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Abstract. In this chapter, we describe a series of studies related to our research on
using gestural sonic objects in music analysis. These include developing a method
for annotating the qualities of gestural sonic objects on multimodal recordings;
ranking which features in a multimodal dataset are good predictors of basic qual-
ities of gestural sonic objects using the Random Forests algorithm; and a super-
vised learning method for automated spotting designed to assist human anno-
tators. The subject of our analyses is a performance of Fragmente2, a choreo-
musical composition based on the Japanese composer Makoto Shinohara’s solo
piece for tenor recorder Fragmente (1968). To obtain the dataset, we carried out
a multimodal recording of a full performance of the piece and obtained syn-
chronised audio, video, motion, and electromyogram (EMG) data describing the
body movements of the performers. We then added annotations on gestural sonic
objects through dedicated qualitative analysis sessions. The task of annotating
gestural sonic objects on the recordings of this performance has led to a meticu-
lous examination of related theoretical concepts to establish a method applicable
beyond this case study. This process of gestural sonic object annotation—like
other qualitative approaches involving manual labelling of data—has proven to be
very time-consuming. This motivated the exploration of data-driven, automated
approaches to assist expert annotators.

Keywords: Gestural sonic object · multimodal analysis · machine learning ·
music performance · choreomusical composition

1 Introduction

The chapter begins with an introduction to central topics: the gestural sonic object,
multimodal analysis of music performance, and machine learning in music practice
and analysis. Then we describe the analysed piece and the methods adopted for data
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collection and analysis before reporting on the results of feature ranking for sound
and gestural modalities and automated spotting of gestural sonic objects qualities. We
discuss the implications of using the notion of gestural sonic objects in artistic practice
and present some practical and conceptual considerations arising from our experience
with annotating gestural sonic objects. Finally, we propose some interpretation of the
feature ranking results and overall implications of these studies.

1.1 Gestural Sonic Objects

The sonic object is generally associated with the electroacoustic composition practice
known asmusique concrète, particularlywith thework of Pierre Schaeffer and his collab-
orators (Schaeffer, 1966). Essentially, sonic objects are defined as fragments of musical
sound approximately in the 0.5–5 s duration range that can be perceived holistically
as a coherent and meaningful unit (Godøy, 2018). The concept was extended from an
embodied perspective informed by motor theory by Rolf Inge Godøy (2006). From this
viewpoint, sonic objects are extended with the gestural affordances of musical sound
into gestural sonic objects. We consider the concept of gestural sonic object as a useful
tool for research and artistic practice, as it allows for an analysis that uses perception as
the starting point for explorations of sound and body movement in music. This resonates
with the attitude of Schaeffer and collaborators, as described by Godøy, who notes that
subjective perception of sound is the most important tool for research, while correla-
tions between subjective perception and acoustic signals are mapped only at a later stage
(Godøy, 2018, p. 762).

Godøy (2018, p. 768) also notes that the “motor theory suggests that production
schemas are projected onto what we hear”, indicating that characteristics of the gesture
involved in sound production may affect how the resulting sound is experienced. The
idea of such resonances between gesture and produced sound is investigated further
by Godøy et al. (2016). This is done in relation to the three basic dynamic envelopes
of sonic objects suggested by Schaeffer: sustained (continuous transfer of energy from
the body to the instrument, resulting in a more or less continuous sound), impulsive
(sudden peak of effort resulting in a sudden attack in the sound followed by a decay),
and iterative (rapid back and forth motion, resulting in fast ripple-like features in the
sound). These categories are effectively illustrated by Godøy et al. (2016) using the
graphical representation we report in Fig. 1. Similarities between sound and motion
related to these typological categories are central to the analysis we propose in this
chapter.

In a project titledMusic inMovement,Östersjö (2016) initiated a series ofmultimedia
productions that sought to combine the practices of musical composition and choreog-
raphy, building on a multimodal understanding of music perception and on an analytical
approach to performance built on the concept of gestural sonic objects. This entailed
researching how qualitative and quantitative data could be combined in the composition
process. The outcome was a series of works comprising choreographies (performed by
musicians, with and without their instruments), new music (for Vietnamese andWestern
instruments), installations, and video art, all drawn from analysis of gesture as seen in
“Go To Hell”, a multimedia production based on Östersjö’s performance of the guitar
composition Toccata Orpheus by Rolf Riehm (1990). In a PhD project carried out as a
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Fig. 1. Schematic illustration of the three basic dynamic typological categories of sound (top)
and the corresponding motion effort types (bottom) from Godøy et al. (2016).

part of Music in Movement, Nguyễn (2019) further observes how “gesture in musical
performance can be reflective of societal constructions of gender, but also holds the
potential to create a platform for critique and the proposition of social change” (p. 42).
Her artistic PhD project explored how the analysis of gestural sonic objects can provide
the material for a compositional practice driven by the aim of producing artworks that
also enact a performative critique of embodied practices of composition and perfor-
mance. Such artistic application of a multimodal analysis of gestural sonic objects also
informs the work discussed in the present chapter.

1.2 Multimodal Analysis of Music Performance

Embodied perspectives of human cognition have shifted scholarly understandings of the
experience of music (Clayton & Leante, 2013; Leman, 2012) and have established the
notion of music as a multimodal phenomenon, i.e., engaging multiple perceptual chan-
nels. Several other studies have employed multimodal data to study music performance
with the premise that music is a multimodal phenomenon. To mention a few instances,
the quantity of motion has been related to expressiveness (Thompson, 2012) and has
been used to study the dynamic effects of the bass drum on a dancing audience (Van
Dyck et al. 2013), while contraction/expansion of the body has been used to estimate
expressivity and emotional states (Camurri et al. 2003).

In a previous study (Visi et al. 2020), we started developing a method for analysing
music performance by combining qualitative and quantitative data. We used the stimu-
lated recall technique, affording phenomenological variation through repeated listening.
This allowed the listener to approach the listening situation, for instance, from a first- or
third-person perspective (Ihde, 2012; Stefánsdóttir & Östersjö, 2022). The study argued
that it is necessary to develop methods for combining qualitative and quantitative to
fully understand expressive musical performance. The work presented in this chapter
develops the observations by Visi et al. (2020) by proposing a method for qualitative



118 F. Visi et al.

annotations based on gestural sonic objects and techniques for quantitative data anal-
ysis aimed at supporting their empirical analysis of music performance. For the study
presented in this chapter, we have recorded multimodal data from a full performance of
Fragmente2, focusing on the data obtained from the flute player. Gestural sonic objects
were annotated in direct collaboration with Frödin and Unander-Scharin, who were also
able to provide insight into their experience as composers and performers of the piece.

1.3 Machine Learning in Music Practice and Analysis

Machine learning has been extensively used in the context ofmusic information retrieval,
music performance analysis and generative music (Miranda, 2021). Recent machine-
learning approaches require large amounts of data to train robust models. This require-
ment, while commonly addressed in some music-related tasks such as automated music
segmentation (McCallum, 2019), deep learning-based generative music (Engel et al.
2020), and automatic chord recognition (Bortolozzo et al. 2021), is often a challenge
with multimodal analysis tasks that rely on small datasets that are only partly labelled.
To circumvent the limitations caused by the need for large datasets, some interactive
machine-learning techniques allow the user to interact with the machine-learning model
and the feature selection algorithm to guide the system towards the expected output
(McCallum, 2019). Alternatively, or in combination with interactive machine learning,
automated feature learning candrastically reduce the need formanual feature engineering
(Yosinski et al. 2014). In this study, we have investigated several methods for automated
feature selection (or ranking) and compared prediction results to better understand the
relationships between features and gestural sonic object qualities.

Currently, there are several machine-learning approaches to building models that
use multimodal data as input for classification tasks (Bishop, 2006). However, they
usually suffer from overfitting when high data dimensionality is present and only a very
low number of samples is available for training. When overfitted, a model can predict
samples that are identical or very similar to the ones present in the training dataset, but
it fails to generalise the unseen data distribution. In other words, the model memorises
the training data instead of learning to classify new data.

There are well-known strategies for avoiding overfitting by means of regularisation
and pruning (Duda et al. 2001), and the use of an external dataset is a common approach
to evaluate the overfitting of a model. When overfitting, the model accuracy over the
training/test dataset will usually still increase, while accuracy decreases on the evalua-
tion dataset (unseen data). In this study, we do not have an external dataset for validation,
which imposes extra difficulty when selecting the machine learning models and respec-
tive feature sets. To mitigate overfitting issues caused by small training datasets, we have
considered alternative solutions already applied in the machine learning field, such as
domain adaptation (Redko et al. 2019), zero/few-shot learning (Fu et al. 2020), weak
supervision (Paul et al. 2018), and robust feature selection (Xie et al. 2019).

Unfortunately, domain adaptation and techniques designed to handleweakly labelled
datasets still require a considerable amount of training samples to achieve robust mod-
els. One could argue that feature engineering and machine learning models could be
trained on generic gesture recognition datasets (Estévez-García et al. 2015; Ruffieux
et al. 2014; Tits et al. 2018) and then be transferred to the gestural sonic object context.
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However, the nature of the Fragmente 2 multimodal data recording, which contains a
particular configuration of sensors, combining synchronised audio, video, motion, and
electromyogram, imposes restrictions and incompatibilities to a direct application of the
aforementioned machine learning approaches.

In real-world applications, automated feature extraction methods usually generate
redundant and noisy features. Moreover, further analysis of high-dimensional features is
problematic as we cannot easily retain the physical meanings of these features. Dimen-
sionality reduction and feature selection-based techniques have the power to discard
redundant and noisy features, as well as highlight understandable data properties that
can be easily connected to the studied phenomenon.

Given the reasons mentioned above, and to combine dimensionality reduction and
feature selection, we have employed a wrapper method (Li et al. 2018) as our feature
engineering strategy. Thewrappermethod uses a predefined learning algorithm (Random
Forest in our case) to evaluate the quality of selected features based on the predictive
performance. The strategy iterates over two steps: a) searching for a subset of features
and b) evaluating the selected features. These two steps iterate until a stop criterion is
satisfied. This approachworkedwell in this case of study, however, it is worthmentioning
that wrappermethods can have an impractical search space (for d features, it is 2d!) when
the number of features is very large. The rationale for a methodology that combines
predictive machine learning models and feature selection is that the optimisation of
these models is intrinsically connected to a good feature selection.

2 Gestural Sonic Object Multimodal Analysis

2.1 The Piece: Fragmente2

Fragmente2 is a composition by Kerstin Frödin and Åsa Unander-Scharin for a solo
musician and a dancer, based on the Japanese composer Makoto Shinohara’s solo for
tenor recorder Fragmente (1968). An initial artistic aim for the two artists was to explore
how the musical and choreographic components could be combined in a compositional
process in which neither is given less prominence than the other.

Makoto Shinohara (b. 1931) belongs to the first generation of Japanese composers
who engaged with the European avant-garde movement, with a particular interest in
electronic music and musique concrète. His studio work is also clearly reflected in his
compositions for acoustic instruments, and this may explain how analysing musical
objects in the score became a central vehicle for creating the new composition. Shino-
hara’s score to Fragmente is an open-form composition consisting of 14 short fragments,
in which extended techniques on the recorder are a central component.

In addition to Shinohara’s 14 fragments, Fragmente2 contains three additional
movement-based fragments, carried out in (relative) silence. The title, Fragmente2

(2021), suggests that the new composition widens the perspective from the sonic objects
in the original score to choreomusical and gestural sonic perspectives. The notion of
gestural sonic object was central in the artistic process, which also included analyses
of gestural objects in the choreography of the two performers. In Fragmente2, the joint
compositional work was largely carried out on an object level, counterpointing ges-
tural and sounding materials, while seeking independence for each part. The musical
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score and the dancer’s choreography have a similar density of activity. Obviously, the
musician’s choreography does not hold the same level of refinement as the dancer’s, it
is instead worked out from other principles: firstly, what movements were possible to
execute while playing, and secondly, how the compositional content could be further
enhanced by adding choreographed movement to the musical performance. The creative
process made the two artists more aware of the sounds that were produced by their
moving bodies, and these were eventually integrated into the compositional structure.

An example of how the compositional methods were directly related to the analysis
of different types of objects can be seen in Fig. 2, which provides a display of how the
artists developed what they called “object maps,” which indicate how composed objects
are gesturally and temporally related in a particular fragment.

load the machine

left hand
right hand

turn kick and fall

a spit in 
the eye

pick out the eye 
and paste it on 
the surface of 
the universe

rise up wave

right foot 
back

right foot 
up

arm down and right foot up 

Fig. 2. Object map of Fragment 14. The musician’s gestural sonic objects are marked with grey
circles (dashed circles represent silence), the gestural objects carried out by the musician are
further marked in blue, whereas the gestural objects of the dancer are indicated only with grey
text. The score is © 1974 Schott Music, London. With kind permission of Schott Music, Mainz,
Germany.

As seen in object map F14 in Fig. 2, the fragment begins with gestural objects
in both parts, preceding the first sound. These first gestural objects are carried out as
synchronised movement; both performers lift their right foot and put it on the left lower
leg. As can be seen at the beginning of the recorder player’s part, when the first gestural
sonic object is played, a gestural object follows, wherein themusician’s right foot returns
to the floor. This leads straight into the next three gestural sonic objects (a repetition
of the first note), each synchronised with gestural objects in the dancer’s part. In the
second line of Fragment 14, the interaction is different and starts out as cause-and-
effect-like relations, leading to a more contrapuntal structure in the final objects. In this
particular fragment, the form is derived from an interpretation of the original score,
and the choreography both reflects and enhances these structures. While the second line
activates a contrapuntal relation, the choreography still follows the original phrasing of
the music. It should be noted that the relation between the original score and the new
composition is different across fragments and, therefore, not always as closely related to
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the original piece, but sometimes seeking novel possibilities in how the different objects
can be related and combined.

After establishing a working method based on object analysis, the two artists
observed that the compositional process could be understood as a set of phenomenolog-
ical variations of first and third-person perspectives (Ihde, 2012) when exploring and
performing the relationships between movements and sounds. Hence, methods similar
to those applied in the qualitative analysis of the process also form part of the artistic
methodology.

Regarding the use of object analysis, the possibility of activating objects in different
spatial configurations indicated the structural impact of a particular space in the compo-
sitional process. Bodily action in a particular space often decided how sonic and gestural
objects were connected, and constitutes one example of phenomenological variation in
the artistic process.

2.2 Quantitative Data Collection

We recorded multimodal data throughout a full performance of Fragmente2. This
included multichannel audio (three channels: separate clip-on condenser microphone
for the flute and a stereo recording of the hall ambience) and video (two cameras placed
on the left and on the right of the performance space). Full-body motion capture, EMG
(finger flexors, obliquemuscles, trapezius, and deltoids), and two insole pressure sensors
were captured in a configuration similar to the one adopted in a previous study by some
of the authors (Visi et al. 2020).

We focused the first data collection session on the flute player, obtaining measure-
ments of kinematics, kinetics, and muscle activity using a mobile movement analy-
sis system comprising wireless inertial sensors and EMG electrodes (Noraxon, United
States, see Fig. 3). Full body kinematics were measured with a wireless MyoMotion
(Noraxon, United States) system comprising 16 inertial sensors. Sensors were mounted
on the head, upper arms, forearms, hands, upper thoracic (spinal process below C7),
lower thoracic (spinal process above L1), sacrum, upper leg, and lower leg and feet.
The sampling rate was set to 100 Hz. The ground reaction force from the feet was mea-
sured bilaterally with wireless pressure sensor insoles (Medilogic, Germany), with a
sampling rate of 100 Hz. Muscle activity was measured with EMG using a Noraxon
MiniDTS (Noraxon, United States) wireless eight-sensor system. Skin preparation was
done according to the Surface ElectroMyoGraphy for the Non-Invasive Assessment of
Muscles (SENIAM) protocol, including shaving and rubbing with chlorhexidine disin-
fection. Bipolar, self-adhesive Ag/AgCl dual surface electrodes with an inter-electrode
distance of 20 mm (Noraxon, United States) were placed on flexor digitorum (Blackwell
et al. 1999) anterior deltoids, oblique muscles, and upper trapezius bilaterally. The EMG
sampling rate was 1,500 Hz. EMG data of the finger flexors allowed us to capture finger
movements, which would be difficult to capture by means of optical or inertial sensing.
This way, we obtained movement-related data describing key interactions between the
musician and the instrument. All the data was synchronised and imported into ELAN
(Version 6.4, 2022).
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Fig. 3. Wireless EMG and motion sensor setup.

2.3 Gestural Sonic Object Qualitative Annotation Method

Qualitative annotations related to gestural sonic object timing and basic typological
categories (see Sect. 1.2) were added to the ELAN timeline alongside quantitative data
during collaborative annotation sessions.We devised amethod to annotate gestural sonic
objects in an audiovisual recording of a music performance. Firstly, the performance is
segmented by identifying salient events occurring in the meso timescale (approx. 0.5 –
5 s), as it is in this range that sequences of tones and movements can form a coherent
object with a shape (Godøy, 2018). In this first step, segments in the meso timescale
are selected and played back to determine where a gestural sonic object begins and
ends. This is not a trivial task, as oftentimes, the boundaries of a gestural sonic object
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are not obvious. In approaching this empirical analysis task, we often referred to the
fundamental characteristics of a gestural sonic object, asking ourselves:

• Is the segment long enough to perceive salient basic features such as pitch and timbre
as well as elements of rhythm, texture, melody, and harmony?

• Can we perceive the segment as a whole, or is it too long?
• Does it feel like a single object or a sequence of objects?
• Can we describe a clear shape in the movement of the performer?
• Can we describe the performed movement as a single action?

The gestural sonic objects identified through this procedure were then analysed for
the purpose of spotting basic typological categories of the dynamic envelopes (impulsive,
sustained, iterative) for twomodalities. This resulted in seven tiers containing time-based
annotations: one indicating the gestural sonic objects and six containing the timings of
the dynamic envelopes for each category and modality, as shown in Fig. 4.

Fig. 4. Detail of the ELAN timeline showing tiers identifying gestural sonic objects (bottom)
and the basic categories of dynamic envelopes for sound and gesture modalities. The tier labelled
“K_GS_objects” contains the beginning and end of gestural sonic objects. The tiers with names
starting with “K_g_” contain the start and end points of the respective dynamic envelopes in the
gestural domain, while the tiers with names starting with “K_s_” contain the start and end points
of the respective dynamic envelope for the sound domain.

For each modality, iterative, sustained, and impulsive components are annotated,
thus describing how each gestural sonic object is structured. For the flautist, the anal-
ysis focused on movements related to instrumental sound production. In case of doubt
or disagreement among the annotators, we referred to the questions above to reach a
consensus.

This method for manual annotation of gestural sonic objects developed and tested in
the present project was built on earlier experience of stimulated recall analysis (Östersjö,
2020; Visi et al. 2020). There are important similarities between this method and phe-
nomenological approaches to music research, such as Christensen’s (2012) method of
“experimental listening,” designed as “repeated listenings, guided by deliberately varied
music-focusing strategies and hermeneutical strategies, and clarified by intersubjective
inquiry” (p. 46). We see our annotation method as an intersubjective inquiry through
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what could be conceived of as a series of phenomenological variations, making delib-
erate use of the specific intentionality of the audio and video technologies used in the
playback situations (Ihde, 2009; Verbeek, 2008).

2.4 Feature Ranking Using the Random Forest Algorithm

With the data on the gestural sonic object categories obtained using the qualitative
labelling method described above, we explored the quantitative data for the purpose of
understanding relationships between the typological categories of gestural sonic objects
and data describing sound and body movement. We extracted features from the quanti-
tative data and used the Random Forest algorithm to rank the best predictors for each
gestural sonic object category. Random Forest is a popular ensemble learning algorithm
that combines multiple decision trees to improve the accuracy and robustness of the
model by reducing overfitting and increasing generalisation. It randomly selects feature
subsets and data samples to train each decision tree independently before aggregating
their predictions to make a final prediction.

From themotion capture data, we extracted low-level descriptors based on kinematic
features, including position and its derivatives (velocity, acceleration and jerk) and con-
traction index. From the pressure sensors, wemeasured the performer’s balance between
the feet. From the EMG data, we calculated the root-mean-square (RMS) in order to
measure the intensity of muscular activation related to the performer’s finger movement
while playing the instrument. From the audio recorded using the microphone mounted
on the flute, we used RMS as a measurement of sound energy. We additionally extracted
pitch, which is applied to capture the melodic envelope of gesture sound objects. These
features contribute to a total of 134 continuous signals (audio and motion) sampled (or
resampled to) 1000 times per second. The final dataset contains a single multimodal
recording with a duration of 560 s, with 305 gestural sonic object annotations, includ-
ing their respective gestural and sonic qualities. With the aim to capture different time
resolutions of gestural sonic object events in the time sequence, we built the dataset by
scanning the signal with sliding windows of multiple durations (10 ms, 100 ms, 500 ms,
and 1000 ms), and fixed hop size (20 ms) for all windows.

We extracted statistical descriptors from each analysis window, independently of the
signal source. The statistical descriptors reduced the dimensionality of rawdata at the cost
of losing time localisation. The statistical descriptors are: mean, variance, minimum and
maximum values, skewness and kurtosis. The system uses a total of K×N ×M = 3216
features, whereK = 6 is the number of statistics,N is the 4 window sizes, andM = 134
is the number of input signals. Still, a high dimensional feature set and manual feature
selection would not be a reasonable procedure. For this reason, we applied the wrapper
method (Li et al. 2018), in which we randomly evaluated subset feature combinations
by measuring their prediction capacity on a machine-learning model. We first reduced
the original feature set dimensionality from 3216 to 50, which is computationally more
manageable. To do so, we did not use Principal Component Analysis (PCA) in order
to avoid losing the direct interpretation of the original data. Instead, we ranked features
through the Random Forest method.

Our initial feature ranking is based on the correlation coefficient among all the vari-
ables and their respective individual variance. Thus, features that have a high correlation
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with several other variables are removed. The resulting feature set is further pruned
such that features with very low variance are excluded from the dataset. These meth-
ods select the feature subset without any transformation that could distort the original
feature interpretation. The reduced feature set is then screened by a wrapper method
based on Random Forest, allowing the model to embed nonlinear relationships into a
lower dimensional space, giving us a direct view of the most important features. The
Random Forest prediction model is implemented with 500 trees, trained to detect ges-
tural sonic objects and their respective qualities. To minimise overfitting, we applied
cross-validation (40% for training, 40% for testing, and 20% for validation) and pruning
procedure (maximum depth = 8 and maximum number of features at each split = 3 ).
The random forest model is configured with Gini impurity for the splitting node proce-
dure. The final feature ranking is based on the average feature score over 1000 random
experiments.

2.5 Multimodal Spotting

Based on the feature selection procedure described in the previous section, we also anal-
ysed the spotting capabilities of the produced feature selection. Spotting is a technique
used to identify specific patterns or events within a larger data set by applying algorithms
or filters to the data. In the context of time series data, spotting techniques are often used
to identify onsets and offsets of specific events or behaviours, which can then be used to
segment the data and extract meaningful insights. In this work, we define the spotting
procedure as detecting each starting (onset) and ending (offset) time point of a gestural
sonic object.

Since the dataset is based on a single recording and, therefore, is quite small for
generalisation, we do not expect to have high accuracy on the onset and offset detections.
With this in mind, we trained a Random Forest-based classifier designed tomaximise the
onset/offset detection accuracy, that strongly penalises false positives. The result, even
with a low detection rate of gestural sonic objects, can be used to semi-automatically
aid the annotation process of new multimodal recordings. In this case, onset and offset
detections can be used as cue points, and these first estimates can be manually confirmed
or refined by experts.

3 Results

We have performed experiments to evaluate the capabilities of minimal feature sets
for gestural sonic object classification. The goal was to find a considerably small set
of representative features while keeping as high as possible the gestural sonic object
classification accuracy. There were two reasons for a small feature set: a) fewer features
can help avoid overfitting; b) low data dimensionally is more feasible to interpret.

As mentioned in Sect. 2.4, we guided the feature selection through an iterative
process that ranks the best features while creating a Random Forest-based machine
learning model. This process is known as the wrapper method (Li et al. 2018). Given
our initial high dimensional feature set, the classifier is trained to recognise the gestural
sonic object qualities as annotated in the dataset by experts. These qualities consist of
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the three basic dynamic envelopes for the two gestural modalities, resulting in a total
of six classes. We will refer to the gestural sonic object qualities with codes shown in
Table 1.

Table 1. The six main gestural sonic object qualities used in the model.

gesture sustain = ‘g_sus’ gesture iterative = ‘g_ite’ gesture impulsive = ’g_imp’

sound_sustain = ‘s_sus’ sound iterative = ‘s_ite’ sound impulsive = ‘s_imp’

Annotators might have overlapped some gestural sonic object quality labels during
the annotation process. In order to accommodate these cases, the coding scheme also
includes possible permutations generated from the initial six gestural sonic object qual-
ities (e.g., [‘s_sus’ AND ‘g_sus’] and [ ‘s_sus’ AND ‘g_imp’]). Figure 5 shows the
sample distribution regarding each class in our annotated dataset. We have a total of 17
classes, plus the null class (NC). The NC is related to all data samples that were not
labelled by the annotators. This means that part of these samples might not have been
correctly assigned to a specific gestural sonic object quality and were unequivocally put
in the NC fold. Since the NC is predominant in the dataset, and to avoid the excessive
influence of unreliable samples and unbalanced class partitions, we randomly selected
and kept only 10% of the original NC data in the final dataset.
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Fig. 5. An overview of the gestural sonic object quality class distribution.
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3.1 Feature Ranking Per Modality

Throughout the course of the training process, the Random Forest algorithm ranks the
features based on their capability to better separate the data distributions. To minimise
the inevitable influence of overfitting, we applied pruning to the classification trees. A
grid search experiment was used to find the minimal tree depth while keeping accuracy
above 90%. Figure 6 shows the classification accuracy versus the tree depth. We found
a max depth of 8 as a good compromise, reaching approximately 90% of accuracy.
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Fig. 6. Random Forest pruning: Classifier accuracy is kept over 90% to avoid overfitting.

Once we defined the maximum tree depth, we performed feature selection experi-
ments on the following targets: a) only gesture qualities, b) only sound qualities, and
c) gesture and sound qualities. Given the extremely high data dimensionality, no brute
force approach would be feasible to find the best small subset of input features. Instead
of an exhaustive search, the Random Forest algorithm randomly selects features from
the dataset. It is worth mentioning that we cannot guarantee that we will have the opti-
mal final feature subset. In order to increase the chances of a good feature selection,
the Random Forest is configured with 500 trees, each doing random feature selection
with the configuration described in Sect. 2.4. We ran each experiment 1000 times with
distinct random seeds. This procedure helped to increase the feature variability and
gave us a better cover of the feature search space. Tables 2 and 3 summarise the set of
features that were mostly chosen across the 1000 experiments and were scored among
the top 10 features while predicting qualities in the gesture, sound, and gesture-sound
domains, respectively. In other words, we selected the top 10 features based on the top
score occurrence frequency of the 3216 features from the initial feature set over all
experiments.

In the second experiment, we used the top 50 features from the first experiment. A
new Random Forest model was trained on this new subset, and we ranked the resultant
top 10 features again. Tables 4 and 5 show the selected top 10 features based on their
highest score for gesture, sound, and gesture-sound domains, respectively.



128 F. Visi et al.

Table 2. The top 10 most frequently selected features for the gesture and sound domains,
separately.

Rank Gesture domain Sound domain

Signal Statistic Window Size Signal Statistic Window Size

1 RT_finger_flex max 100 audio pitch min 500

2 RT_finger_flex min 500 audio pitch mean 1000

3 RT_finger_flex max 1000 audio RMS mean 500

4 RT_finger_flex min 10 audio pitch var 500

5 RT_finger_flex min 1000 audio pitch min 1000

6 RT_finger_flex max 10 audio pitch mean 500

7 RT_finger_flex mean 100 audio pitch mean 100

8 RT_finger_flex min 100 audio RMS min 100

9 RT_finger_flex max 500 audio RMS min 500

10 RT_finger_flex mean 10 audio RMS mean 100

Table 3. The top 10 most frequently selected features for the joint gesture and sound domains,
concomitantly.

Rank Gesture-Sound domain

Signal Statistic Window Size

1 audio pitch min 500

2 audio pitch mean 1000

3 m1_RT_ext_oblique_rms max 1000

4 audio pitch min 1000

5 audio RMS min 500

6 m1_RT_ext_oblique_rms max 500

7 m1_RT_ext_oblique_rms mean 1000

8 audio RMS mean 500

9 audio pitch mean 500

10 m1_RT_ext_oblique_rms mean 500

Selecting features using decision trees can be challenging due to the potential for
high variance and overfitting, which can lead to suboptimal performance and reduced
generalisation ability of themodel. A small change in the data can have a big influence on
the feature selection. However, based on the k-fold cross-validation andmultiple random
experiments, we found consistent features that were selected repeatedlymost of the time.
An additional relevant observation was the importance of the multi-scale/resolution of
each feature window analysis. The feature selection process picked not only a specific
characteristic of the input signal but also its distinct time resolutions.
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Table 4. The overall top 10 most frequently selected features for the gesture and sound domains,
separately.

Rank Gesture domain Sound domain

Signal Statistic Window
Size

Signal Statistic Window
Size

1 m1_insoles_sum max 1000 audio pitch min 500

2 m1_RT_finger_flex_rms max 1000 audio pitch mean 100

3 m1_RT_finger_flex_rms min 1000 audio pitch min 1000

4 pitch_mean mean 1000 audio pitch mean 100

5 pitch min 1000 audio pitch mean 1000

6 m1_RT_ant_deltoid_rms min 1000 audio pitch var 500

7 Hand_tip_LT_vel max 1000 audio pitch mean 500

8 m1_LT_ext_oblique_rms max 1000 CoM_3D_Z min 1000

9 CI_movmean mean 10 audio pitch min 10

10 CI_movmean max 100 CoM_3D_Z min 500

Table 5. The overall top 10 most frequently selected features for the joint gesture and sound
domains.

Rank Gesture-Sound domain

Signal Statistic Window Size

1 audio pitch min 1000

2 audio pitch min 500

3 audio pitch mean 1000

4 CI max 1000

5 m1_RT_ext_oblique_rms max 1000

6 audio pitch mean 100

7 CI_movmean min 1000

8 audio pitch mean 500

9 m1_RT_finger_flex_rms max 1000

10 CI_movmean min 1000

3.2 Online Learning Investigation of Gestural Sonic Objects

A challenge has been that, due to the limited amount of data available, we faced a general
sensitivity to overfitting. In order to minimise this, incremental and iterative supervision
of the annotation process can be integrated with online learning models. A direct appli-
cation of this kind of strategy could be extracting cue marks that indicate where gesture
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sonic objects are present in the timeline. Annotators could then validate and correct these
cue points to improve the transcription of the recording session. Thus, in addition to the
gestural sonic object quality classification task, we also investigated the spotting capa-
bilities of our proposed multimodal feature selection method. The prediction of onsets
and offsets for individual gestural sonic object qualities can potentially be used as cue
points to assist an iterative and semi-supervised annotation process.

We evaluated the model’s capability to increase its accuracy in the case of using our
proposed multimodal feature subset and a Random Forest classifier. Figure 7 shows the
accuracy while we increase the ratio of training data versus testing data. This procedure
emulates an iterative annotation approach, where annotators iteratively add more valid
labels to the dataset. In our experiments, the proposed model has over 70% of classi-
fication accuracy with only 3% of the training data. When using 20% of training data,
the model improvement increases accuracy to over 85%. It is worth noting that because
of tree pruning, the accuracy of our model has asymptotic behaviour at approximately
90%. The asymptotic behaviour of the model’s accuracy at approximately 90% suggests
that even as more training data is added, the model’s performance is unlikely to improve
beyond this level. This could be due to the limitations of the features used to train the
model or the inherent complexity of the underlying patterns in the data.
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Fig. 7. A measurement of accuracy while varying the ratio of training/testing data.

Figures 8 and 9 show the classification result of an online learning approach on an
excerpt of the Fragmente2 piece. This excerpt is 90 s long, and there are 17 gestural
sonic objects in the performance section. Gestural sonic object qualities are annotated
on the top tiers, and automatically spotted (predicted) onsets/offsets are indicated on
the bottom track of each plot. In Fig. 8, the classifier was trained with a dataset split
of 20% for training and 80% for testing, while in Fig. 9, the data split was 90% for
training and 10% for testing. The amount of NC was randomly reduced to 10% of its
original distribution. A clear improvement in classification when adding more training
samples can be observed. This result paves the way for future work since it supports the
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assumption that adding new recordings with respective annotations would improve the
performance of the gestural sonic object spotting and quality classification.

Fig. 8. An illustration of the classification results with a training fold size of 20%. The “predicted”
tier (bottom) shows the onsets and offsets automatically predicted for gestural sonic object qualities
(impulsive, sustained, iterative) from top tiers K_s (sound) and K_g (gesture).

Fig. 9. An illustration of the classification results with a training fold size of 90%. The “predicted”
tier (bottom) shows the onsets and offsets automatically predicted for gestural sonic object qualities
(impulsive, sustained, iterative) from top tracks K_s (sound) and K_g (gesture).

4 Discussion

The work we presented so far looked at the notion of a gestural sonic object within
three different contexts: its use as a conceptual tool for choreomusical composition; the
exploration of the concept, and the boundaries of its definition for the development of a
method for empirical analysis of embodied music performance; and the use of the data
obtained through such analyses for training classifiers capable of predicting the quality of
recorded gestural sonic objects through multimodal quantitative data. In this section, we
propose some considerations that arose through this interdisciplinary research trajectory
that, we believe, might inform further theoretical work.

4.1 Using Gestural Sonic Objects in Artistic Practice

The fact that Shinohara’s score is composed in an object-oriented manner facilitated the
artistic process. Therefore, “thinking” in objects became central to the development of
the piece: first, in the interpretation of the score; second, in the continued creation of the
choreography; and third, in the analysis of gestural sonic objects and gestural objects
as they emerged. As noted earlier, it has been possible to enhance the musical structure
but also to intentionally explore possible new relations between different object types
through an interpretation of the original score built on multimodal object analysis. This
object-oriented method, which entailed a close examination of each object, increased the
awareness of the choreomusical relation between dancer andmusician in performance. It
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was also instrumental in the rehearsal process since a deepenedunderstanding of the other
performer’s part emerged from the analysis. This, in turn, enabled a certain plasticity in
the rendering of the individual parts in relation to the whole, as in a closely rehearsed
chamber music performance. We find the relation between analysis and creation in the
compositional process to be a factor that allowed a deepened interaction between the
performers, the original score, and its rework. This relies on an embodied understanding
of the original score enabled by amultimodal perspective facilitated by the concept of the
gestural sonic object. Such an approach significantly helped to enhance the rhythmical
relation between all the parts in performance.

4.2 Annotation Method and Theory: Practical and Conceptual Considerations

Implementing the gestural sonic object annotation method on the recordings of Frag-
mente2 has led to some reflections regarding themethod itself and the concepts it is based
on. Firstly, it provided an occasion for examining the definition of gestural sonic object
empirically on multimodal music performance recordings. The definition of a gestural
sonic object is relatively broad. Godøy (2018, p. 761) posits that “[a] sonic object may
encompass a single tone or chord, a short phrase of several tones and/or chords in succes-
sion, a single sound event […], or a more composite but still holistically perceived sound
event”. In other words, a sonic object can be many different things; what is crucial is
that it is perceived as a coherent entity. The broad definition and the focus on perception
entail that, in practice, determining what a sonic object is and what it is not involves a
fair amount of subjectivity. The open coding sessions involving multiple observers we
ran to annotate Fragmente2 made this aspect even more evident. Discussing where sonic
objects begin and end in the recordings often led to going back to the literature in order
to attempt to adhere to the definition as consistently as possible.We paid particular atten-
tion to the 0.5–5 s meso timescale when looking at the duration of the annotated objects,
and appreciated that segments shorter than this time range effectively lose discernible
timbral qualities that would allow us to identify the source of the sound or the overall
musical style of the recording. Segments longer than 5 s are experienced as composite
sound segments, thus losing the holisticity that characterises sound objects. We were
initially doubtful about how to handle long, sustained drone sounds that were several
seconds long. Can they be individual objects on their own despite their duration? We do
not have a definitive answer, particularly given that we focused on a single composition.
However, in the case of the long sustained notes played by the flute in Fragmente2,
we regularly found small pitch and timbral articulations that, in a way, worked as a
“seam”: the point where two long, sustained sound objects fuse. Such aspects were also
sometimes found in the correspondingmovements of the performer, possibly confirming
segmentation and a point of coarticulation at the point where the object fuses. This leads
to reflections regarding the “gestural” in gestural sonic objects. The way Godøy extends
the notion of the sonic object to comprise gestural and kinematic qualities is underpinned
by assumptions of the body being central in the experience of music and the existence of
gestural affordances in musical sound (Godøy, 2006, 2010). As exemplified above with
the segmentation of long sustained sounds, observing the performer’s movements had a
crucial role in forming our understanding of gestural sonic objects in Fragmente2. This
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should come as no surprise, given that gestural sonic objects are multimodal by defini-
tion. Yet it was challenging that the sound expressed certain qualities that we could not
find in themovement and vice-versa. That led us to label the typological categories of the
dynamic envelopes separately, which gave us sufficient flexibility to maintain the labels
coherent and consistent even when the envelopes of movement and sound appeared dif-
ferent. The two modalities having different envelopes do not contradict the definition of
the gestural sonic object and resonate with other empirical studies (Godøy et al. 2016).
Another aspect that emerged while developing the method and annotating Fragmente2

is that, quite frequently, one can find more than one dynamic envelope within the same
object without affecting the fact that the object is perceived as a whole. This points to
the possibility of gestural sonic objects having an internal dynamic structure that may
affect higher-level phenomena such as phase transition, chunking, and phrasing.

In practical terms, the annotation procedure was, as expected, very time-consuming.
The annotations of the recordings required more than 10 h of work involving two to four
people. We expect the amount of labour required to label a similar recording to decrease
significantly as the labelling method is consolidated, given that many of the open coding
sessions we carried out were actually focused on developing the method itself. Yet, it
is not realistic to think that many researchers and practitioners would be able to invest
a similar amount of time to obtain high-quality quantitative data. This calls for tools
to support the work of human annotators in ways that help accomplish repetitive tasks
whilst not removing human subjectivity from the picture. The way we approached the
use of quantitative multimodal data and machine learning algorithms is an attempt to
work towards the development of such tools.

4.3 Interpretation of the Feature Ranking Results

The search for multimodal features that can best describe input signals is challenging.
Deep learningmodels have proven to be robust in finding good feature representations as
well as producing accurate machine learning models. However, this robustness is tied to
the assumption of having access to very large datasets. Unfortunately, this is not the case
in the present study. In this work, we have used a series of methods to perform feature
extraction aswell as feature selection. Initially, we obtained 3216 features from134 input
signals. Such dimensionality is huge compared to the small amount of data samples.
Nevertheless, it could also be easily extended to hundreds of thousands of features by
applying transformations and additional feature extraction on the input signals. Yet,
what is the smallest interpretable feature set that could support a machine learning task
to target the classification of gestural sonic objects?

Our approach utilisingRandomForest appears to be effective based on the evaluation
results. Although we can not ensure the optimal subset feature selection, the proposed
iterative process of randomly ranking features by their scores and selection frequency
has presented coherent results. The top 10 features, selected among several thousands
of experiments, were able to achieve approximately 90% accuracy in the classification
of 17 distinct gestural sonic object quality classes. We also kept a very shallow Random
Forest model by pruning the trees to a maximum of 8 levels. This helped to diminish
overfitting while keeping high accuracy.
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The feature rankings in Tables 2, 3, 4 and 5 suggest some interpretations. In the
first experiment, audio pitch and audio RMS were top-ranked in the sound domain. This
supports the expectation that basic sound features such as pitch and loudness have a
predominant effect on how annotators label gestural sonic object qualities in the sound
domain. There are many other audio features in the time and frequency domains that
could also be used (Lerch, 2012) and that could be explored in future studies.

In the gesture domain, in the first experiment, features of the EMG of the right
finger flexor ranked at the top. In the second experiment, other EMG features, as
well as insole sensors and motion features, ranked at the top. This indicates that
data related to body motion are better predictors than audio features for the clas-
sification in the gesture domain. Among the top-ranked features, RT_finger_flex,
M1_insoles_sum, m1_RT_ext_oblique_rms, CI_movmean and audio_pitch were the
most frequent. CI_movmean (Contraction Index) also appeared many times on the top-
50 rank for both sound and gesture domains, being more frequent in the gesture domain.
Notably, in the gesture domain, the classifier also ranked the audio_pitch feature within
the top 10. This suggests a cross-modal correlation between audio pitch and gestures
that contributes to shaping gestural qualities.

Using multiple time resolutions was an important factor in the feature selection
process, as we can see in Tables 4 and 5. Most selected features were extracted through
a sliding window with a hop size of 20 ms and a time duration that covers 1000 ms of
the respective input signal. Larger windows were the majority in the gesture domain,
while in the sound domain, distinct resolutions were selected for the audio pitch feature.
Obviously, large windows can capture longer gesture and sound envelopes, while shorter
windows better capture quick performance articulations and details.

5 Conclusions and Implications

We find that the empirical gesture analysis has implications in several contexts. Firstly,
this study was a way for us to engage with the gestural sonic object concept in both
artistic practice and music analysis, thereby showing its usefulness and, possibly, its
limitations.

More broadly, we seek to explore how the combination of qualitative and quantitative
analysis and phenomenological variation may enable more dynamic working methods
for cross-disciplinary collaboration.We believe that developing multimodal methods for
artistic research may be particularly useful in choremusical practices. We are especially
interested in the potential of methods that also engage in how the intentionality of audio
and video technologies can be addressed through phenomenological variation. This
entails an engagement with different modalities of listening and a design that allows
for embodied, multimodal and performative approaches to the experience of sound.
More empirical analysis beyond the scope of this study would help refine the methods
we have proposed and inform further theoretical developments in the study of gestural
sonic objects.

Finally, we believe the findings on feature ranking can inform future work on fea-
ture selection and gestural sonic object analysis by supporting decisions on the type
and placement of sensors for multimodal data acquisition. Using supervised learning to
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automate the annotation of gestural sonic objects could lead to a system to assist anno-
tators and save them hours of labour when annotating gestural sonic objects manually.
While we are aware of the implications that the use of machine-learning approaches
may have—particularly with regard to the introduction of bias and other costs that data-
driven practices may involve (Crawford, 2021)—we advocate for approaches that assist
rather than replace human expert annotators, thereby keeping humans in the loop while
enabling new agencies and approaches.
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