Fig. 9 in Algorithm 3. The same-color match
is employed, which is firstly observed by Guo et al. [19] in MITM preimage
attacks and recently also utilized by Hou et al. [21] for MITM attacks on Feistel
constructions. It means a match with only blue and gray (or only red and
gray ) at the matching point, rather than a mixture of red and blue cells.
While gray cells are fixed as constants, and thus are known in both forward
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(blue) or backward (red) computations, a same-color match, e.g., only blue or
gray, can be performed independently of the red neutral words.

Algorithm 3: MITM attack on 5-round Whirlpool compression function
1 Fix 8 constant cells in #SB1 to all zero;
2 Fix 8 constants (a16, a17, · · · , a23) in Equation (13) to all zero;
3 for C = (a0, a1, · · · , a15, a16, · · · , a23) ∈ (F8

2)
16 do

// For red neutral words

// As there is no red cell in matching states #MC2 and

#AK2, one does not need a store table T+ and thus does not

need to solve the Equation (13) here for back neutral words,

which can be done after the partial match

// For blue neutral words

4 for 8 blue cells in #SB1 ∈ (F8
2)

8 and 16 blue cells in #KK0 ∈ (F8
2)

16 do
5 Compute forward to the matching state #MC2;
6 Compute backward to the matching state #AK2;

// Only gray and blue cells in matching states here

7 if #MC2 and #AK2 pass the partial match then

// 28×(16+24−24) = 28×16 candidates expected

8 Solve Equation (13) according to current constant C and obtain
28×24 #KMC2 for red neutral words;

9 Compute forward and backward to match the rest 40 cells;
10 if the full match is found then

// 28×(16+24−40) = 1 candidate expected

11 Output the preimage and stop;

The Attack Complexity. The time complexity of the above MITM pseudo-
preimage attack on 5-round Whirlpool is about 2512−8×min(24,24,24) = 2320.3

Thanks to the same color match between #MC2 and #AK2, the partial-
matching is independent of backward red neutral words, and the constraints on
backward neutral words are linear, then the store tables for the partial-matching
can be saved and thus the memory complexity is O(1).

6 Conclusion

In this work, we advanced the state-of-the-art MITM attacks on AES-like hash-
ing. Among the new techniques, LIN and DIS contributed to the first 10-round
preimage attack on AES-192 and assorted improved results on Rijndael-based
hashing, while SIM better addressed the dependencies and reduced the attack

3 For comparisons, we directly use the calculation method in [8] to provide the time
complexity for Whirlpool.
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complexities on Whirlpool and Streebog. We argued that the ideas behind the
new techniques are generic and expected them to have more applications in other
attack scenarios.

Open Problems. The fact that the non-linear part of the AES S-box is a single
monomial x254 allows us to obtain the full output from guessing a space with
dimension four. We also investigated the S-boxes of Whirlpool and Streebog
and found that their S-boxes possess fewer-dimensional subspaces (yielding parts
of the output thus less powerful) for which we could not find better attacks. If
more properties of S-boxes are revealed for AES-like hashing, i.e., algebraic prop-
erties, better MITM attacks exploiting the LIN technique on these target ciphers
can be expected. Furthermore, we applied the techniques to all AES/Rijndael
variants but could not find other improvements compared to [7,8,16,43]. The
relation between the security margin and block-key ratio remains to be further
investigated.
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