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Abstract. We prove that two variants of the Fujisaki-Okamoto trans-
formations are selective opening (SO) secure against chosen-ciphertext
attacks in the quantum random oracle model (QROM), assuming that
the underlying public-key encryption scheme is one-wayness against
chosen-plaintext attacks (OW-CPA). The two variants we consider are
FO�⊥ (Hofheinz, Hövelmanns, and Kiltz, TCC 2017) and U�⊥

m (Jiang et
al., CRYPTO 2018). This is the first correct proof in the QROM.

The previous work of Sato and Shikata (IMACC 2019) showed the SO
security of FO�⊥ in the QROM. However, we identify a subtle gap in their
work. To close this gap, we propose a new framework that allows us to
adaptively reprogram a QRO with respect to multiple queries that are
computationally hard to predict. This is a property that can be easily
achieved by the classical ROM, but is very hard to achieve in the QROM.
Hence, our framework brings the QROM closer to the classical ROM.

Under our new framework, we construct the first tightly SO secure
PKE in the QROM using lossy encryption. Our final application is prov-
ing FO�⊥ and U�⊥

m are bi-selective opening (Bi-SO) secure in the QROM.
This is a stronger SO security notion, where an adversary can addition-
ally corrupt some users’ secret keys.

Keywords: Selective opening security · quantum random oracle
model · Fujisaki-Okamoto transformation · tight security

1 Introduction

Public-key encryption (PKE) schemes are a central topic in cryptography. Their
widely accepted security notion is indstinguishability against chosen-ciphertext
attacks (IND-CCA), which states that confidentiality holds even if an adver-
sary A can adaptively decrypt ciphertexts of its choice, except the challenge
ciphertext. This is a security notion in the single-user, single-challenge setting,
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namely, only one user’s public key and one challenge ciphertext are exposed to
an adversary.

Its multi-user, multi-challenge counterpart is an arguably more realistic set-
ting. Selective opening (SO) security [3,6] is a notion in a multi-challenge setting,
where an adversary is given multiple challenge ciphertexts under a single public
key and aims at learning some information about the encrypted messages. On top
of that, the adversary can open a subset of the challenge ciphertexts and reveal
the corresponding messages and randomness used to generate those ciphertexts.
SO security guarantees the confidentiality of the remaining unopened challenge
ciphertexts. The recent notion, Bi-SO security [28], can be viewed as a stronger
variant of the SO security in a multi-user setting, where the adversary is addi-
tionally given multiple users’ public keys and it can corrupt some of their secret
keys.

The aforementioned opening capability is motivated by the fact that crypto-
graphic information is technically hard and expensive to erase in practice and an
adversary may break into an encrypter’s computer and learn the used random-
ness. In some applications, such as secure multi-party computation, it is even
required to reveal the messages and randomness to make a user’s computation
publicly verifiable.

Technically speaking, it is challenging to construct a SO secure PKE. At a
first glance, one may think that IND-CCA security implies SO security, since
each ciphertext is generated using independent randomness. However, this is
not true in general. We refer [23] for an overview and useful further reading.
We highlight that, from a provable-security point of view, to answer an open-
ing query, a security reduction should be able to ‘explain’ how it generates a
challenge ciphertext by returning the randomness, but in many cases the reduc-
tion does not even know the randomness itself. Hybrid arguments are one of the
examples, namely, the reduction cannot explain a ciphertext where a challenge
is embedded. This is also the inherent reason why the recent updated proof of
Sato and Shikata [36] is incorrect. In the recent years, a great amount of effort
has been put into defining the right notion of SO security [3,6,23] and construct
efficient SO-secure public-key encryption schemes [11,17–20,28].

Notions of Selective Opening Security. Currently, there are two types of
notions have been studied in the literature, the indistinguishability-based (IND-
based) ones (weak-IND-SO and full-IND-SO) [3,6] and the simulation-based
(SIM-based) one (SIM-SO) [3]. They are not polynomial-time equivalent to each
other. In this paper we only consider the SIM-based one. Informally, SIM-SO secu-
rity states that for every SO adversary its output can be efficiently simulated by
a simulator that sees only the opened messages. Unlike its IND-based counter-
part, SIM-SO does not require the message distribution chosen by the adversary to
be efficiently resamplable, conditioned on the opened messages (cf. [3]). Previous
work showed that SIM-SO-CCA and full-IND-SO-CCA notions are the strongest
SO security [2,6,23]. However, only SIM-SO-CCA has been realized so far
[11,17–20]. It is similar for Bi-SO security, and only SIM-based notion is consid-
ered so far [28]. For simplicity, we will not write ‘SIM’ in the following.
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Our Goal: Selective Opening Security in the QROM. SO secure PKE
schemes are constructed in idealized models [18,19] and in the standard model
[3,11,17,20]. Constructions in idealized models are more efficient and hence more
relevant to practice. In particular, this paper considers schemes in the random
oracle model (ROM).

The increasing threat that quantum computers can break most widely
deployed public-key cryptosystems has driven research in the direction of build-
ing post-quantum secure public-key primitives, including PKE schemes and key
encapsulation mechanisms (KEMs). Currently, the National Institute of Stan-
dards and Technology (NIST) in the US has come to a conclusion for the post-
quantum standards. Kyber [37], NTRU [8], and Saber [9] were three finalists in
the last round for the KEM/PKE category. They all use variants of the Fujisaki-
Okamoto (FO) transformation [12–14,21]. It is interesting to consider whether
these FO transformations are secure in the SO setting.

The FO transformation turns a relatively weak PKE (e.g. a One-Way CPA
secure one) into an IND-CCA secure one. Recently, the FO transformation and
its variants have been widely analyzed in both the classical ROM and the quan-
tum (accessible) ROM (QROM) [21,24,27,34,38], but mostly with a focus on
establishing IND-CCA security. An exception is the work of Heuer et al. [18]
which studied the SO security of the FO transformation in the ROM.

For post-quantum security, proofs in the QROM are more desirable than
those in the (classical) ROM, since it models quantum adversaries in a more
realistic manner. In this setting, a quantum adversary interacts with a classi-
cal network, where “online” primitives (such as encryption) are classical, and
computes “offline” primitives (such as hashing) on its own in superposition.

The work of Sato and Shikata [35] proved the SO security of the FO trans-
formation in the QROM. To the best of our knowledge, this is the only work
considers SO security in the QROM. However, we identified a subtle gap in their
security proof1. Even worse, this gap cannot be closed, even if we relax the notion
to the weaker, non-adaptive SO security as in [29], where an adversary is not
allowed to adaptively open a challenge ciphertext, but commits all its opening
indices after seeing the challenge ciphertexts. From a technical point of view,
closing the gap in [35] requires new proof techniques in the QROM that allow
a security reduction to adaptively reprogram multiple RO-queries in one secu-
rity game without changing the view of an adversary, where the reprogrammed
points are computationally hidden. This is a property not achievable by existing
well-known techniques, such as [16,27,39,40]. We provide more discussion about
it in Sect. 1.2.

1.1 Our Contributions

We revise the selective opening security in the QROM and prove that two
“implicit rejection” variants of the FO transformation (namely, FO �⊥ [24] and
U �⊥
m [21]) are SO-CCA secure if the underlying PKE is one-way CPA (OW-CPA)

1 The authors confirmed this to us.
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secure in the QROM. Here we consider PKE schemes, namely, combining KEM
FO �⊥ (or U �⊥

m) with one-time pad and a message authentication code (MAC). The
one with FO �⊥ is the same scheme considered in [35], but ours is the first correct
proof in the QROM. Since the proofs for FO �⊥ and U �⊥

m are similar, we leave the
one for U �⊥

m in our full version [33], and there we only prove the Bi-SO-CCA for
U �⊥
m , since it implies SO-CCA security.

Our core technical contribution is a computational adaptive reprogramming
framework in the QROM that enables a security reduction to adaptively and
simultaneously reprogram polynomially many RO-queries which are computa-
tionally hidden from a quantum adversary. This is a property that cannot be
provided by previous techniques in the QROM, such as the (adaptive) one-way to
hiding (O2H) lemma [39,40], the semi-classical O2H lemma [1], and the measure-
rewind-measure O2H lemma [27]. Our framework brings the QROM closer to
the classical ROM, and it generalizes and improves the adaptive reprogramming
framework by Grilo et al. [16].

Tight SO Security from Lossy Encryption in the QROM. Our second
contribution is a tightly SO-CCA secure PKE from lossy encryption [3,22]. This
is the first tight scheme in the QROM. A recent work of Pan, Wagner, and
Zeng has constructed the first tightly multi-user (without corruptions), multi-
challenge IND-CCA in the QROM [31], but it did not get extended to the
(stronger) SO setting. Another related work is also due to Pan and Zeng [32],
where a compact and tightly SO-CCA secure PKE is proposed in the classical
random oracle model. However, it is unclear if it can be transformed to the
QROM. Our result on tight SO security is established in the QROM, and it
improves both aforementioned work.

Bi-SO Security of FO Transformations. As another application of our
framework, we prove that the aforementioned variants of FO transformation,
namely, FO �⊥ and U �⊥

m , are furthermore Bi-SO-CCA secure [28] in the QROM,
assuming OW-CPA security of the underlying PKE scheme. This notion is
stronger than the SO-CCA security, since it additionally allows secret key cor-
ruption for the adversaries. The only known Bi-SO-CCA secure construction is
in the classical ROM. Our work is the first one in the QROM.

Impacts on the NIST Finalists. The NIST finalists Kyber and Saber use
tweaked verions of transformation FO �⊥, and NTRU uses U �⊥

m . Hence, analysis
of these FO transformations is more fundamental than directly analyzing these
concrete schemes. Although our results strongly indicate that the NIST finalists
are SO-CCA secure and Bi-SO-CCA in the QROM, we leave the formal proof
of it as a future direction, and we are optimistic that our approaches can be
extended naturally in achieving it.

1.2 Technical Details

We provide some details about our technical contribution, computational adap-
tive reprogramming framework.
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Our Starting Point. The work of Heuer et al. [18] is the first one proving
that practical PKEs via the OAEP and FO transformation are SO-CCA secure
in the (classical) ROM. Their work considered the original FO transformation
[14]. Motivated by Heuer et al.’s work, we can show that the combination of
FO �⊥ and one-time pad is SO-CPA secure in the classical ROM by adaptively
reprogramming the ROs. Here we describe some key idea. Note that our final
goal is SO-CCA, but for the simplicity of our discussion here, we only consider
SO-CPA.

A ciphertext of message m in the FO �⊥ transformation, (e, d), is defined as
follow:

e := Enc0(pk, r; G(r)) for r $← M′

d := H(r, e) ⊕ m (1)

where Enc0 is the randomized encryption algorithm of a OW-CPA secure PKE
with message space M′, G(r) is the explicit randomness used in Enc0, and G, H
are two hash functions with suitable domains and ranges. Public and secret keys
of FO �⊥ is the same as those of the OW-CPA secure PKE, and the decryption is
defined in the straightforward way. We refer Fig. 6 for the full description.
Efficient Openability in the ROM. To show the SO-CPA security, we
require “efficient openability” of ciphertexts [3,11]. This property states that
one can generate some ciphertexts and later they can be efficiently opened to
arbitrary messages by using some trapdoor (in the standard model) or repro-
gramming ROs (in the ROM) in a suitable way. In the classical ROM, our cipher-
texts (defined by Eq. (1)) have efficient openability. More precisely, a security
reduction R can choose random r∗

i , R∗
i , and d∗

i and return the challenge cipher-
texts (Enc0(pk, r∗

i ; R∗
i ), d∗

i )1≤i≤μ to the SO-CPA adversary A. For these challenge
ciphertexts, the reduction R can open a ciphertext (Enc0(pk, r∗

i ; R∗
i ), d∗

i ) to arbi-
trary message mi by reprogramming G(r∗

i ) := R∗
i and H(r∗

i , e∗
i ) := d∗

i ⊕ mi.
Moreover, R will embed the OW-CPA challenge to one of the unopened cipher-
texts. Here, r∗

i are only computationally hidden from the adversary.
For the SO-CPA security, the aforementioned reprogramming is required to be

adaptive, since an adversary can submit an opening query adaptively. Moreover,
a SO-CPA adversary can submit multiple opening queries in one security game
or hybrid. Therefore, our reprogramming strategy should be able to reprogram
multiple RO-queries in one security game. We call this last requirement as multi-
point reprogramming. We stress that hybrid arguments are already not useful for
SO security. This is because a standard hybrid argument will embed a OW-CPA
challenge into the SO-CPA ciphertexts one-by-one. After it is embedded to the i-
th ciphertext, G(r∗

i ) cannot be reprogrammed to R∗
i , since R∗

i is unknown to the
reduction R. Thus, the opening query cannot be correctly answered.
Existing Approaches in the QROM. Reprogramming a quantum (accessi-
ble) RO is highly non-trivial, since a query in superposition can be viewed as a
query that might contain all possible input values at once. To correctly repro-
gram a value to a particular QRO query, it needs to measure and extract classi-
cal preimages of a quantum query, which will cause a change in the adversary’s
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view. Although many works have been done to provide reprogrammability in
the QROM [1,16,27,39,40], reprogramming in the QROM is still much more
challenging than in the ROM.

For the SO security, the situation is more complicated. Essentially, existing
approaches (such as [1,16,27,39,40]) cannot easily achieve the requirements for
SO security in the QROM. We use the semi-classical O2H lemma [1] as an
example to elaborate on this. Fix a random set S ⊆ X . Let H, H ′ : X → Y
be two different ROs such that, for all x ∈ X \ S, H(x) = H ′(x) (denoted by
H \S = H ′ \S). The semi-classical O2H lemma states that a quantum adversary
A cannot tell the difference between H and H ′ by giving only quantum access
to them, unless A finds an element from S. Here set S needs to be defined before
defining H and H ′.

In the work of Sato and Shikata [35], their security proofs viewed S as the
set containing all the randomness used in the opened ciphertexts (cf. the step
between Game1 and Game2 in [35, Section 3.1] and the one between Game5 and
Game6 in [35, Section 3.2]). Essentially, S is equivalent to the set of opening
indices which are adaptively decided by the adversary A. However, to use the
semi-classical O2H lemma, S must be fixed at the beginning of the security
game, even before generating the public key. Therefore, this technical gap in
their proofs cannot be closed, and it will be the case, even if we consider the
weaker, non-adaptive variant of SO security as in [29], namely, an adversary
cannot adaptively open challenge ciphertexts, but commits to opening indices
after receiving the challenge ciphertexts.

The recent measure-rewind-measure O2H lemma [27] has a similar flavor as
the semi-classical O2H lemma, and it does not allow to define S adaptively.
The adaptive O2H lemma [39] allow us to reprogram a single query adaptively.
However, we require adaptive reprogramming multiple queries for SO security,
since if we only reprogram wrt one opening query, an adversary can distinguish
the simulation by opening multiple ciphertexts.

Our Approach. To solve the technical difficulties, we propose the computa-
tional adaptive reprogramming framework. It is more general than the algorith-
mic O2H lemma [39] and the adaptive reprogramming framework [16] in the
sense that our framework allows a reduction to reprogram polynomial many RO
queries in the QROM. Different to the work of Grilo et al., our reprogrammed
points can be only computationally hidden from the adversary.

In a nutshell, our framework considers two security games, NonAda and
Ada. The RO H ′ in NonAda will never be reprogrammed, but the RO H in Ada

will be adaptively reprogrammed for multiple times according to the adversary’s
behavior. We require H ′ \ S = H \ S, but S can be modified adaptively by
a security reduction. Intuitively, an adversary A can distinguish NonAda and
Ada if it queries x ∈ S. This event can be detected easily in the classical setting,
but is problematic in the quantum setting. Our high-level approach is to bound
the probability of this event by randomly measuring A. Details are given in
Sect. 3. We stress that our approach is not a “hybrid argument” extension of
the existing techniques. In fact, as pointed out by Bellare, Hofheinz, and Yilek
[3], it is unknown if a simple hybrid argument is useful in proving SO security.
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Very unfortunately, the latest revision2 of [35] is a concrete example for why it
does not work. The proof of their Lemma 1 is essentially a hybrid argument.
A counterexample is simply: Imagine an adversary that always opens the first
ciphertext, then their first hybrid always fails since the OPEN oracle will abort
when the adversary opens the first ciphertext, and thus their hybrid argument
cannot prove the SO security.

More Comparison with Related Work. Recently, Grilo et al. proposed
the adaptive reprogramming framework [16] and used it to give a QROM proof
for Fiat-Shamir’s signatures. The main difference between our work and Grilo
et al.’s work is that their framework requires the reprogramming points to have
high statistical entropy, while our framework requires the reprogramming points
are computationally hard to find (which cover the case of statistical entropy).
When proving the SO security of the FO transformation, their framework cannot
be used since the reprogramming points are computationally hidden by OW-CPA
security of some underlying PKEs.

We also compare our framework to the measure-and-reprogram framework
of Don, Fehr, and Majenz [10] and the lifting theorem in [41] that are used to
prove security of the Fiat-Shamir (FS) signature in the QROM. In a nutshell, the
difference between our frameworks is similar to that between the security proofs
of the FO encryption and FS signature in the classical setting. More precisely,
in the proof of FO encryption, we argue that it is infeasible for an adversary to
learn the reprogramming points and thus we can reprogram the random oracle
without changing the adversary’s view. However, in the proof of FS signature, an
adversary can learn the reprogramming points, since they are the hash values of
signing messages and some (public) commitments of the Σ protocol. Hence, the
measure-and-reprogram framework is conceptually different to us and cannot be
used in proving SO or Bi-SO security in the QROM. The lifting theorem (cf. [41,
Theorem 4.2]) has a similar flavor as the measure-and-reprogram framework.

Future Work. We leave exploring more applications of our computational
adaptive reprogramming framework as a future direction, since reprogramming
a (quantum) random oracle on multiple computationally hidden points is an
interesting technique and we are optimistic that it may yield new applications.
Moreover, we are optimistic that our approach can work for the simulatable DEM
framework of SO secure PKEs. We leave a formal treatment of it as another
future direction.

2 Preliminaries

Let n be an integer. [n] denotes the set {1, ..., n}. Let X and Y be two finite
sets and f : X → Y be a function. f(X ) := {f(x)|x ∈ X }. x $← X denotes
sampling a uniform element x from X at random. If S is a subset of X , then
X \S denotes the set {x ∈ X |x /∈ S}. Let A be an algorithm. If A is probabilistic,
then y ← A(x) means that the variable y is assigned to the output of A on input
2 https://eprint.iacr.org/archive/2022/617/20230108:160413.

https://eprint.iacr.org/archive/2022/617/20230108:160413
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x. If A is deterministic, then we write y := A(x). We write AO to indicate that
A has classical access to oracle O. We write T(A0) ≈ T(A1) if the running times
of A0 and A1 are polynomially close to each other. All (quantum) algorithms
are (quantum) probabilistic polynomial time, unless we state it.

Games. We use code-based games [4] to define and prove security. We implicitly
assume that Boolean flags are initialized to false, numerical types are initialized
to 0, sets are initialized to ∅, while strings are initialized to the empty string
ε. Pr[GA ⇒ 1] denotes the probability that the final output GA of game G
running an adversary A is 1. Let Ev be an (classical and well-defined) event. We
write Pr[Ev : G] to denote the probability that Ev occurs during the game G.

One-Time Message Authentication Code (MAC). We use MAC schemes
that have one-time strong existential unforgeability under chosen message attack
(otSUF-CMA) as building block. Let MAC := (Tag,Vrfy) be an one-time MAC
scheme with key space Kmac. The otSUF-CMA security game is given in Fig. 1.

Definition 1 (otSUF-CMA). For a forger F , its advantage against otSUF-CMA
security of MAC is defined as

AdvotSUF-CMA
PKE (F) := Pr[otSUF-CMAF

MAC ⇒ 1]

MAC is otSUF-CMA secure if for all F , AdvotSUF-CMA
PKE (F) = negl(λ).

One-time MAC schemes can be constructed by using pair-wise independent hash
function family, and they are otSUF-CMA secure against unbounded adversaries.
Here Tag cannot be queried with quantum superposition.

Fig. 1. Security games one-time MAC schemes

2.1 Public-Key Encryption

A Public Key Encryption (PKE) scheme PKE consists of three algorithms (KG,
Enc,Dec) and a message space M that is assumed to be efficiently recognizable.
The three algorithms work as follows:

– The key generation algorithm KG, on input the security parameter λ, outputs
a public and secret key pair (pk, sk). pk also defines a finite randomness space
R := R(pk) and a ciphertext space C := C(pk). For sake of simplicity, in this
paper, we ignore the input λ and simply write the process as (pk, sk) ← KG.
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– The encryption algorithm Enc, on input pk and a message m ∈ M, outputs a
ciphertext c ∈ C. We also write c := Enc(pk, m; r) to indicate the randomness
r ∈ R explicitly.

– The (deterministic) decryption algorithm Dec, on input sk and a ciphertext
c, outputs a message m′ ∈ M or a rejection symbol ⊥ /∈ M.

Definition 2 (PKE Correctness). A PKE scheme PKE := (KG,Enc,Dec)
with message space M is (1 − δ)-correct if

E

[
max
m∈M

Pr [Dec(sk, c) �= m : c ← Enc(pk, m)]
]

≤ δ,

where the expectation is taken over (pk, sk) ← KG and randomness of Enc. PKE
has perfect correctness if δ = 0.

Definition 3 (Collision Probability of Key Generation). Let

ηPKE := max [Pr [pk0 = pk1 : (pk0, sk0) ← KG, (pk1, sk1) ← KG]]

be the collision probability of KG of PKE. The maximum is taken over all pk0, pk1.
In this paper, we assume that for any OW-CPA-secure PKE, ηPKE = negl(λ)

Let PKE := (KG,Enc,Dec) be a PKE scheme with message space M and
ciphertext space C. We focus on two security notions for PKE: onewayness
under chosen-plaintext attacks (OW-CPA) and selective-opening security under
chosen-ciphertext-attacks (SO-CCA).

Definition 4 (OW-CPA). For an adversary A, its advantage against OW-CPA
security of PKE is defined as

AdvOW-CPA
PKE (A) := Pr

[
m′ = m∗ : (pk, sk) ← KG, m∗ $← M,

c∗ ← Enc(pk, m∗), m′ ← A(pk, c∗)
]
.

PKE is OW-CPA secure if for all PPT adversaries A, AdvOW-CPA
PKE (A) = negl(λ).

(Adaptive) Selective Opening Security. Selective Opening (SO) security
preserves confidentiality even if an adversary opens the randomnesses of some
ciphertexts. We use simulation-based approach to define SO security as in [18].
We consider the SO security against Chosen-Plaintext Attacks (SO-CPA) and
Chosen-Ciphertext Attacks (SO-CCA), respectively.

We note that a non-adaptive variant of SO security has been used in [29],
where an adversary must declare the opening index set I after receiving the
challenge ciphertexts, while our SO security is adaptive in the sense that Open

can be asked adaptively. Intuitively, our adaptive security is harder to achieve,
since an adversary can change its opening queries after seeing the answers of
previous ones.
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Fig. 2. The SO security games for PKE schemes.

Definition 5 (SO security). Let PKE be a PKE scheme with message space
M and randomness space R and A be an adversary against PKE. For secu-
rity parameter λ, μ := μ(λ) > 0 is a polynomially bounded function. Let Rel
be a relation. We consider two games defined in Fig. 2, where A is run in
REAL-SO-ATKPKE and a SO simulator S in IDEAL-SO-ATKPKE. Ma is a distri-
bution over M chosen by A, and A is not allowed to issue Open queries before
it outputs Ma and receives challenge ciphertexts c. Messages sampled from Ma

may be dependent on each other. Dec is not available in SO-CPA security.
We define the SO-ATK (ATK = ‘CPA’ or ‘CCA’) advantage function

AdvSO-ATK
PKE (A, S, μ,Rel)

:=
∣∣∣Pr

[
REAL-SO-ATKA

PKE ⇒ 1
]

− Pr
[
IDEAL-SO-ATKS

PKE ⇒ 1
]∣∣∣ ,

PKE is SO-ATK secure if, for every adversary A and every PPT relation Rel,
there exists a simulator S such that AdvSO-ATK

PKE (A, S, μ,Rel) ≤ negl(λ).

(Adaptive) Bi-Selective-Opening Security. In this paper, we also con-
sider a stronger SO security definition: Bi-SO-ATK [28]. This security definition
considers a multi-user setting and allows the adversary to corrupt some users
(namely, obtains their secret keys) adaptively. The Bi-SO-ATK definition in [28]
is non-adaptive, that is, the SO adversary is required to tell the game simulator
which users it wants to corrupted and which challenge ciphertexts it wants to
open at once. In this paper, we enhance the security definition to be adaptive.
The adversary can adaptively issues Open queries and Corrupt queries in any
order. The enhanced definition is also simulation-based. If A corrupts a user j,
then the messages of challenge ciphertexts that encrypted by j are also revealed
(see Items 15 and 16).

Definition 6 (Bi-SO security). Let PKE be a PKE scheme and A be a Bi-SO
adversary against PKE. For security parameter λ, let μ := μ(λ) and p := p(λ)
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Fig. 3. The Bi-SO-ATK security game for PKE schemes

that are both polynomially bounded. Let Rel be a relation. We consider two games
defined in Fig. 3, where A is run in REAL-Bi-SO-ATKPKE and a Bi-SO simulator
S in IDEAL-Bi-SO-ATKPKE. Ma is a distribution over M chosen by A, and A
is not allowed to issue Open or Corrupt queries before it outputs Ma and
receives challenge ciphertexts c. Messages sampled from Ma may be dependent
on each other. Dec is not available in Bi-SO-CPA security.

We define the Bi-SO-ATK (ATK = ‘CPA’ or ‘CCA’) advantage function

AdvBi-SO-ATK
PKE (A, S, p, μ,Rel)

:=
∣∣∣Pr

[
REAL-Bi-SO-ATKA

PKE ⇒ 1
]

− Pr
[
IDEAL-Bi-SO-ATKS

PKE ⇒ 1
]∣∣∣ .

PKE is adaptive Bi-SO-ATK secure if, for any adversary A and PPT relation
Rel, there exists a simulator S such that AdvBi-SO-ATK

PKE (A, S, p, μ, λ) = negl(λ).

Security in the quantum random oracle model. The (Bi-)SO security
of PKE schemes containing hash functions can be analyzed in the quantum
random oracle model (cf. Sect. 2.2). If we model a hash function H as quantum
random oracle, then the adversary A has quantum access to H during the SO
security games (e.g., Fig. 7).

2.2 Quantum Computation

We refer to [30] for detailed background about quantum mechanism. Here we
only recall some necessary notations and lemmas.
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Pure quantum states can be described by qubits. For a λ-bit-string x,
|x〉 ∈ C

2λ denotes the (pure) quantum state of x encoded in the standard compu-
tational basis. Quantum register is used to store multiple qubits. In this paper,
we assume that any polynomially long object x can be encoded as a (unique)
bit string, and if we “store” x in a quantum register X, |x〉 is the quantum state
of this register. A λ-qubits quantum superposition state |φ〉 can be written as∑

x∈{0,1}λ αx|x〉 where
∑

x∈{0,1}λ |αx|2 = 1.
By performing measurement on a quantum state, we obtain classical infor-

mation about the state, and the state collapses after measurement. Let |x〉 be an
quantum state, x′ ← Measure(|x〉) denote the process that |x〉 is measured and
the measurement outcome is x′. We assume that all measurement are performed
with respect to the standard computational basis.

Let O : X → Y be an random oracle with sets X , Y. We implicitly assume
that the elements in X and Y are expressed as bit strings. In quantum random
oracle model (QROM) [7], the oracle O are described as the unitary transforma-
tion UO : |x〉|y〉 → |x, y ⊕O(x)〉, and the adversary can query random oracles on
quantum states. For an quantum adversary A, the notation A|O〉 indicates that
A has quantum access to the UO. Without loss of generality, we directly write
O to denote the unitary UO.

In this paper, we say an event is classical if it can be determined by only
using classical algorithm (namely, without using any quantum mechanism).

Lemma 1 gives a probabilistic bound for adversary (has a quantum access to
oracles) to distinguish h(s, ·) and h′, where s is secret, h and h′ are QRO and
have the same image set. When the image is large enough, the adversary cannot
distinguish these two oracles.

Lemma 1 (Lemma 2.2 in [34]). Let k be an integer. Let h : X ′ × X → Y and
h′ : X → Y be two independent random oracles. If an unbounded time quantum
adversary A that queries h at most qh times, then we have

∣∣∣∣Pr
[
1 ← A|h〉,|h(s,·)〉()

∣∣s $← X ′
]

− Pr
[
1 ← A|h〉,|h′〉()

]∣∣∣∣ ≤ 2qh/
√

|X ′|

3 Computational Adaptive Reprogramming in the QROM

We propose a computational adaptive reprogramming framework in the QROM.
In our full version [33], we review Unruh’s adaptive O2H lemma [39] and discuss
why our lemma (namely, Lemma 2) cannot be proved by using hybrid arguments
of Unruh’s adaptive O2H lemma.

Let A be an adversary that has quantum access to H : X → Y and takes
in0 as input and terminates by outputting outn. During its execution, A outputs
some outi and then takes ini+1 as input (0 ≤ i ≤ n − 1). We view A as a
(n+1)-stage adversary, (A0, ..., An), where Ai takes ini as input and outputs outi.
Here in0, out0, in1, ..., inn, and outn can be arbitrary classical information. In this
paper, we consider post-quantum setting where adversaries have quantum access
to hash functions. The classical information in0, out0, in1, ..., inn, outn capture the
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interaction between A and the security game simulator, and they will be specified
in a concrete use of our framework.

We write A = (A0, ..., An) to divide A into n + 1 stages for better analysis.
By writing outi ← Ai(ini) we mean that at stage i A receives input ini and
outputs outi at the end of the stage. The index indicates the stage number of
A. So, all Ai are the same adversary A in different stages, and they share the
quantum registers of A. The same notation (of dividing A into different stages)
is also used in Unruh’s adaptive O2H lemma [39].

Games NonAda and Ada (as in Fig. 4) are used to define our framework. A
has quantum access to H which is either H or Hi. In NonAda, H will never get
reprogrammed, while in Ada different stages of A will have access to different
ROs Hi. That is, Ai queries Hi, and according to Ai’s output outi Hi will be
reprogrammed and become Hi+1 (cf. Items 07, 17 and 18). To formalize this, we
define three algorithms INIT, Fs, and Repros in Fig. 4 as:

– INIT outputs ((s, in0),H,H0) (cf. Items 01 and 11), where s is some parameter
that used in a security reduction, in0 is the initial input to A, and H and H0
are two random oracles. Here the tuple ((s, in0),H,H0) may have an arbitrary
joint distribution.

– Fs takes outi as input and computes (ini+1, in′
i+1), where ini+1 is the input to

Ai+1 and in′
i+1 is the information for reprogramming Hi. Here in′

i+1 is used
to capture the fact that H can be reprogrammed according to Ai’s behavior,
and the algorithm Repros (described below) will take it as input. To make our
lemma general and useful for a wider class of applications, we only require
that Fs does not have access to random oracles.

– Repros is defined to reprogram H in Ada (cf. Item 17). Repros takes in′
i and

Hi−1 as input. It returns a random oracle Hi which is from reprogramming
Hi−1. The concrete reprogramming operation of Repros depends on the con-
crete use of our framework. Here we only require Repros to be deterministic.

Let Si be a set such that H\Si = Hi \Si (namely, for all x ∈ X , if x ∈ Si, then
H(x) �= Hi(x)). A can only distinguish Ada and NonAda, if it queries a x ∈ Si

(where i ∈ {0, ..., n}). Since A’s QRO queries are superposition states, we need
to define extractor Bi as in Fig. 5 to bound the difference between NonAda and
Ada. This follows the works in [27,34,39]. Lemma 2 formalizes our framework.
Its proof is postponed to our full version [33].

Lemma 2. Let A be an adversary that can be divided into (n + 1) stages as
in Fig. 4 and has quantum access to random oracle H (= H in NonAda or Hi

in Ada). Let Ev be a classical event that may be raised by A in NonAda or
Ada. Suppose that A queries H at most qi times in its i-th stage and at most
q := q0 + · · · qn times in total during the game. Then for all algorithms INIT, Fs,
and Repros (as described earlier), there exists adversaries Bi for i ∈ {0, ..., n}
(shown in Fig. 5) such that
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Fig. 4. Games NonAda and Ada used in Lemma 2. The main difference between two
games is highlighted with gray box. In both games, A is divided into n + 1 stages,
namely, (A0, ..., An). The input and output of A in each stage are classical information
because we consider post-quantum settings. The list Γ stores A’s outputs in each stage.
Fs is a deterministic algorithm that provides inputs for each stage of A. Repros is a
deterministic algorithm that reprograms QROs. For a concise presentation, we assume
that Ai takes Ai−1’s final state as its initial state. In our framework, H0 can be different
to H.∣∣∣Pr

[
Ev : NonAda

A
]

− Pr
[
Ev : Ada

A
]∣∣∣

≤
n∑

k=0

k∑
i=0

2qi

√
Pr

[
x′ ← BH

i s.t. x′ ∈ Si : Ada
Bi

]
, (2)

where Si is a set such that H\Si = Hi\Si. Such an Si is defined by the operations
in Repros. Pr

[
Ev : NonAda

A
]

and Pr
[
Ev : Ada

A
]

are the probabilities that A
triggers Ev in NonAda and in Ada, respectively.

Discussions on Lemma 2. In Ada, reprogramming the RO is captured by
algorithm Repros. How the reprogramming is done will be specified in a con-
crete use of Lemma 2. This is to make our framework general. The difference
between NonAda and Ada is that between H and Hi caused by Repros.

Concretely, in i-th stage, Repros will define a set Si such that H\Si = Hi \Si.
For any k ∈ {0, ..., n}, if A queries H with an x ∈ ∪0≤i≤kSk before the end of
its k-th stage, then A can distinguish NonAda and Ada. To bound this in the
quantum setting, our approach is to randomly measure A’s queries to H, which
is captured by Bi (in Fig. 5). The advantage of A distinguishing NonAda and
Ada is bounded by the probability that Bi’s output falls into Si.
More Discussions on F and Repro in Fig. 4. When defining our framework,
we do not make any requirement on the efficiencies of Fs and Repros. However,
when we use this framework to construct (efficient) reduction, Fs and Repros
are required to be efficient (namely, running in quantum probabilistic polyno-
mial time) and the description of QRO is polynomially bounded [7,25,42]. For
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Fig. 5. Algorithm Bi (used in Lemma 2) plays Game Ada (where i ∈ [n]). Bi proceeds
identically with (A1, ..., Ai), except that Bi measures the t∗-th QRO query issued by
Ai and then outputs the measurement outcome.

instance, we can use a 2q-independent hash function [42] and the list of repro-
gramming points (which are inputs to the hash and polynomial-bounded) to
describe this QRO.
Why our Framework covers the Work of Grilo et al. By specifying
Fs and Repros, we can describe Grilo et al.’s framework using our framework
(though the bound of our framework is less tight than Grilo et al.’s one). In Grilo
et al.’s framework [16], the i-th output of A is a distribution outi := pi. Fs can
be defined as, on input pi, it samples a reprogramming point (xi, x′

i) from pi and
an independently random yi and outputs (ini+1 := (xi, x′

i), in′
i+1 := (xi, x′

i, yi))3.
Repros can be defined as, on input in′

i+1 := (xi, x′
i, yi), it reprograms the QRO

H := H[(xi, x′
i) → yi] and returns the reprogrammed QRO. Their framework

implicitly requires that the probability bound for A to learn xi, x′
i (before seeing

them) is information-theoretic. Namely, pi should have enough entropy. Some
important advantage of our framework, compared with Grilo et al.’s [16], are as
follows:

– Grilo et al.’s framework requires the reprogramming points have high entropy
and it is hard to find them even for unbounded adversary, while our framework
does not have such restrictions. If A is a QPPT adversary, our framework pro-
vides efficient extractors Bi’s to bound the difference of A in NonAda and
Ada. In our proofs, we need to instantiate INIT,Fs, and Repros efficiently.
This Bi can be used to do a reduction in breaking some computational hard
problem, for instance, the OW-CPA security. However, the Grilo et al. frame-
work cannot be used to do any efficient reduction.

– Our framework allows NonAda and Ada to start from different QROs, while
the Grilo et al. framework starts from the same QRO. Starting from different
QROs allows us to consider more complicated cases of adaptive reprogram-
ming. All security proofs in this paper are examples for this, and for SO and
Bi-SO security we require this.

3 The randomness for sampling can be included in s, since it is captured by the game
simulator.
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– Our framework also supports delayed analysis. In some complicated proofs,
the difference between non-reprogramming and reprogramming games cannot
be immediately bounded, and we may need extra game sequences to postpone
such a bound. Our framework supports delayed analysis, since we can use
extra game sequences to bound the winning probability of Bi (i.e. Bi outputs
x ∈ Si). In particular, our tightly-secure SO-CCA PKE scheme in Sect. 5
requires delayed analysis.

4 Selective Opening Security of Fujisaki-Okamoto’s PKE
in the QROM

We prove the selective-opening (SO) security of two Fujisaki-Okamoto(FO)-style
PKE schemes in the QROM. As a warm-up, our first scheme is SO secure against
chosen-plaintext attacks (SO-CPA), and the scheme follows the idea of hybrid
encryption. It offers a simple example about how to use our framework. Our sec-
ond scheme is SO secure against chosen-ciphertext attacks (SO-CCA). It is the
same scheme as in [35, Section 3.2], but our proof is showing adaptive SO-CCA
security, while the original proof in [35] has a subtle gap and the gap still exists
even if we consider the non-adaptive security notion (cf. discussion in Introduc-
tion).

In both schemes, let PKE := (KG0,Enc0,Dec0) be a (1 − δ)-correct PKE
scheme with message space M′, ciphertext space C′, and randomness space R′.
Let G : M′ → R′ be a hash function.

4.1 Selective Opening Security Against Chosen-Plaintext Attacks

Let H : M′ × C′ → M be a hash function. Our first PKE scheme wPKE =
(wKG,wEnc,wDec) (where ‘w’ stands for weak) with message space M and is
defined as in Fig. 6. Theorem 1 states that wPKE is adaptive SO-CPA secure
when modeling G and H as QROs.

Fig. 6. A SO-CPA secure PKE scheme wPKE = (wKG,wEnc,wDec)

Theorem 1. If PKE is OW-CPA secure, then wPKE in Fig. 6 is adaptive
SO-CPA secure (Definition 5). Concretely, for security parameter λ and
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Fig. 7. Games G0-G3 for proving Theorem 1.

μ := μ(λ) (polynomially bounded), for any SO-CPA adversary A and relation
Rel, there exist a simulator S and an adversary B′ such that T(S) ≈ T(A) ≈
T(B′) and

AdvSO-CPA
wPKE (A, S, μ,Rel) ≤ 2(nO+1)2q

√
2μAdvOW-CPA

PKE (B′)+ μ2

|M|+
μ2

|M′|+
2μq√|M′| ,

where μ, qG, qH , and nO are the maximum numbers of A’s challenge ciphertexts,
A’s queries to G, H, and Open, respectively. q = qG + qH .

Proof. Let h : M′ × C′ → M and g : M′ → R′ be two internal quantum-
accessible random oracles that are used to respond queries to H and G, respec-
tively. Following the convention in [25,34], in our proof we simulate H and G
using two internal quantum-accessible random oracles h : M′ × C′ → M and
g : M′ → R′, respectively.

Our proof consists a sequence of games defined in Fig. 7. We will use our
framework in Sect. 3 to finish the proof. To fit into the syntax of our framework,
we combine G and H as one random oracle G × H such that G × H(r′, r, e) :=
(G(r′), H(r, e)). If A only queries G(r′), we view it as querying G × H(r′, r, e)
for some dummy (r, e) and ignoring H(r, e) in the response. A can query G × H
at most q = qH + qG times. This was also used in [24]. G0 is equivalent to
REAL-SO-CPAwPKE, thus

Pr
[
REAL-SO-CPAA

wPKE ⇒ 1
]

= Pr
[
GA

0 ⇒ 1
]

Game G1: If in the challenge ciphertexts there exist Ki and Kj for i �= j such
that Ki = Kj , then we abort the game. Such Ki and Kj collide only if ri and
rj collide or H(ri, ei) and H(rj , ej) collide with different ri and rj . By birthday
bounds, and we have



Selective Opening Security in the QROM, Revisited 109

∣∣Pr
[
GA

0 ⇒ 1
] − Pr

[
GA

1 ⇒ 1
]∣∣ ≤ μ2

|M| + μ2

|M′|
Game G2: Ri and Ki in the challenge ciphertexts are chosen randomly, instead
of using G and H. If A queries Open(i), then we reprogram G and H such that
G(ri) := Ri and H(ri, ei) := Ki.

In the following, we use Lemma 2 to bound the difference between G1 and
G2. In G2, A’s Open queries will make QRO G × H reprogrammed, while in
G1, QRO G × H does not get reprogrammed. So, we can view G1 and G2
as concrete cases of NonAda and Ada, respectively. For simplicity, we denote
A := (A0, (A1,0, ..., A1,nO

)), where A0 is the initial stage of A and cannot query
Open, and (A1,0, ..., A1,nO

) is the stage that A receives the challenge ciphertexts
c and can query Open. Let A1 := (A1,0, ..., A1,nO

). A1’s initial state is the final
state of A0. A1,k is defined with respect to Open queries:

– Before any Open query (i.e., at the 0-th stage), A1,0 takes in0 := c as input
and outputs the first opening index out0 := (i1).

– At k-th stage (1 ≤ k ≤ nO − 1), A1,k receives ink = (mik
, rik

) As the result of
the (k −1)-th Open query and finishes the stage by outputting the (k +1)-th
opening index outk := (ik+1)

– Finally, at the nO stage, A1,nO
receives innO

= (min
O

, rin
O

) and terminates
by outputting outnO

= out (the final output of SO adversary).

To formally show why G1 and G2 are concrete cases of NonAda and Ada,
respectively, in Fig. 8, we define INIT, Fs, Repros, G′

1 and G′
2. Games G′

1 and
G′

2 are only defined to show how our proof follows the syntax of our framework.
They have the same forms as NonAda and Ada.

Now we argue that G1 and G2 are concrete cases of NonAda and Ada,
respectively. Namely, G1 and G2 in Fig. 7 are equivalent to G′

1 and G′
2 in Fig. 8,

respectively. Firstly, algorithm INIT in Fig. 8 run the codes from Item 01 to
Item 12 in Fig. 7. Since in A0’s view, G1 is the same as G2 (it does not see any
challenge ciphertexts), the distribution of Ma and m in G1 is the same as the
one in G2, and thus the output of INIT and the final state of A0 in INIT in G′

1
are the same as those in G′

2. Secondly, Fs simulates the Open oracle and Repros
simulates the reprogramming operations on G and H. In G′

1, G and H will not
be reprogrammed, but in G′

2, G and H will be reprogrammed, according to A’s
output. This is the same as in G2.

Moreover, when running A1,k, our Repros defines a set

Sk := {(r, (r′, e′)) | ∃i ∈ [μ]\Ik s.t. r = ri or (r′, e′) = (ri, ei)} (3)

where Ik := {i1, ..., ik} is the opening index set I in A1’s k-th stage. Answers of
G × H on Sk are only different in G1 (i.e., NonAda) and G2 (i.e., Ada). For
k = 0, S0 is defined at line 35 and I0 = ∅.

Now we consider the probability that Rel(Ma,m, I, out) = 1. I and out are
determined by A1. Ma is output by A0, and m is determined by Ma. Since in
A0’s view, G1 is the same as G2 (since it does not see challenge ciphertexts),
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Fig. 8. Constructions of INIT,Fs, and Repros and games G′
1 and G′

2. G′ := G[ri → Ri]
(similarly, H ′ := H[(ri, ei) → Ki]) means that we set G′(ri) := Ri and G′(r) := G(r)
for r �= ri. Oracles g, g′ : M′ → R′, and h, h′ : M′ × C′ → M are four independent
internal quantum-accessible random oracles.

thus the distribution of Ma and m in G1 is the same as the one in G2. Therefore,
the probability difference between the classical event that Rel(Ma,m, I, out) = 1
in G1 and the similar event in G2, is determined by the probability difference
between the event that A1 outputs a particular (I, out) (i.e., Γ in Fig. 8) in G1
and the similar event in G2. Therefore, we have

∣∣Pr
[
GA

1 ⇒ 1
] − Pr

[
GA

2 ⇒ 1
]∣∣ ≤

∣∣∣Pr
[
G′A1

1 ⇒ 1
]

− Pr
[
G′A1

2 ⇒ 1
]∣∣∣ + 2μq√|M′|

(4)
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Fig. 9. The constructions of OW-CPA adversaries B′
i for i ∈ {0, ..., nO}. B′

i simulates
G′

2 (which is a concrete case of Ada in Fig. 4) for Bi to break PKE. F and Repro are
defined as in Fig. 8.

This bound includes a term 2μq√
|M′| , since A0 also has quantum access to |G × H〉,

and this term is the probability that the first stage (i.e., A1,0) of A1 learns ri before
seeing challenge ciphertexts. Such probability is only information-theoretic.

We now use Lemma 2 to bound Eq. (4). Since G′
1 is a NonAda game and

G′
2 is an Ada game, by Lemma 2, there exist adversaries Bi (0 ≤ i ≤ nO), which

take in0 = c as its input and output x ∈ Sk where the set Si is defined in (3),
such that
∣∣∣Pr

[
G′A1

1 ⇒ 1
]

− Pr
[
G′A1

2 ⇒ 1
]∣∣∣ ≤

nO∑
k=0

k∑
i=0

2qi

√
Pr

[
x ← Bi s.t. x ∈ Si : G′Bi

2

]

(5)

Here Bi proceeds the same as (A1,0, ..., A1,i) except that it randomly measures
a QRO query issued by A1,i. Moreover, since A1,0’s initial state is the final state
of A0, Bi starts with state of A0 (cf. Item 07).

Based on Bi, we construct an adversary B′
i (in Fig. 9) to break OW-CPA

security of PKE. By the construction of B′
i, if A1 does not open t∗, and r or

r′ equals the solution of e∗, then B′
i wins. So the winning probability for B′

i to
break the OW-CPA challenge is:

AdvOW-CPA
PKE (B′

i) = 1
2

μ − nO

μ

1
μ − nO

Pr [x ← Bi s.t. x ∈ Si] ,
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Fig. 10. The simulator S of the proof of Theorem 1.

and thus we have

Pr
[
x ← Bi s.t. x ∈ Si : G′Bi

2

]
≤ 2μAdvOW-CPA

PKE (B′
i) (6)

Let B′ be the adversary that has highest advantage against PKE among
{B′

i}i∈{0,...,n}. Then Eq. (6) can be written as:

Pr
[
x ← Bi s.t. x ∈ Si : G′Bi

2

]
≤ 2μAdvOW-CPA

PKE (B′), for ∀i ∈ [μ] (7)

By combining Eqs. (4) to (7), we have
∣∣Pr

[
GA

1 ⇒ 1
] − Pr

[
GA

2 ⇒ 1
]∣∣ ≤ 2(nO + 1)2q

√
2μAdvOW-CPA

PKE (B′) + 2μq√|M′|
Game G3: We change the generation of Ki and di. Now we firstly sample di

uniformly at random, and replace all Ki as di ⊕ mi. This change is conceptual
since in G2, all Ki are independently and uniformly random. In G1, we excluded
any collision of Ki, so, in G3, it is equivalent to sample di in a collision-free way.
Therefore, we have

Pr
[
GA

2 ⇒ 1
]

= Pr
[
GA

3 ⇒ 1
]

Construction of SO simulator. We construct a SO simulator S that is sim-
ulating G3 for A and interacts with the IDEAL-SO-CPAS

wPKE game. The simula-
tion process is shown in Fig. 10. Obviously, S can perfectly simulates G3. So, we
have

Pr[GA
3 ⇒ 1] = Pr[IDEAL-SO-CPAS

wPKE ⇒ 1]
In conclusion, for any SO-CPA adversary A, there exists efficient simulator

S such that∣∣ Pr[REAL-SO-CPAA
wPKE ⇒ 1] − Pr[IDEAL-SO-CPAS

wPKE ⇒ 1]
∣∣

≤ 2(nO + 1)2q

√
2μAdvOW-CPA

PKE (B′) + μ2

|M| + μ2

|M′| + 2μq√|M′| .
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4.2 Selective Opening Security Against Chosen-Ciphertext Attacks

Let MAC = (Tag,Vrfy) be a MAC scheme with key space Kmac, and let H :
R′ × C′ → M × Kmac be a hash function, where C is the ciphertext space of PKE.
The second PKE scheme sPKE = (sKG, sEnc, sDec) (Fig. 11) is a combination
of a modular Fujisaki-Okamoto’s transformation FO �⊥ [PKE, G, H] [21,24], one-
time pad, and the one-time MAC scheme MAC. It has similar structure with the
scheme in [18,35].

Fig. 11. A SO-CCA secure PKE scheme sPKE = (sKG, sEnc, sDec)

This scheme is adaptive SO-CCA secure when modeling G and H as QROs,
as stated in Theorem 2. The main difference between the proof of Theorem 2
and the one of Theorem 1 is that the simulator needs to simulate the decryption
oracle for the adversary. We use the encrypt-then-hash technique (widely used in
CCA proof of PKE [24,27,34]) to simulate the decryption oracle without using
the secret key and add a MAC verification in the decryption so that the adversary
cannot forge valid MAC codes for any unopened cipheretext. We postpone the
proof of Theorem 2 to our full version [33].

Theorem 2. If PKE is OW-CPA secure and δ-correct, and MAC is otSUF-CMA
secure, then the PKE scheme sPKE in Fig. 11 is adaptive SO-CCA secure (Def-
inition 5). Concretely, for security parameter λ and integer μ := μ(λ) (polyno-
mially bounded) for any SO-CCA adversary A and relation Rel, there exist a
simulator S and adversaries B′ and F such that T(S) ≈ T(A) ≈ T(B′) ≈ T(F)
and

AdvSO-CCA
sPKE (A, S, μ,Rel) ≤ 6(nO + 1)2q

√
2μAdvOW-CPA

PKE (B′) + μAdvotSUF-CMA
MAC (F)

+ 3μAdvotSUF-CMA
MAC (F) + 2qH√

2k
+ 16(μ + nD + q + 1)2δ

+ μ2

|M| + μ2

|Kmac| + 6μq√|M′| + μnD

|C′| − nD

+ (2 + μ)q√|M′|
where μ, qG, qH , nO, and nD are the maximum numbers of A’s challenge cipher-
texts, A’s queries to G, H,Open, and Dec, respectively. q = qG + qH .
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5 Tight SO-CCA Security from Lossy Encryption

In this section, we show that if the underlying PKE is a lossy encryption [3,22],
then the construction in Fig. 11 is tightly SO-CCA secure. We recall the notion
of lossy encryption from [22].
Definition 7 (Lossy Encryption [22]). Let PKE1 := (KG1,Enc1,Dec1) be a
PKE scheme with message space M′ and randomness space R′. PKE1 is lossy if
it has the following properties:
– PKE1 is correct according to Definition 2.
– Key indistinguishability: We say PKE1 has key indistinguishability if there is

an algorithm LKG1 such that, for any adversary B, the advantage function

Advind-keyPKE1
(B) := | Pr [B(pk1) ⇒ 1] − Pr [B(lpk1) ⇒ 1] |

is negligible, where (pk1, sk1) ← KG1 and (lpk1, lsk1) ← LKG1.
– Lossiness: Let (lpk1, lsk1) ← LKG1 and m, m′ be arbitrary messages in M′,

the statistical distance between Enc1(lpk1, m) and Enc1(lpk1, m′) is negligible.
– Weak Openability: Let (lpk1, lsk1) ← KG1, m and m′ be arbitrary messages,

and r be arbitrary randomness. For ciphertext c := Enc1(lpk1, m; r), there
exists an algorithm open1 such that open1(lsk1, lpk1, c, r, m′) outputs r′ where
c = Enc1(lpk1, m′; r′) and r′ is distributed uniformly. open1 can be inefficient.
The lossiness definition can be extended to a multi-challenge version using

a hybrid argument. Since it is only a statistical property, the hybrid argument
will not affect tightness of the computational advantage.
Definition 8 (Multi-challenge Lossiness). For any arbitrary messages m1,
m′

1, ..., mμ, m′
μ ∈ M′, the statistical distance between the following distributions

D and D′ is at most εm-ind-enc
PKE1

, where εm-ind-enc
PKE1

is negligible:

D :=
{

(lpk1, c1, ..., cμ)
∣∣∣∣ (lpk1, lsk1) ← LKG1
c1 ← Enc1(lpk1, m1), ..., cμ ← Enc1(lpk1, mμ)

}
,

D′ :=
{

(lpk1, c′
1, ..., c′

μ)
∣∣∣∣ (lpk1, lsk1) ← LKG1
c′
1 ← Enc1(lpk1, m′

1), ..., c′
μ ← Enc1(lpk1, m′

μ)

}
.

5.1 Construction
Let PKE1 = (KG1,Enc1,Dec1) be a lossy encryption with message space M′,
randomness space R′, ciphertext space C′, and an opening algorithm open1. Let
MAC = (Tag,Vrfy) be a MAC scheme with key space Kmac, and G : M′ →
R′, H : M′ × C′ → M × Kmac be two hash functions. Our PKE scheme sPKE =
(sKG, sEnc, sDec) is defined in Fig. 12, which has the same structure with the
scheme in Fig. 11.

Theorem 3 shows that sPKE is tightly SO-CCA secure when modeling G
and H as QROs. Although there is a loss μ to the otSUF-CMA security of the
underlying MAC, if one can use a perfectly otSUF-CMA secure MAC (e.g., the
efficient one implicitly in [26]), it will not affect the security loss of sPKE and
thus sPKE is tight.
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Fig. 12. A PKE scheme sPKE = (sKG, sEnc, sDec) based on lossy encryption PKE1.

Theorem 3. If PKE1 is a lossy encryption scheme and (1 − δ)-correct, and
MAC is otSUF-CMA secure, then the PKE scheme sPKE in Fig. 12 is adaptive
SO-CCA secure (Definition 5). Concretely, for security parameter λ and integer
μ := μ(λ) (which is polynomially bounded) for any SO-CCA adversary A and
relation Rel, there exist a simulator S and an adversary F with T(S) ≈ T(A),
T(F) ≈ T(A), and

AdvSO-CCA
sPKE (A, S, μ,Rel)

≤ Advind-keyPKE1
(A) + 3μAdvotSUF-CMA

MAC (F)

+ 6(nO + 1)2q

√
εm-ind-enc
PKE1

+ μq

|M′| + 16(μ + nD + q + 1)2δ

+ (2 + μ)q√|M′| + 6μq√|M′| + μ2

|M′| + μ2

|R′| + μ2

|Kmac| + μnD

|C′ − nD| + μ2

|M|

where μ, qG, qH , nO, and nD are the maximum numbers of A’s challenge cipher-
texts, A’s queries to G, H,Open, and Dec, respectively. q = qG + qH .

For simplicity, here we only sketch the proof idea and the formal proof of
Theorem 3 is postponed to our full version [33]. Roughly, we firstly use the
encrypt-then-hash technique [24,27,34] to change security games so that the
simulator can simulate decryption oracle without using secret key. Then, we
switch the public key of PKE1 to the lossy mode. By the key indistinguishability
of PKE1, the adversary cannot detect such modification, and the simulation
of decryption oracle still works. However, although the public key is switched
to lossy mode, we cannot use the lossiness of PKE1 directly, since there are
several correlations between challenge ciphertexts and the QROs. Therefore, at
the end of the proof, we use our adaptive reprogramming framework in Sect. 3
and delayed analysis to derelate QROs and challenge ciphertexts, and argue that
the adversary cannot learn any information of unopened challenge ciphertexts.

Instantiation from LWE. The Regev encryption scheme as defined in [15]
is essentially a lossy encryption, and we can use it to instantiate our generic
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Fig. 13. A Bi-SO-CCA secure PKE scheme sPKEbi = (sKG, sEnc, sDec)

construction in Fig. 12. For completeness, we describe the lossy encryption in our
full version [33]. Our resulting LWE-based SO-CCA secure PKE is unfortunately
only almost tight, since the LWE-based lossy encryption loses a factor depending
on the security parameter.

6 Bi-sO Security in the QROM

In this section, we show that two PKE schemes are Bi-sO-CCA secure in the
QROM. The first scheme is based on a modular FO transformation FO �⊥ [21,24]
(Sect. 6.1). The second scheme is based on another modular FO transformation
U �⊥
m [21] (Sect. 6.2).

6.1 Bi-sO Security of FO �⊥

We show that a multi-user version of sPKE (Fig. 11) is Bi-SO-CCA-secure in the
QROM. Using the same building blocks PKE = (KG0,Enc0,Dec0) and MAC as
sPKE, we propose sPKEbi (in Fig. 13). This scheme can be viewed as a combina-
tion of a modular FO transformation FO �⊥ [PKE, G, H] in [21,24], one-time pad,
and the a MAC scheme MAC. Moreover, in sPKEbi, each user includes its public
key as an input to the hash functions G, H, H ′.

Theorem 4 shows that sPKEbi is Bi-SO-CCA secure when modeling G and
H as QROs. The proof of Theorem 4 is more complicated than the proofs of
Theorem 2, since we also need to simulate Corrupt oracle. But the proof idea
is similar: we change the games so that the game simulator can use the encrypt-
then-hash technique to simulate Dec (as we did in the proof of Theorem 2).
To use our framework, we divide A1 with respect to Corrupt and Dec, since
the operations of Corrupt also reprograms G × H. The proof of Theorem 4 is
postponed to our full version [33].

Theorem 4. If PKE is OW-CPA secure, then the PKE scheme sPKEbi in Fig. 13
is adaptive Bi-SO-CCA secure (Definition 6). Concretely, for any adversary A
and relation Rel, there exist a simulator S and adversaries B′ and F such that
T(S) ≈ T(A) ≈ T(B′) ≈ T(F) and
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AdvBi-SO-CCA
sPKEbi

(A, S, p, μ,Rel)

≤ 6(nC + nO + 1)2q

√
2pμAdvOW-CPA

PKE (Bow) + pμAdvotSUF-CMA
MAC (F) + pηKG0

+ 3pμAdvotSUF-CMA
MAC (F) + pμnD

|C′| − nD

+ p2μ2 + p2

|M′| + p2μ2

|R′| + p2μ2

|M| + p2μ2

|Kmac|

+ 6pμq√|M′| + 16p(μ + nD + q + qH′ + 1)2δ +
2(nC + 1)2√

pqH′ + 2pqH′ + pμq√|M′|
where p, μ, qG, qH , qH′ , nO, nC, and nD are the number of user in the games
and the maximal numbers of challenge ciphertexts per users, A’s queries to
G, H, H ′,Open, Corrupt, and Dec, respectively. q = qG + qH .

6.2 Bi-sO Security of U �⊥
m

Let PKE = (KG0,Enc0,Dec0) be a deterministic PKE scheme with public space
PK′, plaintext space M′, ciphertext space C′, and plaintext distribution DM′ .
Lett MAC be a one-time MAC as in sPKEbi. Let H : PK′ × M′ → M × Kmac

and H ′ : PK′ × M′ × C′ → M × Kmac be two hash functions. We define sPKEm
bi

as in Fig. 14. sPKEm
bi can be viewed as a combination of U �⊥

m [21], one-time pad
and one-time MAC. Similar to sPKEbi, each user includes its public key into the
input of hash functions.

Fig. 14. A Bi-SO-CCA secure PKE scheme sPKEm
bi = (sKGm

bi, sEncmbi, sDecmbi)

Here we consider a variant of OW-CPA security: DM′ -OW-CPA security,
namely, OW-CPA security with challenge messages chosen following DM′ . For
simplicity, the definition of of DM′ -OW-CPA is given in our full version [33].
Moreover, we require that PKE is rigid correct [5], namely, for all (pk, sk) gen-
erated from KG0, ciphertext e, and plaintext r, (e = Enc0(pk, r)) if and only
if (Dec0(sk, e) = r). Theorem 5 shows that sPKEm

bi is Bi-sO-CCA secure when
modeling G, H, and H ′ as QROs. The proof of Theorem 5 is similar to Theorem
4, and is postponed to our full version [33].

Theorem 5. Let PKE be a deterministic PKE with perfect correctness and rigid-
ity. If PKE is DM′-OW-CPA secure, then the PKE scheme sPKEm

bi in Fig. 14
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is adaptive Bi-SO-CCA secure (Definition 6). Concretely, for any Bi-SO-CCA
adversary A and relation Rel, there exist a simulator S and adversaries Bow and
F such that T(S) ≈ T(A) ≈ T(B′) ≈ T(F) and

AdvBi-SO-CCA
sPKEbi

(A, S, p, μ,Rel)

≤ 6(nC + nO + 1)2q
√

2pμAdvOW-CPA
PKE,DM′ (Bow) + pμAdvotSUF-CMA

MAC (F)

+ 3pμAdvotSUF-CMA
MAC (F) + 6pμq

2εDM′ + pμnD

|C′| − nD

+ p2μ2 + p2

|M′| + p2μ2

|M|

+ pηKG0 + p2μ2

|Kmac| +
2(nC + 1)2√

pqH′ + 2pqH′ + pμq√|M′|
where p, μ, qH , qH′ , nO, nC, and nD are the maximum numbers of user in the
games and A’s challenge ciphertexts per users, A’s queries to H, H ′,Open,
Corrupt, and Dec, respectively. εDM′ is the minimum entropy of DM′ .

Supporting Material

A Review of Adaptive One-Way-to-Hiding

Let HF := {{0, 1}∗ → {0, 1}n} be a set containing all functions that have {0, 1}∗

as domain and {0, 1}n as codomain. Let A = (A0, A1) be an adversary that has
quantum access to a QRO H and queries it at most q0 + q1 times. Unruh’s
adaptive OW2H lemma [39, Lemma 15] can be described as follows: let

P A
0 := Pr

[
b′ = 1 : H $← HF , m ← AH

0 (), x $← {0, 1}l, b′ ← AH
1 (x, H(x||m))

]
P A
1 := Pr

[
b′ = 1 : H $← HF , m ← AH

0 (), x $← {0, 1}l,

B $← {0, 1}n, b′ ← AH
1 (x, B)

]

PC := Pr
[
(x′||m′) = (x||m) : H $← HF , m ← AH

0 (), x $← {0, 1}l,

B $← {0, 1}n, j $← [q0], x′||m′ $← CH(j, x, B)
]

where q0, q1 are the numbers of time A0, A1 queries H respectively. C is an
algorithm that has quantum access to H and on input (j, B, x), runs AH

1 (x, B)
until its j-th query, measures the QRO query in the computational basis, output
the measurement outcome. Then

∣∣P A
0 − P A

1
∣∣ ≤ 2q1

√
PC + q02−l/2+2

The bound given in this adaptive OW2H lemma includes two parts: the first
part is roughly the search bound of quantum adversaries to find a uniformly
random x given H(x||m) (i.e., q02−l/2+2), and the second part is the advantage
of A1 to distinguish two QROs: H(x||m)→B and H, where H(x||m)→B is the same
as H except that H(x||m)→B(x||m) = B. Note that this advantage is described
by the extracting algorithm C.
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Unruh’s adaptive OW2H lemma cannot be used to prove the bound of our
reprogramming framework Fig. 4 via hybrid arguments. This is because:

– The initial oracles of Ada and NonAda in our framework are not necessarily
the same. In this case, our framework considers a stronger QROM adaptive
reprogramming setting than the adaptive OW2H (and the adaptive repro-
gramming framework in [16]).

– Even if the initial oracles are the same, in our framework, sets Si may not
independent to each other, and thus each intermediate hybrid games in the
hybrid argument may not independent. This makes it hard to modify the
adaptive OW2H lemma to fit in our framework and use hybrid argument.
More details will be given in our full version [33].
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