
Massive Superpoly Recovery
with a Meet-in-the-Middle Framework

Improved Cube Attacks on Trivium and Kreyvium

Jiahui He1,3 , Kai Hu1,3,4 , Hao Lei1,3, and Meiqin Wang1,2,3(B)

1 School of Cyber Science and Technology, Shandong University, Qingdao,
Shandong, China

{hejiahui2020,leihao}@mail.sdu.edu.cn, {kai.hu,mqwang}@sdu.edu.cn
2 Quan Cheng Shandong Laboratory, Jinan, China

3 Key Laboratory of Cryptologic Technology and Information Security, Ministry
of Education, Shandong University, Jinan, China

4 School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore, Singapore

Abstract. The cube attack extracts the information of secret key bits by
recovering the coefficient called superpoly in the output bit with respect
to a subset of plaintexts/IV, which is called a cube. While the division
property provides an efficient way to detect the structure of the super-
poly, superpoly recovery could still be prohibitively costly if the number
of rounds is sufficiently high. In particular, Core Monomial Prediction
(CMP) was proposed at ASIACRYPT 2022 as a scaled-down version of
Monomial Prediction (MP), which sacrifices accuracy for efficiency but
ultimately gets stuck at 848 rounds of Trivium.

In this paper, we provide new insights into CMP by elucidating the
algebraic meaning to the core monomial trails. We prove that it is suffi-
cient to recover the superpoly by extracting all the core monomial trails,
an approach based solely on CMP, thus demonstrating that CMP can
achieve perfect accuracy as MP does. We further reveal that CMP is still
MP in essence, but with variable substitutions on the target function.
Inspired by the divide-and-conquer strategy that has been widely used
in previous literature, we design a meet-in-the-middle (MITM) frame-
work, in which the CMP-based approach can be embedded to achieve a
speedup.

To illustrate the power of these new techniques, we apply the MITM
framework to Trivium, Grain-128AEAD and Kreyvium. As a result,
not only can the previous computational cost of superpoly recovery
be reduced (e.g., 5x faster for superpoly recovery on 192-round Grain-
128AEAD), but we also succeed in recovering superpolies for up to 851
rounds of Trivium and up to 899 rounds of Kreyvium. This surpasses the
previous best results by respectively 3 and 4 rounds. Using the memory-
efficient Möbius transform proposed at EUROCRYPT 2021, we can per-
form key recovery attacks on target ciphers, even though the superpoly

Due to page limits, all appendixes and some tables of this paper are provided in our
full version [21].
c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14651, pp. 368–397, 2024.
https://doi.org/10.1007/978-3-031-58716-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58716-0_13&domain=pdf
http://orcid.org/0000-0002-4033-588X
http://orcid.org/0000-0003-3552-7200
https://doi.org/10.1007/978-3-031-58716-0_13

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 369

may contain over 240 monomials. This leads to the best cube attacks on
the target ciphers.

Keywords: Cube Attack · Superpoly · Trivium · Grain-128AEAD ·
Kreyvium · Division Property · Monomial Prediction · Core Monomial
Prediction

1 Introduction

Cube Attack. Cube attack was proposed by Dinar and Shamir [13] at EURO-
CRYPT 2009 and has become one of the general cryptanalytic techniques against
symmetric ciphers. Since its proposal, it has been applied to analyze various
symmetric ciphers [4,12,14,17,25,27,30,34,36]. In particular, against the Ascon
cipher [15] that is selected by NIST for future standardization of the lightweight
cryptography, the cube attack shows outstanding effectiveness [5,28,32,33]. The
cube attack exploits the fact that each output bit of a cipher can be expressed
as a Boolean function of the key bits and plaintext/IV bits. For a randomly
chosen set I of indices of the plaintext/IV bits, we can form a monomial tI as
the product of the bits indexed by I. After fixing the plaintext/IV bits outside
of I to constant values, we attempt to recover the polynomial related to key
bits, called superpoly, that is multiplied by tI in the output bit. If the superpoly
is obtained, the value of the superpoly can be computed by summing over a
structure called cube, denoted by CI , which consists of all possible combinations
of values that those plaintext/IV bits indexed by I can take. Subsequently, the
information of key bits may be deduced by solving the equation built from the
value of the superpoly.

Division Property. The original division property was proposed at EURO-
CRYPT 2015 [42] as a generalization of the integral property. By tracking the
integral characteristics more accurately with the division property, the long-
standing cipher MISTY1 was broken theoretically for the first time [41]. At FSE
2016, the word-based division property was refined into bit-based division prop-
erty [44], with which the experimentally discovered integral characteristics for
bit-based block cipher SIMON32 and Simeck32 are proved for the first time.
The corresponding MILP model for deducing the division property was proposed
by Xiang et al. [50] at ASIACRYPT 2016, where the propagation rules of basic
operations are encoded as linear equalities. This MILP method has been used
to improve the integral attack against many other ciphers [18,37,38,47].

Exact Superpoly Recovery. Initially, the cube attack treats the target cipher
as a black box [13,17,31], and the structure of the superpoly can only be detected
by experimental tests, thus limiting the superpoly to simple forms (e.g., lin-
ear or quadratic). Later, the Conventional Bit-based Division Property [44] was
introduced into the cube attack [43], so that those secret variables that are not
involved in the superpoly could be efficiently identified. In the same year, Liu
et al. [29] discovered constant superpolies with the numeric mapping technique.

370 J. He et al.

When determining whether a monomial exists in the superpoly, however, the
bit-based division property may produce false positives, so a further series of
work was carried out to improve its accuracy. In [48], Wang et al. took the
cancellation of constant 1 bits into account and proposed the flag technique to
improve the precision of the bit-based division property. At ASIACRYPT 2019,
Wang et al. [49] recovered the exact superpoly for the first time with the prun-
ing technique combined with the three-subset division property. However, this
technique is limited by its assumption that almost all elements in the 1-subset
can be pruned. The inaccuracy problem was finally resolved by Hao et al. in [20],
where the unknown subset was discarded and the cancellation of the 1-subset
vectors was transformed into the parity of the number of division trails. This
new variant of division property is called three-subset division property with-
out unknown subset (3SDPwoU), which is interpreted as the so-called monomial
prediction (MP) from a purely algebraic viewpoint [24]. The MILP model of MP
can be further optimized if we represent the propagation of MP as a directed
graph [10]. Both the MP and 3SDPwoU will encounter a bottleneck if the num-
ber of division trails exceeds the upper limit of the number of solutions that
can be enumerated by an MILP solver. To this end, Hu et al. [23] proposed
an improved framework called nested monomial prediction to recover massive
superpolies, which can be viewed as a recursive application of the divide-and-
conquer strategy. Recently, He et al. [22] proposed the core monomial prediction
(CMP), which is claimed to sacrifice accuracy for efficiency compared to MP,
thus significantly reducing the computational cost of superpoly recovery.

Motivation. MP can achieve perfect accuracy because we can determine
whether a monomial appears in the output bit by evaluating the parity of the
number of monomial trails, but what information beyond the existence can be
brought to the table by core monomial trails remains unknown. Even in [22],
the authors only exploit the existence of a core monomial trail, but do not show
how we can benefit from all core monomial trails. Also, we notice that the defini-
tion of CMP naturally lends itself to forward propagations, i.e., derivation from
round 0 to higher rounds, while recovering the superpoly with MP does not have
such a property, because it does not impose any constraints on the secret vari-
ables. Forward propagation often implies the possibility of improving accuracy
and efficiency, as in the pruning technique [49] where the division property was
propagated and filtered from the bottom up round by round.

Our Contributions. This paper aims to recover superpolies for more initializa-
tion rounds of stream ciphers, for which we propose purely CMP-based approach
and framework to improve the efficiency of superpoly recovery.

– Refinement of CMP theory: new CMP-based approach. It was believed in pre-
vious works that CMP is a scaled-down version of MP that sacrifices accuracy
for efficiency. However, in this paper, we prove that CMP is also perfectly
accurate, as the three-subset division property without unknown subset and
monomial prediction, which refines the division property family. After inves-
tigating how each core monomial trail contributes to the composition of the

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 371

superpoly, we demonstrate that it is sufficient to recover the exact superpoly
by extracting all core monomial trails.

– Meet-in-the-middle (MITM) framework. Inspired by the divide-and-conquer
strategy, we show that it is possible to split a complex problem of superpoly
recovery into multiple simpler problems of superpoly recovery, by perform-
ing forward or backward propagation of CMP. By using these two types of
propagation interchangeably and recursively, we can embed our CMP-based
approach into an MITM framework to further achieve a speedup.

Since it has been shown in [22] that the MILP model for CMP is simpler
than that for MP, we claim that our purely CMP-based approach and framework
perform better than the method in [22] that combines CMP and MP. The most
intuitive evidence for this is that we can reproduce previous superpolies at a
much smaller computational cost. For Trivium, we halve the time it took to
recover the superpolies (see [21, Table 6]); for 192-round Grain-128AEAD, we
reduce the time of superpoly recovery to about 1

5 of the original (see Sect. 5.2).
Notably, our MITM framework enables us to extend the number of initializa-

tion rounds of superpoly recovery for several prominent ciphers, including Triv-
ium (ISO/IEC standard [1,3]) and Kreyvium (designed for Fully Homomorphic
Encryption [8]). Ultimately, we succeed in recovering the superpolies for up to
851-round Trivium and up to 899-round Kreyvium, extending the previous best
results by 3 and 4 rounds, respectively. With the help of the memory-efficient
Möbius transform proposed at EUROCRYPT 2021 [11], we can utilize the recov-
ered superpolies to perform key recovery at a complexity lower than exhaustive
search, leading to the best results of cube attacks against target ciphers.

The summary of our cube attack results are provided in Table 1. The source
codes for superpoly recovery, as well as some recovered superpolies, can be found
in our anonymous git repository

https://github.com/viocently/sdfkjxu192lc78-s0.

2 Cube Attack and Monomial Prediction

2.1 Notations and Definitions

In this paper, we use bold italic or Greek letters to represent binary vectors. For
a binary vector x ∈ F

m
2 , its ith bit is represented by x[i]; the Hamming weight

of x is calculated as wt(x) =
∑m−1

i=0 x[i]; the indices of ones in x are represented
by the set Ind[x] = {i | x[i] = 1}. Given two binary vectors x ∈ F

m
2 and u ∈ F

m
2 ,

we use xu to represent
∏m−1

i=0 x[i]u[i]; x[u] =
(
x[i0], . . . , x[iwt(u)−1]

) ∈ F
wt(u)
2

denotes a sub-vector of x with respect to u, where i0, . . . , iwt(u)−1 are elements
of Ind[u] in ascending order. We define x � u (resp. x � u) if x[i] ≥ u[i] (resp.
x[i] > u[i]) for all i and x � u (resp. x ≺ u) if x[i] ≤ u[i] (resp. x[i] < u[i]) for
all i. The concatenation of x and u is denoted by x‖u. The bitwise operations
AND,OR,XOR,NOT are denoted by ∧,∨,⊕,¬ respectively and can be applied

https://github.com/viocently/sdfkjxu192lc78-s0

372 J. He et al.

Table 1. Summary of the key recovery attacks on Trivium and Kreyvium

Cipher Rounds #Cube� Cube size Attack type Data Time Reference
Trivium 672 63 12 Cube 218.6 217 [13]

709 80 22–23 Cube 223 229.14 [31]
767 35 28–31 Cube 231 245 [13]
784 42 30–33 Cube 233 239 [17]
799 18 32–37 Cube 238 262 [17]
802 8 34–37 Cube 237 272 [51]
805 42 32–38 Cube 238 241.4 [52]
805 28 28 Correlation Cube 228 273 [30]
806 16 34–37 Cube 238.64 264 [52]
806 29 34–37 Cube 239 239 [40]
808 37 39–41 Cube 244 244.58 [40]
810 39 40–42 Cube 244 244.17 [26]
815 35 44–46 Cube 247 247.32 [9]
820 30 48–51 Cube 253 253.17 [9]
820† 213 38 Correlation Cube 251 260 [45]
825 31 49–52 Cube 253 253.09 [26]
825† 212 41 Correlation Cube 253 260 [45]
830† 213 41 Correlation Cube 254 260 [45]
832 1 72 Cube 272 279 [43,49]
835 41 35 Correlation Cube 235 275 [30]
840 1 78 Cube 278 279.6 [20]
840 3 75 Cube 276.6 277.8 [24]
840 6 47–62 Cube 262 276.32 [23]
841 1 78 Cube 278 279.6 [20]
841 2 76 Cube 277 278.6 [24]
841 3 56–76 Cube 276 278 [23]
842 1 78 Cube 278 279.6 [20]
842 2 76 Cube 277 278.6 [24]
842 3 56–76 Cube 276 278 [23]
843 2 78 Cube 278 279.6 [40]
843 5 56–76 Cube 256 277 [23]
844 2 54–55 Cube 256 278 [23]
845 2 54–55 Cube 256 278 [23]
846 6 51–54 Cube 251 279 [22]
847 2 52–53 Cube 252 279 [22]
848 1 52 Cube 252 279 [22]
849 2 44 Cube 244 279 Sect. 5.1
850 1 44 Cube 244 279 Sect. 5.1
851 1 44 Cube 244 279 Sect. 5.1

Kreyvium ≤ 893 - ≤ 119 Cube ≤ 2119 ≤ 2127 [19,20,40,43,48]
894 1 119 Cube 2119 2127 [23]
895 1 120 Cube 2120 2127 [22]
896 2 123–124 Cube 2123 2127 Sect. 5.3
897 1 124 Cube 2124 2127 Sect. 5.3
898∗ 2 126 Cube 2127 2127.58 [16]
898 1 124 Cube 2124 2127 Sect. 5.3
899∗ 1 126 Cube 2126 2127.58 [16]
899 1 124 Cube 2124 2127 Sect. 5.3
900∗ 1 126 Cube 2126 2127.58 [16]

� #Cube represents the number of cubes whose superpolies are recovered, but this may not be
equal to the number of cubes eventually used in the key recovery attack.
† The 820-, 825- and 830-round attacks in [45] work for only 279.8, 279.7 and 279.3 of the keys in
the key space, respectively.
∗ We notice that after our submission, the superpolies of up to 900 rounds of Kreyvium have
been recovered in [16], where the complexity analysis is based on the concept of implementation
dependency. This leads to the cube attacks against up to 900 rounds of Kreyvium.

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 373

to bits or binary vectors. As a special case, we use 0 and 1 to refer to the all-zero
vector and the all-one vector, respectively.

We add subscripts to distinguish n binary vectors that use the same letter
(e.g., x0, . . . ,xn−1) and superscripts to represent the binary vectors associated
with a specific number of rounds (e.g., xi is a binary vector at round i). For
clarity, we will use π(x,u) instead of xu when both x and u have superscripts
or subscripts.

When introducing a concrete MILP model, we use regular italic letters to rep-
resent MILP variables, and similarly we add superscripts to denote the number
of rounds if they correspond to a certain round and add subscripts to distinguish
them if they use a same letter.

Let f : F
n
2 → F2 be a Boolean function whose algebraic normal form (ANF)

is represented as f(x) =
⊕

u∈F
n
2

auxu , where au ∈ F2 and x ∈ F
n
2 . xu is called

a monomial. We say a monomial xu appears in f , if the coefficient of xu in f
is 1, i.e., au = 1, and we denote this case by xu → f ; otherwise, we denote the
absence of xu in f by xu

� f .
Let f : F

n
2 → F

m
2 be a vectorial Boolean function with x and y being the

input and output, respectively. Given a monomial yv of y, we can derive a
Boolean function g of x by taking yv as the output of g. In the remainder of
the paper, notations of the form yv may represent either a monomial of y or the
Boolean function g derived from it, depending on the context. We then write
xu → yv if xu → g; otherwise we write xu

� yv . The ANF of g is denoted by
Expr 〈yv ,x〉, which represents a Boolean polynomial of x determined by yv . For
a polynomial p of y, Expr 〈p,x〉 is defined as the summation of Expr 〈yv ,x〉 over
all monomials yv appearing in p. We would like to point out that when we use
above notations, we may not give f explicitly, so the readers should be able to
derive f from the context on their own.

2.2 Cube Attack

The cube attack was proposed by Dinur and Shamir at EUROCRYPT 2009 [13]
as an extension of the higher-order differential attack. Given a cipher with secret
variables k ∈ F

n
2 and public variables v ∈ F

m
2 being the input, any output bit

can be represented as a Boolean function of k and v, denoted by f(k,v).
Given I ⊆ {0, . . . , m − 1} as a set of indices of the public variables, we can

uniquely express f(k,v) as

f(k,v) = p(k,v) · tI + q(k,v),

where tI =
∏

i∈I v[i], p(k,v) only relates to v[s]’s (s /∈ I) and the secret variables
k, and each monomial appearing in q(k,v) misses at least one variable from
{v[i] | i ∈ I}. I is called cube indices, whose size is denoted by |I|. If we assign
all the possible combinations of 0/1 values to v[j]’s (j ∈ I) and leave v[s]’s
(s /∈ I) undetermined, we can determine a set CI from I, which is called cube.
The coefficient p(k,v) is called the superpoly of the cube CI or the cube indices

374 J. He et al.

I, which can be computed by summing the output bit f(k,v) over the cube,
namely

p(k,v) =
∑

v∈CI

f(k,v).

If we set the non-cube variables v[s]’s (s /∈ I) to constants, the coefficient p(k,v)
reduces to a polynomial that only relates to k, which we denote by Coe〈f, tI〉.

The typical process for carrying out a cube attack can be summarized as
follows:

– In the offline phase, the attacker recovers superpolies for selected cubes of the
cipher without knowledge of the secret key.

– In the online phase, the attacker exploits the output bits generated under the
unknown key to evaluate the recovered superpolies. This allows building a
system of equations in the key bits.

– Solving this system of equations recovers part of the key. The remaining key
bits can be obtained through an exhaustive search.

The core idea is that the successful recovery of superpolies allows to construct
a solvable system of equations that leak key bits, which can break the security
of the cipher by facilitating full key recovery.

2.3 Monomial Prediction (MP)

Let f : F
n0
2 → F

nr
2 be a composite vectorial Boolean function built by compo-

sition from a sequence of vectorial Boolean functions f i : F
ni
2 → F

ni+1
2 , 0 ≤ i ≤

r − 1, i.e.,
f = fr−1 ◦ fr−2 ◦ · · · ◦ f0,

where xi ∈ F
ni
2 and xi+1 ∈ F

ni+1
2 are the input and output of f i, respectively.

Given a starting number rs and an ending number re with 0 ≤ rs < re ≤ r,
let r′ = re − rs. Given r′ + 1 monomials π(xrs ,urs), · · · , π(xre ,ure), if for each
j, rs ≤ j ≤ re − 1 we have π(xj ,uj) → π(xj+1,uj+1), we write the connection
of these transitions as

π(xrs ,urs) → π(xrs+1,urs+1) → · · · → π(xre ,ure),

which is called an r′-round monomial trail. If there exists at least one mono-
mial trail from π(xrs ,urs) to π(xre ,ure), we write π(xrs ,urs) � π(xre ,ure).
The set containing all the monomial trails from π(xrs ,urs) to π(xre ,ure) is
denoted by π(xrs ,urs) � π(xre ,ure), whose size is represented as |π(xrs ,urs) �

π(xre ,ure)|. If there is no trail from π(xrs ,urs) to π(xre ,ure), we denote it by
π(xrs ,urs) �� π(xre ,ure) and accordingly we have |π(xrs ,urs) � π(xre ,ure)| =
0.

The monomial prediction focuses on how to determine accurately whether
π(xrs ,urs) → π(xre ,ure) for two given monomials π(xrs ,urs) and π(xre ,ure),
and the following theorem relates this problem to the number of monomial trails.

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 375

Theorem 1 ([24, Proposition 1]). Use the notations defined above. We have
π(xrs ,urs) → π(xre ,ure) if and only if

|π(xrs ,urs) � π(xre ,ure)| ≡ 1 (mod 2).

Theorem 2 (Superpoly Recovery [24]). Let f be the output bit of a cipher
represented as a monomial of the output state, which is generated from the secret
variables k and the public variables x through a series of round functions. Given
the cube indices I and tI =

∏
i∈I v[i], set the non-cube variables v[s]’s (s /∈ I) to

0, then
Coe〈f, tI〉 =

∑

|kw tI�f |≡1 (mod 2)

kw ,

where kw tI � f is the set of monomial trails that propagate kw tI to f through
the round functions.

Propagation Rules and MILP Models. Since any symmetric primitive can
be constructed from basic operations like XOR, AND and COPY, it is suffi-
cient to define propagation rules for these basic functions. By listing all input-
output pairs that exhibit monomial prediction, and encoding these pairs as linear
inequalities [6,35,39], we can model the propagation of monomial prediction in a
way that is amenable to efficient MILP solving. We provide the concrete propa-
gation rules and MILP models in [21, Sup.Mat. A]. In this paper, we choose the
state-of-the-art commercial MILP solver, Gurobi [2], to solve our MILP models.

3 Recalling Core Monomial Prediction (CMP)

This paper targets an r-round cipher represented by a parameterized vectorial
Boolean function f(k,v) with secret variables k and public variables v being
the input. f can be written as the composition of a sequence of simple round
functions whose ANFs are known, i.e.,

f(k,v) = fr−1 ◦ fr−2 ◦ · · · ◦ f0, (1)

where f i, 0 ≤ i ≤ r − 1, represents the round function at round i, with input
variables xi ∈ F

ni
2 and output variables xi+1 ∈ F

ni+1
2 . The initial state x0 is

loaded with k, v, constant 1 bits and constant 0 bits. The output bit z of the
cipher is defined as the sum of several monomials of xr. After choosing the
cube indices I and setting the non-cube variables to constants (not necessarily
constant 0), we aim to efficiently compute Coe〈z, tI〉, where tI =

∏
i∈I v[i]. We

first recall some details about the core monomial prediction proposed in [22].

Superpoly Recovery Method in [22]. Since z is the sum of several monomi-
als of xr, we consider computing Coe〈π(xr,ur), tI〉 for each π(xr,ur) satisfying
π(xr,ur) → z. There are two steps for computing Coe〈π(xr,ur), tI〉 in [22].
In the first step, the authors choose a fixed middle round rm and recover all
π(xrm ,urm)’s that satisfy: (A) π(xrm ,urm) → π(xr,ur), (B) ∃w such that

376 J. He et al.

kw tI � π(xrm ,urm). In the second step, compute Coe〈π(xrm ,urm), tI〉 by MP.
The sum of all Coe〈π(xrm ,urm), tI〉’s is exactly Coe〈π(xr,ur), tI〉. In [22], Con-
dition B was characterized by a focus on those bits in π(xrm ,urm) that relate
to cube variables, thus leading to the flag technique.

Flag Technique for CMP [22]. Let b be one bit of an intermediate state xi,
b can have three types of flags:

1. If b is 0, denote its flag by b.F = 0c;
2. Otherwise, express b as the polynomial of k and cube variables, if none of

cube bits appear in b, denote its flag by b.F = 1c;
3. Otherwise, denote its flag by b.F = δ.

The flags of all bits in xi are denoted by a vector xi.F = (xi[0].F, . . . , xi[ni −
1].F), which can be calculated from x0.F by the following operation rules:

1c × x = x × 1c = x 1c ⊕ 1c = 1c 0c ⊕ x = x ⊕ 0c = x
0c × x = x × 0c = 0c δ ⊕ x = x ⊕ δ = δ δ × δ = δ

where x can be any of {0c, 1c, δ}.

Remark 1. Note that the flag technique for CMP is essentially different from
the one for the two-subset division property used in [48]. The most significant
difference lies in how to process the secret key bits. In the flag technique for
CMP, the secret key bits are regarded as 1c bits and it is an unalienable part of
the CMP technique, whereas in [48], the secret keys are treated as free variables
and the flag technique is only a skill to improve the precision and efficiency of
the division property.

Definition of Core Monomial Trail [22]. Let Ind[M i,δ] = {j | xi[j].F =
δ}; Ind[M i,1c] = {j | xi[j].F = 1c}; Ind[M i,0c] = {j | xi[j].F = 0c}. The vec-
tors M i,δ,M i,1c ,M i,0c are called flag masks. Given two monomials π(xrs , trs)
and π(xre , tre) for 0 ≤ rs < re ≤ r, with trs � M rs,δ and tre � M re,δ, if there
exists a monomial π(xrs ,urs) such that urs ∧M rs,δ = trs , urs ∧M rs,0c = 0 and
π(xrs ,urs) → π(xre , tre), then we say π(xrs , trs) can propagate to π(xre , tre)
under the core monomial prediction, denoted by π(xrs , trs) C→ π(xre , tre); oth-
erwise we denote it by π(xrs , trs) C→− π(xre , tre).

Let r′ = re − rs. We call the connection of r′ transitions π(xrs , trs) C→
π(xrs+1, trs+1) C→ · · · C→ π(xre , tre) an r′-round core monomial trail. If there is at
least one r′-round core monomial trail from π(xrs , trs) to π(xre , tre), we denote
it by π(xrs , trs) C� π(xre , tre); otherwise we write π(xrs , trs) C�− π(xre , tre).
The set containing all the trails from π(xrs , trs) to π(xre , tre) is denoted by

π(xrs , trs)
C
� π(xre , tre). The propagation rules and MILP models of CMP

are provided in [21, Sup.Mat. B]. In the propagation of CMP, the 0c bits are
excluded, the 1c bits are treated as constants that can be ignored, thus only the
δ bits are tracked.

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 377

Limitations of the CMP Theory in [22]. In [22], only the existence property
of a core monomial trail was used in theory, and the CMP technique was con-
sidered as a compromised version of MP which sacrificed accuracy for efficiency.
However, we observe that more information has been associated with a core
monomial trail besides the existence property, which was ignored by [22]. When
considering these information, CMP can be as precise as MP. To intuitively show
this, let us consider a simple example.

Example 1. Consider a simple cipher f = f2 ◦ f1 ◦ f0 where

x0 = (v[0], v[1], v[2], k[0], k[1], k[2], 0, 1),

x1 = f0(x0) = (x0[0]x0[1] + x0[1]x0[2] + x0[1]x0[4],

x0[0]x0[3] + x0[3], x0[4] + x0[5], x0[7] + x0[6]),

x2 = f1(x1) = (x1[0]x1[2] + x1[0]x1[1], x1[2], x1[3]),

x3 = f2(x2) = (x2[0]x2[1] + x2[0]x2[2]).

Assume tI = v[0]v[1], v[2] = 1 and we want to compute Coe〈x3[0], tI〉.
We first compute x0.F = (δ, δ, 1c, 1c, 1c, 1c, 0c, 1c),x1.F = (δ, δ, 1c, 1c),

x2.F = (δ, 1c, 1c) and x3.F = (δ). Then, we expand x3[0] into a polynomial
of x2 and combine the monomials according to δ bits.

x3[0] = (x2[1] + x2[2]) · x2[0]

Note that x2[1].F = x2[2].F = 1.c, we derive

x3[0] = (x2[1] + x2[2]) · x2[0] = (1 + k[1] + k[2]) · x2[0].

Similarly, for x2[0] we have

x2[0] = (x1[2]) · x1[0] + x1[0]x1[1] = (k[1] + k[2]) · x1[0] + x1[0]x1[1],

and further for x1[0] and x1[0]x1[1] we have

x1[0] = (x0[2] + x0[4]) · x0[1] + x0[0]x0[1] = (1 + k[1]) · x0[1] + x0[0]x0[1],

x1[0]x1[1] = (x0[2]x0[3] + x0[3]x0[4]) · x0[0]x0[1] + (x0[2]x0[3] + x0[3]x0[4]) · x0[1]

= (k[0] + k[0]k[1]) · x0[0]x0[1] + (k[0] + k[0]k[1]) · x0[1].

Thus, there are two core monomial trails

x0[0]x0[1] C→ x1[0] C→ x2[0] C→ x3[0],

x0[0]x0[1] C→ x1[0]x1[1] C→ x2[0] C→ x3[0],

Multiply the coefficients of each core monomial trail. We take the first core
monomial trail as an example. From x0[0]x0[1] C→ x1[0], the corresponding

378 J. He et al.

coefficient of x0[0]x0[1] is 1; from x1[0] C→ x2[0], the corresponding coeffi-
cient of x1[0] is k[1] + k[2]; from x2[0] C→ x3[0], the corresponding coeffi-
cient of x2[0] is 1 + k[1] + k[2]. Thus, the first core monomial trail leads to
(1 + k[1] + k[2])(k[1] + k[2]). Similarly, the second core monomial trail leads to
(1 + k[1] + k[2])(k[0] + k[0]k[1]). It is easy to verify that Coe〈x3[0], tI〉 is just
(1 + k[1] + k[2])(k[1] + k[2]) + (1 + k[1] + k[2])(k[0] + k[0]k[1]).

In [22], all possible concatenations of a core monomial trail of the first rm

rounds and a monomial trail of the subsequent r − rm rounds are enumerated
when solving the MILP model in practice. However, the above example reveals
that it is sufficient to compute Coe〈π(xr,ur), tI〉 by computing all core mono-
mial trails of the r rounds and then extracting the coefficients from each core
monomial trail, where the latter step is a fully offline process independently
from the MILP solver. Hence, the new method is surely more efficient than the
method in [22].

4 Beyond Existence: Refinement of CMP Theory

In this section, we prove that CMP can reach perfect accuracy as MP does
by developing a purely CMP-based approach for the superpoly recovery, thus
addressing the limitations of the CMP theory. On this basis, we further design
an MITM framework to enhance the CMP-based approach.

4.1 Extending CMP Theory Using SR Problem

In order to study the CMP theory independently from a specific cryptographic
context, we start by breaking the association between flags and cube indices.

Indeterminate Flags. While the flag technique presented in Sect. 3 is defined
based on the chosen cube indices I, the definition and propagation of CMP are
independent of how the flags are defined. Therefore, in the rest of the paper, we
drop the previous definition of flags based on cube variables, which is to say, the
flag of a bit b is no longer based on representing b as a Boolean polynomial of k
and cube variables. Instead, we consider flags as variables that can take values δ,
1c and 0c, which are referred to as indeterminate flags, but the operation rules
remain unchanged. As a result, the flag masks become variables as well, but
for 0 ≤ i ≤ r, the requirement that Ind[M i,δ], Ind[M i,1c] and Ind[M i,0c] form a
partition of {0, . . . , ni − 1} still holds.

Note that different values assigned to the flag masks can result in dif-
ferent propagation of CMP. Therefore, when we discuss the propagation of
CMP from round rs to round re for 0 ≤ rs < re ≤ r, if the values of
M rs,δ,M rs,1c ,M rs,0c are not clear from the context, we will give specific
values for M rs,δ,M rs,1c ,M rs,0c , and implicitly assume that the values of
M j,δ,M j,1c ,M j,0c , rs < j ≤ re are calculated from round rs according to oper-
ation rules.

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 379

Extending CMP Theory with SR Problem. In the context of indeter-
minate flags, we analyze the reasons why the previous CMP theory is consid-
ered inaccurate. Assume the flag masks M rs,δ,M rs,1c ,M rs,0c take the values
αrs,δ,αrs,1c ,αrs,0c = ¬(αrs,δ ∨αrs,1c). By the definition of CMP, the transition
π(xrs , trs) C→ π(xre , tre) emphasizes the existence of a w � αrs,1c such that
π(xrs ,w) · π(xrs , trs) → π(xre , tre), but does not provide explicit information
about the exact value of w. In other words, the definition of CMP does not
give any precise information related to the exact expressions of the monomials
appearing in Expr 〈π(xre , tre),xrs〉. Consequently, it may give the impression
that the previous CMP theory is inaccurate.

In order to refine the CMP theory to be precise, it is necessary to capture all
w’s that satisfy w � αrs,1c and π(xrs ,w) ·π(xrs , trs) → π(xre , tre). This can be
easily achieved if we can obtain the concrete expression of Expr 〈π(xre , tre),xrs〉
(e.g., when the vectorial Boolean function mapping xrs to xre is simple). How-
ever, when Expr 〈π(xre , tre),xrs〉 is not available, the situation becomes much
more complicated, which deserves further investigation, thus we formalize it as
the following SR problem.

Definition 1 (SR Problem). Let the target cipher f be as defined in Eq. (1).
Given rs, re, 0 ≤ rs < re ≤ r and the values αrs,δ,αrs,1c ,αrs,0c = ¬(αrs,δ ∨
αrs,1c) assigned to the flag masks M rs,δ,M rs,1c ,M rs,0c , for each j, rs < j ≤
re, let M j,δ,M j,1c ,M j,0c take the values αj,δ,αj,1c ,αj,0c that are calculated
from αrs,δ,αrs,1c ,αrs,0c according to the operation rules of flags. Given two
monomials π(xrs , trs) and π(xre , tre) that satisfy trs � αrs,δ and tre � αre,δ,
we can uniquely and symbolically express π(xre ,ure) as a polynomial of xrs , i.e.,

Expr 〈π(xre , tre),xrs〉 = p(xrs [αrs,1c ∨ αrs,0c]) · π(xrs , trs) + q(xrs), (2)

where each monomial π(xrs ,urs) appearing in q(xrs) satisfies urs ∧αrs,δ �= trs .
If we set xrs [αrs,0c] to 0, then the coefficient p(xrs [αrs,1c ∨ αrs,0c]) reduces to
a polynomial that only relates to xrs [αrs,1c]. The question is, what is the exact
expression of this polynomial?

We use SRαrs,δ,αrs,1c 〈tre , trs〉 to denote a concrete instance of the SR
problem, which is uniquely determined by six parameters, namely the num-
bers rs, re of rounds, the values αrs,δ,αrs,1c assigned to M rs,δ,M rs,1c and
the vectors trs , tre corresponding to the monomials π(xrs , trs), π(xre , tre).
The solution of this instance, denoted by Solαrs,δ,αrs,1c 〈tre , trs〉, is the coef-
ficient p(xrs [αrs,1c ∨ αrs,0c]) in Eq. (2) after setting xrs [αrs,0c] to 0. When
αrs,δ,αrs,1c can be inferred from the context without ambiguity, we write
SR〈tre , trs〉 and Sol〈tre , trs〉 for simplicity. Each instance SRαrs,δ,αrs,1c 〈tre , trs〉
uniquely corresponds to a CMP transition π(xrs , trs) C→ π(xre , tre). In partic-
ular, Solαrs,δ,αrs,1c 〈tre , trs〉 is exactly the sum of all w � αrs,1c that satisfy
π(xrs ,w) · π(xrs , trs) → π(xre , tre). When Solαrs,δ,αrs,1c 〈tre , trs〉 is available,

the transition π(xrs , trs) C→ π(xre , tre) is considered accurate.
The SR problem can be considered as an extension of the CMP theory used

to specify the precise algebraic information implied by a CMP transition. Hence,

380 J. He et al.

the solution of an instance SRαrs,δ,αrs,1c 〈tre , trs〉 not only uniquely determines a
CMP transition, but also reflects the information of exact monomials in the alge-
braic composition of Expr 〈π(xre , tre),xrs〉, as stated in Lemma 1 and Lemma 2.
Since these two lemmas are direct consequences of Definition 1, we omit the
proofs of them here.

Lemma 1. Letting αrs,δ,αrs,1c be any values assigned to M rs,δ,M rs,1c and
M rs,0c = ¬(αrs,δ ∨ αrs,1c), for each j, rs < j ≤ re we calculate the values of
M j,δ,M j,1c ,M j,0c as αj,δ,αj,1c ,αj,0c . Then, Sol〈tre , trs〉 is not equal to 0 if
and only if π(xrs , trs) C→ π(xre , tre).

Lemma 2. Let the values of flag masks be defined as in Lemma 1. Given any
monomial π(xre , tre) satisfying tre � αre,δ, after setting xrs [αrs,0c] to 0, if
Expr 〈π(xre , tre),xrs〉 �= 0, then we can uniquely express π(xre , tre) as

Expr 〈π(xre , tre),xrs〉 =
∑

π(xrs ,trs)
C→π(xre ,tre)

Sol〈tre , trs〉 · π(xrs , trs),

where the summation is over all trs ’s that satisfy π(xrs , trs) C→ π(xre , tre).

We would also like to point out that both the SR problem and MP are
concerned with the presence of specific monomials in the polynomial expanded
from a higher-round monomial; the only difference is that MP is concerned with
whether a single monomial exists in the polynomial, whereas the SR problem
is concerned with the existence of several monomials of the same form in the
polynomial. For example, the instance SRαrs,δ,αrs,1c 〈tre , trs〉 is concerned with
whether monomials of the form π(xrs ,w) · π(xrs , trs) appear in the polynomial
Expr 〈π(xre , tre),xrs〉, where π(xrs ,w) is a monomial in Solαrs,δ,αrs,1c 〈tre , trs〉.
Relationships Between Superpoly Recovery and SR Problem. Since the
SR problem is accurate as an extension of CMP, we can utilize it to compute
the exact superpoly.

Proposition 1 (Reducing Superpoly Recovery to Solving SR Prob-
lem). Recall that the initial state x0 is loaded with k, v, constant 1 bits and
constant 0 bits. Let M0,δ,M0,1c and M0,0c take the particular values γ0,δ,γ0,1c

and γ0,0c respectively, where

Ind[γ0,δ] = {i | x(0)[i] is loaded with a cube variable},

Ind[γ0,0c] = {i | x(0)[i] is loaded with a non-cube variable that is set to constant 0}
⋃

{i | x(0)[i] is loaded with constant 0},

γ0,1c = ¬
(
γ0,δ ∨ γ0,0c

)
. (3)

For each j, 0 < j ≤ r, let γj,δ,γj,1c ,γj,0c be calculated from γ0,δ,γ0,1c ,γ0,0c

according to the operation rules of flags. For tI =
∏

i∈I v[i] and the output
bit z as the sum of monomials of xr, we define two sets S0 = {t0 | t0 �

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 381

γ0,δ,Expr
〈
π(x0, t0),v

〉
= tI} and Sr = {ur | π(xr,ur) → z,ur ∧ γr,0c = 0}.

Then, either |Sr| = 0, which is easy to verify and indicates that Coe〈z, tI〉 = 0,
or we can compute Coe〈z, tI〉 as

Coe〈z, tI〉 =
∑

u r∈Sr

⎛

⎝
∑

t0∈S0

Expr
〈
Sol〈ur ∧ γr,δ, t0〉, k

〉
· Expr 〈π(xr, ur ∧ γr,1c), k

〉
⎞

⎠ .

(4)

Proof. Due to page limits, the proof of this proposition is provided in [21,
Sect. 4.1]. ��

In Eq. (4), it is assumed that Expr
〈
π(xr,ur ∧ γr,1c),k

〉
can be calculated

quickly based on the round functions. In practice, due to the diffusion of round
functions, usually the state bits of round r (e.g., r = 850 for Trivium) are
all δ bits, resulting in Expr

〈
π(xr,ur ∧ γr,1c),k

〉
being 1. Therefore, computing

Coe〈z, tI〉 naturally reduces to the problem of seeking solutions for instances
of the form Solγ 0,δ,γ 0,1c 〈tr, t0〉, where the values of flag masks are given as in
Proposition 1 and tr, t0 can be any vectors that satisfy t0 ∈ S0, tr � γr,δ.

4.2 Solving SR Problem with CMP

A CMP transition can be refined to be precise if the instance of the SR problem
corresponding to this transition can be solved. Unfortunately, this is not always
achievable for a complex instance. To address this problem, it would be necessary
to study how to split a high-round instance into multiple instances of lower
round, so that we can compute the solution of a complex instance from the
solutions of simpler instances. With a little derivation, we immediately have the
following lemma.

Lemma 3. Assuming rs + 1 < re, let the values of flag masks be defined as
in Lemma 1. Given a monomial π(xre , tre) satisfying tre � αre,δ, after setting
xrs [αrs,0c] to 0, then for any j, rs < j < re, either Expr

〈
π(xre , tre),xj

〉
= 0 or

we can calculate Sol〈tre , trs〉 as

Sol〈tre , trs〉 =
∑

π(xj ,tj)
C→π(xre ,tre)

Expr
〈
Sol〈tre , tj〉,xrs

〉 · Sol〈tj , trs〉, (5)

where the summation is over all tj’s that satisfy π(xj , tj) C→ π(xre , tre).

Proof. After setting xrs [αrs,0c] to 0, xj [αj,0c] is also set to 0 according to oper-
ation rules. According to Lemma 2, either Expr

〈
π(xre , tre),xj

〉
= 0 or we can

express π(xre , tre) as

Expr
〈
π(xre , tre),xj

〉
=

∑

π(xj ,tj)
C→π(xre ,tre)

Sol〈tre , tj〉 · π(xj , tj).

382 J. He et al.

Notice that for each π(xj , tj) satisfying π(xj , tj) C→ π(xre , tre), Sol〈tre , tj〉 only
relates to xj [αj,1c] and can be expressed as polynomial of xrs [αrs,1c], so it
suffices to calculate Sol〈tj , trs〉, thus proving the lemma. ��

According to Lemma 3, we can calculate Sol〈tre , trs〉 as

Sol〈tre , trs〉 =
∑

tre−1

Expr
〈
Sol〈tre , tre−1〉,xrs

〉 · Sol〈tre−1, trs〉,

where the summation of over all tre−1’s that satisfy π(xre−1, tre−1) C→
π(xre , tre). By applying Lemma 3 to each Sol〈tre−1, trs〉 again, we have

Sol〈tre , trs〉 =
∑

tre−2,tre−1

Expr
〈
Sol〈tre , tre−1〉 · Sol〈tre−1, tre−2〉,xrs

〉 ·Sol〈tre−2, trs〉,

where the summation is over all tre−2, tre−1’s that satisfy π(xre−2, tre−2) C→
π(xre−1, tre−1) C→ π(xre , tre). This process can be repeated round by round
until we arrive at round rs, namely

Sol〈tre , trs〉 =
∑

trs+1,...,tre−1

Expr

〈
re−1∏

j=rs

Sol〈tj+1, tj〉,xrs

〉

· Sol〈trs , trs〉,

where the summation is over all trs+1, . . . , tre−1’s that satisfy π(xrs , trs) C→
π(xrs+1, trs+1) C→ · · · C→ π(xre−1, tre−1) C→ π(xre , tre). Note that Sol〈trs , trs〉 is
trivially 1, so we actually get an approach to compute Sol〈tre , trs〉 based on core
monomial trails. We next formalize this approach as a theory, where the role of
each core monomial trail is explicitly specified.

Definition 2 (Contribution of Core Monomial Trail). Let the values of
flag masks be defined as in Lemma 1. For any core monomial trail � written as

π(xrs , trs) C→ π(xrs+1, trs+1) C→ · · · C→ π(xre , tre),

we define the contribution of this trail as

Contrαrs,δ,αrs,1c 〈l〉 =
re−1∏

j=rs

Solαj,δ,αj,1c 〈tj+1, tj〉.

If αrs,δ,αrs,1c are clear from the context, we write Contr〈l〉 for simplicity.

The contribution of a core monomial trail specifies the algebraic information
carried by the trail. Collecting the contributions of all core monomial trails
enables us to solve a complex instance efficiently. More precisely,

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 383

Proposition 2 (Solving SR Problem by Core Monomial Trails). Let
the values of flag masks be defined as in Lemma 1. Given an instance of the SR
problem denoted by SR〈tre , trs〉, if π(xrs , trs) C�− π(xre , tre), the solution of this
instance is 0; otherwise, we can calculate the solution of this instance by

Sol〈tre , trs〉 =
∑

�∈π(xrs ,trs)
C
�π(xre ,tre)

Expr 〈Contr〈�〉,xrs〉 .

Proof. We prove this proposition by fixing rs and performing induction on re.
When re = rs + 1, the proposition clearly holds according to Definition 2 and
Lemma 2. Assuming the proposition holds for re < m, we are going to prove
that it also holds for re = m.

If π(xrs , trs) C�− π(xm, tm), then either Expr
〈
π(xm, tm),xm−1

〉
= 0, meaning

that Sol〈tm, trs〉 = 0, or π(xrs , trs) C�− π(xm−1, tm−1) for each π(xm−1, tm−1)
satisfy π(xm−1, tm−1) C→ π(xm, tm). For the latter case, we set xrs [αrs,0c] to 0
and calculate Sol〈tm, trs〉 according to Lemma 3 as

Sol〈tm, trs〉 =
∑

π(xm−1,tm−1)
C→π(xm,tm)

Expr
〈
Sol〈tm, tm−1〉,xrs

〉 · Sol〈tm−1, trs〉. (6)

According to the induction hypothesis, π(xrs , trs) C�− π(xm−1, tm−1) leads to
Sol〈tm−1, trs〉 = 0, thus for the latter case we also have Sol〈tm, trs〉 = 0.

If π(xrs , trs) C� π(xre , tre), similarly we set xrs [αrs,0c] to 0 and obtain
Eq. (6). According to the induction hypothesis we made at the beginning,

Sol〈tm−1, trs〉 =
∑

�∈π(xrs ,trs)
C
�π(xm−1,tm−1)

Expr 〈Contr〈�〉,xrs〉 . (7)

Define the set S as

S = {(tm−1, �) | π(xm−1, tm−1) C→ π(xm, tm), � ∈ π(xrs , trs)
C
� π(xm−1, tm−1)}.

Combining Eqs. (6) and (7), we have

Sol〈tm, trs〉 =
∑

(tm−1,�)∈S

Expr
〈
Sol〈tm, tm−1〉 · Contr〈�〉,xrs

〉
, (8)

where the summation is over all the pairs (tm−1, �) ∈ S. Notice that Eqn (8) is
equivalent to

Sol〈tm, trs〉 =
∑

�′∈π(xrs ,trs)
C
�π(xm,tm)

Expr 〈Contr〈�′〉,xrs〉 ,

which proves the proposition. ��
Corollary 1. Let the values of flag masks be defined as in Lemma 1. Then,
π(xrs , trs) C� π(xre , tre) if π(xrs , trs) C→ π(xre , tre).

384 J. He et al.

Algorithm 1: Iterative variable substitutions

1 Procedure VariableSubstitution(SRα rs,δ,α rs,1c 〈tre , trs〉):
2 Initialize an integer j = rs and an empty hash table T
3 Initialize re − rs empty vectors crs , crs+1, . . . , cre−1 of variables
4 while j < re do
5 for each possible pair (tj , tj+1) satisfying π(xj , tj)

C→ π(xj+1, tj+1) do
6 Calculate Sol〈tj+1, tj〉
7 Substitute Sol〈tj+1, tj〉 by a new variable c such that

c · π(xj , tj) → π(xj+1, tj+1)
8 Add c to the end of cj , and store the substitution by letting

T [c] = Sol〈tj+1, tj〉
9 Increment j by one // j = j + 1

10 return crs , crs+1, . . . , cre−1, T

Proof. We prove the contrapositive of this corollary. Since π(xrs , trs) C�−

π(xre , tre), |π(xrs , trs)
C
� π(xre , tre)| = 0. According to Proposition 2,

Sol〈tre , trs〉 = 0. As stated by Lemma 1, this holds if and only if π(xrs , trs) C→−

π(xre , tre). ��
As mentioned earlier, each round function f j , 0 ≤ j ≤ r in Eq. (1) performs

a simple transformation and its ANF has been determined, which means we can
calculate the contribution of a core monomial trail efficiently. Hence, Proposi-
tion 2 provides a feasible CMP-based way to solve SRαrs,δ,αrs,1c 〈tre , trs〉 even if
the concrete expression of Expr 〈π(xre , tre),xrs〉 is not available, thus completing
the refinement of the CMP theory.

Since both the SR problem and MP are concerned with the presence of
monomials, it would be necessary to investigate the relationship between the
CMP-based approach in Proposition 2 and the usual MP-based method in The-
orem 2. In fact, we can equivalently relate CMP and MP by means of variable
substitution.

Equivalence Between CMP and MP. Let the values of flag masks be defined
as in Lemma 1. We set xrs [αrs,0c] to 0. Given an instance SRαrs,δ,αrs,1c 〈tre , trs〉,
we illustrate how to solve this instance based on MP. First, theoretically we can
perform iterative variable substitutions following Algorithm 1. The basic idea
behind Algorithm 1 is, if we regard Solαj,δ,αj,1c 〈tj+1, tj〉 as a single bit c for the
transition π(xj , tj) → π(xj+1, tj+1), then we have c · π(xj , tj) → π(xj+1, tj+1),
thus establishing the equivalence between CMP and MP.

In Line 5–8, we describe a generic approach to perform variable substitu-
tion for a round function f j , but this may not always be practical to directly
implement as it requires enumerating an exponential number of monomials. Cor-
responding to the propagation rules of CMP, we propose several rules to replace
Line 5–8 to optimize the substitution process.

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 385

Algorithm 2: Perform variable substitution on f j that consists of multiple
S-boxes
1 for each S-box Si, 0 ≤ i < m do
2 for each possible pair (tj , tj+1) satisfying that π(xj , tj) only relates to the

input δ bits of Si, π(xj+1, tj+1) only relates to the output δ bits of Si,

and π(xj , tj)
C→ π(xj+1, tj+1) do

3 Calculate Sol〈tj+1, tj〉
4 Substitute Sol〈tj+1, tj〉 by a new variable c such that

c · π(xj , tj) → π(xj+1, tj+1)
5 Add c to the end of cj , and store the substitution by letting

T [c] = Sol〈tj+1, tj〉

Rule 1 (COPY) Assume the round function f j is the basic operation COPY

with xj [0] COPY−−−−→ (xj+1[0], . . . , xj+1[m−1]). We do not need to perform variable
substitution because Sol〈tj+1, tj〉 = 1 if π(xj , tj) C→ π(xj+1, tj+1).

Rule 2 (AND) Assume the round function f j is the basic operation
AND with (xj [0], xj [1], . . . , xj [m − 1]) AND−−−→ xj+1[0]. If {1c, δ} ⊆
{xj [0].F, xj [1].F, . . . , xj [m − 1].F} and xj+1[0].F = δ, we substitute a new vari-
able c for

∏
0≤i<m

xj [i].F=1c

xj [i], add c to the end of cj, and store the substitution by

letting T [c] =
∏

0≤i<m
xj [i].F=1c

xj [i]; otherwise we do not perform variable substitu-

tion.

Rule 3 (XOR) Assume the round function f j is the basic operation
XOR with (xj [0], xj [1], . . . , xj [m − 1]) XOR−−−→ xj+1[0]. If {1c, δ} ⊆
{xj [0].F, xj [1].F, . . . , xj [m − 1].F}, we substitute a new variable c for∑

0≤i<m
xj [i].F=1c

xj [i], add c to the end of cj, and store the substitution by letting

T [c] =
∑

0≤i<m
xj [i].F=1c

xj [i]; otherwise we do not perform variable substitution.

Rule 4 (S-boxes) Let f j be a function that consists of m S-boxes, denoted by
S0, . . . , Sm−1. We can set cj and T following Algorithm 2.

Utilizing the new variables crs , crs+1, . . . , cre−1, T returned by Algorithm 1,
we are able to establish a one-to-one correspondence between core monomial
trails and monomial trails.

Proposition 3. There is a core monomial trail written as

π(xrs , trs) C→ π(xrs+1, trs+1) C→ · · · C→ π(xre , tre)

386 J. He et al.

if and only if there is a monomial trail written as

π(crs‖ · · · ‖cre−1‖xrs ,wrs‖ · · · ‖wre−1‖trs)

→ π(crs+1‖ · · · ‖cre−1‖xrs+1,wrs+1‖ · · · ‖wre−1‖trs+1)
→ · · ·
→ π(cre−1‖xre−1,wre−1‖tre−1)
→ π(xre , tre). (9)

Moreover, by substituting each variable c in cj , rs ≤ j < re back with T [c], we
can get a polynomial of xrs , . . . ,xre−1 from π(crs‖ · · · ‖cre−1,wrs‖ · · · ‖wre−1),
which is exactly the contribution of the core monomial trail.

Proof. For each j, rs ≤ j < re, according to the process of iterative vari-
able substitutions, π(xj , tj) C→ π(xj+1, tj+1) if and only if there is an unique
wj such that π(cj‖xj ,wj‖tj) → π(xj+1, tj+1). Combining all these MP tran-
sitions π(crs‖xrs ,wrs‖trs) → π(xrs+1, trs+1), π(crs+1‖xrs+1,wrs+1‖trs+1) →
π(xrs+2, trs+2), . . . , π(cre−1‖xre−1,wre−1‖tre−1) → π(xre , tre) yields an equiv-
alent monomial trail described in the proposition. ��

We can therefore also solve SRαrs,δ,αrs,1c 〈tre , trs〉 by extracting all monomials
trails of the form (9) after performing the iterative variable substitutions, which
gives an equivalent MP-based interpretation for the CMP-based approach in
Proposition 2. For ease of understanding, we give a concrete example in [21,
Sup. Mat. D].

4.3 MITM Framework

At this point, we have a complete process for computing the superpoly Coe〈z, tI〉,
i.e., we first reduce the superpoly recovery to the instances of the SR problem
using Proposition 1 and then solve the instances by the CMP-based approach in
Proposition 2. The remaining question is how to further improve the efficiency of
this process. A similar issue has been also encountered in previous work related
to MP [23,24], and it is resolved by a divide-and-conquer strategy, which can be
further used in a nested fashion. Inspired by this, we have also tailored a nested
divide-and-conquer framework for solving the SR problem.

Divide-and-Conquer: Forward Expansion and Backward Expansion.
As a natural corollary of Proposition 2, Eq. (5) in Lemma 3 can be enhanced to

Sol〈tre , trs〉 =
∑

tj

Expr
〈
Sol〈tre , tj〉,xrs

〉 · Sol〈tj , trs〉,

where the summation is over all tj ’s that satisfy both π(xrs , trs) C→ π(xj , tj) and
π(xj , tj) C→ π(xre , tre). This reveals the following two perspectives for computing
Sol〈tre , trs〉 by the divide-and-conquer strategy:

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 387

– Forward expansion: We choose a j between rs and re, and determine all
π(xj , tj)’s that satisfy π(xrs , trs) C� π(xj , tj). For each such π(xj , tj), we
precompute Sol〈tj , trs〉. If Sol〈tj , trs〉 is not 0 (i.e., π(xrs , trs) C→ π(xj , tj)),
we store Sol〈tj , trs〉 and then focus on computing Sol〈tre , tj〉.

– Backward expansion: We choose a j between rs and re, and determine all
π(xj , tj)’s that satisfy π(xj , tj) C� π(xre , tre). For each such π(xj , tj), we
precompute Sol〈tre , tj〉. If Sol〈tre , tj〉 is not 0 (i.e., π(xj , tj) C→ π(xre , tre)),
we store Sol〈tre , tj〉 and then focus on computing Sol〈tj , trs〉.

Typically, we will choose j close to re in the backward expansion and j close
to rs in the forward expansion, so that the precomputation takes only a small
amount of time.

One obvious advantage of these two expansions is that both of them split
a complex instance into multiple simpler instances that are easier to deal with.
Furthermore, if not using any expansion, solving SR〈tre , trs〉 would require enu-

merating |π(xrs , trs)
C
� π(xre , tre)| core monomial trails, but with backward

expansion the total number of enumerated core monomial trails will be (ignor-
ing the core monomial trails needed for the precomputation)

∑

π(xj ,tj)
C→π(xre ,tre)

|π(xrs , trs)
C
� π(xj , tj)|,

which is not larger than |π(xrs , trs)
C
� π(xre , tre)|, so the backward expansion

reduces the number of required core monomial trails, and the same is also true
for forward expansion.

Forward and Backward Overlaps. We further discuss the rationale behind
the forward and backward expansion. Now consider that we want to solve two
instances denoted by SR〈tre

0 , trs〉 and SR〈tre
1 , trs〉 simultaneously with the flag

masks taking the same values as in Lemma 3. If we use the backward expansion
from round re to round j separately on the two instances, the total number of
enumerated core monomial trails will be

∑

π(xj ,tj)
C→π(xre ,tre

0)

|π(xrs , trs)
C
� π(xj , tj)| +

∑

π(xj ,tj)
C→π(xre ,tre

1)

|π(xrs , trs)
C
� π(xj , tj)|,

where the left summation is for SR〈tre
0 , trs〉 and the right summation is for

SR〈tre
1 , trs〉. However, if there exists a π(xj , tj) satisfying both π(xj , tj) C→

π(xre , tre
0) and π(xj , tj) C→ π(xre , tre

1), we can observe that the core monomial

trails in π(xrs , trs)
C
� π(xj , tj) can only be enumerated once for both SR〈tre

0 , trs〉
and SR〈tre

1 , trs〉, and we say that SR〈tre
0 , trs〉 and SR〈tre

1 , trs〉 have a backward
overlap at π(xj , tj). Therefore, in total we actually only need to enumerate
∑

tj |π(xrs , trs)
C
� π(xj , tj)| trails, where the summation is over all tj ’s that

satisfy one of the following three conditions:

388 J. He et al.

1. π(xj , tj) C→ π(xre , tre
0), π(xj , tj) C→− π(xre , tre

1);
2. π(xj , tj) C→− π(xre , tre

0), π(xj , tj) C→ π(xre , tre
1);

3. π(xj , tj) C→ π(xre , tre
0), π(xj , tj) C→ π(xre , tre

1).

Condition 3 is exactly the condition that should be satisfied by those π(xj , tj)’s
where SR〈tre

0 , trs〉 and SR〈tre
1 , trs〉 have backward overlaps. For m instances

denoted by SR〈tre
0 , trs〉, . . . ,SR〈tre

m−1, t
rs〉, if there are any two of them that

have a backward overlap at π(xj , tj), we say these m instances have a backward
overlap at π(xj , tj).

Similarly, for two instances denoted by SR〈tre , trs
0 〉 and SR〈tre , trs

1 〉 with
the values of flag masks determined as in Lemma 3, we say SR〈tre , trs

0 〉 and
SR〈tre , trs

1 〉 have a forward overlap at π(xj , tj) if the π(xj , tj) satisfies both
π(xrs , trs

0) C→ π(xj , tj) and π(xrs , trs
1) C→ π(xj , tj). The concept of forward

overlaps can be extended to multiple instances in the same way as backward
overlaps. Naturally, the more backward (resp. forward) overlaps occurs at round
j, the more effective we consider the backward (reps. forward) expansion to be.

The forward and backward overlaps can be illustrated by [21, Fig. 1], where
we use sold lines to indicate the parts that are precomputed and dashed lines
to indicate the parts that are to be computed. The monomial highlighted in red
indicates where the forward or backward overlap occurs.

Computing the Superpoly with MITM Framework. As mentioned in
Proposition 1, computing the superpoly, i.e., Coe〈z, tI〉, reduces to solving con-
crete instances of the form SRγ 0,δ,γ 0,1c 〈tr, t0〉 with γ0,δ,γ0,1c determined by

Eq. (3). Assuming π(x0, t0) C� π(xr, tr), then we can solve SRγ 0,δ,γ 0,1c 〈tr, t0〉
by applying the forward expansion and backward expansion interchangeably and
recursively as follows, where the forward depth r0 and the backward depth r1
represent the number of rounds affected each time we use the forward and back-
ward expansion, respectively.

1. Initialize M0,δ = γ0,δ,M0,1c = γ0,1c ,M0,0c = ¬(γ0,δ ∨ γ0,1c) according to
Eq. (3). For each j, 0 < j ≤ r, calculate the values of M j,δ,M j,1c ,M j,0c as
γj,δ,γj,1c ,γj,0c according to the operation rules of flags.

2. Prepare a hash table P whose key is an instance and value is a Boolean
polynomial of x0 and initialize P as P [SR〈tr,γ0,δ〉] = 1. Initialize rs = 0, re =
r. Prepare a binary variable d to represent the direction of the expansion and
initialize d = 1. Initialize a Boolean polynomial p = 0 to store the results.

3. If re < B, we flip the value of d. Prepare an empty hash table Pe of the same
type as P to store the new instances generated by the expansion.

4. If d = 0, we use forward expansion. Namely, for each instance SR〈tre , trs〉 as
a key of P :
(a) Determine all π(xrs+r0 , trs+r0)’s that satisfy π(xrs , trs) C� π(xrs+r0 ,

trs+r0).
(b) For each such π(xrs+r0 , trs+r0), compute Sol〈trs+r0 , trs〉 using Propo-

sition 2, and if Sol〈trs+r0 , trs〉 is not 0, we consider two cases: if
the instance SR〈tre , trs+r0〉 is already a key of Pe, we update Pe

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 389

by Pe[SR〈tre , trs+r0〉] = Pe[SR〈tre , trs+r0〉] + Expr
〈
Sol〈trs+r0 , trs〉,x0

〉 ·
P [SR〈tre , trs〉]; otherwise we add the instance SR〈tre , trs+r0〉 to Pe by
letting Pe[SR〈tre , trs+r0〉] = Expr

〈
Sol〈trs+r0 , trs〉,x0

〉 · P [SR〈tre , trs〉].
(c) Let P = Pe and update rs by rs = rs + r0.

5. If d = 1, we use backward expansion. Namely, for each instance SR〈tre , trs〉
as a key of P :
(a) Determine all π(xre−r1 , tre−r1)’s that satisfy π(xre−r1 , tre−r1) C�

π(xre , tre).
(b) For each such π(xre−r1 , tre−r1), compute Sol〈tre , tre−r1〉 using Propo-

sition 2, and if Sol〈tre , tre−r1〉 is not 0, we consider two cases: if
the instance SR〈tre−r1 , trs〉 is already a key of Pe, we update Pe

by Pe[SR〈tre−r1 , trs〉] = Pe[SR〈tre−r1 , trs〉] + Expr
〈
Sol〈tre , tre−r1〉,x0

〉 ·
P [SR〈tre , trs〉]; otherwise we add the instance SR〈tre−r1 , trs〉 to Pe by
letting Pe[SR〈tre−r1 , trs〉] = Expr

〈
Sol〈tre , tre−r1〉,x0

〉 · P [SR〈tre , trs〉].
(c) Let P = Pe and update re by re = re − r1.

6. For each instance SR〈tre , trs〉 as a key of P , if P [SR〈tre , trs〉] is 0, we remove
SR〈tre , trs〉 from the keys of P .

7. If the size of P is not larger than N , we jump to Step 3; otherwise we start
to solve the instances in P and prepare an empty hash table Pu of the same
type as P to store the unsolved instances that will be generated later.

8. For each instance SR〈tre , trs〉 as a key of P , we solve it using Proposition 2
within a time limit τ re−rs . If the instance is solved within the time limit,
we obtain Sol〈tre , trs〉 and update p by p = p + Expr

〈
Sol〈tre , trs〉,x0

〉 ·
P [SR〈tre , trs〉]; if the instance is determined to have the solution 0, we discard
it; if the instance is not solved within the time limit, we add the pair to Pu

by letting Pu[SR〈tre , trs〉] = P [SR〈tre , trs〉].
9. If the size of Pu is 0, then p is returned as the final result; otherwise we let

P = Pu and jump back to Step 3 to continue expanding and solving instances
in P .

As the above process advances, the gap between rs and re decreases progres-
sively, hence we call it a meet-in-the-middle (MITM) framework. The parame-
ters B,N, r0, r1, τ

re−rs appearing in the process depends on the structure of a
cipher, so we will give their values on the spot when applying the framework to a
specific cipher. In particular, the time limit τ re−rs increases as the gap between
rs and re shrinks to ensure that more time resources are allocated to solving
sufficiently simple instances rather than complex ones. We also set very small
values for the forward depth r0 and the backward depth r1 (e.g., r0 = 5 and
r1 = 20 for Trivium) so that solving instances during the expansion process,
namely Step 4b and 5b, can be completed quickly. The way we update Pe in
Step 4b and 5b can be thought of as a direct reflection of the role of (forward or
backward) overlaps.

For each instance SR〈tre , trs〉 as a key of P in Step 8, it is very likely
π(xrs , trs) C�− π(xre , tre), resulting in the instance being determined to have
the solution 0 and then discarded. Therefore, we can adjust Step 4a to directly
identify all π(xrs+r0 , trs+r0)’s that satisfy both π(xrs , trs) C� π(xrs+r0 , trs+r0)

390 J. He et al.

and π(xrs+r0 , trs+r0) C� π(xre , tre), which can be implemented using the call-
back interface provided by the Gurobi solver. A similar adjustment can be made
to Step 5a. Details on how to use callbacks for expansion are discussed in [21,
Sup.Mat. E].

Forward or Backward. We compare the forward expansion and backward
expansion strategies heuristically to explain why we set a parameter B in the
MITM framework. In Step 3, we have to determine which expansion strategy to
adopt for the hash table P . It can be predicted that some instances in P may
have forward overlaps at round rs+r0, while others may have backward overlaps
at round re−r1. Nevertheless, we observe that for each instance SR〈tre , trs〉 in P ,
the Hamming weight of tre is much greater than that of trs . For example, when
rs = 25, re = 289 for 849-round Trivium with the cube indices chosen as I3 in
Table 2, wt(trs) is approximately 40, but wt(tre) is only about 20. This means,
if we assume two instances denoted by SR〈tre

0 , trs
0 〉 and SR〈tre

1 , trs
1 〉 in P are

independently stochastic, i.e., the binary vectors tre
0 , trs

0 , tre
1 , trs

1 are independent
and random, then it is more likely that these two instances will have a forward
overlap at round rs + r0 than that they will have a backward overlap at round
re − r1, and therefore we believe that the forward expansion lessens the amount
of trails that must be enumerated to a greater degree compared to the backward
expansion.

However, high Hamming weights also present some challenges. One critical
limitation of the forward expansion is that the size of the hash table P grows
dramatically as the forward depth r0 increases. While the backward expansion
faces a similar issue as the backward depth r1 rises, P expands at a smaller rate
compared to the forward expansion. For this reason, the backward depth r1 is
set greater than the forward depth r0. If we use the difference between rs and
re to evaluate the difficulty of each instance in P , then the backward expansion
closes the gap between rs and re much faster than the forward expansion, and
the resulting new instances are simpler.

In summary, the faster closure of the gap between rs and re achieved through
backward expansion as opposed to forward expansion renders it most suitable
when re is significantly large (e.g., over 350 for Trivium). In contrast, when
re falls below a certain threshold B, forward and backward expansion can be
applied interchangeably. This allows balancing the benefits and drawbacks of
both strategies to optimize performance.

Ultimately, our overall process for computing Coe〈z, tI〉 can be summarized as
follows: we first reduce the superpoly recovery to the instances of the SR problem
using Proposition 1 and then solve each instance using the MITM framework
(i.e., Step 1 to Step 9). For the implementation of Proposition 2 in the MITM
framework, more details can be taken into account for optimization, which are
illustrated in [21, Sect. 4.4].

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 391

5 Applications

We apply our MITM framework to three stream ciphers that have been targeted
in previous research: Trivium, Grain-128AEAD and Kreyvium. As a result, we
are able to verify previous results at a much lower time cost, and also recover
the exact superpolies for up to 851 rounds of Trivium and up to 899 rounds of
Kreyvium. All experiments are conducted using the Gurobi Solver (version 9.1.2)
on a workstation equipped with high-speed processors (totally 32 cores and 64
threads). The source code and some of the recovered superpolies are available in
our git repository.

More specifically, when referring to the number of rounds for a stream cipher
as r, we are considering that the initialization phase of the cipher consists of r
rounds, and we assume that we have access to the output bits produced after
this initialization phase. We also omit the description of how to construct an
MILP model of CMP or MP for a concrete cipher, as they can be found in
previous literature [20,22,24]. For the cube indices that we will mention later in
this section, we also attempt to recover the superpolies by re-running the code
provided by [22] on our platform, so that we can compare the time consumption
of our MITM framework against the framework presented in [22].

For the cube indices used in this section, we always set the non-cube variables
to constant 0, though our MITM framework works no matter what constant
values the non-cube variables take.

5.1 Superpoly Recovery for TRIVIUM

Trivium is a hardware-efficient, synchronous stream cipher designed by De Can-
nière and Preneel [7]. The specification of Trivium is provided in [21, Sect. 5.1].

Parameters. For the parameters required by the MITM framework, we set
B,N, r0, r1 to 350, 50 000, 5, 20, respectively. The time limit τ re−rs is selected
according to [21, Algorithm 8].

Superpoly Verification for up to 848 Rounds of Trivium. The cube
indices of Trivium used for verification are listed in [21, Table 5]. For each cube
listed in [21, Table 5], we verified its superpoly using our MITM framework in
almost half the time it took in [22]. The verification results are provided in [21,
Table 6].

Superpoly Recovery for up to 851 Rounds of Trivium. To the best
of our knowledge, currently there is no dedicated method for selecting a good
cube that can yield a simple superpoly. However, we notice that using the vector
numeric mapping technique published in [45], the authors in [46] discovered two
cubes, which we refer to as I3 and I4 in Table 2, whose 844-round superpolies are
simpler than superpolies of any cubes previously found. This strongly suggests
that the superpolies of these two cubes may still maintain manageable complexity
even at higher numbers of rounds beyond 844. With this in mind, we applied the
MITM framework to these two cubes and successfully recovered the superpolies

https://github.com/viocently/sdfkjxu192lc78-s0

392 J. He et al.

Table 2. The cube indices for Trivium up to 851 rounds

I Indices Size

I3

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30,

32, 34, 36, 39, 41, 43, 45, 47, 49, 51, 54, 56, 58, 60, 62, 64, 66, 69, 71, 73, 75,

77, 79

44

I4

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 22, 24, 26, 28, 30,

32, 34, 37, 39, 41, 43, 45, 47, 49, 52, 54, 56, 58, 60, 62, 64, 67, 69, 71, 73, 75,

77, 79

44

Table 3. Details related to the superpolies recovered for Trivium

I Rounds Time Cost Balancedness§ #Monomials� #Key Bits� Degree�

I3 849 24 h 0.50 337 087 128 231 80 32
I4 849 52 h 0.50 189 293 249 301 80 32
I3 850 81 h 0.50 3 291 633 158 676 80 34
I3 851 600 h 0.50 20 129 749 853 208 80 36

§ The balancedness of each superpoly is estimated by testing 215 random keys.
� An upper bound on the number of monomials, the number of involved key bits or
the algebraic degree.

for up to 851 rounds of Trivium. The details of the recovered superpolies are
given in Table 3. Since the memory required to store the monomials contained
in each superpoly exceeds the memory of workstation, we evaluated the number
of monomials, the number of involved key bits and the algebraic degree without
considering monomial cancellation, and thus the corresponding data in Table 3
is only an upper bound.

We also attempted to reproduce the 851-round superpoly of I3 using the
framework introduced in [22]. Unfortunately, the program had still not termi-
nated even after two months (1440 h). This demonstrates that our MITM frame-
work outperforms previous approaches in terms of computational efficiency and
is capable of exceeding what previous work has been able to achieve.

5.2 Superpoly Recovery for Grain-128AEAD

For the cipher Grain-128AEAD that is described in [21, Sup.Mat. G.2], we
set the parameters B,N, r0, r1 that are required by the MITM framework to
90, 15 000, 1, 1, respectively. The time limit τ re−rs is selected according to [21,
Algorithm 9].

Superpoly Verification for up to 192 Rounds of Grain-128AEAD.
In [22], the authors recovered a 192-round superpoly with the cube indices cho-
sen as I = {0, 1, 2, . . . , 95}\{42, 43}. We re-ran the code provided by them on
our platform and verified the result after about 45 d. In contrast, our MITM

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 393

framework only took about 9 d to recover this superpoly, reducing the time to 1
5

of the original.

5.3 Superpoly Recovery for Kreyvium

In [21, Sup.Mat. G.3], we provide the specification of Kreyvium and discuss
the limitations of the effectiveness of our MITM framework on Kreyvium.
For the parameters required by the MITM framework, we set B,N, r0, r1 to
270, 15 000, 5, 20, respectively. The time limit τ re−rs is selected according to [21,
Algorithm 10].

Superpoly Verification for 895-Round Kreyvium. Using the code pro-
vided by [22] on our platform, we reproduced the 895-round superpoly of the
cube indices I0 = {0, 1, . . . , 127}\{66, 72, 73, 78, 101, 106, 109, 110} in about two
weeks. In contrast, our MITM framework took only about 9 d to recover this
superpoly.

Superpoly Recovery for up to 899 Rounds of Kreyvium. By adjust-
ing the cube indices I0 slightly, we finally determine three cube indices
that can lead to more than 895 rounds of simple superpolies. These
cube indices are referred to as I1 = {0, 1, . . . , 127}\{66, 73, 106, 109, 110},
I2 = {0, 1, . . . , 127}\{66, 73, 106, 110} and I3 = {0, 1, . . . , 127}\{66, 73, 85, 87},
respectively. The details of the recovered superpolies are given in [21, Table 4].

6 Key Recovery Attack

Based on the memory-efficient Möbius transform proposed by Dinur at EURO-
CRYPT 2021 [11], we can mount a key-recovery attack against 851-round Triv-
ium using the superpoly with a time complexity of slightly more than 279 and
a memory complexity of about 249 bits. Since in this part we do not bring new
techniques, we put the concrete key recovery process in [21, Sect. 6].

Key Recovery for 899-Round Kreyvium. Since the 899-round superpoly of
Kreyvium only involves 121 key bits, we can easily mount a key-recovery attack
against 899-round Kreyvium with a time complexity of about 2127.

7 Conclusion

In this paper, we analyze algebraically how core monomial trails contribute to
the composition of the superpoly, based on the basic definition of core monomial
prediction (CMP), thus establishing a theory of superpoly recovery that relies
exclusively on CMP. This CMP-based approach can be equivalently linked to MP
by means of a variable substitution technique. For a further speedup, we design
a meet-in-the-middle (MITM) framework to embed our CMP-based approach.
Using this framework, we are able to recover the superpolies for reduced-round
versions of the ciphers Trivium and Kreyvium with 851 and 899 rounds, result-
ing in cube attacks that cover more rounds than previous work.

394 J. He et al.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions to improve the quality of the paper. This
research is supported by the National Key Research and Development Program of
China (Grant No. 2018YFA0704702), the National Natural Science Foundation of
China (Grant No. 62032014, U2336207), Department of Science & Technology of Shan-
dong Province (No. SYS202201), Quan Cheng Laboratory (Grant No. QCLZD202301,
QCLZD202306). Kai Hu is supported by the “ANR-NRF project SELECT”. The scien-
tific calculations in this paper have been done on the HPC Cloud Platform of Shandong
University.

References

1. eSTREAM: the ECRYPT stream cipher project (2018). https://www.ecrypt.eu.
org/stream/. Accessed 23 Mar 2021

2. Gurobi Optimization. https://www.gurobi.com
3. ISO/IEC 29192-3:2012: Information technology - Security techniques - Lightweight

cryptography - Part 3: stream ciphers. https://www.iso.org/standard/56426.html
4. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery

attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03317-9_1

5. Baudrin, J., Canteaut, A., Perrin, L.: Practical cube attack against nonce-misused
Ascon. IACR Trans. Symmetric Cryptol. 2022(4), 120–144 (2022)

6. Boura, C., Coggia, D.: Efficient MILP modelings for sboxes and linear layers of
SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327–361 (2020)

7. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68351-3_18

8. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: Stream Ciphers: a practical solution for efficient homomorphic-
ciphertext compression. J. Cryptol. 31(3), 885–916 (2018)

9. Che, C., Tian, T.: An experimentally verified attack on 820-round trivium. In:
Deng, Y., Yung, M., editors, Information Security and Cryptology - 18th Interna-
tional Conference, Inscrypt 2022, Beijing, China, December 11-13, 2022, Revised
Selected Papers, volume 13837 of Lecture Notes in Computer Science, pp. 357–369.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-26553-2_19

10. Delaune, S., Derbez, P., Gontier, A., Prud’homme, C.: A simpler model for recov-
ering superpoly on trivium. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS,
vol. 13203, pp. 266–285. Springer, Cham (2022). https://doi.org/10.1007/978-3-
030-99277-4_13

11. Dinur, I.: Cryptanalytic applications of the polynomial method for solving multi-
variate equation systems over GF(2). In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, vol. 12696, pp. 374–403. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5_14

12. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 733–761.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_28

https://www.ecrypt.eu.org/stream/
https://www.ecrypt.eu.org/stream/
https://www.gurobi.com
https://www.iso.org/standard/56426.html
https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-031-26553-2_19
https://doi.org/10.1007/978-3-030-99277-4_13
https://doi.org/10.1007/978-3-030-99277-4_13
https://doi.org/10.1007/978-3-030-77870-5_14
https://doi.org/10.1007/978-3-662-46800-5_28

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 395

13. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9_16

14. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21702-9_10

15. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: lightweight
authenticated encryption and hashing. J. Cryptol. 34(3), 33 (2021)

16. Fan, H., Hao, Y., Wang, Q., Gong, X., Jiao, L.: Key filtering in cube attacks
from the implementation aspect. In: Deng, J., Kolesnikov, V., Schwarzmann, A.A.,
editors, Cryptology and Network Security - 22nd International Conference, CANS
2023, Augusta, GA, USA, October 31 - November 2, 2023, Proceedings, vol. 14342
of Lecture Notes in Computer Science, pp. 293–317. Springer, Singapore (2023).
https://doi.org/10.1007/978-981-99-7563-1_14

17. Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of trivium
using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
502–517. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-
3_26

18. Funabiki, Y., Todo, Y., Isobe, T., Morii, M.: Improved integral attack on HIGHT.
ACISP 2017, 363–383 (2017)

19. Hao, Y., Jiao, L., Li, C., Meier, W., Todo, Y., Wang, Q.: Links between divi-
sion property and other cube attack variants. IACR Trans. Symmetric Cryptol.
2020(1), 363–395 (2020)

20. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12105, pp. 466–495. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1_17

21. He, J., Hu, K., Lei, H., Wang, M.: Massive superpoly recovery with a meet-in-the-
middle framework – improved cube attacks on trivium and kreyvium. Cryptology
ePrint Archive, Paper 2024/342 (2024). https://eprint.iacr.org/2024/342

22. He, J., Hu, K., Preneel, B., Wang, M.: Stretching cube attacks: improved meth-
ods to recover massive superpolies. In: Agrawal, S., Lin, D., editors, Advances in
Cryptology - ASIACRYPT 2022 - 28th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei, Taiwan, Decem-
ber 5–9, 2022, Proceedings, Part IV, volume 13794 of Lecture Notes in Computer
Science, pp. 537–566. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
22972-5_19

23. Hu, K., Sun, S., Todo, Y., Wang, M., Wang, Q.: Massive superpoly recovery
with nested monomial predictions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT
2021. LNCS, vol. 13090, pp. 392–421. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-92062-3_14

24. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division
property: revisiting degree evaluations, cube attacks, and key-independent sums.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 446–476.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_15

25. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on
reduced-round keccak sponge function. In: Coron, J.-S., Nielsen, J.B., editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in
Computer Science, pp. 259–288 (2017)

https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-642-21702-9_10
https://doi.org/10.1007/978-981-99-7563-1_14
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-030-45721-1_17
https://eprint.iacr.org/2024/342
https://doi.org/10.1007/978-3-031-22972-5_19
https://doi.org/10.1007/978-3-031-22972-5_19
https://doi.org/10.1007/978-3-030-92062-3_14
https://doi.org/10.1007/978-3-030-92062-3_14
https://doi.org/10.1007/978-3-030-64837-4_15

396 J. He et al.

26. Lei, H., He, J., Hu, K., Wang, M.: More balanced polynomials: cube attacks on 810-
and 825-round trivium with practical complexities. IACR Cryptol. ePrint Arch.,
1237 (2023)

27. Li, Z., Bi, W., Dong, X., Wang, X.: Improved conditional cube attacks on keccak
keyed modes with MILP method. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 99–127. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8_4

28. Li, Z., Dong, X., Wang, X.: Conditional cube attack on round-reduced ASCON.
IACR Trans. Symmetric Cryptol. 2017(1), 175–202 (2017)

29. Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9_8

30. Liu, M., Yang, J., Wang, W., Lin, D.: Correlation Cube Attacks: from weak-key
distinguisher to key recovery. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 715–744. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8_23

31. Mroczkowski, P., Szmidt, J.: The cube attack on stream cipher Trivium and
quadraticity tests. Fundam. Informaticae 114(3–4), 309–318 (2012)

32. Rohit, R., Kai, H., Sarkar, S., Sun, S.: Misuse-free key-recovery and distinguishing
attacks on 7-round ascon. IACR Trans. Symmetric Cryptol. 2021(1), 130–155
(2021)

33. Rohit, R., Sarkar, S.: Diving deep into the weak keys of round reduced ascon. IACR
Trans. Symmetric Cryptol. 2021(4), 74–99 (2021)

34. Salam, I., Bartlett, H., Dawson, E., Pieprzyk, J., Simpson, L., Wong, K.K.-H.:
Investigating cube attacks on the authenticated encryption stream cipher ACORN.
In: Batten, L., Li, G., editors, ATIS 2016, volume 651 of Communications in Com-
puter and Information Science, pp. 15–26 (2016)

35. Sasaki, Yu., Todo, Y.: New algorithm for modeling S-box in MILP based differential
and division trail search. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS,
vol. 10543, pp. 150–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69284-5_11

36. Song, L., Guo, J., Shi, D., Ling, S.: New MILP Modeling: improved conditional
cube attacks on keccak-based constructions. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018. LNCS, vol. 11273, pp. 65–95. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03329-3_3

37. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property
for ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8_5

38. Sun, L., Wang, W., Wang, M.: MILP-aided bit-based division property for primi-
tives with non-bit-permutation linear layers. IET Inf. Secur. 14(1), 12–20 (2020)

39. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalu-
ation and (Related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9

40. Sun, Y.: Automatic search of cubes for attacking stream ciphers. IACR Trans.
Symmetric Cryptol. 2021(4), 100–123 (2021)

41. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.,
editors, CRYPTO 2015, LNCS, vol. 9215, pp. 413–432 (2015)

https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-319-63697-9_8
https://doi.org/10.1007/978-3-319-78375-8_23
https://doi.org/10.1007/978-3-319-78375-8_23
https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-030-03329-3_3
https://doi.org/10.1007/978-3-030-03329-3_3
https://doi.org/10.1007/978-3-319-70694-8_5
https://doi.org/10.1007/978-3-662-45611-8_9

Massive Superpoly Recovery with a Meet-in-the-Middle Framework 397

42. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12

43. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9_9

44. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5_18

45. Wang, J., Qin, L., Wu, B.: Correlation cube attack revisited: improved cube search
and superpoly recovery techniques. Cryptology ePrint Archive, Paper 2023/1408
(2023). https://eprint.iacr.org/2023/1408

46. Wang, J., Wu, B., Liu, Z.: Improved degree evaluation and superpoly recovery
methods with application to trivium. CoRR, abs/2201.06394 (2022)

47. Wang, Q., Grassi, L., Rechberger, C.: Zero-sum partitions of PHOTON permuta-
tions. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 279–299. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_15

48. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 275–305. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_10

49. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP-aided method of search-
ing division property using three subsets and applications. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 398–427. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_14

50. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24

51. Ye, C., Tian, T.: A new framework for finding nonlinear superpolies in cube attacks
against trivium-like ciphers. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS,
vol. 10946, pp. 172–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93638-3_11

52. Ye, C.-D., Tian, T.: A practical key-recovery attack on 805-round trivium. In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 187–213.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_7

https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-662-52993-5_18
https://eprint.iacr.org/2023/1408
https://doi.org/10.1007/978-3-319-76953-0_15
https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-319-93638-3_11
https://doi.org/10.1007/978-3-319-93638-3_11
https://doi.org/10.1007/978-3-030-92062-3_7

	Massive Superpoly Recovery with a Meet-in-the-Middle Framework
	1 Introduction
	2 Cube Attack and Monomial Prediction
	2.1 Notations and Definitions
	2.2 Cube Attack
	2.3 Monomial Prediction (MP)

	3 Recalling Core Monomial Prediction (CMP)
	4 Beyond Existence: Refinement of CMP Theory
	4.1 Extending CMP Theory Using SR Problem
	4.2 Solving SR Problem with CMP
	4.3 MITM Framework

	5 Applications
	5.1 Superpoly Recovery for Trivium
	5.2 Superpoly Recovery for Grain-128AEAD
	5.3 Superpoly Recovery for Kreyvium

	6 Key Recovery Attack
	7 Conclusion
	References

