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Abstract. Since Edwards curves were introduced in elliptic curve cryp-
tography, they have attracted a lot of attention. The twisted Edwards
curves are defined by the equation Ea,d : ax2 + y2 = 1 + dx2y2. Twisted
Edwards curve is the state-of-the-art for a = −1, and even for a �= −1.
E448 and Edwards448 are NIST standard curve in 2023 and TLS 1.3
standard curve in 2018. They both can be converted to d = −1, but
can not be converted to a = −1 through isomorphism. The motivation
of using a curve with d = −1 is that we want to improve the efficiency
of E448, and Edwards448, especially to achieve a great saving in terms
of the number of field multiplications (M) and field squarings (S). We
propose new explicit formulas for point operations on these curves. Our
full point addition only requires 8M, and mixed addition requires 7M.
Our results applied on the Edward448 and E448 yield a clean and sim-
ple implementation and achieve a brand new speed record. The scalar
multiplication on Edwards448 and E448 have the same cost of M and S
as that on Edwards25519 per bit.

Keywords: Scalar multiplication · Addition · Doubling · Explicit
formulas · Twisted Edwards curves · E448 · Edwards448

1 Introduction

Elliptic curve cryptography is one of the most popular cryptosystems. Because
elliptic curve cryptography’s shorter key length offers the same level of security
as other public key cryptosystems with longer key lengths, it has been widely
used in modern life since 2005. It is particularly well-liked in applications for
mobile devices such as wireless and the internet of things.

The elliptic curves are the curves of genus one with a specified base point. In
cryptography, the interest in elliptic curves is focused on their group structure.
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The points on the elliptic curve form an additive Abelian group. The scalar
multiplication is an operation that continually adds the same point to itself
repeatedly. In other words, scalar multiplication computes

nP = P + P + · · · + P
︸ ︷︷ ︸

n times

,

where n is a large positive integer known as the scalar and P is a point on an
elliptic curve over the finite field. Elliptic curve cryptography is usually based on
scalar multiplication on prime order cyclic subgroups of the elliptic curve point
groups. Scalar multiplication is considered as the core operation in elliptic-curve
cryptography. It is also the costliest part of some wildly used elliptic curve cryp-
tography protocols, e.g. elliptic curve Diffie-Hellman key exchange and elliptic
curve digital signature algorithm.

Compared to other elliptic curves, the Edwards curve in elliptic curve cryp-
tography does not have such a long history. It was not until 2007 that this
elliptic curve form was first explicitly proposed by Edwards [10]. In the same
year, Bernstein and Lange introduced the Edwards curve into cryptography
[3]. The importance of Edwards curves and their generalizations, especially the
twisted Edwards curves, is beyond doubt. The twisted Edwards form is one of the
three forms of curves recommended by NIST Special Publication 800-186 [7] over
the finite field of large prime. The twisted Edwards curves Edwards25519 and
Edwards448, also referred to as Ed25519 and Ed448, were recommended to be
used in digital signature by NIST FIPS 186-5 [22], and Internet Engineering Task
Force Request for Comments (IETF RFC) 8032 [19]; and were recommended to
be employed in secure shell (SSH) protocol by IETF RFC 8709 [21]. The twisted
Edwards curves are also employed in the Elliptic Curve Method (ECM) [2,6].

Ever since it was proposed, the scalar multiplication on the Edwards curve
has become the leader in multi-scalar multiplication. Speeding up the scalar
multiplications is one of the major challenges of elliptic curve cryptography.
There are three main ways to improve the efficiency of scalar multiplication:

– Improving the point operations [18,25].
– Using efficient endomorphisms [13,14].
– Reducing the Hamming weight of the scalar, for example, non-adjacent form,

window non-adjacent form, and double base chains [24].

In this paper, we investigate elliptic curve point arithmetic formulas on
twisted Edwards curves for d = −1 to bridge the gap of previous works which
focus on the general and a = −1 cases.

We provide two addition formulas on twisted Edwards curves in extended
twisted Edwards coordinates. The unified addition formula, i.e., the point addi-
tion formula remains valid when two input points are equal, offers better side-
channel resistance. The unified addition formula costs 8 field multiplications
and one field multiplication with constant a, and the fast addition formula takes
only 8 field multiplications, as fast as the addition formula for a = −1 on twisted
Edwards curves [18].
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The table below illustrates the state-of-the-art theoretical time costs of the
unified addition, the mixed unified addition (where one coordinate is fixed as
one in the unified addition formula), the fast addition (P = Q may cause an
exception), and the mixed addition of the fast addition. The M, S, and D
denote field multiplication, field squaring, and field multiplication with a con-
stant respectively (Table 1).

Table 1. The theoretical time cost of twisted Edwards curves

parameter unified add mixed unified add fast add mixed add

a = −1 [18] 8M+ 1D 7M+ 1D 8M 7M
a �= −1 [18] 9M+ 2D 8M+ 2D 9M+ 1D 8M+ 1D
d = −1 8M+ 1D 7M+ 1D 8M 7M

The following problem is that the efficient doubling and tripling equations
on a = −1 do not immediately yield good efficiency when d = −1. In order
to solve this problem, we consider another set of projections of the extended
twisted Edwards coordinates on P

2 other than projective coordinates.
The remainder of this paper is organized as follows: in Sect. 2, we review

twisted Edwards curves. Section 3 provides the unified addition formula. In
Sect. 4, we provide the unified addition formulae with clearing denominators.
In Sect. 5, we provide fast addition, doubling, and tripling formulae for fur-
ther speedup. In Sect. 6, we analyze the exceptional cases of 2q and 4q order
subgroups. In Sect. 7, we show the benefit of clearing denominators addition
formulas in parallel environments and adapt the strategy of mixing different
coordinates to obtain better efficiency for fast addition formulas. We draw our
conclusions in Sect. 8.

2 Twisted Edwards Curve

The history of the Edwards curve family goes back to Euler’s time. Euler studied
an interesting curve x2 + y2 + x2y2 = 1. In his paper [11], Euler hinted at the
explicit addition formula for this curve. Gauss explicitly stated this addition
formula decades later.

In 2007, Edwards generalized the special curve x2 + y2 + x2y2 = 1 into the
form

x2 + y2 = a2 + a2x2y2

and believed that this curve form deserves more attention than it had received
at that time [10]. Edwards demonstrated that elliptic curves of this equation
have the following addition law:

X =
1
a

· xy′ + yx′

1 + xyx′y′ , Y =
1
a

· yy′ − xx′

1 − xyx′y′ .
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Edwards illustrated that it is a normal form of elliptic curves, i.e., every elliptic
curve over algebraically closed field k is equivalent to x2 + y2 = a2 + a2x2y2

for some a. Thus, in a sense, this addition law can be employed for any elliptic
curve.

Bernstein and Lange introduced this model and its addition law into ellip-
tic curve cryptography, and proposed fast explicit formulas for addition, mixed
addition, and doubling in projective coordinates [3]. Additionally, Bernstein and
Lange expanded the addition law to a generalization form of the Edwards curve:
x2 + y2 = c2(1 + dx2y2), and showed all the elliptic curves in the generalization
form are isomorphic to curves x2 + y2 = 1 + dx2y2. When c = 1, they provided
a 3M+4S algorithm for the doubling formula and a 10M+1S+1D algorithm
for the addition formula.

Bernstein and Lange later introduced inverted Edwards coordinates [4] to
further lower down the cost of performing group operations on Edwards curves.
The doubling costs 3M + 4S + 1D, requires one more field multiplication with
constant 2d when compared with [3]; and the addition costs 9M + 1S + 1D,
saving one field multiplication.

In order to cover more curves over finite fields, Bernstein, Birkner, Joye,
Lange, and Peters generalized the Edwards curves into twisted Edwards curves
with a new parameter a

Ea,d : ax2 + y2 = 1 + dx2y2.

A twisted Edwards curve with a = 1 is an Edwards curve. Each twisted Edwards
curve Ea,d is a quadratic twist of the Edwards curve E1,d/a. Meanwhile, every
quadratic twist of a twisted Edwards curve is isomorphic to a twisted Edwards
curve. Scalar multiplications on twisted Edwards curves cost almost as much as
they do on Edwards curves. More specifically, the doubling costs 3M+4S+2D
and the addition costs 9M + 1S + 2D. They proved that their addition law
on the twisted Edwards curve is complete when a is a square and d is a non-
square [1]. In addition, the twisted Edwards model can save time for many curves
that were already expressible as Edwards curves by clearing denominators i.e.
computing the scalar multiplication on Ea,d rather than E1,d/a. They also employ
the clearing denominators technique in the curve E1,d/a.

Hisil, Wong, Carter, and Dawson proposed extended twisted Edwards coor-
dinates on the twisted Edwards curve to obtain a more efficient addition formula
[18]. They found that there are four addition laws on twisted Edwards curves.
They discovered that the twisted Edwards curves with a = −1 have an 8M addi-
tion formula and 8M + 1D unified addition formula. The corresponding mixed
addition formulae save one multiplication each. As a corresponding cost, the dou-
bling formula in extended twisted Edwards coordinates required 4M+4S+1D,
one multiplication slower than the doubling formula in projective coordinates. In
order to solve this problem, Hisil et al. introduced a strategy of mixing different
coordinates [18]. Therefore, the majority of the doubling could be computed in
projective coordinates.
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Bernstein and Lange studied the twisted Edwards curves as curves in P
1×P

1

[5]. They showed that the curve

aX2W 2 + Y 2Z2 = Z2W 2 + dX2Y 2,

is nonsingular, where (X : Z) and (Y : W ) are the representation of affine
coordinates x and y in P

1. They provided a set of two addition laws that can
accept any pair of input points P1, P2 as input.

In [20], Kohel studied the symmetric model of twisted Edwards curves, includ-
ing the extended twisted Edwards coordinates and P

1×P
1 model given by Bern-

stein and Lange. Kohel showed that a twisted Edwards curve using the extended
twisted Edwards coordinates can be seen as the curve on P

3, i.e., the curve is

E : dT 2 + Z2 = aX2 + Y 2, ZT = XY.

Kohel showed that the twisted Edwards curve on P
3 can be regarded as the

intersection of two symmetric surfaces. It follows that parameter d should have
properties as parameter a, which inspired us to look for efficient point operations
for special d. Meanwhile, when a is a non-square and d is a square, Kohel implied
another complete addition law.

2.1 Ed448 and E448

The most famous curves in the twisted Edwards curves are the Edwards25519
(Ed25519), Edwards448 (Ed448), and E448. The curve Edwards25519 is a
twisted Edwards curve that is isomorphic to the Montgomery curve Curve25519.
The curve Edwards448 is designed by Hamburg [16] and has been favored by the
Internet Research Task Force Crypto Forum Research Group (IETF CFRG) ever
since. The curve E448 is a twisted Edwards curve. It is birationally equivalent to
the Montgomery curve Curve448, and is 4-isogenous to the curve Edwards448.

The curve Edwards25519 has parameter a = −1, Edwards448 and E448 have
parameter a = 1 instead of a = −1. In the following paragraphs, we will describe
how to convert Edwards448 and E448 to the relative curves with d = −1.
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Let Ea,d be a twisted Edwards curve. If there exists an element c in the finite
field that satisfies d = −c2, in other words, −d is a square in the finite field, then
there is an isomorphism between Ea,d and the following curve:

E−a/d,−1 : −a

d
x2 + y2 = 1 − x2y2.

The map from Ea,d to E−a/d,−1 is given by (x, y) �→ (cx, y).
The parameters d in both Edwards448 and E448 satisfy the condition that

−d is a square in the finite field. Thus, they are isomorphic to E−a/d,−1. The
isomorphism between Ea,d and E−a/d,−1 allow us to use the curve E−a/d,−1

to compute the scalar multiplication rather than Ea,d. More specifically, the
parameters for Edwards448 are given as follows:

p = 2448 − 2224 − 1,
a = 1,
d = −39081.

It satisfies −d = 39081 is a square in Fp. One of the square roots of −d is

c =
√−d =0x22d962fbeb24f7683bf68d722fa26aa0a1f1a7b8a5b8d54b64a2d78\

0968c14ba839a66f4fd6eded260337bf6aa20ce529642ef0f45572736.

And the parameters for E448 are given as follows:

p = 2448 − 2224 − 1,
a = 1,
d = 39082/39081,

The curve E448 satisfies −d = −39082/39081 is a square in Fp. One of the square
roots of −d is

c =
√−d =0x54457070fb7967d346710750c9f632c2792bd08a0d9bc3791700015\

fcada1acc74ce0dd46445d2d8b81c730cd43d844a7e20c44e4b9a266c.

2.2 Affine Addition and Doubling Laws on Twisted Edwards Curves

We recalled the addition laws given by Hisil, Wong, Carter, and Dawson [18].
Let (x3, y3) be the point (x1, y1) + (x2, y2). x3 has two representations:

x0 =
x2y1 + x1y2

1 + dx1x2y1y2
and x1 =

x1y1 + x2y2
y1y2 + ax1x2

,

y3 has two representations, too:

y0 =
y1y2 − ax1x2

1 − dx1x2y1y2
and y1 =

x1y1 − x2y2
x1y2 − x2y1

.
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Thus, there are four different affine addition laws for twisted Edwards curves.
They are respectively presented as follows:

(x3, y3) = (x1, y1)+(x2, y2) =
(

x2y1 + x1y2
1 + dx1x2y1y2

,
y1y2 − ax1x2

1 − dx1x2y1y2

)

= (x0, y0), (1)

(x3, y3) = (x1, y1) + (x2, y2) =
(

x2y1 + x1y2
1 + dx1x2y1y2

,
x1y1 − x2y2
x1y2 − x2y1

)

= (x0, y1), (2)

(x3, y3) = (x1, y1) + (x2, y2) =
(

x1y1 + x2y2
y1y2 + ax1x2

,
y1y2 − ax1x2

1 − dx1x2y1y2

)

= (x1, y0), (3)

(x3, y3) = (x1, y1) + (x2, y2) =
(

x1y1 + x2y2
y1y2 + ax1x2

,
x1y1 − x2y2
x1y2 − x2y1

)

= (x1, y1). (4)

The point (0, 1) on Ea,d is the identity element and (0,−1) is a point of order
2. The negative of a point (x, y) is (−x, y).

The addition law (1) is the first one found on twisted Edwards curves which
was proposed by Bernstein, Birkner, Joey, Lange, and Peters in [1]. They pointed
out that when a is a square and d is not a square, this addition law is complete.
In [18], Hisil et al. studied the addition law (1) and (4) in detail.

In this paper, we study the addition laws (2) and (3). Since the expression of
the addition law (2) is independent of a, (2) can perform efficiently even if a is
large. The addition law (3) is another complete addition law implied by Kohel
[20] and explicitly stated by Farashahi and Hosseini [12]. This addition law is
complete if and only if d is a square and a is a nonsquare. But when the finite
field Fp satisfies p ≡ 3 (mod 4), d = −1 is a nonsquare. Thus, this addition
law on Edwards448 is not complete. Later in Sect. 3, we will show this addition
formula is unified when d = −1 is a nonsquare and a is a square.

Similar to (4), the addition law (2) has some exceptional cases even if a and
d are carefully selected.

The following lemmas show that the exceptional cases would not occur when
the scalar multiplication performs on the odd order subgroup.

Lemma 1 (Lemma 2 in [23]). Let P = (x1, y1), Q = (x2, y2) be a pair of
non-trivial exceptional points (P �= ±Q and P , Q are points of odd prime order)
on Ea,d. Then the following holds:

x1x2y1y2 �= 0,
dx1x2y1y2 ± 1 �= 0,
ax1x2 ± y1y2 �= 0,
x1y2 ± x2y1 �= 0,
x1y1 ± x2y2 �= 0.

Lemma 1 shows that when the elliptic curve scalar multiplication is performed
on the subgroup of points of prime order, the addition law (3) and (2) are
exception-free for distinct input points. By [1], the doubling law is

2(x1, y1) = (
2x1y1

1 + dx2
1y

2
1

,
y2
1 − ax2

1

1 − dx2
1y

2
1

) = (x3, y3). (5)
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2.3 Extended Twisted Edwards Coordinates

Recall the homogenous projective equation for twisted Edwards curves:

(aX2 + Y 2)Z2 = Z4 + dX2Y 2.

Hisil et al. introduced an auxiliary coordinate T = XY/Z to represent a point
(x, y) on twisted Edwards curves [18]. For all nonzero λ ∈ K, (T : X : Y :
Z) = (λT : λX : λY : λZ) represents the affine point (x, y) = (X/Z, Y/Z) in
affine coordinates. Following the notation in [18], Ee was employed to denote the
extended twisted Edwards coordinates.

However, under this definition, the points (0 : 1 : 0) and (1 : 0 : 0) will be
invalid when they are extended to points in extended twisted Edwards coordi-
nates. This problem can be fixed by another model of extended twisted Edwards
coordinates proposed by Kohel [20]. Recall that Kohel revisited the twisted
Edwards curve with the extended twisted Edwards coordinates by the projective
closure.

Z2 + dT 2 = aX2 + Y 2, ZT = XY.

In this model, the twisted Edwards curve was considered as the intersection of
two surfaces in P

3.
The points (0 : 1 : 0) and (1 : 0 : 0) can be extended to (±1/

√
d : 0 : 1 : 0)

and (±√

a/d : 1 : 0 : 0).
Specifically, in an algebraically closed field k̄, each twisted Edwards curve has

eight points that contain zero value coordinates. There are four points of order 4:
(±1/

√
d : 0 : 1 : 0), (0 : 1 : 0 : ±√

a); three points of order 2: (±√
a/

√
d : 1 : 0 : 0)

and (0 : 0 : −1 : 1), and an identity point (0 : 0 : 1 : 1). The point (0 : 0 : 0 : 0)
satisfies the equation in P

3 but not satisfies that in P
2. It should be ignored.

3 Unified Addition in Ee for d = −1

To prevent the protocols from simple power analysis, unified addition formulae
are more favorable [23]. Let K be a finite field of odd characteristic. This section
proposes a unified addition formula for d = −1 on the prime order subgroup of
twisted Edwards curves over K.

3.1 The Unified Addition Law

The addition formulas are designed for d = −1 to obtain the speeding up on
Edwards448, E448, and other twisted Edwards curves that satisfy −d is a square.
For the state-of-the-art formulas for other situations, please refer to [18].

In the following, we recall the addition law (3)

(x3, y3) = (x1, y1) + (x2, y2) =
(

x1y1 + x2y2
y1y2 + ax1x2

,
y1y2 − ax1x2

1 − dx1x2y1y2

)

.

When a is a non-square and d is a square, this addition law has been proved as
a complete addition law [12,20]. In the following parts, we will demonstrate that
this formula is unified on the prime order subgroup for arbitrary a and d.
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Lemma 2. Let K be a finite field of odd characteristic. Let Ea,d be a twisted
Edwards curve defined over K. Let P = (x1, y1) be a fixed point on Ea,d and
Q = (x2, y2) be another point on Ea,d.

– 1 − dx1x2y1y2 = 0 if and only if

Q ∈ SP,1 =
{( −1√

dy1
,

−1√
dx1

)

,

(

1√
dy1

,
1√
dx1

)

,

( −1√
adx1

,
−√

a

y1
√

d

)

,

(

1√
adx1

,

√
a

y1
√

d

)}

and Q ∈ K2 is well-defined.
– y1y2 + ax1x2 = 0 if and only if

Q ∈ SP,2 =
{(

y1√
a
,−√

ax1

)

,

(−y1√
a

,
√

ax1

)

,

( −1√
adx1

,

√
a

y1
√

d

)

,

(

1√
adx1

,
−√

a

y1
√

d

)}

and Q ∈ K2 is well-defined.

Proof. Since P and Q are points on Ea,d, x1, y1, x2, and y2 satisfy the equations
ax2

1 + y2
1 = 1 + dx2

1y
2
1 and ax2

2 + y2
2 = 1 + dx2

2y
2
2 . If 1 − dx1x2y1y2 = 0 (resp.

y1y2 + ax1x2 = 0), then combining these functions we have Q ∈ SP,1 (resp.
Q ∈ SP,2).

Corollary 1. Any points P and Q of odd order q would not induce the excep-
tional cases of the addition law (3). (3) is a unified addition law on prime order
subgroup.

Proof. If both P and Q are points of odd prime order q, then P ±Q are either 0
or of odd prime order too. Let S1,P and S2,P be defined as in Lemma 2. Then for
any point P and point Q ∈ S1,P

⋃

S2,P , it can be computed that one of Q + P
and Q − P is a point of order two or order four (in the extension of K where
they exist). In contrast to earlier assumptions.

The projective form of it can be obtained as

(x3, y3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2)

=
(

X1Y1Z
2
2 + X2Y2Z

2
1

(Y1Y2 + aX1X2)Z1Z2
,
(Y1Y2 − aX1X2)Z1Z2

Z2
1Z2

2 − dX1X2Y1Y2

)

.

When Z1Z2 �= 0, the addition law can be rewritten in extended twisted Edwards
coordinates as

(x3, y3) = (T1 : X1 : Y1 : Z1) + (T2 : X2 : Y2 : Z2)

=

(

X1Y1
Z1

Z2 + X2Y2
Z2

Z1

Y1Y2 + aX1X2
,

Y1Y2 − aX1X2

Z1Z2 − dX1Y1
Z1

X2Y2
Z2

)

.
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When Zi �= 0, we have Ti = XiYi/Zi. It turns to be

(x3, y3) = (T1 : X1 : Y1 : Z1) + (T2 : X2 : Y2 : Z2)

=
(

T1Z2 + T2Z1

Y1Y2 + aX1X2
,
Y1Y2 − aX1X2

Z1Z2 − dT1T2

)

.

All the points on twisted Edwards curves satisfying the Z-coordinates of it is
zero have even order. In particular, for Edwards448 and E448, there are no points
that have coordinate Z = 0 in Ee or E . According to Lemma 1, when P and Q
is a pair of non-trivial exceptional points on Ea,d, we have T1Z2 + T2Z1 �= 0,
Y1Y2 + aX1X2 �= 0, Y1Y2 − aX1X2 �= 0, and Z1Z2 − dT1T2 �= 0. When P = Q
and P, Q have odd prime order, according to Corollary 1, the exceptional cases
also would not happen when Z1Z2 �= 0.

Then the unified addition formulae with d = −1 on extended twisted Edwards
coordinates can be obtained as follows. Given two points (T1 : X1 : Y1 : Z1) and
(T2 : X2 : Y2 : Z2) with Z1Z2 �= 0, the point addition on Ea,−1 can be performed
as (T1 : X1 : Y1 : Z1) + (T2 : X2 : Y2 : Z2) = (T3 : X3 : Y3 : Z3), where

T3 = (T1Z2 + T2Z1)(Y1Y2 − aX1X2),
X3 = (T1Z2 + T2Z1)(Z1Z2 + T1T2),
Y3 = (Y1Y2 + aX1X2)(Y1Y2 − aX1X2),
Z3 = (Y1Y2 + aX1X2)(Z1Z2 + T1T2).

(6)

3.2 The Unified Addition Formula

The addition formula can be performed with a 8M + 1D algorithm given by

m1 ← 2Y1 · Y2, m2 ← 2X1 · X2,m3 ← (T1 + Z1) · (T2 + Z2),
m4 ← (T1 − Z1) · (T2 − Z2), d1 = a · m2, a1 = m1 + d1,

a2 = m1 − d1, a3 = m3 + m4, a4 = m3 − m4,

X3 = a3 · a4, Y3 = a1 · a2, Z3 = a1 · a3, T3 = a2 · a4.

The D in this algorithm is a field multiplication with the constant value a.
A 7M + 1D mixed addition algorithm can be derived by setting X2 = 1 or

Y2 = 1. If one of the input points is fixed, for example, assuming (X2 : Y2 : T2 :
Z2) is fixed, then the multiplication m2 and the multiplication with constant d1
can be combined in a single multiplication 2aX2 · X1 if 2a · X2 is pre-computed.
Then the cost of the addition becomes 8M and the cost of the mixed addition
becomes 7M. Since 1/39081 is a large number in the finite field of Edwards448,
this pre-computation is recommended when the formula is employed to compute
the scalar multiplication on Edwards448.

Since this addition formula is unified on the prime order subgroup, it can be
employed in protocols that require SPA protection.
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4 Clearing Denominators and Scalar Multiplication
in Parallel Environments

When Bernstein et al. [1] introduced the twisted Edwards curves, they used the
clearing denominators technique to speed up the scalar multiplication of the
Edwards curves

x2 + y2 = 1 + dx2y2

with parameters d = d̄/ā, where d̄ and ā are small in K and d̄/ā is large. In
projective coordinates, they proposed 10M + 1S + 3D clearing denominators
addition formula, where the 3D are two multiplications by ā and one by d̄. As
a comparison, the previous addition formula costs 10M + 1S + 1D, where the
D is one multiplication by d. In inverted projective coordinates, they proposed
9M + 1S + 3D clearing denominators addition formula, where the 3D are two
multiplications by ā and one by d̄. As a comparison, the previous addition for-
mula costs 9M + 1S + 1D, where the D is one by d.

In the implementations, the ratio D/M varies for different constants, different
libraries, and different implement environments. For example, the multiplication
with 10, and the multiplication with 1/10 are both denoted by D, but in the
former case, the ratio D/M may close to 0, while in the latter case, this ratio
may close to 1. When d and a are small in K, several field multiplications with
a and d might be faster than one field multiplication with d/a.

Later in Sect. 7, we will show that clearing denominators formulae in partic-
ular suit the parallel environments.

4.1 Clearing Denominators for d = −1

For a twisted Edwards curve Eā/d̄,−1, the addition formula can also be performed
with a 8M + 4D algorithm given by

m1 ← Y1 · Y2, m2 ← X1 · X2, m3 ← (T1 + Z1) · (T2 + Z2),
m4 ← (T1 − Z1) · (T2 − Z2), d1 = 2d̄ · m1, d2 = 2ā · m2,

d3 = d̄ · m3, d4 = d̄ · m4, a1 = d1 + d2,

a2 = d1 − d2, a3 = d3 + d4, a4 = d3 − d4,

X3 = a3 · a4, Y3 = a1 · a2, Z3 = a1 · a3, T3 = a2 · a4.

The 4D in this algorithm is a field multiplication with the constant 2ā, a field
multiplication with the constant 2d̄, and two field multiplications with the con-
stant d̄.

4.2 Clearing Denominators for a = −1

For a twisted Edwards curve E−1,d̄/ā, the addition formula can also be performed
with a 8M + 4D algorithm given by

m1 ← (Y1 − X1) · (Y2 − X2), m2 ← (Y1 + X1) · (Y2 + X2),
m3 ← T1 · T2, m4 ← Z1 · Z2, d1 = ā · m1, d2 = ā · m2,
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d3 = 2d̄ · m3, d4 = 2ā · m4,

a1 = d2 − d1, a2 = d4 − d3, a3 = d3 + d4, a4 = d1 + d2,

X3 = a1 · a2, Y3 = a3 · a4, Z3 = a1 · a4, T3 = a2 · a3.

The 4D in this algorithm is a field multiplication with the constant 2ā, a field
multiplication with the constant 2d̄, and two field multiplications with the con-
stant ā.

5 Fast Formulae in Ee

This section shows the fast addition, doubling, and tripling formulae on twisted
Edwards curves with d = −1. The doubling and tripling in Ee are doubling
and tripling from E to Ee. In general, only one of the parameters a and d can
be set as very tiny. Since the existing doubling, addition, and tripling formulas
on the twisted Edwards curves all focus on the smaller a, they cannot achieve
good efficiency for the case where d is smaller and a is larger. In this paper, we
proposed new addition, doubling, and tripling formulas for this situation.

5.1 Fast Addition in Ee for d = −1

Similar to the unified addition formulae, the fast addition formulae can be
obtained as follows. Given two points (T1 : X1 : Y1 : Z1) and (T2 : X2 : Y2 : Z2)
with Z1Z2 �= 0, the point addition can be performed as (T1 : X1 : Y1 : Z1)+(T2 :
X2 : Y2 : Z2) = (T3 : X3 : Y3 : Z3), where

T3 = (X2Y1 + X1Y2)(T1Z2 − T2Z1)
X3 = (X2Y1 + X1Y2)(X1Y2 − X2Y1)
Y3 = (T1Z2 − T2Z1)(Z1Z2 + dT1T2)
Z3 = (X1Y2 − X2Y1)(Z1Z2 + dT1T2)

. (7)

When d = −1, the addition formula can be performed with a 8M algorithm
given by

m1 ← 2X1 · Y2, m2 ← 2X2 · Y1, m3 ← (T1 + Z1) · (−T2 + Z2),
m4 ← (−T1 + Z1) · (T2 + Z2), a1 = m1 + m2, a2 = m1 − m2,

a3 = m3 + m4, a4 = m3 − m4,

X3 = a1 · a2, Y3 = a3 · a4, Z3 = a2 · a3, T3 = a1 · a4.

A 7M mixed addition algorithm can be derived by setting X2 = 1 or Y2 = 1.
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5.2 Modified Projective Coordinates E
As we mentioned in Sect. 1, only one of the parameters a and d can reasonably be
assumed to be very small. All the efficient doubling and tripling point formulae
are based on the case where a is very small. Meanwhile, the doubling and tripling
formulae on projective coordinates are more efficient than those on extended
twisted Edwards coordinates.

This section introduces new modified projective coordinates to obtain the
efficient doubling and tripling point formulae. All these formulae are as efficient
as the existing projective formulae on twisted Edwards curves.

Recall that the extended twisted Edwards coordinates have four components:
X, Y , Z, and T . Since ZT = XY , every three components can determine the
value of the remaining ones. The modified projective coordinates are a pro-
jection of extended Edwards coordinates on P

2, denoted by E . It employs the
components T , Y , and Z. Then the affine coordinates (x, y) can be recovered
as (x, y) = ( TY , Y

Z ) by a point (Y : T : Z) in E . This representation is invalid if
it represents the point at infinity or y-coordinate in affine form satisfies y = 0,
which follows that (x, y) = (±1/

√
a, 0). By [1], (±1/

√
a, 0) and points at infin-

ity are points of even order, would not appear in prime order subgroup scalar
multiplication.

Given (T : Y : Z) in E passing to Ee requires 3M + 1S by computing
(TY, TZ, Y 2, Y Z). Given (T : X : Y : Z) in Ee passing to E is cost-free by
simply ignoring X.

5.3 Doubling in Ee

For any point (T1 : X1 : Y1 : Z1) on the twisted Edwards curves, we have

aX2
1 + Y 2

1 = Z2
1 + dT 2

1 , Z1T1 = X1Y1.

As a result, the doubling formula (5) can be rewritten as

(x3, y3) = 2(x1, y1) = (
2X1Y1

Z2
1 + dT 2

1

,
Y 2
1 − aX2

1

Z2
1 − dT 2

1

) = (
2Z1T1

Z2
1 + dT 2

1

,
2Y 2

1 − Z2
1 − dT 2

1

Z2
1 − dT 2

1

)

(8)
This formula is independent of a. The point doubling can be performed as 2(X1 :
Y1 : T1 : Z1) = (X3 : Y3 : T3 : Z3) where

X3 = 2Z1T1(Z2
1 − dT 2

1 ),

Y3 = (Z2
1 + dT 2

1 )(2Y
2
1 − Z2

1 − dT 2
1 ),

Z3 = (Z2
1 + dT 2

1 )(Z
2
1 − dT 2

1 ),

T3 = 2Z1T1(2Y 2
1 − Z2

1 − dT 2
1 ).

This formula can be performed with a 4M + 4S + 1D algorithm as follows:

s1 = T 2
1 , s2 = Z2

1 , s3 = (T1 + Z1)2 − s1 − s2, s4 = Y 2
1 ,

d1 = d · s1, a1 = s2 − d1, a2 = s2 + d1, a3 = 2s4 − a2,

X3 = s3 · a1, Y3 = a2 · a3, Z3 = a1 · a2, T3 = s3 · a3.
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5.4 Tripling in Ee

The tripling formula can be derived by computing 3P = 2P + P . The following
formulas compute (X3 : Y3 : T3 : Z3) = 3(X1 : Y1 : T1 : Z1) in 11M + 3S + 1D,
where D is one multiplication by d.

s1 = dT 2
1 , s2 = Y 2

1 , s3 = Z2
1 , a1 = s1 + s3,

a2 = s3 − s1, m1 = a2 · s2, m2 = a2 · (a1 − s2), m3 = a1 · (2s2 − a1),

a3 = m3 + m1, a4 = m3 + m2, a5 = m3 − m1, a6 = m2 − m3,

m4 = Y · a4, m5 = Y · a6, ,m6 = Z · a5, m7 = T · a3,

X3 = m6 · m7, Y3 = m4 · m5, Z3 = m4 · m6, T3 = m5 · m7.

5.5 Doubling in E
The point doubling on E formula can be performed with a 4M+ 3S+ 1D algo-
rithm as follows:

s1 = T 2
1 , s2 = Z2

1 , s3 = (T1 + Z1)2 − s1 − s2, s4 = Y 2
1 ,

d1 = d · s1, a1 = s2 − d1, a2 = s2 + d1, a3 = 2s4 − a2,

T3 = s3 · a3 Y3 = a2 · a3, Z3 = a1 · a2.

5.6 Tripling in E
The tripling formula can be performed with a 9M+3S+1D algorithm as follows:

s1 = dT 2
1 , s2 = Y 2

1 , s3 = Z2
1 , a1 = s1 + s3,

a2 = s3 − s1, m1 = a2 · s2, m2 = a2 · (a1 − s2), m3 = a1 · (2s2 − a1),

a3 = m3 + m1, a4 = m3 + m2, a5 = m3 − m1, a6 = m2 − m3,

T3 = T1 · a3 · a6 Y3 = Y1 · a4 · a6, Z3 = Z1 · a4 · a5.

These formulae of addition, doubling, and tripling in this section cost the
same as a = −1. And the formulae of addition save a few field operations com-
pared with unified addition formulae.
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6 Exceptional Case Analysis and Handling Strategies

In this section, we explore scalar multiplication on 2q-order and 4q-order sub-
groups, in addition to q-order subgroups, motivated by three factors.

Firstly, while q-order subgroups are known for their favorable properties and
high completeness, ensuring that a point precisely lies on a subgroup of order
q is challenging. In contrast, on Edwards448 curves, points must belong to the
4q-order group. This forms the primary motivation for our investigation.

Secondly, the structure of the (twisted) Edwards curve inherently includes
small-order points, which may expose it to attacks exploiting small cofactors.
These attacks manipulate the scalar multiplication from q-order subgroups to
2q-order or 4q-order subgroups. If scalar multiplication fails on the 2q-order and
4q-order subgroups, an attacker could gather information about the secret key.
Therefore, studying scalar multiplication in these cases becomes essential for
protecting sensitive information.

Thirdly, Hamburg proposed the decaf technique to address the small cofac-
tor trap on the Edwards448 curve using point compression and decompression
[15] (CRYPTO 2015). Decaf technology eliminates the requirement for scalar
multiplications to operate solely on subgroups of prime order. Instead, scalar
multiplications over 2q-order and 4q-order subgroups are permitted. These sub-
groups are treated as a prime order group. The differences are handled during
compression and decompression. Cremers and Jackson thought decaf is an excit-
ing proposal [9]. Achieving exceptional-free scalar multiplication on 2q-order and
4q-order subgroups holds significance for decaf. It is the final motivation for our
investigation.

A straightforward solution for scalar multiplication on both the 2q-order and
4q-order subgroups is to utilize the 9M + 2D unified point addition formula
proposed by Hisil et al. [18]. Here, one D corresponds to multiplication with a,
while the other corresponds to multiplication with d.

It is worth noting that our isomorphism mapping preserves the fact that a
is a square element and d is a non-square element. Consequently, the elliptic
curve obtained through the isomorphism remains a complete Edwards curve.
The unified point addition formula proposed by Hisil et al. [18] is complete in
this case. This is also why we propose the d = −1 point operation algorithms
instead of obtaining the elliptic curve with a = −1 by birational mapping or
isogeny as in [15] and run the point operations on that curve.

In this section, we analyze the exceptional cases in our new point addition
algorithm. We propose corresponding solutions to enhance efficiency on the 2q-
order and 4q-order subgroups.

We detail the exceptional cases of 2q-order and 4q-order subgroups on Ee in
the following lemma.

Lemma 3. Let K be a finite field of odd characteristic. Let Ea,d be a twisted
Edwards curve defined over K. Let P = (T1 : X1 : Y1 : Z1) be a fixed point on
Ea,d. Let Q = (T2 : X2 : Y2 : Z2) be another point on Ea,d. Let R1 = (0 : 1 : 0 :√

a). Assume that a is a square and d = −1 is a non-square.
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For the unified addition formula, we have

– Y1Y2 + aX1X2 = 0 if and only if

(T2 : X2 : Y2 : Z2) ∈ {(−T1 : Y1/
√

a : −√
aX1 : Z1), (−T1 : −Y1/

√
a :√

aX1 : Z1)} = {P + R1, P + 3R1}
– Y1Y2 − aX1X2 = 0 if and only if

(T2 : X2 : Y2 : Z2) ∈ {(T1 : −Y1/
√

a : −√
aX1 : Z1), (T1 : Y1/

√
a :√

aX1 : Z1)} = {−P + R1,−P + 3R1}
– T1Z2 + Z1T2 = 0 if and only if

(T2 : X2 : Y2 : Z2) ∈{(−T1 : Y1/
√

a : −√
aX1 : Z1), (−T1 : −Y1/

√
a :

√
aX1 :

Z1), (−T1 : −X1 : Y1 : Z1), (−T1 : X1 : −Y1 : Z1)}
={P + R1, P + 3R1,−P,−P + 2R1}

– T1T2 + Z1Z2 = 0 would not occur.

For the fast addition formula, we have

– Y1X2 + X1Y2 = 0 if and only if

(T2 : X2 : Y2 : Z2) ∈{(−T1 : −X1 : Y1 : Z1), (−T1 : X1 : −Y1 : Z1)}
= {−P,−P + 2R1}

– Y1X2 − X1Y2 = 0 if and only if

(T2 : X2 : Y2 : Z2) ∈{(T1 : −X1 : −Y1 : Z1), (T1 : X1 : Y1 : Z1)}
= {P, P + 2R1}

– T1Z2 − Z1T2 = 0 if and only if

(T2 : X2 : Y2 : Z2) ∈ {(T1 : −Y1/
√

a : −√
aX1 : Z1), (T1 : Y1/

√
a :

√
aX1 :

Z1), (T1 : X1 : Y1 : Z1), (T1 : −X1 : −Y1 : Z1)}
= {−P + R1,−P + 3R1, P, P + 2R1}

– T1T2 − Z1Z2 = 0 would not occur.

Proof. Similar to Lemma 1, these equivalences are derived from combing the
equations. For example, when obtain the exceptional cases of Y1Y2+aX1X2 = 0,
we combine Y1Y2+aX1X2 = 0 with aX2

1+Y 2
1 = Z2

1+dT 2
1 , aX2

2+Y 2
2 = Z2

2+dT 2
2 ,

X1Y1 = Z1T1, and X2Y2 = Z2T2. And we ignore the solution (T2 : X2 : Y2 :
Z2) = (0 : 0 : 0 : 0).
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6.1 Unified Addition Formula on 2q-Order Subgroup

We first handle the easier but crucial case, the unified addition formula per-
forms on the subgroup of order 2q. For curve Edwards448, we have the following
corollary of Lemma 3:

Corollary 2. For the cases that a is a square element and d = −1 is a non-
square element, points P and Q in the subgroup of order 2q would not induce the
exceptional cases of our unified addition formula. In particular, the finite field
of Edwards448 and E448 satisfy this condition.

Proof. If both P = (T1 : X1 : Y1 : Z1) and Q = (T2 : X2 : Y2 : Z2) are points in
the subgroup of order 2q. According to Lemma 3, if zero occurs in P + Q, then
Q = −P or Q = −P + 2R1. In addition, since Q = −P or −P + 2R1, we have
Q �= ±P + ±R1. Thus, Y1Y2 ± aX1X2 �= 0. If Q = −P , P + Q is computed as

P + Q = (0, 0, (Y 2
1 − aX2

1 )(Y
2
1 + aX2

1 ), (Y1Y2 − aX1X2)(Z2
1 − T 2

1 ))

by our unified addition formula. Combined with the fact that Y 2
1 +aX2

1 = Z2
1−T 2

1

and (Y 2
1 − aX2

1 )(Y
2
1 + aX2

1 ) = (Y1Y2 + aX1X2)(Y1Y2 − aX1X2) �= 0. We have

P + Q = (0, 0, 1, 1).

The result is equal to what it should be. Thus, Q = −P will not induce an
exceptional case. Similarly, Q = −P + 2R1 will not induce exceptional cases.

Corollary 2 shows that our unified addition formula is complete on the 2q-
order subgroup.

6.2 Strategy for Single-Scalar Multiplication

The single-scalar multiplication computes kP for a scalar k and a fixed point
P . Since our unified addition formula is complete on the 2q-order subgroup, it
is exceptional free when computing single-scalar multiplication on the 2q-order
subgroup. However, Lemma 3 shows that our unified addition formula is not
complete on the 4q-order subgroup.

As for our fast point addition formula, it yields exceptions on subgroups of
order 2q and 4q on Edwards448. Even if the exception to doubling (P = Q) is
ignored, still some cases need to be handled on Edwards448.

We handle these exceptional cases by reducing the scalar k modulo q first,
limiting the scalar in {0, 1, · · · , q−1}. And then eliminate the difference through
equivalence classes, as the way decaf did. The justification for this operation is
supported by two reasons. Firstly, this modulus operation is common in elliptic
curve cryptography. For example, the EdDSA signature generation operation in
IETF RFC 8032 reduced the scalar modulo q for efficiency reasons [19]. Secondly,
we will show that the differences between points calculated with and without the
modulus fall within the 4-torsion subgroup of E later. Therefore, when integrated
with decaf’s Edwards-only strategy, these two outcomes effectively represent the
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same point. The equivalence testing of P = (T1 : X1 : Y1 : Z1) and Q = (T2 :
X2 : Y2 : Z2) can be made by checking whether

X1Y2 = Y1X2 or Y1Y2 = −aX1X2

as in ristretto [17]. Another solution is to test whether 4P = 4Q as mentioned
in RFC 8032 [19].

If P is a point of order 4q or 2q on Edwards448 or E448, then we have
R1 = mqP, m = 1, 3, or qP = 2R1 = (0,−1), R1 �∈ {kP, k ∈ N}. Assuming Q is
an exceptional point of P in Lemma 3, then

Q = kP, k ≡ 1, q − 1 mod q, or Q �∈ {kP, k ∈ N}
In single-scalar multiplication with scalar smaller than q−1, the case (q−1)P+P
would not occur; the case P+P is not the exceptional case of the unified addition
formula and performed by the doubling formula when employing the fast addition
formula; and the case Q �∈ {kP, k ∈ N} can be disregarded.

The modular equivalence k′ = k mod q yields that k − k′ = mq with
m ∈ N. Since each of Edwards448 and E448 only contains one 4-torsion sub-
group, and the size of it is 4. We have kP − k′P = mqP ∈ E[4], where
E[4] = {(0,±1), (±1/

√
a, 0)} is the 4-torsion subgroup of E.

6.3 Strategy for Multi-scalar Multiplication

Since the scalars between the adding points are blinding, our strategy for single-
scalar multiplication is invalid for multi-scalar multiplication.

We propose a new algorithm that combines our unified addition formula and
the unified addition formula proposed by Hisil et al. [18] to speed up the point
addition on multi-scalar multiplication on Edwards448 and E448.

Assuming that P = (T1 : X1 : Y1 : Z1) and Q = (T2 : X2 : Y2 : Z2) are the
two inputs of our unified addition formula. The addition can be performed by
the following algorithm:

In Algorithm 1, we first compute the value of X1X2, Y1Y2, and aX1X2. In
Lemma 3, we analyzed the exceptional cases of our unified addition formula.
Similar to Q = −P or −P +2R1, our unified addition formula runs correct when
Q = −P +R1 or −P +3R1 with Q �= P +R1 or P +3R1. The exceptional cases
that remained to be concerned are Q = P+R1, P+3R1 with P in the subgroup of
order 4q or 4. No matter what the order of P is, the exceptional cases Q = P+R1

or P +3R1 yield Y1Y2+aX1X2 = 0 by Lemma 3. Algorithm 1 compute the result
by the unified addition formula proposed by Hisil et al. [18] in these cases. Since
this addition formula has been proved to be complete [20], Algorithm 1 returns
the correct answer in these cases. As for the case Y1Y2+aX1X2 �= 0, the output of
our unified addition formula is correct. Algorithm 1 employs our unified addition
formula in this situation.

When Y1Y2 + aX1X2 = 0, our algorithm costs 9M + 1D + 1V, where V
denotes the time cost of verifying whether Y1Y2 + aX1X2 = 0 or not. And when
Y1Y2 + aX1X2 �= 0, our algorithm costs 8M + 1D + 1V. Since d = −1, Hisil
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Algorithm 1: Addition algorithm for multi-scalar multiplication
Data: P = (T1 : X1 : Y1 : Z1) and Q = (T2 : X2 : Y2 : Z2)
Result: (T3 : X3 : Y3 : Z3) = P + Q

1 m1 → Y1 · Y2; m2 → X1 · X2; d1 → a · m2;
2 if m1 + d1 �= 0 then
3 m3 → (T1 + Z1) · (T2 + Z2); m3 → (T1 − Z1) · (T2 − Z2); a1 → 2m1 + 2d1;

a2 → 2m1 − 2d1; a3 → m3 + m4; a4 → m3 − m4; X3 → a3 · a4; Y3 → a1 · a2;
Z3 → a1 · a3; T3 → a2 · a4;

4 else
5 m3 → −T1 · T2; m4 → Z1 · Z2; m5 → (X1 + Y1) · (X2 + Y2) − m1 − m2;

a2 → m4 − m3; a3 → m4 + m3; a4 → m1 − d1; X3 → m5 · a2; Y3 → a3 · a4;
Z3 → a2 · a3; T3 → m5 · a4;

6 return (T3 : X3 : Y3 : Z3)

et al.’s unified addition formula costs 9M + 1D. Thus, our algorithm costs one
more V when Y1Y2 + aX1X2 = 0, and saves 1M− 1V when Y1Y2 + aX1X2 �= 0.
Since Y1Y2 + aX1X2 = 0 rarely occurs, our algorithm is competitive with Hisil
et al.’s unified addition formula when there are no constant time requirements.

However, our new algorithm contains an if-else judgment, and the time cost
varies in different conditional branches. Thus, the unified addition formula pro-
posed by Hisil et al. [18] is a better choice for multi-scalar multiplication that
requires side-channel assistance.

7 Fast Scalar Multiplication

7.1 Parallelization for Unified Addition Formulae

In [18], Hisil et al. noticed that their unified addition formula is highly paral-
lelizable. Our unified addition formulae also maintain this good property.

In particular, when there are 4 processors can be employed, both of the
8M+1D unified addition formula and the 8M+4D clearing denominators unified
addition formulas can be performed with effective 5-steps 2M + 1D algorithm
as in Table 2.

As in Table 2, although both of the 8M+1D unified addition formula and the
8M + 4D unified addition formulae require 2M + 1D in a 4-processor parallel
point operation, the latter may be faster than the former. For example, the
parameter d in Edwards25519 is d = 121665/121666. It implies that d = d̄/ā
where d̄ = 121665 and ā = 121666. Thus, the D in 4-processor parallel of
Edwards25519 is a field multiplication by d = 121665/121666, and the D in
4-processor parallel of Edwards25519 with clearing denominator is about field
multiplication by 2d̄ = 2 · 121666 = 243332.
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Table 2. 4-Processor unified addition formulae

cost step Processor 1 Processor 2 Processor 3 Processor 4
1 a1 ← T1 + Z1 a2 ← T2 + Z2 a3 ← T1 − Z1 a4 ← T2 − Z2

1M 2 m1 ← X1 · X2 m2 ← Y1 · Y2 m3 ← a1 · a2 m4 ← a3 · a4

1D 3 d1 ← 2m1 d2 ← 2a · m2 idle idle
4 a1 ← d1 + d2 a2 ← d1 − d2 a3 ← m3 + m4 a4 ← m3 − m4

1M 5 X3 ← a3 · a4 Y3 ← a1 · a2 Z3 ← a1 · a3 T3 ← a2 · a4

(a) d = −1

cost step Processor 1 Processor 2 Processor 3 Processor 4
1 a1 ← T1 + Z1 a2 ← T2 + Z2 a3 ← T1 − Z1 a4 ← T2 − Z2

1M 2 m1 ← X1 · X2 m2 ← Y1 · Y2 m3 ← a1 · a2 m4 ← a3 · a4

1D 3 d1 ← 2d̄m1 d2 ← 2ā · m2 d3 ← 2d̄m4 d4 ← 2d̄m4

4 a1 ← d1 + d2 a2 ← d1 − d2 a3 ← d3 + d4 a4 ← d3 − d4

1M 5 X3 ← a3 · a4 Y3 ← a1 · a2 Z3 ← a1 · a3 T3 ← a2 · a4

(b) d = −1 with clearing denominators

cost step Processor 1 Processor 2 Processor 3 Processor 4
1 a1 ← X1 + Y1 a2 ← X2 + Y2 a3 ← X1 − Y1 a4 ← X2 − Y2

1M 2 m1 ← a3 · a4 m2 ← a1 · a2 m3 ← T1 · T2 m4 ← Z1 · Z2

1D 3 d1 ← ām1 d2 ← ā · m2 d3 ← 2d̄m4 d4 ← 2ām4

4 a1 ← d2 − d1 a2 ← d4 − d3 a3 ← d3 + d4 a4 ← d1 + d2

1M 5 X3 ← a1 · a2 Y3 ← a3 · a4 Z3 ← a1 · a4 T3 ← a2 · a3

(c) a = −1 with clearing denominators

7.2 Speedup by Mixing Different Coordinates

The mixing different coordinates technique in elliptic curve cryptography was
first proposed by Cohen, Miyaji, and Ono to speed up the scalar multiplication on
short Weierstrass curves [8]. Hisil et al. used this technique on twisted Edwards
curves [18]. We also take this technique for the case d = −1.

Recall that given (T : Y : Z) in E passing to Ee requires 3M + 1S by
computing (TY, TZ, Y 2, Y Z), and given (T : X : Y : Z) in Ee passing to E is
cost-free by simply ignoring X. When performing a scalar multiplication, the
scalar multiplication can be speedup by employing the following strategies:

(1) If a point doubling or tripling is followed by another point doubling or
tripling, one should employ the corresponding formula on E .

(2) After each addition, the tripling scalar multiplication should be performed
as early as possible.

(3) If a point doubling or tripling is followed by a point addition, please use
Ee ← kE , k = 2, 3 and E ← Ee + Ee for the point doubling or tripling and
the point addition.
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The core idea is cutting down the number of computations of the coordinate
X. Then, when d = −1, the cost of the doubling formula can be considered as
4M + 3S; and the cost of the addition formula can be considered as 8M (with
one M more from the doubling formula to obtain X-coordinate for the input
point of the addition and one M less since the X-coordinate output point can
be ignored). For more details, please see [18] §4.

8 Conclusion

In this paper, we proposed efficient point operations on twisted Edwards curves
d = −1. Two addition formulas are introduced, one of them is unified. Two
unified addition formulas with clearing denominators are introduced to gain new
speed records in the parallel environments.

The unified addition formula with d = −1 saves 1M+1D compared with the
general case in [18]. It is approximately 11.1% and 18.2% faster than the results
in [18] under the assumptions D/M ≈ 0 and D/M ≈ 1, respectively. The faster
addition formula costs only 8M, saving an additional D compared to our unified
addition formula. Moreover, special doubling and tripling formulas are proposed.
All of these formulae are as fast as the best-known results for a = −1.
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