
R3PO: Reach-Restricted Reactive
Program Obfuscation and Its Applications

Kaartik Bhushan1(B), Sai Lakshmi Bhavana Obbattu2, Manoj Prabhakaran1,
and Rajeev Raghunath1

1 IIT Bombay, Mumbai, Mumbai, India
{kbhushan,mp,mrrajeev}@cse.iitb.ac.in

2 IIT (BHU) Varanasi, Varanasi, India

Abstract. In recent breakthrough results, novel use of grabled circuits
yielded constructions for several primitives like Identity-Based Encryp-
tion (IBE) and 2-round secure multi-party computation, based on stan-
dard assumptions in public-key cryptography. While the techniques in
these different results have many common elements, these works did not
offer a modular abstraction that could be used across them.

Our main contribution is to introduce a novel notion of obfusca-
tion, called Reach-Restricted Reactive-Program Obfuscation (R3PO)
that captures the essence of these constructions, and exposes additional
capabilities. We provide a powerful composition theorem whose proof
fully encapsulates the use of garbled circuits in these works.

As an illustration of the potential of R3PO, and as an important con-
tribution of independent interest, we present a variant of Multi-Authority
Attribute-Based Encryption (MA-ABE) that can be based on (single-
authority) CP-ABE in a blackbox manner, using only standard crypto-
graphic assumptions (e.g., DDH) in addition. This is in stark contrast to
the existing constructions for MA-ABE, which rely on the random oracle
model and supports only limited policy classes.

1 Introduction

Consider the following approach to Identity-Based Encryption (IBE):

– The master key pair is a verification/signing key pair for a signature scheme.
– The decryption key for an identity is simply a signature on the identity.
– The ciphertext is an obfuscation of the following program: it checks if its input

is a valid signature on a target identity, and if so, it outputs the message.

With the right notion of obfuscation, as we shall see, this construction indeed
translates to a secure IBE scheme! Further, such an obfuscation can be instan-
tiated using standard cryptographic assumptions like DDH, based on the tools
in [19,20].

The motivation of this work comes from the breakthrough results of [6,16,
20,27]. These results were surprising not only because of the end results, but

c© International Association for Cryptologic Research 2024
Q. Tang and V. Teague (Eds.): PKC 2024, LNCS 14603, pp. 61–91, 2024.
https://doi.org/10.1007/978-3-031-57725-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57725-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-57725-3_3

62 K. Bhushan et al.

also because the central tools involved – garbled circuits, oblivious transfer,
smooth projective hash functions, etc. – were all well known for a long time.
The power behind these results lay in a machinery that carefully meshed these
tools together.

However, this line of works has lacked reusable high-level abstractions, even
as the low-level techniques were clearly similar across multiple works. Even the
few abstractions of this machinery that appeared subsequently, e.g., in the form
of hash-garbling [23], were not comprehensive enough to capture the multifarious
applications of the machinery itself.

The main contribution of this work is to develop a versatile abstraction of the
common machinery underlying the above works, and take it beyond the current
set of applications. Our abstraction involves a strong form of obfuscation, which
can be realized for programs that are appropriately sampled. The obfuscation
formulation gives an intuitive description of potential solutions, and facilitates
realizing it via a novel composition theorem. This not only aids in understanding
the current constructions better, but also shows the way to new applications.
As an illustration, and as an important contribution of independent interest, we
present a variant of Multi-Authority Attribute-Based Encryption (MA-ABE)
that can be based on (single-authority) ABE in a blackbox manner, using only
standard cryptographic assumptions (e.g., DDH) in addition. This is in stark
contrast to the constructions available for the original formulation of MA-ABE,
which rely on specific assumptions, are for special restricted policy classes and/or
are in the random oracle model [15,17,40,46].

1.1 Our Contributions

Our contributions are in two parts – (1) developing a powerful new framework
to capture several important results from the recent literature, and (2) using it
to construct a multi-authority version of ABE.
The R3PO Framework. Our primary contribution is to develop the notion of
Reach-Restricted Reactive Program Obfuscation (R3PO) that modularly encap-
sulates and extends the powerful techniques behind the surprising results of
[6,16,20,24,27]. Our definition of R3PO allows an intuitive description of prior
constructions like IBE [20] (with an easy extension to Identity-Based Functional
Encryption [54]), 2-Round MPC [6,27], and RBE [24], all of them using obfus-
cation of natural reactive programs.

• We present a library of useful R3PO schemes. The library includes obfusca-
tions for non-reactive programs that check a commitment opening, verify a
signature, and verify the (partial) opening of a hashed value.

• We present a composition theorem that can be used to obtain an R3PO
scheme for a reactive program from R3PO schemes for smaller (non-reactive)
programs (like those in the library above) into which it decomposes.

• For each of the applications we consider (as well as some of the programs in
the library), we define an appropriate reactive program, construct an R3PO
for it and use it to complete our construction. The requisite R3PO maybe

R3PO 63

directly available from the library, or is constructed using the composition
theorem.

The grabled circuit technique is entirely encapsulated within the proof of
the composition theorem above. This is in contrast with prior work that used
these techniques, where the proof would use a sequence of indistinguishability
arguments interleaving garbled circuit simulation with other arguments specific
to the construction. Indeed, one of the main technical challenges we overcome is
to allow disentangling the garbled circuits from the other cryptographic elements,
in these security proofs, using a strong simulation based definition of R3PO and
our novel notion of decomposition.
Private Multi-Authority ABE. Another important contribution of this work
is a new version of Multi-Authority Attribute-Based Encryption (called Private
Multi-Authority ABE or p-MA-ABE), and a construction for it, conceived in
terms of an R3PO.

The motivation for p-MA-ABE stems from the natural use-case for MA-
ABE (or even ABE) where a user has privacy requirements against an attribute
authority (e.g., they may want to obtain attributes corresponding to a city and a
state that they consider their primary home, but without revealing the name of
those locations to the authority). Correspondingly, the authority would be willing
to issue attributes that satisfy a (possibly private) attribute-granting policy (e.g.,
issue the attributes for any one state and any one city within that state). The
privacy requirement is that the authority (or authorities) shall not learn anything
about the attributes of a user, and the user shall not learn anything about the
attribute-granting policy, beyond whether the policy is met by the attribute set.

Now, a non-private MA-ABE (or ABE) scheme can be easily converted into a
private version, via secure 2-party computation of a function to which the user’s
input is their attribute request, and the authority’s input is its master secret key
and its attribute-granting policy. Since such a 2PC protocol can be implemented
in two rounds (e.g., a simple protocol based on Yao’s Garbled Circuit works,
as we consider the authorities to be honest-but-curious), this only requires the
user to send a single message to the server – which we call an attribute request
– before the server responds.

p-MA-ABE captures this trade-off: allow the user to initiate the contact with
the authority,1 and in return obtain a strong privacy guarantee. Though the
above transformation shows that standard MA-ABE can be easily turned into
p-MA-ABE, the former is known to be realizable only for very limited functions
and in the random oracle model. In contrast, our results show that p-MA-ABE
is as widely realizable as ABE itself!

We give a construction for p-MA-ABE from any (single-authority, ciphertext-
policy) ABE scheme in a blackbox manner, using R3PO for (non-reactive) pro-
grams for signature checking and commitment opening, that is provably secure

1 We remark that in a practical situation, this extra round comes at virtually no cost,
since anyway a user would first need to establish a secure channel and authenticate
itself with the authority before receiving its credentials.

64 K. Bhushan et al.

in the standard model. The scheme supports general access policies as supported
by the underlying ABE scheme, and is policy-hiding if the ABE is policy-hiding.

1.2 Related Work

We mention a few related works below, and discuss how R3PO relate to other
notions in Sect. 2.7.
Obfuscation. A large variety of notions of obfuscation have been studied in
the literature leading to several important breakthroughs along the way (e.g.,
[2,4,5,7,22,31,35–37,41,49,51]). Like R3PO, many of these require security only
when the program being obfuscated is generated appropriately [4,7,33,51].
Composition. Composition has been considered in the context of cryptographic
protocols, leading up to UC security and its variants [3,11–13,18,21,32,45,47,
52], as well as alternate approaches like Constructive Cryptography [44]. Com-
position for obfuscation has received far less attention, although it was explicitly
considered in an early work [43].
Garbled Circuits. Garbled circuits were conceived by Yao [53]. The techniques
of chaining multiple garbled circuits appeared in garbled RAM schemes [25,26,
28,42], and later several results like Laconic OT [16], IBE from DDH [19,20],
2-round MPC [6,27], and several extensions of these works have all relied on
these techniques.
Multi-Authority Attribute Based Encryption (MA-ABE). The notion
of Ciphertext Policy-Attribute Based Encryption (CP-ABE) was introduced in
[48] and formally defined in [30]. There is a rich sequence of works realizing ABE,
based on lattice based (LWE) [9,29] and pairing based assumptions [30,34,39].
But for MA-ABE, first proposed in [15], realizations so far have been limited. In
the standard GID model, [40] formalized the notion of decentralized MA-ABE
(where in, no trusted setup algorithm other than a common reference string is
allowed), and gave a scheme for it under appropriate bilinear maps assumptions
in the random oracle model (supporting general policy structures). A sequence
of works culminated in [17], where they gave a scheme under the Learning With
Errors (LWE) assumption in the random oracle model for policies corresponding
to DNF formulae. Concurrently, [46] modified the definition to consider sender
security (policy hiding) as well as receiver security (attribute hiding), and gave a
construction for it under the k-linear assumption in the random oracle model for
a special subset of policies. More recently, [50] gave a (current state-of-the-art)
construction for MA-ABE in the plain model for subset policies (including DNF
formulae) from the new evasive LWE assumption. Their construction however
requires a global setup.

[38] proposed a variant of MA-ABE called the OT model. It is a relaxed
model where there is no global identity fixed for the users. However, as pointed
out in [17], this allows multiple users to pool their attributes, defeating one of
the main goals of ABE. Our model has a global identity that an authority would
incorporate into the key issued for a party, and as captured in the security
definition, the user can combine only attributes that are issued for the same

R3PO 65

global id. Another drawback of [38] was that it used a global setup; we do not.
Our setup is local to each authority (as in the global id model). Our model much
more closely resembles the standard global id model, but with an additional key
request step in the syntax. On the other hand, our results are much stronger
than those available in the standard model (which are in the random oracle
model and/or for limited function classes). We also offer further flexibility by
not requiring each attribute to be attached to a unique authority.

We also note that MA-ABE can be modeled as an appropriate functionality
in the framework of public-key Multi-Party Functional Encryption (MPFE) [1].
Their work gives a construction for public-key MPFE for general functionalities.
However, this does not yield the result in our work due to the following limita-
tions. Their construction uses an interactive setup, forcing the authorities to be
aware of and interact with each other, while we require the MA-ABE authorities
to only use “local” setup. Further, their construction is based on Multi-Input
Functional Encryption for general functionalities (which is a strong assumption
that implies iO). In contrast, we rely only on ABE and standard assumptions.
Indeed, the main motivation behind R3PO and the entire line of work leading to
it, is to be able to base various cryptographic schemes on simpler assumptions,
and to avoid the need for assumptions like iO.

2 Technical Overview

2.1 Motivating Examples

We start with a few motivating constructions, along the lines of the IBE con-
struction mentioned at the beginning of this paper, which we seek to base on
our new notion of obfuscation. In the general case, we would be obfuscating a
reactive program (or more specifically, a Moore machine), which at each step,
accepts an input, updates its state, and produces an output based on the new
state.

Identity-Based Functional Encryption. IBFE is an extension of IBE where
each identity id is associated with a unique function fid (not known to the encryp-
tor), so that when an encryption of a message m addressed to id is decrypted
using the key for fid, one receives fid(m). An IBFE scheme can be obtained by
simply modifying the IBE scheme above so that the obfuscated program takes a
signature on (id, f) (where id is already fixed in the program, but f is not), and
transitions to a state encoding f , where it outputs f(m).

IBFE has been explored in a prior work [54], but their definition is incom-
parable to our notion above. On the one hand, their definition does not allow
the adversary to obtain any function keys – under any IDs – for a function f
such that f(m0) and f(m1) are not equal; on the other hand, it is not made
very clear if the adversary is restricted to obtaining a single function key for the
challenge id, as is the case in our definition. Finally, they offer a construction for
the primitive only for a very restricted class of functions, while our construction
supports general functionalities.

66 K. Bhushan et al.

2-Round MPC. Following the constructions in [6,27], an underlying (multi-
round) MPC protocol can be reinterpreted as evaluating a blinded circuit, in
which each boolean gate is owned by a party, and the protocol amounts to
evaluating the wires of this circuit publicly. The wire values are public, but each
gate is private to its owner.

The 2-round MPC constructed from the blinded circuit is as follows. In the
first round, each party broadcasts a commitment to the 4 bits (separately) of
the truth table of each of its gates. In the second round, each party broadcasts
the obfuscation of the following reactive program:

– The program maintains a public state consisting of all the wire values of the
circuit, evaluated thus far.

– If the next gate is owned by another party, the program accepts as input the
output wire value of the gate, along with an opening of the corresponding
commitment in the gate. If the opening verifies, it updates its state to corre-
spond to having evaluated this wire. It produces no output for this transition.

– If the next gate is owned by this party, then it takes no input, transitions
to a state that includes the output wire value of this gate, and outputs the
opening of the corresponding commitment.

Finally, given these obfuscated reactive programs, the parties evaluate the
blinded circuit gate by gate, at each step first running the program from the
owner of the gate, and then feeding its inputs to all the other programs.
Laconic OT. This is a version of OT in which the receiver has a vector D of
choice-bits, which it commits to by sending a short string y to the sender. Later,
on input (i, x0, x1), the sender should send a string to the receiver from which
the latter should learn only xDi

.
We consider the following implementation of Laconic OT: Using a hash that

supports “selective opening” of a bit in the hashed string, with a collision resis-
tance guarantee that prevents opening any bit in two different ways, the receiver
hashes D to obtain y. On input (i, x0, x1), the sender obfuscates the following
(small) program and sends it over to the receiver: The program accepts as input
an opening of y at position i to a bit b, and if the opening is valid, then it outputs
xb.

Each of the above simplistic constructions relied on an intuitive notion of
“obfuscation.” In the sequel, we develop a formal notion of obfuscation which
will let us make the above descriptions precise, while retaining their simplicity.
Importantly, our new obfuscation notion is indeed realizable in all the above
cases, using the same standard cryptographic assumptions as in the prior works
which introduced these constructions.

2.2 Defining R3PO

At a high-level, we consider obfuscation of reactive programs. A reactive program
(a finite-state machine, or more precisely, a Moore machine) takes inputs over
multiple rounds, updating its state and producing an output based on the state

R3PO 67

at each round. It is specified by a start state, a transition function π and a
message function μ, so that, on reaching a state σ, the program outputs μ(σ).

Before discussing the definitions, it will be useful to have a couple of running
examples in mind. In these examples, μ is arbitrary (and secret), and a public
π is as specified below.

– Commitment. πc incorporates a commitment string c. On input d at the
start state, if d decommits c to m, then πc transitions to a state σm encoding
m.

– Signature. A signature verification key vk is encoded in the start state σvk

of π (denoted as π[σvk]), from where, given a valid signature on a message m
as input, it transitions to a state σm encoding m.

These are both instances of “one-step programs” which have transitions only
out of the start state. (We shall later explain the slightly different choices for how
the values c and vk are incorporated into π in the two cases.) In these examples,
π is not hidden, and the goal of obfuscating such a program would be to hide μ.
More generally, π and μ can both have secrets in them (when defining reactive
programs formally, we will denote them as π(α) and μ(β), where α and β are the
secrets).
Reach Extraction and Simulation. Our simulation-based notion of obfusca-
tion requires that a “reach-extractor” should exist for the program being obfus-
cated. A reach extractor would predict all the states of a reactive program that
are reachable using inputs that can be efficiently computed by any adversary.
Then, the obfuscation of the program should be simulated using only the out-
puts produced by the program at those states. We elaborate on reach-exaction
and the rest of the simulation below.
Reach Extractability. Which states in a program π are efficiently reachable is a
consequence of the process that generates the program (analogous to how an “eva-
sive program” being evasive is a consequence of sampling it from a distribution).
This process involves a generator G and an adversary Q. A reach extractor for
an adversary Q is a program that passively (possibly in a non-blackbox manner)
observes Q as it interacts with G, and then predicts (a superset of) the set of
states that the adversary will be able to reach in the program output by G.
This prediction is made explicitly in the form of inputs to a (possibly different)
reactive program Π that will reach all the states reachable by the adversary,
and perhaps more. Here we allow the extractor to specify Π, which belongs to a
transition function family P̊ that may be different from the transition program
family P that is obfuscated. We refer to this as the “reach bounding” guarantee
of the reach extractor.

We illustrate a reach extractor for the two running examples.

– Commitment: G accepts a commitment string c from Q, and then outputs
πc. A reach extractor can extract a value m from the commitment, either when
Q is semi-honest, or when a setup is used that the extractor can control. Now,
m is not a decommitment as expected by πc. Instead, we allow the extractor
to specify a different program Πm which accepts m itself as the input and
transitions to σm.

68 K. Bhushan et al.

This extractor is reach bounding, because, due to the binding property of
the commitment scheme, the only state Q could reach in πc is also σm.

– Signature: In this case, G internally samples a pair (sk, vk) of signing and
verification keys. It sends vk to Q, and further may answer signature requests
by Q. An extractor can collect all the signatures Q receives from G and
output them as a reach-bounding set of inputs for Π = π[σvk]. Note that
here the program family to be used by the extractor P̊ is the same as the
one being obfuscated P (and it has only one program in it but with various
start states). The reach bounding property follows from unforgeability of the
signature scheme.

Simulation. An obfuscator for a generator R3PO security definition requires that
a 2-stage simulation exists for any adversary Q, as follows:

– Stage 1: After Q finishes interacting with G, a reach extractor observing Q
specifies a set of reachable states (in the form of a program Π and inputs to
it).

– Stage 2: Given the output of the original message function μ on those states,
a simulated obfuscation is produced. This should be indistinguishable from
the obfuscation of the reactive program produced by G, even given auxiliary
information output by both G and Q.

Note that this is a stronger notion of simulation than even VBB obfusca-
tion, which only requires the simulation of one predicate at a time, rather than
a simulation of the entire obfuscated program. Indeed, requiring such a simu-
lator would typically entail that the program is learnable and hence trivial to
obfuscate. What keeps our definition from becoming trivial is the fact that the
extracted inputs are a function of the program generation process, and are not
available to the obfuscator.
Reach Restriction. The final component in our definition of R3PO is in the
form of an additional requirement on the reach extractor in Stage 1 above.
This requirement stems from the “one-time” nature of Yao’s Garbled Circuits,
a key ingredient in the constructions that we wish to capture. Intuitively, these
constructions require that an adversary can evaluate any garbled circuit on only
one set of inputs. We incorporate a corresponding reach restriction requirement
into our definition of reach extractability of a reactive program (Definition 3),
which leads to the name reach-restricted reactive programs (R3P).2

To define reach restriction, we require the state space of the reactive programs
to be a priori partitioned into a polynomial number of parts, Σ = Σ1∪· · ·∪ΣN .
Then, informally, the reach restriction property of a reactive program is that no
efficient adversary would be able to find inputs that take π to two different states
that belong to the same part. Formally, the reach restriction property is imposed
on the reachable states produced by the reach-extractor.

We return to our running examples.

2 Formally, we do not define R3P, but only an R3P Generator, as a program generator
(Definition 2) that has a reach extractor.

R3PO 69

– Commitment: We let Σ1 consist only of the start state and Σ2 consist of
all states of the form σm. Since the extractor outputs only one message m,
the reach restriction property already holds.

– Signature: We let Σ1 consist of all the potential start states σvk and Σ2

consist of all states of the form σm (the two kind of states are encoded so
that Σ1 ∩Σ2 = ∅). To be reach restricting, we will require that the generator
G gives out at most one signature. Further, we would want to enforce that
breaking reach restriction in Π must correspond to forging signatures with
respect to the key sampled by G. This is enforced by keeping vk in the start
state of π[vk] (rather than in the transition function itself), which in turn
forces Π to use the same start state and hence the same verification key.

2.3 R3PO Composition Theorem

As noted earlier, a major motivation of this work is to encapsulate a range of
powerful techniques using garbled circuits in a reusable form. This result takes
the form of a composition theorem, which allows obfuscating a reactive program
via an obfuscation of its various components.

The high-level idea is to view a reactive program π ∈ P, over a state space
Σ = Σ1 ∪ · · · ∪ ΣN as consisting of separate programs π̂1, . . . , π̂N , such that π̂i

is identical to π on states σ ∈ Σi, and in other states it ignores all inputs (i.e.,
remains at the same state). Let Pi denote the class of such programs π̂i. W.l.o.g.
(due to reach-restriction), we require π to not have any transitions between states
in the same part, and hence each π̂i is a “one-step” (or non-reactive) program
that halts after its first transition out of the start state. However, attempting to
formalize this leads to a couple of conundrums.
Conundrum 1: Dynamically Determined Programs. As a naïve starting point,
one could try building an obfuscator for P from obfuscators for Pi. However,
this runs into an immediate problem: When executing a program in P, the state
reached in Σi is dynamically determined by the inputs used, whereas when obfus-
cating a program in Pi, its start state needs to be fixed. The resolution of this
conundrum, which goes back to [16,19,20,25,26,28,42], is to provide a garbled
circuit that can dynamically compute the obfuscation of π̂i[σi] with the correct
start state σi; the input to this garbled circuit would be the labels encoding σi,
which in turn would be released by the obfuscation of a previous program πj [σj]
on an input x such that πj(σj , x) = σi.

However, the price we pay for using garbled circuits is that only one set of
labels can be made available to the adversary for each garbled circuit, in turn
resulting in the reach-restriction requirement.
Conundrum 2: Intertwined Generators. Recall that to formalize reach restric-
tion, our definition needed to take into account the generators. Now, when we
try to map the different parts of a single reactive program as being generated by
multiple generators, the generators can become deeply intertwined, sharing secret
keys and state variables. Further, the program generated by one generator needs
to have a start state that is determined by the outputs produced by programs in

70 K. Bhushan et al.

other parts. So it may not always be possible to view a (reach-restricted) reac-
tive program produced by a generator as the composition of single-step reactive
programs produced by separate generators.

The resolution to this conundrum is to require some additional relation
between the generator for the reactive program and the generators for the one-
step programs. This leads us to the notion of decomposition.
Decomposition. Unlike in the case of MPC protocols, wherein the subprotocols
are explicitly executed by a composite protocols, a reactive program generator
need not have “sub-generators” running within it. Indeed, this presents a chal-
lenge to composition that is fundamentally different from composition in MPC.

Our novel solution is to define decomposition in terms of a bisimulation
requirement. Roughly, for G to decompose into a smaller generator H (and
additional computation), we require that G can be viewed as H via a simulator,
and vice versa. More precisely, we require that there be two simulators J and
Z such that G

J
(denoting that J internally runs G as a black box) and Z

H
are indistinguishable from each other from the point of view of any adversary Q

(or more precisely, for Q

W
, where the wrapper W is also part of the simulation).

This by itself can be trivially arranged by letting J = H and Z = G. We need
to further capture the requirement that the program π̂ produced by H corre-
sponds to a single step in the program π produced by G. More precisely, the
state space of the generator H corresponds to a part Σi of the state space of G,
and we require that the start state of π̂ is the same as the only state in Σi that
is reachable in π.

Now, by requiring this, we require J to know the reachable state in π pro-
duced by G. While this is possible in some cases (e.g., when the reachable state
is determined by a signed message sent by G), in certain other cases it is not
possible (e.g., when it is determined by a message hidden in a commitment). To
accommodate these different situations, we allow J to obtain this information
from the wrapper W , which is in turn allowed to obtain this from a reach-
extractor for G (or more precisely, from a “partial” reach extractor which only
extracts the reach within Σi).

Finally, for use in our composition theorem, we shall require a uniformly
sampled message function to be associated with the reactive program produced
by J . (While the definition of decomposition allows arbitrary message function
class here, the composition theorem is for decomposition that uses a particular
message function class.)

We refer the reader to Sect. 4.1 for a more detailed discussion and a precise
definition of decomposition.
Composition. Having defined decomposition, we turn to stating and proving
the composition theorem. Informally, it states that if a generator G decomposes
into generators (H1, . . . , HN) (for a partition of its state space (Σ1, . . . , ΣN)),
and if each Hi has an R3PO scheme Oi, then there is one for G as well. The
construction uses garbled circuits, following the outline at the beginning of this
section. The final obfuscation consists of one garbled circuit GCi for each part

R3PO 71

Σi, such that on reaching σ ∈ Σi, an evaluator would have the labels that
encode σ as input for GCi, and GCi would then output μ(σ) as well as an
obfuscation Oi(π̂i[σ], μ̂i) (using a hard-coded random tape). Feeding an input x
to this obfuscated program will release the labels for the state π̂i(σ, x) = π(σ, x).

To prove that this construction yields an R3PO for G, we use a sequence of
hybrids that would replace one garbled circuit at a time with a simulated one,
which in turn outputs not the actual obfuscation Oi(π̂i[σ], μ̂i), but a simulated
one. At each step, we will be able to apply the decomposition guarantee (using

an inductively maintained partial reach extractor) to go from G to G
Ji

to
Zi

Hi
,

wherein we use the R3PO guarantee to replace the actual obfuscation used to
simulate GCi with a simulated one (while also extending the partial extractor);

then we move back from
Zi

Hi
to G

Ji
and then G.

2.4 R3PO Library

We present R3PO schemes for a few basic program classes which can be combined
together in a variety of constructions.

– Commitment-Opening. This is similar to the running example presented
above. In the full version, we realize the R3PO for a couple of flavors of this
(UC secure commitment, and “weakly secure” commitment that is suitable
for semi-honest committers), based on the standard assumption of 2-round
OT.

– Signature-Checking. We provide an R3PO for signature-checking programs
as in the running example. To facilitate full security in applications like IBE
and IBFE, we support puncturable signature schemes.3 We instantiate a punc-
turable signature scheme and give an R3PO scheme for this program family
assuming an OTSE scheme in the full version.

– Hash-Opening. This is similar to the commitment opening reactive program,
but with a compressing hash instead of a binding commitment. The R3PO
for this program class can be constructed from Laconic OT [16]. Alternately,
we can use our composition theorem to bootstrap from an R3PO for the
same class instantiated with a factor-2 compressing laconic OT (see Sect. 2.5
below).

– ε-Transition While specifying reactive programs using the above building
blocks, often it is useful to transition from state reached via one building
block to a state that is suitable as the start state of another building block.
ε-transitions provide the essential syntactic sugar to enable this. R3PO for
an ε-transition is implemented using a garbled circuit.

3 In our constructions of IBE and IBFE, the ciphertext corresponds to an obfuscated
program. For full security, the adversary must be allowed to make key queries even
after receiving the ciphertext. But, no interaction is allowed between the program
generator and the adversary after the program has been generated. Hence, we con-
sider a generator which gives out an appropriately punctured signing key before the
interaction finishes.

72 K. Bhushan et al.

2.5 Applications: The Different Ways of Using R3PO

Our R3PO library and our composition theorem form a versatile toolkit for
instantiating new and old constructions. There are a few different ways in which
they can be put to use.
Off-the-Shelf Without Composition. In certain cases, the components in
our library are already powerful enough off-the-shelf to yield a construction for
a desired application. An illustrative example is that an R3PO for (puncturable)
signature-checking can be used to construct an IBFE scheme (and, as a special
case, IBE), as sketched in Sect. 2.1 and elaborated in the full version. The security
proof is fairly direct, by using a generator for the R3PO that models the security
experiment of IBFE.
Using Composition. We illustrate a typical “workflow” for using the R3PO
composition theorem in a higher-level application. We use the example of Laconic
OT [16], which is one of the early constructions that form the inspiration for this
work. For the sake of readability we use slightly imprecise terminology.

– We start by identifying a reactive program family, such that an R3PO for it
directly yields our application.In the case of laconic OT, this reactive program
traverses a pre-determined path along a Merkle tree, with states holding the
hash value at each node, and making a transition if the input “explains” the
hash at that node. The Merkle tree uses an underlying hash scheme which
compresses by a factor of 2.

– We consider the one-step restrictions of this reactive program as another
reactive program family, and carry out the following two steps:

• We show that the original reactive programs can be decomposed into its
one-step restrictions. This involves matching the definition of decomposi-
tion with straightforward constructions.

• We give an R3PO scheme for these one-step restrictions. This can be
directly based on the construction in [16] for factor-2-compression laconic
OT (not involving garbled circuit chaining).

– Then we simply invoke our composition theorem to obtain an R3PO for the
original program family.

– We package the original reactive program as another one-step program, so
that it can be included in our R3PO library for various applications (see the
full version). Laconic OT is a direct consequence of an R3PO for this one-step
program.

Another example of this workflow is in the construction of the R3PO for
signature-checking that was mentioned above as part of our library (where the
smaller non-reactive programs used correspond to one-time signature checking).
R3PO as a Component. In the above examples, once an R3PO is constructed,
the final application is fairly immediately realized. However, it is also possible
to use R3PO as a component in a larger construction, wherein the step from
R3PO to the final security proof may be non-trivial. The proof may involve
multiple hybrids, with R3PO security used to replace a real obfuscation in one

R3PO 73

hybrid with the simulated obfuscation in the next. One such example is the 2-
round MPC protocol of [6,27], which we rederive in the full version using R3PO
for commitment opening. In this construction, as sketched in Sect. 2.1, several
programs obfuscated using R3PO are involved. The security of R3PO can be
used to move to an “ideal” execution of the MPC protocol (or more precisely,
build a simulator for the 2-round MPC using the simulators of R3PO and the
simulator for the underlying MPC protocol).

Our main application of p-MA-ABE (discussed below) also falls into this
category, where the security of the final construction depends on several com-
ponents, one of which is an R3PO scheme. This construction also illustrates the
possibility of combining multiple library components (commitment-opening and
signature-checking) in the same reactive program.

2.6 Private Multi-Authority ABE

In this section, we give a brief overview of the new variant of MA-ABE that
we introduce, called Private Multi-Authority ABE (p-MA-ABE), and the main
ideas behind our construction for it. Our construction is intuitive in terms of
an obfuscation of a reactive program, and can indeed be realized using R3PO.
The flexibility of the new framework allows a relatively easy construction, using
existing ABE schemes, and with a robust security definition. The full description
can be found in Sect. 5.
Defining p-MA-ABE: The setting of p-MA-ABE (as well as MA-ABE) inv-
olves a set of mutually distrusting authorities (say A1, . . . , AN), a sender and a
receiver. The algorithms in an p-MA-ABE scheme are as follows:

– Setup: At the start of the execution, each authority Ai does a local (decen-
tralized) setup to generate its public and secret keys (mpki,mski) and shares
the public key mpki with the other users in the system.

– Key-Request: a receiver can construct a set of key-requests req =
(req1, . . . , reqN) for a global identifier gid and attribute set x̄ from the public
keys. It can then submit a key-request query (of the form (gid, reqi)) to an
authority Ai and get back a key-component skgid,reqi

from Ai (req will hide
x̄).

– Key-Gen: an authority Ai receives as input a key-request reqi for a global
identifier gid, and outputs a key-component skgid,reqi

that incorporates an
attribute-granting policy Θgid

i (which, for simplicity, we do not consider a
secret).

– Encryption: a sender can encrypt a message m with a ciphertext policy φ,
using the public keys of the authorities to produce a ciphertext ctm,φ.

– Decryption: a receiver can decrypt a ciphertext ctm,φ using key components
of the form (skgid,req1

, · · · , skgid,reqN
) where all the requests reqi were generated

using gid and x̄ such that Θgid
i (x̄) = 1 for all i, and φ(x̄) = 1.

Compared to the original definition of MA-ABE, there are two main differ-
ences in p-MA-ABE: Firstly, since the attributes are to be kept private even

74 K. Bhushan et al.

from the authorities, there is a key-request step, wherein the user generates the
key-request messages to all the authorities based on its desired set of attributes.
Secondly, we allow each authority to use an arbitrary attribute-granting policy,
which depends on the entire attribute vector.4

We define security w.r.t. a corruption model where the adversary is allowed
to maliciously corrupt the receivers and semi-honestly corrupt any subset of
authorities. If a receiver is honest, we require that the key-request req reveals
nothing about x̄ to the authorities, even if all of them collude. When the receiver
is corrupt, we guarantee that, for any choice of (φ,m0,m1), the adversary cannot
distinguish between the encryptions of m0 and m1 w.r.t. a policy φ, unless for
a pair (gid, x̄) such that Θgid

i (x̄) = 1 for all honest authorities Ai, φ(x̄) = 1 and
the adversary sent a valid key request for (gid, x̄) (i.e., a request that can be
produced by the Key-Request algorithm on those inputs) to at least one honest
authority (and it could have sent it to the others as well).
A p-MA-ABE Scheme: Our scheme is easily described in terms of obfuscating
a reactive program. The key-request reqi is a commitment to x̄ (using a common
random string in the public-key of Ai). The key issued by each authority is
the obfuscation of a reactive program; the reactive programs by the different
authorities “talk” to each other and confirm that they all agree on granting the
same attribute x̄ to gid, and if so, issue standard CP-ABE keys for x̄. More
precisely, the reactive program (π(α), μ(β)) works as follows (with Ai’s CP-ABE
master secret-key constituting the secret β; α can be empty, or alternately, can
be used to store Θgid

i privately):

– at the start state accepts a decommitment for reqi and transitions to a state
with x̄. There, if Θgid

i (x̄) = 1, then it outputs a signature on (gid, x̄), using
Ai’s signature key.

– Then, it moves through N − 1 states accepting signatures on (gid, x̄) from all
the other servers.

– On reaching the last of these states, it outputs a CP-ABE key for the attribute
x̄, under a (standard) CP-ABE scheme for which Ai is the authority.

If Θgid
i (x̄) = 1 for all i, then the receiver can obtain the CP-ABE keys for x̄

under all the authorities. Now, to encrypt a message under a policy φ, one simply
secret-shares m into N shares, and encrypts each share under the CP-ABE public
key of the corresponding authority.

Note that if even one (honest) authority’s key component is missing, no
honest authority’s CP-ABE key can be obtained. This is crucial because the
CP-ABE keys do not involve gid and cannot prevent the use of keys obtained
using multiple gids.

Using the composition theorem, we show that there is an R3PO for a suitably
defined generator that models the p-MA-ABE security game. (As it turns out,
we need to do this for two different generators to handle two different hybrids;
4 In particular, it captures the standard formulation of MA-ABE, where each authority

Ai “owns” a set of attributes and its key-issuing decision is based on the values of
the attributes it owns.

R3PO 75

the first hybrid does not rely on the unforgeability of the signatures, and lets
the adversary specify all the signing keys. We show that the same obfuscator O
is an R3PO scheme for both the generators.)

2.7 Comparison of R3PO with Existing Primitives

It is instructive to compare R3PO with various existing primitives and tech-
niques.
Hash Garbling. This abstraction from [23] gives a similar interface to R3PO for
a specific class of program generators, namely, “Hash Opening.” More precisely,
hash garbling involves a hash-opening check as well as a circuit evaluation, which
corresponds to a reactive program that carries out a hash-opening transition
followed by an epsilon transition (that evaluates the circuit).
{Batch, Hash, Chameleon, OneTime Signature}-Encryption. These fla-
vors of encryption that were introduced in prior work [8,19,20] correspond to
R3PO schemes for one-step programs that are included in our library (Hash
Opening and Signature Checking). While these original definitions differ in their
details, R3PO provides a simulation-based definition that can be uniformly used
in all their applications.
Witness Encryption over Commitments (cWE). cWE, recently defined
in [10], is quite similar to an R3PO for “Commitment Opening” followed by an
epsilon transition. It was instantiated from Oblivious Transfer (OT) and garbled
circuits, just as the R3PO scheme obtained directly from our library and the
composition theorem is.
Garbled Circuit Chaining. The technique of garbled circuit chaining has
appeared in a long line of works [6,20,24,27,42]. We note that R3PO allows
different one-step programs (for example combining commitment and signature
in p-MA-ABE), while all prior works used garbled circuit chaining with links
that correspond to a single cryptographic element. Also, as already mentioned,
the prior works do not separate out the chaining from the cryptographic elements
that are chained together.
Obfuscation Notions. Our notion of R3PO is different in many ways from the
other notions of obfuscation. Many notions of obfuscation are either unrealizable
in general or inhabit “obfustopia,” requiring a combination of relatively strong
assumptions, and are not practical in terms of efficiency [2,4,5,7,7,14,35]. But
there are a few exceptions for specialized applications, like obfuscation of reen-
cryption based on bilinear pairings [33] or compute-and-compare obfuscation
based on LWE [51]. R3PO could be considered to be in the latter group, but
with a much richer class of applications compared to the others.

The original notions of obfuscation require worst-case security, but there are
several others, including obfuscation of evasive circuit families [4], strong iO
[7], reencryption obfuscation [33], compute-and-compare obfuscation [51], etc.
which require only distributional security, when the program being obfuscated
is sampled from distributions with particular properties. Again, R3PO falls into
the latter class here, with the sampling process being interactive.

76 K. Bhushan et al.

3 The R3PO Framework

3.1 Reactive Programs and Generators

Below we define a reactive program as a stateful machine that takes inputs, tran-
sitions its state and produces outputs as a function of its state. Formally, such
a program consists of a deterministic transition function π and a deterministic
message function μ, both of which can be parameterized by (secret) values α, β
(hardwired into circuits π(·), μ(·) respectively).

Definition 1 (Reactive Program over (X , Σ, A, B, M). A reactive pro-
gram (π(α), μ(β)), with input alphabet X , a state-space Σ, a start-state start ∈ Σ
and secret spaces A, B is specified by a deterministic transition program
π(α) : Σ × X → Σ parameterized by a secret α ∈ A and a deterministic5
message function μ(β) : Σ → M parameterized by a secret β ∈ B, that on
input sequence (x1, . . . , x�) ∈ X , reaches a state σ�, where σi = π(α)(σi−1, xi)
for i = 1, . . . ,
 and σ0 = start, and outputs a message μ(β)(σ�). We also define
reachπ(α)(x1, . . . , x�) = {σ0, · · · , σ�} and π(α)(x1, . . . , x�) = σ�. �

Reactive programs have an associated implicit security parameter κ; specif-
ically, we require that the states in Σ and secrets in A, B are represented as
binary strings of length polynomial in the security parameter κ, and the func-
tions π(α) and μ(β) are polynomial in κ. Throughout the rest of the paper, we
shall omit κ and implicitly refer to “polynomial in κ” as simply being polynomial.
Partition Function and Program Class. A transition function class P refers to
a set of transition functions along with an associated partition function I that
maps states to integers, i.e., I : Σ → [N] for some positive integer N . We say
that I partitions the state space Σ into Σ1, · · · , ΣN where,

Σi = I−1(i) := {σ | σ ∈ Σ, I(σ) = i}

Unless otherwise stated, the start state of a reactive program is assumed to be
in Σ1. We say that a transition function π(α) is tree-ordered with respect to
I, if the directed graph over [N] (each partition as a vertex) with an edge-set

{(i, j) | ∃ distinct σ ∈ Σi, σ′ ∈ Σj , ∃x ∈ X s.t π(α)(σ, x) = σ′}

is a tree, and all its edges (i, j) satisfy i < j. That is, for any partition j,
there is at most a single partition i < j from which states in partition j can be
transitioned to. Further, we say that a transition function class P is tree-ordered
if every π(α) ∈ P is tree-ordered w.r.t. the partition associated with P.

A program class (P,M) is a set of reactive programs (π(α), μ(β)) with π(α) ∈
P and μ(β) ∈ M.

5 As described in the full version, restricting our obfuscations to deterministic message
functions is without loss of generality, even if we are interested in randomized message
functions.

R3PO 77

Reactive Program Generator. We now describe the process which generates
a reactive program to be obfuscated. A PPT program G (which we call the
generator) interacts with a PPT program Q (which we call the adversary) over
many rounds; at the end G outputs a reactive program (π(α), μ(β)). Both G and
Q are also allowed to produce auxiliary outputs.

Definition 2 ((P,M)-Generator G). A (P,M)-generator G for a transition
function class P and message function class M is a PPT interactive program
that interacts with an arbitrary PPT program Q. We write

(

(π(α), μ(β)), aG; aQ

)

← 〈G : Q〉

to indicate that at the end of the interaction, G outputs
(

(π(α), μ(β)), aG

)

and

Q outputs aQ (where π(α) ∈ P, μ(β) ∈ M). A generator class is simply a set of
generators. �

An adversary class Q is simply a set of adversaries Q. Some useful adversary
classes depending on the application are: set of all PPT machines (for active
corruption) and set of “semi-honest” PPT machines which follow a given protocol.
We also consider adversary classes with setup. For any T that is a program in a
setup class T , we use QT to denote an adversary Q that gets oracle access to an
honest execution of T .

3.2 Reach Extractor

To define a reach extractor, we introduce some notation. We write Q|̂E to denote
a composite machine in which E semi-honestly runs Q internally in a straight-
line manner (where E can read the internal state of Q), letting Q directly com-
municate externally (with a generator). E produces the final auxiliary output.
For an adversary class with a setup, given an adversary QT in the composite
machine QT |̂E , E is allowed to replace T with any program from T . For exam-
ple, to capture common reference strings as a setup, T would correspond to
{Setup,SetupSim}, where Setup is the standard setup algorithm and SetupSim
produces a simulated CRS.

E is a valid reach-extractor if the following hold: in the ideal interaction, E
observes the adversary Q and produces an extra output (Π,X∗) such that the
states reached in Π using X∗ (that is, reachΠ(X∗)) is an upper bound on what
D can reach in π(α); further the output is such that it reaches at-most a single
state in each partition.6

Definition 3 (Reach-Extractor for Q w.r.t. (G, P̊)). A reach-extractor for
an adversary Q ∈ Q w.r.t. a (P,M)-generator class G and a transition func-
tion class P̊, is a PPT program E such that, for all G ∈ G and PPT D, the

6 As discussed just before Sect. 2.3, the reach-restriction condition is to enable our
composition theorem (which depends on the use of garbled circuits).

78 K. Bhushan et al.

output X produced by the following two experiments are indistinguishable:

real(G,Q,D):

(

(π(α), μ(β)), aG; aQ

)

← 〈G : Q〉

output X ← D(π(α), μ(β), aG, aQ)

ideal(G,Q|̂E ,D):

(

(π(α), μ(β)), aG; aQ,Π,X∗
)

← 〈G : Q|̂E〉

output X ← D(π(α), μ(β), aG, aQ)

and further the following hold:

– In ideal(G,Q|̂E ,D), Π ∈ P̊.
– Suppose I partitions Σ into N parts Σ1, · · · , ΣN . Then

• Reach-Bound: For all i ∈ [N], Pr[(reachπ(α)(X)∩Σi) � (reachΠ(X∗)
∩ Σi)] is negligible.

• Reach-Restriction: For all i ∈ [N], |reachΠ(X∗) ∩ Σi| ≤ 1. �

Real and Ideal Program Classes. Note that, in the above definition, E in the
ideal world is allowed to extract an idealized reactive program Π ∈ P̊ to describe
the set of states reachable by the adversary Q. While in many of our examples,
P̊ is the same as P, the class of “real world” reactive programs being obfuscated,
this is not mandatory. This flexibility in the ideal world can help with enabling
reach extraction while remaining useful in a higher level application. Please refer
to the full version for more details.

3.3 Reach-Restricted Reactive Program Obfuscation

Recall that, our goal in obfuscating a reactive program is to hide the parameters
α, β, except for the states an adversary can reach. Let E be a reach-extractor for
Q w.r.t. G s.t. E outputs Π, X∗ and reachΠ(X∗) bounds the reach of the adver-
sary in π(α). Then, we define a secure obfuscation as requiring a simulator Sim
which, given only the circuits π(·), μ(·) and the reachable states (x, μ(β)(Π(x)))
for input sequences x ∈ X∗, can output an obfuscation indistinguishable from a
real obfuscation.

Definition 4 (R3PO scheme O for (G,Q,P̊)). A PPT program O is an
Reach-Restricted Reactive Program Obfuscation (R3PO) scheme for a (P,M)-
Generator class G and transition function class P̊, if the following hold: 7

– Correctness: For all π(α) ∈ P, μ(β) ∈ M, ρ ← O(π(α), μ(β)), and x ∈ X ∗, it
holds that ρ(x) = μ(β)(π(α)(x)).

– Security: There exists a PPT program Sim s.t. ∀Q ∈ Q, there exists a reach-
extractor E w.r.t. (G, P̊), so that ∀ G ∈ G, the outputs of the following two
experiments are indistinguishable:

7 We assume that the programs π(α), μ(β), I,O are all specified as circuits. Further,
π(α) and μ(β) are given as circuits for π(·) and μ(·) (resp.), which take α and β (resp.)
as an input.

R3PO 79

real(G,Q):

(

(π(α), μ(β)), aG; aQ

)

← 〈G : Q〉

ρ ← O(π(α), μ(β))

output (ρ, aG, aQ)

ideal(G,Q):

(

(π(α), μ(β)), aG; aQ,Π,X∗
)

← 〈G : Q|̂E〉

ρ ← Sim
(

π(·), μ(·),Π, {x, μ(β)(Π(x))}x∈X∗
)

output (ρ, aG, aQ)

�

4 A Composition Theorem for R3PO

We now describe our composition theorem that enables building an R3PO for
a generator class from R3POs for generator classes that produces smaller “one-
step” (or non-reactive) programs. First we formalize the notion of decomposition.

4.1 Decomposition

The goal of decomposition is to view the transition function π of a reactive
program produced by a generator G, as consisting of several one-step transitions
πi of reactive programs produced by generators Hi. Below, we define the notion
of a σ-restriction of π at a state σ.
One-Step Restriction of a Transition Function. Given a reactive program’s
transition function π(α) and one of its states σ, we define a one-step σ -restriction
of π(α) as a transition function π̂

(α)
σ with start state σ, where

π̂(α)
σ (σ′, x) =

{

π(α)(σ, x) if σ′ = σ

σ otherwise.

(i.e., in π̂
(α)
σ , the only transitions allowed are from its start state σ).

Note that the state space Σ of π can be exponentially large in κ, and corre-
spondingly π consists of that many one-step transition functions. When decom-
posing π, we will group them into polynomially many classes of transition func-
tions, using the partition I of the state space, Σ = Σ1 ∪ · · · ∪ ΣN associated
with π. This imposes the following structure on the class of transition functions
P to which π belongs.
The transition function class P1 × · · · × PN . For any set of N classes
P1, · · · ,PN over the (same) state space Σ and partition function I : Σ → [N],
we define P1 ×· · ·×PN to consist of transition functions π(α) such that for each
state σ ∈ Σi, the one-step σ-restriction of π(α) is in Pi. That is, for all σ ∈ Σ

and inputs x, π(α)(σ, x) = π̂
(α)
σ (σ, x) where π̂

(α)
σ ∈ PI(σ).

Though π can have exponentially many states, we would like to view it as
composed of N transition functions, π̂σi

∈ Pi, where σi ∈ Σi. Thanks to the

80 K. Bhushan et al.

reach-restriction requirement on the reactive programs that we are interested
in, for each i, there would indeed be only one state σi ∈ Σi that we need
to consider. However, recall that π is dynamically generated by a generator G
interacting with an adversary Q, and the reachable states in π are determined
by this interaction. So the decomposition should be framed at the level of the
interactive generators, rather than individual transition functions.

This leads us to a bi-simulation based definition of decomposition that views
the generator G as incorporating another generator H (which produces one-
step programs), and gives a two-way equivalence between them. To formalize
this notion of bi-simulation, we introduce the following notation of composite
machines.
Composite Machines. It will be convenient to define a few different ways in
which a program (a generator or an adversary) can be wrapped by another pro-
gram. As described below, a generator will be wrapped by a blackbox simulator,
J or Z.8 We also introduce a non-blackbox wrapper W which will be used to
adapt an adversary Q (that expects to interact with G) so that it can interact
with both G and H.

– For a generator H, we write Z

H to denote a composite machine in which Z
runs H internally in a blackbox straight-line manner. The reactive program
output by the composite generator is produced H, and the auxiliary output
produced by it contains outputs from both H and Z. H may communicate
with Z, and further the composite machine can communicate externally as
described shortly. The running time of Z

H is bounded by that of H plus an
additive poly(κ) overhead that depends on Z.

– For a generator G, we write G
J

to denote a slightly different composite

machine, which is similar to J

G (G is run internally by J in a blackbox
straight-line manner, and the auxiliary information is produced by both) but
the reactive program it produces is output by J . The external communication
pattern is also different as described below.

– For an adversary Q, we write Q

W
to denote a composite machine in which

W internally runs Q in a straight-line manner with additive overhead, but
W can read the internal state of Q. The auxiliary output of this composite
machine is the entire view of W (which includes the auxiliary information aQ

produced by Q). The communication pattern is described below.

– Each of G
J

, Z

H and Q

W
has three external communication channels – one

used by the internal machine (shown boxed) and the other two by the wrapper
machine. In all machines the “middle” channel is used by the wrapper (J, Z
and W , respectively); the “top” channel is used by G,Z and Q (resp.); the

“bottom” channel is used by J,H and W (resp.). Note that when G
J

is

8 Looking ahead, the role of J below is to simulate the presence of a one-step generator
H when the actual execution involves the generator G, and the role of Z is to simulate
the presence of G when the actual execution involves H.

R3PO 81

connected to Q

W
, Q directly interacts with G, whereas when Z

H is connected

to Q

W
, Q interacts with Z.

For the ease of writing expressions, we shall denote G
J

by G�J , and Z

H by

H�Z. We will denote Q

W
by QW ; in fact, we will be interested in Q|̂E

W
(where

Q|̂E itself is a composite machine involving a reach-extractor which interacts
with Q as defined in Definition 3); we shall denote it by Q|̂EW .
Partial Reach-Extractor: For a valid decomposition, it will be important to
have a bi-simulation that maps π to a one-step restriction πσ such that σ is
the unique reachable state in a subset of states Σi. To enforce this, we shall
rely on an extractor for the adversary Q w.r.t. the generator G that produces
π. However, the purpose of decomposition and composition is to be able to
obtain an extractor for Q w.r.t. G along with a simulator, as in the definition
of R3PO (Definition 4). To break this apparent circularity, we use the notion
of a partial reach extractor: An (i − 1)-partial reach extractor will be sufficient
for defining decomposition “at part Σi,” and it can be extended to an i-partial
reach extractor, using the R3PO guarantee for the one-step generator.

Formally, a t-partial reach-extractor is defined identically to Definition 3, but
with the relaxation that the reach-bound condition needs to hold only for i ≤ t,
instead of i ≤ N . (The reach-restriction condition is still required to hold for all
i ∈ N .) Thus, an N -partial reach extractor is a “full” reach-extractor.

Now we are ready to state the definition of decomposition. While informally
we shall refer to decomposing a reactive program (or even a transition function)
to one-step programs, formally, the decomposition is of a generator class to
a sequence of generator classes, specified along with corresponding adversary
classes and relaxed program classes.

Definition 5 (Decomposition of (G, Q) to L). Let G be a (P,M)-generator
class where P = P1 × · · · × PN is tree-ordered. Let L = (H,Q, P̊), where H =
{H�Z | PPT Z} for a fixed (Pi,Mi)-generator H, Q is an adversary class, and
P̊ is a transition function class.

Then, a generator G ∈ G is said to be decomposable at part i to L if, there
exist PPT J, Z,W so that ∀Q ∈ Q, and all (i − 1)-partial reach-extractors E for
Q w.r.t. (G, P̊), it holds that Q|̂E|W ∈ Q and:

– Indistinguishability: 〈G�J : Q|̂EW 〉 ≈ 〈H�Z : Q|̂EW 〉.
– In 〈G�J : Q|̂EW 〉, let the output of G be ((π(α), μ(β)), aG), and of E be
(aQ,Π,X∗); then J outputs ((π̂(α)

σ , μ̂
(̂β)
σ), aJ) s.t.

• Correct One-Step Restriction: reachΠ(X∗) ∩ Σi ⊆ {σ}.
• Correct Message Function: μ̂

(̂β)
σ ← Mi is uniformly sampled at the

end of the execution.

82 K. Bhushan et al.

(G,Q) is said to be decomposable into L = (L1, . . . ,LN) if ∀G ∈ G, i ∈ [N], it
holds that Li = (Hi,Qi, P̊i) where Qi ⊇ Q, and G is decomposable at part i to
Li. �

Above, we require two simulations to produce indistinguishable outputs (which
includes their communication, as Q|̂EW outputs its entire view as part of out-
put), with J mimicking H, and Z mimicking G. The “correct one-step restriction”
condition forces J (and hence H) to output a one-step restriction whose start
state is the state that is reachable, as reported by a (partial) reach-extractor
for G.

4.2 Composition Theorem

Above, decomposition related the transition functions in P = P1 × · · · × PN to
those in each Pi. Before stating our composition theorem, we need to specify the
message function space μ̂i of these one-step programs as well.

As described in Sect. 2.3, μ̂i should release garbled circuit labels for the state
at which it is evaluated. For our purposes, it will be helpful to consider a labeling
function (denoted below as ̂β) which takes the part index i as an input, along
with a bit position j and bit value b. Then μ̂i will be of the form encodeI,t

̂β

defined below, which only retains the part of ̂β for parts i > t.

Fig. 1. Obfuscator O used to prove Theorem 1.

R3PO 83

Definition 6 (Message function space ̂M). Let Σ = {0, 1}n, with a parti-
tion function I : Σ → [N], and ̂β : [N] × [n] × {0, 1} → {0, 1}κ. A state labeling
function encodeI,t

̂β
: Σ → {0, 1}nκ is defined as

encodeI,t
̂β

(σ) =

{
(

̂β(I(σ), 1, a1), . . . , ̂β(I(σ), n, an)
)

if I(σ) > t,

⊥ otherwise,

where σ = (a1, ..., an). Then, we define ̂M =
⋃

I:Σ→[N],t∈[N]
̂MI,t, where

̂MI,t =
{

(

encodeI,t
̂β

)

| ̂β : [N] × [n] × {0, 1} → {0, 1}κ
}

�

We are now ready to state our composition theorem.

Theorem 1. Suppose G is a (P,M)-generator class that is decomposable into
L = {Hi,Qi, P̊i}i∈[N], such that, for each i ∈ [N], Hi is a (Pi, ̂MI,i)-generator
class and there exists an R3PO scheme Oi for (Hi,Qi, P̊i). Then there exists an
R3PO scheme O for (G,Q, P̊) where P̊ = P̊1 × · · · × P̊N .

The obfuscator O used to prove Theorem 1 is shown in Fig. 1. Please refer
to the full version for the proof that it is an R3PO scheme.

5 Private Multi-Authority ABE

In this section, we define Private Multi-Authority ABE and show how to instanti-
ate it from any CP-ABE scheme, using R3PO schemes for commitment-opening
and signatures together. Section 2.6 gives an overview of the notion and the
construction described below.

5.1 Definition for Private Multi-Authority ABE

Let the authorities in the system be A1, . . . , AN, s.t. each authority Ai publishes
its public key mpki after a local non-interactive setup. Each authority Ai also has
an attribute-granting policy Θgid

i w.r.t. each gid. A sender encrypts a message
m with a ciphertext-policy φ under the public keys of all the authorities, s.t.
a receiver with global identifier gid and attribute vector x̄ can decrypt it only
if it has attribute key for x̄ and each authorities’ attribute-granting policies
accepts (that is, ∀i ∈ [N], Θgid

i (x̄) = 1) and the ciphertext-policy accepts (that
is, φ(x̄) = 1). To get the attribute key for attribute vector x̄, the receiver sends
a key-request reqi to each authority Ai, gets back a key-component skreqi

, and
combines all the key-components to construct the key skx̄.

We define security w.r.t. a corruption model where the adversary is allowed
to maliciously corrupt the receiver and semi-honestly corrupt any subset of the
authorities. If the receiver is honest, we require that any key-request req reveals

84 K. Bhushan et al.

nothing about x̄ to the adversary (even if it semi-honestly corrupts all the author-
ities). If the receiver is corrupt, we require that the adversary is unable to dis-
tinguish between encryptions of any m0 and m1 w.r.t. a policy φ, if it did not
send a key-request for any x̄ that satisfies φ to the honest authorities.

Definition 7 (Private Multi-Authority ABE (p-MA-ABE)). A
p-MA-ABE scheme for N authorities, message space M, class C of ciphertext-
policies and class Θ of attribute-granting policies, both over n-bit attributes,
and global identifiers space GID consists of PPT algorithms as follows:

– SetupAuth(1κ) → (mpk,msk): On input the security parameter κ, outputs the
master keys for an individual authority.

– Encrypt
(

{mpki}i∈[N], φ,m
)

→ ct: On input the master public keys of all
authorities, a policy φ : {0, 1}n → {0, 1} in C and a message m ∈ M, outputs
a ciphertext ct.

– KeyRequest
(

{mpki}i∈[N], gid, x̄
)

→ (st, {reqi}i∈[N]): On input the master pub-
lic keys of all authorities, a global identity gid ∈ GID and an attribute vector
x̄ ∈ {0, 1}n, outputs a recipient state st and requests {req1, . . . , reqN}.

– KeyGen
(

i,mski, Θ
gid
i , reqi, {mpkj}j∈[N]

)

→ skreqi
: On input an authority

index i ∈ [N], master secret key mski, an attribute-granting policy Θgid
i , a

request reqi and the master public keys of all authorities, outputs a key com-
ponent skreqi

or ⊥.
– KeyCombine

(

st, {skreqi
}i∈[N]

)

→ skx̄: On input a recipient state st and a set
of key components {skreqi

}i∈[N], outputs a secret key skx̄.
– Decrypt (skx̄, ct) → m: On input a secret key skx̄ and a ciphertext ct, outputs

a message m or ⊥.

The following correctness and security properties are required:

1. Correctness: ∀ security parameter κ, number of authorities N ∈ N, identities
gid ∈ GID, messages m ∈ M, ciphertext policies φ ∈ C, attribute granting
policies {Θgid

i ∈ Θ}i∈[N], and attribute vectors x̄ s.t φ(x̄) = 1 and Θgid
i (x̄) = 1

for all i ∈ [N], it holds that if:

∀i ∈ [N], (mpki,mski) ← SetupAuth(1κ)
(st, {reqi}i∈[N]) ← KeyRequest({mpki}i∈[N], gid, x̄)

∀i ∈ [N], skreqi
← KeyGen

(

i,mski, Θ
gid
i , reqi, {mpki}i∈[N]

)

skx̄ ← KeyCombine
(

st, {skreqi
}i∈[N]

)

then Pr
[

Decrypt
(

skx̄,Encrypt({mpki}i∈[N], φ,m)
)

= m
]

= 1.

R3PO 85

2. Security of encryption: For any PPT adversary A = (A0,A1,A2,A3) with
semi-honest corruption of any subset of authorities and malicious corruption
of the receiver, there exists a negligible function negl(.) such that the following
holds in the experiment INDp-MA-ABE

mesg shown in Fig. 2:

Pr[INDp-MA-ABE
mesg (A) = 0] ≤ 1

2
+ negl(λ).

3. Receiver Privacy against Semi-honest Adversary: For any PPT adver-
sary A = (A0,A1) that corrupts each authority in a semi-honest way, there
exists a negligible function negl(.) such that the following holds in the exper-
iment INDp-MA-ABE

attr shown in Fig. 2:

Pr[INDp-MA-ABE
attr (A) = 0] ≤ 1

2
+ negl(λ).

�

5.2 Construction for Private Multi-Authority ABE

In this section, we give a scheme for p-MA-ABE from the following primitives:

– a CP-ABE scheme
– a non-interactive UC secure commitment scheme
– a puncturable signature scheme
– an R3PO scheme Op-MA-ABE w.r.t. (G1

p-MA-ABE,Qp-MA-ABE) and
(G2

p-MA-ABE,Qp-MA-ABE), which we describe in the full version.

Let the number of authorities be N, space of access policies C correspond exactly
to the policies supported by the underlying single-authority CP-ABE scheme.
Completeness Requirement of Commitment Scheme: We will addition-
ally require that, given a commitment setup Com.crs, for any c, d s.t. Com.Open
(Com.crs, c, d) = m, it holds that (m, c, d) lies in the support of the commit
algorithm, that is: there exists r s.t. (c, d) ← Com.Commit(Com.crs,m; r). Any
commitment scheme can be enhanced to have this property, by modifying it as
follows.

86 K. Bhushan et al.

Fig. 2. p-MA-ABE security experiments.

Commit′(Com.crs, m; r) =

{

(c, d) if r = 0k||c||d and Com.Open(Com.crs, c, d) = m

Com.Commit(Com.crs, m; r) otherwise.

We now prove that the protocol in Fig. 3 is in fact a secure p-MA-ABE
scheme.

Lemma 1. If there exists a CP-ABE scheme, a non-interactive UC secure
commitment scheme, a puncturable signature scheme, and an R3PO scheme
Op-MA-ABE w.r.t. (G1

p-MA-ABE,Qp-MA-ABE)9, then there exists a secure
p-MA-ABE scheme.

Please refer to the full version for the full details of the proof.

9 Which is also an R3PO w.r.t. (G2
p-MA-ABE,Qp-MA-ABE).

R3PO 87

Fig. 3. A secure p-MA-ABE Protocol. (formally, ρt also takes as input a state σ1 and
also outputs a state σ2. for brevity, we ignore mentioning it here.)

88 K. Bhushan et al.

References

1. Agrawal, S., Goyal, R., Tomida, J.: Multi-party functional encryption. In: Nissim,
K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 224–255. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-90453-1_8

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013)

3. Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure
reactive systems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 336–354.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_19

4. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfus-
cation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
26–51. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_2

5. Barak, B., et al.: On the (Im)possibility of obfuscating programs. J. ACM 59(2)
(2012). ISSN: 0004-5411

6. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8_17

7. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 108–125. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1_7

8. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_20

9. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS
2014, pp. 1–12 (2014)

10. Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryp-
tion to the future: a paradigm for sending secret messages to future (anonymous)
committees. Cryptology ePrint Archive, Paper 2021/1423 (2021)

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pp. 136–145 (2001)

12. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

13. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 3–22. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48000-7_1

14. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7_19

15. Chase, M.: Multi-authority attribute based encryption. In: Theory of Cryptogra-
phy, pp. 515–534 (2007)

16. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0_2

https://doi.org/10.1007/978-3-030-90453-1_8
https://doi.org/10.1007/978-3-540-24638-1_19
https://doi.org/10.1007/978-3-642-54242-8_2
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-662-44381-1_7
https://doi.org/10.1007/978-3-662-44381-1_7
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2

R3PO 89

17. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for
DNFs from LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021.
LNCS, vol. 12696, pp. 177–209. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-77870-5_7

18. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM J. Comput.
30, 391–437 (2001)

19. Döttling, N., Garg, S.: From selective IBE to Full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_13

20. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18

21. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–
898 (2004)

22. Galbraith, S.D., Zobernig, L.: Obfuscating finite automata. In: Dunkelman, O.,
Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 90–114.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_4

23. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryp-
tion: removing private-key generator from IBE. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 689–718. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03807-6_25

24. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A., Sekar, S.: Registration-based
encryption from standard assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11443, pp. 63–93. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6_3

25. Garg, S., Lu, S., Ostrovsky, R.: Black-Box Garbled RAM. Cryptology ePrint
Archive, Report 2015/307 (2015)

26. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions.
In: STOC 2015, pp. 449–458 (2015)

27. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8_16

28. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5_23

29. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. J. ACM 62(6), 1–33 (2015)

30. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006, pp. 89–98 (2006)

31. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055744

32. Dennis Hofheinz and Victor Shoup: GNUC: a new universal composability frame-
work. J. Cryptol. 28(3), 423–508 (2015)

33. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfus-
cating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–
252. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_13

https://doi.org/10.1007/978-3-030-77870-5_7
https://doi.org/10.1007/978-3-030-77870-5_7
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-030-81652-0_4
https://doi.org/10.1007/978-3-030-03807-6_25
https://doi.org/10.1007/978-3-030-03807-6_25
https://doi.org/10.1007/978-3-030-17259-6_3
https://doi.org/10.1007/978-3-030-17259-6_3
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/BFb0055744
https://doi.org/10.1007/978-3-540-70936-7_13

90 K. Bhushan et al.

34. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_11

35. Ishai, Y., Pandey, O., Sahai, A.: Public-Coin Differing-Inputs Obfuscation and Its
Applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
668–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-
7_26

36. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: STOC 2021, pp. 60–73 (2021)

37. Jutla, C.S., Roy, A.: Shorter Quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1

38. Kim, S.: Multi-authority attribute-based encryption from LWE in the OT model.
Cryptology ePrint Archive, Report 2019/280 (2019)

39. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

40. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4_31

41. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-
trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49387-8_17

42. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38348-9_42

43. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3_2

44. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol.
6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27375-9_3

45. Micciancio, D., Tessaro, S.: An equational approach to secure multi-party compu-
tation. In: ITCS 2013, pp. 355–372 (2013)

46. Michalevsky, Y., Joye, M.: Decentralized policy-hiding ABE with receiver privacy.
In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018, Part II. LNCS, vol.
11099, pp. 548–567. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98989-1_27

47. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: STOC 2004, pp. 242–251 (2004)

48. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639_27

49. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC 2014, pp. 475–484 (2014)

https://doi.org/10.1007/978-3-642-36362-7_11
https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-319-98989-1_27
https://doi.org/10.1007/978-3-319-98989-1_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27

R3PO 91

50. Waters, B., Wee, H., Wu, D.J.: Multi-authority ABE from lattices without random
oracles. Cryptology ePrint Archive, Paper 2022/1194 (2022). https://eprint.iacr.
org/2022/1194

51. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: FOCS, pp. 600–611 (2017)

52. Wikström, D.: Simplified universal composability framework. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 566–595. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49096-9_24

53. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (SFCS 1986), pp. 162–167 (1986)

54. Yun, K., Wang, X., Xue, R.: Identity-based functional encryption for quadratic
functions from lattices. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol.
11149, pp. 409–425. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01950-1_24

https://eprint.iacr.org/2022/1194
https://eprint.iacr.org/2022/1194
https://doi.org/10.1007/978-3-662-49096-9_24
https://doi.org/10.1007/978-3-030-01950-1_24
https://doi.org/10.1007/978-3-030-01950-1_24

	R3PO: Reach-Restricted Reactive Program Obfuscation and Its Applications
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Technical Overview
	2.1 Motivating Examples
	2.2 Defining R3PO
	2.3 R3PO Composition Theorem
	2.4 R3PO Library
	2.5 Applications: The Different Ways of Using R3PO
	2.6 Private Multi-Authority ABE
	2.7 Comparison of R3PO with Existing Primitives

	3 The R3PO Framework
	3.1 Reactive Programs and Generators
	3.2 Reach Extractor
	3.3 Reach-Restricted Reactive Program Obfuscation

	4 A Composition Theorem for R3PO
	4.1 Decomposition
	4.2 Composition Theorem

	5 Private Multi-Authority ABE
	5.1 Definition for Private Multi-Authority ABE
	5.2 Construction for Private Multi-Authority ABE

	References

