
Private Set Operations from Multi-query
Reverse Private Membership Test

Yu Chen1,2,3(B) , Min Zhang1,2,3 , Cong Zhang4 , Minglang Dong1,2,3 ,
and Weiran Liu5

1 School of Cyber Science and Technology, Shandong University, Qingdao 266237,
China

yuchen@sdu.edu.cn, {zm min,minglang dong}@mail.sdu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Qingdao 266237, China

4 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
zhangcong@mail.tsinghua.edu.cn
5 Alibaba Group, Hangzhou, China

weiran.lwr@alibaba-inc.com

Abstract. Private set operations allow two parties to perform secure
computation on their private sets, including intersection, union and func-
tions of intersection/union. In this paper, we put forth a framework to
perform private set operations. The technical core of our framework is
the multi-query reverse private membership test (mqRPMT) protocol
(Zhang et al., USENIX Security 2023). We present two constructions of
mqRPMT from newly introduced cryptographic notions, one is based
on commutative weak pseudorandom function (cwPRF), and the other
is based on permuted oblivious pseudorandom function (pOPRF). Both
cwPRF and pOPRF can be realized from the decisional Diffie-Hellman
(DDH)-like assumptions in the random oracle model.

We demonstrate the practicality of our framework with implementa-
tions. By plugging our cwPRF-based mqRPMT into the framework, we
obtain various PSO protocols that are superior or competitive to the
state-of-the-art protocols. For intersection functionality, our protocol is
faster than the most efficient one for small sets. For cardinality function-
ality, our protocol achieves a 2.4 − 10.5× speedup and a 10.9 − 14.8×
reduction in communication cost. For cardinality-with-sum functionality,
our protocol achieves a 28.5−76.3× speedup and 7.4× reduction in com-
munication cost. For union functionality, our protocol is the first one that
achieves strictly linear complexity, and requires the lowest concrete com-
putation and communication costs in all settings, achieving a 2.7 − 17×
speedup and about 2× reduction in communication cost. Furthermore,
our improvement on PSU also translates to related functionality, yielding
the most efficient private-ID protocol to date.

Keywords: PSO · PSU · multi-query RPMT · commutative weak
PRF · permuted OPRF

c© International Association for Cryptologic Research 2024
Q. Tang and V. Teague (Eds.): PKC 2024, LNCS 14603, pp. 387–416, 2024.
https://doi.org/10.1007/978-3-031-57725-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57725-3_13&domain=pdf
http://orcid.org/0000-0003-2553-1281
http://orcid.org/0009-0002-4772-6565
http://orcid.org/0009-0000-5403-2866
http://orcid.org/0009-0002-5323-7119
http://orcid.org/0000-0002-1466-7418
https://doi.org/10.1007/978-3-031-57725-3_13

388 Y. Chen et al.

1 Introduction

Consider several parties, each with a private set of items, want to perform com-
putation on their private sets without revealing any other information to each
other. Private set operation (PSO) refers to such family of interactive crypto-
graphic protocols that fulfill this task, which take private sets as inputs and
compute the desired function, delivering the result to the participants. In this
work, we focus on two-party PSO protocols with semi-honest security. In what
follows, we briefly review related works in terms of typical functionalities.

Private Set Intersection (PSI). PSI allows two parties, the sender and the
receiver, to compute the intersection of their private sets X and Y , such that the
receiver only learns X ∩ Y and the sender learns nothing. PSI has found numer-
ous applications including privacy-preserving location sharing [NTL+11], pri-
vate contact discovery [DRRT18], DNA testing and pattern matching [TKC07].
Due to its importance and wide applications, in the past two decades PSI has
been extensively studied in a long sequence of works and has become truly
practical with extremely fast implementations. The most efficient PSI proto-
cols [KKRT16,PRTY19,CM20,GPR+21,RS21] mainly rely on symmetric-key
operations, except O(κ) public-key operations (where κ is a computational
security parameter) in base OT used in the OT extension protocol. We refer
to [PSZ18] for a good survey of different PSI paradigms.

Private Computing on Set Intersection (PCSI). Certain real-world appli-
cation scenarios only require partial/aggregated information about the intersec-
tion. In this setting fine-grained private computation on set intersection (PCSI)
is needed, such as PSI-card for intersection cardinality [HFH99,AES03,CGT12],
PSI-card-sum for intersection cardinality and sum [IKN+20,GMR+21]. For
general-purpose PCSI (also known as circuit-PSI) [HEK12,PSTY19], the parties
learn secret shares of elements in the set intersection, which can be further fed
into generic 2PC to compute g(X ∩ Y) for arbitrary function g.

Private Set Union (PSU). PSU allows two parties, the sender and the
receiver, to compute the union of their private sets X and Y , such that the
receiver only learns X ∪ Y and the sender learns nothing. Like PSI, PSU also
has many applications in practice, such as cyber risk assessment and manage-
ment [LV04], IP blacklist and vulnerability data aggregation [HLS+16], private
DB supporting full join [KRTW19] and private ID [GMR+21]. Existing PSU
protocols can be broadly divided into two categories based on the underlying
cryptographic techniques used. The first category mainly relies on public-key
techniques [KS05,Fri07,HN10,DC17], while the second category mainly relies on
symmetric-key techniques [KRTW19,GMR+21,JSZ+22]. We refer to [ZCL+23]
for a comprehensive survey of existing PSU protocols.

Among PSO protocols, PSI has been extensively studied. Numerous PSI pro-
tocols achieve linear complexity, and the current state-of-the-art PSI [RR22] is
almost as efficient as the naive insecure hash-based protocol. In contrast, the
study of PCSI and PSU is less satisfactory. In the case of PCSI, while a few pro-
tocols [PSTY19,IKN+20] achieve linear complexity, their practical performance

PSO from mqRPMT 389

is poor. As shown in [GMR+21], even in the simplest case of semi-honest PCSI -
like PSI-card - is concretely about 20× slower and requires over 30× more com-
munication than PSI. In the case of PSU, no protocol with linear complexity in
either balanced or unbalanced setting is known for a long time being. It is until
very recently, Zhang et al. [ZCL+23] make a breakthrough by proposing the first
PSU with linear complexity. However, their work does not close this issue. Their
concrete PSU protocols have a large constant term in computation complexity,
incurring a significant efficiency gap compared with PSI: roughly 25× slower and
requires at least 3× more communication than PSI.

It is somewhat surprising that different PSO protocols have significantly
different efficiency. One may wonder: what is the reason for this discrepancy?
Observe that PSI can be essentially viewed as multi-query private membership
test (mqPMT), which has efficient realizations in both balanced and unbalanced
settings. However, mqPMT generally does not imply PCSI or PSU. The rea-
son is that mqPMT reveals information about the intersection, which should be
hidden from the receiver in PCSI and PSU.

1.1 Motivation

Our motivation of this work is threefold. First, the above discussion indicates
that the most efficient PSI protocols may not be easily adapted to PCSI and
PSU protocols. Consequently, constructions of different PSO protocols differ
vastly in the types of techniques they employ, requiring significant engineering
effort and making it difficult to deploy PSO systematically. This calls for a
modular approach that allows for an easier navigation in the huge design space.
We are thus motivated to seek for a common principal that enables all private set
operations through a unified framework. Second, given the large efficiency gap
between PSI and other related protocols, we are also motivated to give efficient
instantiations of the framework to narrow the gap. Last but not least, it is
worth noting that the seminal PSI protocol, DH-PSI [Mea86] (related ideas were
appeared in [Sha80,HFH99]), which was derived from the Diffie-Hellman key-
exchange protocol, based on the decisional Diffie-Hellman (DDH) assumption, is
still the most easily understood and implemented one among many PSI protocols
for over four decades. Somewhat surprisingly, no PSU counterpart of DH-PSI
has been discovered yet. It is curious to know whether the DDH assumption is
also useful in the PSU setting. In sum, our work focus on the following questions:

Is there a central building block that enables a unified framework for all private
set operations? If so, can we give efficient instantiations with optimal

asymptotic complexity and good concrete efficiency? And finally, can the DDH
assumption be used to construct efficient PSU protocols?

1.2 Our Contribution

We provide affirmative answers to the aforementioned questions. Our main
results are summarized as below.

390 Y. Chen et al.

A Framework of PSO. We identify that multi-query reverse private member-
ship test (mqRPMT) [ZCL+23] is actually a “Swiss Army Knife” for various
private set operations. mqRPMT already implies PSI-card by itself; by coupling
with OT, mqRPMT implies PSI and PSU; by additionally coupling with sim-
ple secret sharing, mqRPMT implies PSI-card-sum and PSI-card-secret-sharing,
where the latter further admits general-purpose PCSI with cardinality. There-
fore, mqRPMT enables a unified PSO framework, which can perform a variety
of private set operations in a flexible manner.

Efficient Construction of mqRPMT. We present two generic constructions
of mqRPMT. The first is based on a newly formalized cryptographic primitive
called commutative weak PRF (cwPRF), while the second is based on a newly
introduced secure protocol called permuted oblivious PRF (pOPRF). Both of
them can be realized from DDH-like assumptions in the random oracle model,
yielding incredibly simple mqRPMT constructions with linear communication
and computation complexity. Note that the complexity of our PSO framework
is dominated by the underlying mqRPMT. Therefore, all resulting PSO proto-
cols inherit optimal linear complexity. Notably, the obtained PSU protocol is
arguably the most simple and efficient one among existing PSU protocols.

Evaluations. We give efficient implementation of our generic framework from
the cwPRF-based mqRPMT protocol. The experimental results demonstrate
that all PSO protocols derived from our generic framework are superior or com-
petitive to the state-of-the-art corresponding protocols.

1.3 Technical Overview

PSO from mqRPMT. As discussed above, mqPMT (equivalent to PSI) is
generally not applicable for computing PCSI and PSU. We examine the reverse
direction, i.e., whether the core protocol underlying PSU can be used for com-
puting PSI and PCSI. We identify that the recently emerged mqRPMT proto-
col [ZCL+23], which is a generalization of RPMT formalized in [KRTW19], is
actually a central protocol underlying all the existing PSU protocols. Roughly
speaking, mqRPMT is a two-party protocol between a server holding a set Y
and a client holding a vector X = (x1, . . . , xn). After the execution, the server
learns an indication bit vector (e1, . . . , en) such that ei = 1 if and only if xi ∈ Y
but without knowing xi, while the client learns nothing. Superficially, mqRPMT
is similar to mqPMT, except that it is the server but not the client learns the
test results. This subtle difference turns out to be crucial. To see this, note
that in mqRPMT the intersection information (i.e. xi and ei) is shared between
two parties, while in mqPMT the intersection information is entirely known by
the client. In light of this difference, mqRPMT is not only particularly suitable
for functionalities that have to keep intersection private, but also retains the
necessary information to compute the intersection.

More precisely, we can build a family of PSO protocols from mqRPMT in a
modular fashion. PSI-card protocol is immediate since the cardinality of inter-
section is exactly the Hamming weight of indication vector. PSI (resp. PSU)

PSO from mqRPMT 391

protocol can be created by having the receiver (playing the role of server) and
the sender (playing the role of client) invoke a mqRPMT protocol in the first
place, then carry out n one-sided OTs with 1−ei (resp. ei) and xi. PSI-card-sum
and PSI-card-secret-sharing protocols can be constructed by additionally cou-
pling with OT and simple secret-sharing trick. We defer the construction details
to Sect. 6.

Next, we give two generic constructions of mqRPMT. For clarity, we explicitly
parameterize RPMT and PMT with two parameters n1 and n2, namely (n1, n2)-
(R)PMT, where n1 is the size of server’s set Y , n2 is the length of client’s vector
X, a.k.a. the number of membership test queries.

mqRPMT from cwPRF. Observe that private equality test (PEQT) proto-
col [PSZ14] not only can be viewed as an extreme case of mqPMT, but also can
be viewed as an extreme case of mqRPMT. Under the parameterized notions,
PEQT is essentially (1, 1)-PMT and (1, 1)-RPMT. We choose PEQT as the
starting point of our first mqRPMT construction.

The basic idea of building (1, 1)-RPMT protocol amenable to extension is
using oblivious joint encoding, by which an element can only be encoded to
a codeword by two parties in a joint manner, while the process reveals noth-
ing to the party without the element. To implement this idea, we formalize
a new cryptographic primitive called commutative weak PRF (cwPRF). Let
F : K × D → R be a family of weak PRF, where R ⊆ D. F is commutative if
Fk1(Fk2(x)) = Fk2(Fk1(x)) for any k1, k2 ∈ K and any x ∈ D. In other words,
the two composite functions Fk1 ◦ Fk2 and Fk2 ◦ Fk1 are essentially the same
function, denoted by F̂ .

Now we are ready to describe the construction of (1, 1)-RPMT from cwPRF.
The server P1 holding y and the client P2 holding x can conduct PEQT func-
tionality via the following steps: (1) P1 and P2 generate cwPRF key k1 and
k2 respectively, and map their items to domain D of F using a common cryp-
tographic hash function H, which will be modeled as a random oracle; (2) P1

computes and sends Fk1(H(y)) to P2; (3) P2 computes and sends Fk2(H(x))
and Fk2(Fk1(H(y))) to P1; (4) P1 then learns the test result by comparing
Fk1(Fk2(H(x))) =?Fk2(Fk1(H(y))). The commutative property of F ensures the
correctness. The weak pseudorandomness of F guarantees that P2 learns noth-
ing and P1 learns nothing more than the test result. In the above construction,
Fk2(Fk1(H(·))) = Fk1(Fk2(H(·))) = F̂k(H(·)) serves as a pseudorandom encod-
ing function in the joint view, while Fk1(H(·)) and Fk2(H(·)) serve as a partial
encoding function in the individual views of the server and client respectively.

We then extend the above (1, 1)-RPMT protocol to (n1, 1)-RPMT. Note that
naive repetition by sending back Fk2(Fk1(H(yi))) for each yi ∈ Y in the same
order of the server’s first move message Fk1(H(yi)) does not lead to a secure
(n1, 1)-RPMT. This is because {F̂k(H(yi))}i∈[n1] constitutes an order-preserving
pseudorandom encoding of (y1, . . . , yn1), and as a consequence, the server will
learn the exact value of x if x ∈ Y . The idea to perform the membership test
in an oblivious manner is making the pseudorandom encoding of (y1, . . . , yn1)
independent of the order known by the server. A straightforward approach is to
shuffle {F̂k(H(yi))}. This yields a (n1, 1)-RPMT protocol from cwPRF, which

392 Y. Chen et al.

can be batched to a full-fledged (n1, n2)-RPMT protocol by reusing the encod-
ing key k2. A simple calculation shows that for a (n1, n2)-RPMT protocol, the
computation cost is (n1 +n2) mappings, (2n1 +n2) evaluations of F , n2 lookups
and one shuffling, and the communication cost is (2n1 + n2) elements in the
range of F . The resulting mqRPMT protocol is optimal in the sense that both
computation and communication complexity are linear to the set size. To further
reduce the communication cost, we can insert {F̂ (H(yi))} into an order-hiding
data structure such as a Bloom filter [Blo70] instead of shuffling them.

In Sect. 4.2, we show that cwPRF can be realized from DDH-like assump-
tions. Combining this with the above results, DDH implies all PSO protocols.
Remarkably, it strikes back with an incredibly simple PSU protocol, once again
demonstrating that the DDH assumption is truly a golden mine in cryptography.

mqRPMT from permuted OPRF. We choose (n, 1)-RPMT as the starting
point of our second mqRPMT construction. The idea is oblivious permuted encod-
ing, in which only one party say P2 is able to encode, and the other party say P1

learns the codewords of its elements (y1, . . . , yn) in a permuted order, while both
parties learn nothing more. A tempting approach to implement this idea is using
multi-point OPRF that underlies many PSI protocols [PRTY19,CM20]. More
precisely, having P1 (acts as the OPRF’s client) and P2 (acts as the OPRF’s
server) engage in an OPRF protocol. Eventually, P1 obtains PRF values of
(y1, . . . , yn) as encodings, and P2 obtains a PRF key k. However, OPRF does
not readily enable oblivious permuted encoding, because the standard OPRF
functionality always gives the PRF values with the same order of inputs. To
remedy this issue, we introduce a new cryptographic protocol called permuted
OPRF (pOPRF). pOPRF can be viewed as a generalization of OPRF. The dif-
ference is that the server additionally obtains a random permutation π over [n]
besides PRF key k, while the client obtains PRF values in a permuted order as
per π. pOPRF immediately implies a (n, 1)-RPMT protocol: The server P1 with
Y = (y1, . . . , yn) (acts as the pOPRF’s client) and the client P2 with X = {x}
(acts as the pOPRF’s server) first engage in a pOPRF protocol. As a result,
P1 obtains {Fk(yπ(i))}i∈[n], and P2 obtains a PRF key k and a permutation π
over [n]. P2 then computes and sends Fk(x) to the server as an RPMT query for
x. Finally, P1 learns if x ∈ Y by testing whether Fk(x) ∈ {Fk(yπ(i))}i∈[n], but
learns nothing more since its received PRF values are of permuted order. At a
high level, Fk(·) serves as an encoding function in mqRPMT-client’s view, while
Fk(π(·)) serves as a permuted pseudorandom encoding function in mqRPMT-
server’s view. Extending the above (n, 1)-RPMT to full-fledged (n1, n2)-RPMT
is straightforward by having the client reuse k and send {Fk(xi)}i∈[n2] as RPMT
queries.

Given the above, it remains to investigate how to build pOPRF. Recall that
a common approach to build OPRF is “mask-then-unmask”, we choose OPRF
along this line as the starting point. The rough idea is exploiting the input homo-
morphism to mask inputs1, then unmask the outputs. If the mask procedure is
1 Standard pseudorandomness denies input homomorphism. Rigorously speaking, we

utilize the homomorphism over intermediate input.

PSO from mqRPMT 393

different per input, then different unmask procedure must be carried out accord-
ingly. For this reason, OPRF protocols of this case cannot be easily adapted to
pOPRF, since the receiver is unable to perform the unmask procedure over per-
muted masked outputs correctly, namely, to recover outputs in permuted order.
The above analysis indicates us that if the masking procedure can be done via a
universal manner, then the client might be able to unmask the permuted masked
outputs correctly. Observe that the simplest way to perform unified masking is
to apply a weak pseudorandom function Fs to the intermediate input H(x),
where H is a cryptographic hash function that maps input x to the domain of
Fs. To enable efficient unmasking, we further require that Fs is a permutation
and commutative with respect to Fk. This yields a simple pOPRF construction
from commutative weak pseudorandom permutation. More precisely, to build
pOPRF, the server picks a random PRP key k for F , while the client with
input X = (x1, . . . , xn) picks a random PRP key s for F . The client then sends
{Fs(H(xi))}i∈[n] to the server. Upon receiving the masked intermediate inputs,
the server applies Fk to them, then sends the results in permuted order, a.k.a.
{Fk(Fs(H(xπ(i))))}i∈[n]. Finally, the client applies F−1

s to the permuted masked
outputs, and will obtain {Fk(H(xπ(i)))}i∈[n] by the commutative property.

Note that many efficient OPRF constructions [PRTY19,CM20,RS21] seem
not amenable to pOPRF due to the lack of nice algebra structures. This somehow
explains the efficiency gap between the state-of-the-art PSI and PCSI/PSU.

1.4 Related Works

We review previous PSI-card, PSI-card-sum and PSU protocols that are relevant
to our work. Ion et al. [IKN+20] showed how to transform single-point OPRF-
based [PSZ14,KKRT16], garbled Bloom filter-based [DCW13,RR17], and DDH-
based [HFH99] PSI protocols into ones for computing PSI-card-sum by leverag-
ing additively homomorphic encryption (AHE). However, their conversions are
inefficient due to the usage of AHE, and as noted by the authors, detailed con-
versions to each category of protocols differ significantly, especially in the way
of making use of the underlying AHE. In contrast, we distill Sigma-mqPMT
from a broad class of PSI protocols, then show how to tweak it to mqRPMT∗

in a generic and black-box manner, without relying on any additional crypto-
graphic tools. Our abstraction of Sigma-mqPMT is more broadly applicable,
and our conversion works at a higher level. Miao et al. [MPR+20] put forward
shuffled distributed oblivious PRF as a central tool to build PSI-card-sum with
malicious security. Compared to shuffled distributed OPRF, our notion of per-
muted OPRF is much simpler and should be best viewed as a useful extension
of standard OPRF. The conceptual simplicity lends it to be easily built from
commutative weak pseudorandom permutation and find more potential appli-
cations. For example, permuted OPRF immediately implies permuted matrix
private equality test, which is a key tool in building FHE-based PSU [TCLZ23].
Davidson and Cid [DC17] proposed a framework for constructing PSI, PSU, and
PSI-card. Their protocols have linear complexity, but both the computation and

394 Y. Chen et al.

communication complexity additionally rely on the statistical security parame-
ter λ (a typical concrete choice is 40), resulting in low performance in practice.
Kolesnikov et al. [KRTW19] proposed the notion of reverse private membership
test (RPMT), then used it to build a PSU protocol whose performance is much
better than [DC17]. Garimella et al. [GMR+21] proposed a framework for all
private set operations from permuted characteristic, which could be viewed as a
variant of RPMT. Nevertheless, the oblivious shuffle in permuted characteristic
functionality is not necessary for PSO, but seems unavoidable due to the use
of oblivious switching networks, which in turn incurs superlinear complexity to
permuted characteristic protocol and all the enabling PSO protocols. Besides,
we note that the PSI-card-sum functionality defined in [GMR+21] differs from
the original functionality defined in [IKN+20]. The distinction is that in the
original functionality of PSI-card-sum, both parties are given the cardinality of
intersection, and the party initially holding values is also given the intersection
sum, while in the functionality described in [GMR+21], the party without hold-
ing values is given the cardinality and sum of the intersection. To distinguish
this subtle difference, we refer to the functionality presented in [GMR+21] as
reverse PSI-card-sum.

Very recently, Zhang et al. [ZCL+23] extended the notion of
RPMT [KRTW19] to multi-query RPMT (mqRPMT), and proposed a generic
construction from oblivious key-value store (OKVS) [GPR+21], set-membership
encryption and oblivious vector decryption-then-test protocol. By instantiating
their generic construction from symmetric-key and public-key encryption respec-
tively, they obtained two concrete mqRPMT protocols with linear complexity.
However, their two mqRPMT protocols have a large multiplicative constant (the
statistical security parameter) in computation complexity, and so is the resulting
PSU protocol. Besides, as noted by the authors, their more efficient PKE-based
mqRPMT protocol is leaky, failing to meet the standard security. Compared
with their work, our generic construction of mqRPMT is much simpler, and our
two concrete instantiations meet the standard definition yet achieve strict linear
complexity.2 Moreover, we identify mqRPMT as a central building block for a
family of private set operations, while their focus is limited to PSU.

Other Related Works. PSO are primarily designed for the balanced scenario,
where the sizes of two sets are approximately the same. Recently, a line of
research has started considering the unbalanced scenario, where one set is much
larger than the other. Hereafter, let the sizes of small and large sets be m and
n, respectively. [CLR17,CHLR18,CMdG+21] showed how to leverage FHE to
build PSI protocols suitable for unbalanced scenario with communication com-
plexity O(m log n), which is linear to the size of small set but logarithmic to the
size of large set. A body of follow-up works achieved the same complexity for
other functionalities. [CHLR18] proposed circuit-PSI, PSI-card and PSI-card-
sum protocols based on generic 2PC technique, and then [SJ23,WY23] provided
the associated implementations. [TCLZ23] created the first unbalanced PSU
2 In the context of PSO, strict linear complexity means that the complexity grows

linearly only to the sets sizes.

PSO from mqRPMT 395

protocol by tweaking the technique due to [CLR17]. Another line of research
extended PSO to multi-party settings: [KMP+17,NTY21] for PSI, [CDGB22]
for PSI-card(-sum), and [LG23] for PSU.

1.5 Roadmap

In Sect. 2 we recall the standard definitions of MPC and PSO. In Sect. 3 we intro-
duce the ingredients we use to build the PSO framework. In Sect. 4 and Sect. 5
we give two generic constructions of mqRPMT from newly formalized cwPRF
and newly introduced permuted OPRF, respectively. In Sect. 6 we show how
to build the PSO framework from mqRPMT, and also present a modular con-
struction of private-ID from distributed OPRF and PSU. In Sect. 7 we provide
a performance analysis of our implementation, and compare our experimental
results to the related state-of-the-art protocols. Due to space limit, we defer all
the security proofs and additional results to the full version of this paper https://
eprint.iacr.org/2022/652.

2 Preliminaries

Notation. We use κ and λ to denote the computational and statistical param-
eter respectively. Let Zn be the set {0, 1, . . . , n− 1}, Z∗

n = {x ∈ Zn | gcd(x, n) =
1}. We use [n] to denote the set {1, . . . , n}, and use Perm[n] to denote all the
permutations over the set {1, . . . , n}. We assume that every set X has a default
order (e.g. lexicographical order), and write it as X = {x1, . . . , xn}. For a set X,
we use |X| to denote its size and use x

R←− X to denote sampling x uniformly
at random from X. We use (x1, . . . , xn) to denote a vector, and its i-th element
is xi. A function is negligible in κ, written negl(κ), if it vanishes faster than the
inverse of any polynomial in κ. A probabilistic polynomial time (PPT) algorithm
is a randomized algorithm that runs in polynomial time.

2.1 MPC in the Semi-honest Model

We use the standard notion of security in the presence of semi-honest adversaries.
Let Π be a two-party protocol for computing the function f(x1, x2), where party
Pi has input xi, and output(x1, x2) be the output of both parties in the protocol.
For each party Pi where i ∈ {1, 2}, let ViewPi

(x1, x2) denote the view of party
Pi during an honest execution of Π on inputs x1 and x2, which consists of Pi’s
input, random tape, and all messages Pi received in the protocol.

Definition 1. Two-party protocol Π securely realizes f in the presence of semi-
honest adversaries if there exists a simulator Sim such that for all inputs x1, x2

and all i ∈ {1, 2}:
{ViewPi

(x1, x2), output(x1, x2)} ≈c {Sim(i, xi, f(x1, x2)), f(x1, x2)}
Roughly speaking, a protocol is secure if Pi with xi learns no more information
other than f(x1, x2) and xi.

https://eprint.iacr.org/2022/652
https://eprint.iacr.org/2022/652

396 Y. Chen et al.

2.2 Private Set Operation

PSO is a special case of secure two-party computation. We call the two parties
engaging in PSO the sender and the receiver. The sender holds a set X of
size n1, and the receiver holds a set Y of size n2 (we set n1 = n2 = n in the
balanced setting). Figure 1 formally defines the ideal functionality for PSO that
computes the intersection, union, cardinality, intersection sum with cardinality
and intersection secret-sharing with cardinality.

Fig. 1. Ideal functionality FPSO for PSO

In this work, we restrict ourselves to two-party PSO with semi-honest security
in the balanced setting.

3 Protocol Building Blocks

3.1 Oblivious Transfer

Oblivious Transfer (OT) [Rab05] is a central cryptographic primitive in the
area of secure computation. In the most common 1-out-of-2 OT, a sender with
two input strings (m0,m1) interacts with a receiver with an input choice bit
b ∈ {0, 1}, and finally the receiver only learns mb while the sender learns nothing.
In some cases, it suffices to use a “one-sided” version of OT, which conditionally
transfers the only item of the sender or nothing to the receiver depending on the
choice bit. Though expensive public-key operations are unavoidable for a single
OT, a powerful technique called OT extension [IKNP03,KK13,ALSZ15] allows
one to carry out n OTs by only performing O(κ) public-key operations and O(n)
fast symmetric-key operations.

PSO from mqRPMT 397

3.2 Multi-query Reverse Private Membership Test

Multi-query reverse private membership test (mqRPMT) [ZCL+23] is a protocol
where the client with input vector (x1, . . . , xn) interacts with a server holding
a set Y . As a result, the server learns only a bit vector (e1, . . . , en) in which ei

indicates that whether xi ∈ Y . Figure 2 formally defines the ideal functionality
for mqRPMT. We also consider a relaxed version of mqRPMT called mqRPMT∗,
in which the client is also given |X ∩ Y |.

Fig. 2. Ideal functionality FmqRPMT for multi-query RPMT

4 The First Generic Construction of mqRPMT

4.1 Definition of Commutative Weak PRF

We first formally define two standard properties for keyed functions.

Composable. For a family of keyed functions F : K × D → R, F is 2-
composable if R ⊆ D, namely, for any k1, k2 ∈ K, the function Fk1(Fk2(·)) is
well-defined. In this work, we are interested in a special case namely R = D.
Commutative. For a family of composable keyed functions, we say it is
commutative if: ∀k1, k2 ∈ K,∀x ∈ D : Fk1(Fk2(x)) = Fk2(Fk1(x)).

It is easy to see that the standard pseudorandomness denies commutative
property. Consider the following attack against the standard pseudorandomness
of Fk as below: the adversary A picks k′ R←− K, x

R←− D, and then queries the
real-or-random oracle at point Fk′(x) and point x respectively, receiving back
responses y′ and y. A then outputs ‘1’ iff Fk′(y) = y′. Clearly, A breaks the
pseudorandomness with advantage 1/2. Provided commutative property exists,
the best security we can expect is weak pseudorandomness. Looking ahead, weak
pseudorandomness and commutative property may co-exist based on some well-
studied assumptions.

Definition 2 (Commutative Weak PRF). Let F be a family of keyed func-
tions K × D → D. F is called commutative weak PRF if it satisfies weak pseu-
dorandomness and commutative property simultaneously. If F is a permutation,
we say F is a commutative weak pseudorandom permutation (cwPRP).

398 Y. Chen et al.

Remark 1 (cwPRF vs. Commutative Encryption). We note that our notion of
cwPRF is similar to but strictly weaker than a previous notion called commuta-
tive encryption [AES03]. The difference is that cwPRF neither requires Fk be a
permutation nor F−1

k be efficiently computable.

4.2 Construction of Commutative Weak PRF

We observe that the classic weak PRF based on the DDH assumption already
satisfies commutative property. This gives us a simple cwPRF construction from
the DDH-like assumption. It is still interesting to know if cwPRF can be built
from other assumptions. Note that cwPRF naturally yields a non-interactive
key exchange (NIKE) protocol, while the recent result of Guo et al. [GKRS22]
indicated that it would be difficult to construct NIKE from lattice-based assump-
tions. Therefore, giving lattice-based cwPRF or proving impossibility will lead
to progress on some other well-studied questions in cryptography.

4.3 mqRPMT from Commutative Weak PRF

In Fig. 3, we show how to build mqRPMT from cwPRF F : K × D → D and
cryptographic hash function H : {0, 1}� → D.

Fig. 3. Multi-query RPMT from commutative weak PRF

Correctness. The protocol is correct except the event E that Fk1(Fk2(H(x))) =
Fk1(Fk2(H(y))) for some x �= y occurs. In what follows, we fix a tuple (x, y) such
that x �= y. Let E0 be the event H(x) = H(y). By the collision resistance of H, we
have Pr[E0] = 2−κ. Let E1 be the event that H(x) �= H(y) but Fk1(Fk2(H(x))) =

PSO from mqRPMT 399

Fk1(Fk2(H(y))), which can further be divided into sub-cases E10-Fk2(H(x)) =
Fk2(H(y)) and E11-Fk2(H(x)) �= Fk2(H(y)) ∧ Fk1(Fk2(H(x))) = Fk1(Fk2(H(y))).
By the weak pseudorandomness of F , we have Pr[E10] = (1 − Pr[E0]) · 1/|D|,
and Pr[E11] = (1 − Pr[E0]) · (1 − 1/|D|) · 1/|D|. If |D| = ω(κ), then both Pr[E0],
Pr[E10] and Pr[E11] are negligible in κ. Therefore, by union bound we have
Pr[E] ≤ n1n2 · (Pr[E0] + Pr[E10] + Pr[E11]) = negl(κ).

Theorem 1. The mqRPMT protocol described in Fig. 3 is secure in the semi-
honest model assuming H is a random oracle and F is a family of cwPRFs.

Complexity Analysis. We now analyze the complexity of the above (n1, n2)-
mqRPMT protocol. Simple calculation shows that the total computation cost
is (n1 + n2) hashings, (2n1 + 2n2) evaluations of cwPRF F , n2 lookups whose
complexity is O(1), and one shuffling whose complexity is O(n1), while the total
communication cost is (2n1 + n2) elements in range D. In summary, both the
computation and communication complexity are strictly linear in set sizes.

Optimization. The protocol can be further improved by inserting the elements
{Fk2(Fk1(H(yi)))}i∈[n1] to a Bloom filter instead of explicitly shuffling them in
the last move. In this way, the length of last message can be reduced from to n1

group elements to 1.44λ · n1 bits (with false positive probability 2−λ), where λ
is the statistical security parameter and the typical choice is 40.

It is worth to highlight that our usage of Bloom filter is novel here since we
additionally exploit its order-hiding property to ensure security3. To the best
of knowledge, Bloom filter merely serves as a space-efficient data structure in
previous works [KLS+17,RA18] to reduce communication cost.

5 The Second Generic Construction of mqRPMT

5.1 Definition of Permuted OPRF

An oblivious pseudorandom function (OPRF) [FIPR05] is a two-party proto-
col in which the server learns (or chooses) a PRF key k and the client learns
Fk(x1), . . . , Fk(xn), where F is a pseudorandom function (PRF) and (x1, . . . , xn)
are the client’s inputs. Nothing about the client’s inputs is revealed to the server
and nothing more about the key k is revealed to the client.

We consider an extension of OPRF called permuted OPRF (pOPRF).
Roughly speaking, the server additionally picks a random permutation π over [n],
and the client learns its PRF values in permuted order, namely, yi = Fk(xπ(i)).
Figure 4 formally defines the ideal functionality for pOPRF.
3 Formally, order-hiding property means that the data structure does not reveal the

adding order of elements. Recall that an empty Bloom filter is a bit array of m
bits (all set to 0), and adding an element x is done by setting the bits at positions
{h1(x), . . . , hk(x)}. to be 1, where {hi}k

i=1 are k distinct hash functions. Clearly,
Bloom filter satisfies order-hiding property since the resulting Bloom filter is inde-
pendent of the adding order. We also stress that the choice of Bloom filter is not
arbitrary here, cause other filters such as Cuckoo filter and Vacuum filter do not
satisfy order-hiding property.

400 Y. Chen et al.

Fig. 4. Ideal functionality FpOPRF for permuted OPRF

5.2 Construction of Permuted OPRF

As we sketched in the introduction part, we can create a permuted OPRF from
cwPRP F with the help of random oracle. At a high level, the universal masking
procedure is done by applying a weak PRF Fs(·) to H(x), and the unmasking
process is enabled by the commutative property of F and the fact that Fs(·) is
an efficiently invertible permutation. We depict the construction in Fig. 5.

Fig. 5. Permuted OPRF from cwPRP

Theorem 2. The above permuted OPRF protocol is secure in the semi-honest
model assuming H is a random oracle and F is a family of cwPRPs.

5.3 mqRPMT from Permuted OPRF

In Fig. 6, we show how to build mqRPMT from permuted OPRF for F : K×D →
R. For simplicity, we assume that {0, 1}� ⊆ D. Otherwise, we can always map
{0, 1}� to D using a collision resistant hash function.

PSO from mqRPMT 401

Fig. 6. mqRPMT from permuted OPRF

Correctness. The above protocol is correct except the event E = ∨i,jEij occurs,
where Eij denotes Fk(xi) = Fk(yj) but xi �= yj . By pseudorandomness of F , we
have Pr[Eij] = 2−�. Apply the union bound, we have Pr[E] ≤ n1n2 · Pr[Eij] =
n1n2/2� = negl(λ).

Theorem 3. The above mqRPMT protocol described in Fig. 6 is secure in the
semi-honest model assuming the security of permuted OPRF.

Performance Analysis. We now analyze the performance the above (n1, n2)-
mqRPMT protocol based on the cwPRP-based permuted OPRF. Simple calcu-
lation shows that the total computation cost is (n1 + n2) hashings, 2n1 + n2

evaluations, n2 inversions, n2 lookups whose complexity is O(1), and one shuf-
fling whose complexity is O(n1), while the total communication cost is (2n1+n2)
group elements in range D. In summary, both the computation and communi-
cation complexities are strictly linear in set sizes.

Comparison of the Two Constructions of mqRPMT. We have presented
two generic constructions of mqRPMT, the first is from cwPRF, while the second
is from pOPRF. We summarize their differences as below.

– cwPRF-based construction admits fast implementation from the NIKE pro-
tocol called X25519 based on Curve25519 (since X25519 implies a cwPRF),
and can further utilize the Bloom filter to reduce communication cost as well
as improve efficiency.

– Compared with the cwPRF-based construction, the pOPRF-based construc-
tion does not admit fast implementation from X25519 anymore (since X25519
does not imply a cwPRP and thus further a pOPRF), and the Bloom filter
optimization is not applicable (since the set is already fixed in pOPRF phase).
Nevertheless, the pOPRF-based mqRPMT construction can be viewed as
a counterpart of OPRF-based mqPMT construction, and thus is more of
theoretical interest. So far, we only know how to build pOPRF based on

402 Y. Chen et al.

assumptions with nice algebra structure, but not from efficient symmetric-
key primitives. This somehow explains the efficiency gap between mqPMT
and mqRPMT.

6 Applications of mqRPMT

6.1 PSO Framework from mqRPMT

In Fig. 7, we show how to build a PSO framework centering around mqRPMT.

Fig. 7. PSO from mqRPMT

We prove the security of the above PSO framework by the case of PSU. The
security proof of other functionality is similar.

Theorem 4. The PSU derived from the above framework is semi-honest secure
by assuming the semi-honest security of mqRPMT and OT.

PSO from mqRPMT 403

In what follows, we compare the protocols derived from our framework to
existing protocols with focus on conceptual differences, and defer the perfor-
mance comparisons to Sect. 7.

We first compare our PSU protocol to prior PSU protocols. [KS05,Fri07,
DC17] proposed the first three PSU protocols from public-key techniques, with
the complexity gradually dropping from quadratic to linear. Later, [KRTW19,
GMR+21,JSZ+22] proposed three PSU protocols from symmetric-key tech-
niques. Despite their protocols achieve much better performance than previous
ones based on public-key techniques, all of them require superlinear complex-
ity. Recently, Zhang et al. [ZCL+23] created a more efficient PSU protocol with
linear complexity. Both our protocol and their protocol are derived from the
same core protocol—mqRPMT, but with different instantiations. Our concrete
mqRPMT protocols are much simpler and efficient, yielding the first PSU pro-
tocols with strict linear complexity.

We then discuss the relationship between our PSI-card protocol and prior
related protocols. Huberman et al. [HFH99] proposed the first PSI-card proto-
col but did not provided security proof. Agrawal et al. [AES03] explained and
proved the classic protocol via the notion of “commutative encryption”. Later,
De Cristofaro et al. [CGT12] gave a close variant of the classic protocol. Our
PSI-card protocol is generically derived from the more abstract mqRPMT, which
in turn can be built from cwPRF or pOPRF. By instantiating the underlying
cwPRF and pOPRF from the DDH assumption, we recover the PSI-card proto-
cols in [HFH99,CGT12] respectively. In a nutshell, our generic mqRPMT-based
PSI-card construction not only encompasses existing concrete protocols at a high
level, but also readily profits from the possible improvements on the underlying
mqRPMT (e.g., Bloom filter optimization and post-quantum secure realization
based on the EGA assumption).

We continue to compare our PSI-card-sum protocol with closely related pro-
tocols [IKN+20,GMR+21]. As mentioned in the introduction part, the PSI-card-
sum protocols presented in [IKN+20] are built from concrete primitives (e.g. DH-
protocol, ROT-protocol, Phasing+OPPRF etc.) with generic 2PC techniques or
AHE schemes. Compared to [IKN+20], our protocol is built from mqRPMT
and lightweight OT, which is more general and efficient. The protocol presented
in [GMR+21] is built from permuted characteristic (permuted mqRPMT under
our terminology) and secret sharing. Compared to [GMR+21], our protocol has
the following differences: (i) mqRPMT underlying our protocol is conceptu-
ally simpler than permuted characteristic. More importantly, mqRPMT admits
instantiations with optimal linear complexity, while the current best instantia-
tion of permuted characteristic requires superlinear complexity. (ii) The protocol
in [GMR+21] deviates from the standard functionality (as mentioned earlier in
the introduction part), while our protocol meets the standard functionality of
PSI-card-sum as defined in [IKN+20]. We do so by removing the constraint∑n

i=1 ri = 0 on the receiver side (as did in [GMR+21]), and having the sender
send back the masked sum value to the receiver, and the receiver finally recovers
the intersection sum by unmasking.

404 Y. Chen et al.

Finally, we compare our PSI card-secret-sharing protocol to the closely
related circuit-PSI [HEK12,PSTY19,RS21]. The only difference on functional-
ity is that our protocol additionally leaks the cardinality to the receiver. Nev-
ertheless, as pointed out in [GMR+21], in many applications of interest the
functions that need to be computed already contain such leakage. Garimella et
al. [GMR+21] proposed a similar functionality called secret-shared intersection,
in which the parties get the shares of intersection elements. As a result, their
functionality leaks the cardinality to both the sender and the receiver.

6.2 Private-ID

Recently, Buddhavarapu et al. [BKM+20] proposed a two-party functionality
called private-ID, which assigns two parties, each holding a set of items, a truly
random identifier per item (where identical items receive the same identifier). As
a result, each party obtains identifiers to his own set, as well as identifiers associ-
ated with the union of their input sets. With private-ID, two parties can sort their
private set with respect to a global set of identifiers, and then can proceed any
desired private computation item by item, being assured that identical items
are aligned. Buddhavarapu et al. [BKM+20] also gave a concrete DDH-based
private-ID protocol. Garimella et al. [GMR+21] showed how to build private-ID
from OPRF and PSU. Roughly speaking, their approach proceeds in two phases.
In phase 1, P1 holding X and P2 holding Y run an OPRF twice by switching
the roles, so that first P1 learns k1 and P2 learns Fk1(yi), and second P2 learns
k2 and P1 learns Fk2(xi). The random identifier of an item z is thus defined as
idz = Fk1(z) ⊕ Fk2(z). After phase 1, both parties can compute identifiers for
their own items. In phase 2, they simply engage a PSU protocol on their sets
id(X) and id(Y) to finish private-ID.

Our method is largely inspired by the approach presented in [GMR+21]. We
first observe that in phase 1, two parties essentially need to engage a distributed
OPRF protocol, as we formally depict in Fig. 8. The random identifier of an
item z is defined as Gk1,k2(z), where G is a PRF determined by key (k1, k2).
Furthermore, note that id(X) and id(Y) are pseudorandom, which means in
phase 2 a distributional PSU protocol suffices, whose semi-honest security is
additionally defined over the input distribution. Such relaxation may lead to
remarkable efficiency improvement.

In this work, we instantiate the generic private-ID construction as below: (1)
realize the distributed OPRF protocol by running currently the most efficient
multi-point OPRF of [RR22] built from VOLE and improved OKVS twice in
reverse order; (2) run the PSU protocol from cwPRF-based mqRPMT with the
obtained two sets of pseudorandom identifiers as inputs to fulfill the private-ID
functionality.

Distributional PSU. Standard security notions for MPC are defined w.r.t.
any private inputs. This treatment facilitates secure composition of different
protocols. We find that in certain settings it is meaningful to consider a weaker
security notion by allowing the real-ideal indistinguishability to also base on the

PSO from mqRPMT 405

Fig. 8. Ideal functionality for distributed OPRF

distribution of private inputs. This is because such relaxed security suffices if
the protocol’s input is another protocol’s output which obeys some distribution,
and the relaxation may admit efficiency improvement. Suppose choosing the
DDH-based distributed OPRF and DDH-based PSU in the same elliptic curve
(EC) group as ingredients, faithful implementation according to the above recipe
requires 4n hash-to-point operations. Observe that the output of distributed
DDH-based OPRF are already pseudorandom EC points. In this case, it suffices
to use distributional DDH-based PSU instead, and thus can save 2n hash-to-
point operations, which are costly in the real-world implementation.

7 Performance

We describe details of our implementation and report the performance of the
following set operations: (1) psi: intersection of the sets; (2) psi-card: cardinal-
ity of the intersection; (3) psi-card-sum: sum of the associated values for every
item in the intersection with cardinality; (4) psu: union of the sets; (5) private-
ID: a universal identifier for every item in the union. We compare our work with
the current fastest known protocol implementation for each functionality.

7.1 Implementation Details

Our protocols are written in C++, which can be found at https://github.
com/yuchen1024/Kunlun/mpc. The code is organized in a modular and uni-
fied fashion in consistent with our paper: first implement the core mqRPMT
protocol, then build various PSO protocols upon it. Besides, it only requires
OpenSSL [Opea] as the main 3rd party library, and can smoothly run on both
Linux and x86 64 MacOS platforms.

7.2 Experimental Setup

We run all our protocols and related protocols on Ubuntu 20.04 with a single Intel
i7-11700 2.50 GHz CPU (8 physical cores) and 16 GB RAM. We simulate the
network connection using Linux tc command. In the LAN setting, the bandwidth
is set to be 10 Gbps with 0.1 ms RTT latency. In the WAN setting, the bandwidth
is set to be 50 Mbps with 80 ms RTT latency. We use iptables command to
calculate the communication cost, and use running time (the maximal time from

https://github.com/yuchen1024/Kunlun/mpc
https://github.com/yuchen1024/Kunlun/mpc

406 Y. Chen et al.

protocol begin to end in the sender and the receiver side, including messages
transmission time) to measure the computation cost. For a fair comparison, we
stick to the following setting for all protocols being evaluated:

– We set the computational security parameter κ = 128 and the statistical
security parameter λ = 40.

– We test the balanced scenario by setting the input set size n1 = n2 (our imple-
mentation supports unbalanced scenario as well), and randomly generate two
input sets with 128 bits item length conditioned on the intersection size being
roughly 0.5n. The exception is the implementation of protocol in [GMR+21],
whose item length is set as 61 bits in default and cannot exceed 64 bits since
each element is represented as a uint64 t integer.

– The PSI-card-sum protocol [IKN+20] and the private-id protocol [BKM+20]
are two of the related works we are going to compare. The former implementa-
tion is built upon NIST P-256 (also known as secp256r1 and prime256v1),
while the latter implementation is built upon Curve25519. For a compre-
hensive comparison, our implementation supports flexible switching between
standard elliptic curve NIST P-256 and special elliptic curve Curve25519.
For protocols based on NIST P-256, we denote the ones not using or using
point compression technique with � and � respectively. For protocols based
on Curve25519, we denote them with �.

7.3 Evaluation of mqRPMT

We first report the performance of our cwPRF-based mqRPMT protocol (opti-
mized with Bloom filter) described in Sect. 4.3, which dominates the communi-
cation and computation overheads of its enabling PSO protocols. We test our
protocol up to 4 threads, since both the server and the client run on a single CPU
with 8 physical cores. Our cwPRF-based mqRPMT achieves optimal linear com-
plexity, and thus is scalable, which is demonstrated by the experimental results
in Table 1. Moreover, the computation tasks on both sides in our cwPRF-based
mqRPMT are highly parallelable, thus we can effortlessly using OpenMP [Opeb]
to make the program multi-threaded.

7.4 Benchmark Comparison of PSO Protocols

We derive all kinds of PSO protocols from cwPRF-based mqRPMT protocol,
and compare them with the state-of-the-art related protocols. We report the
performances for three input sizes n = {212, 216, 220} all executed over a sin-
gle thread in LAN and WAN settings. When testing the PSI-card, PSI-card-
sum and PSU protocols in [GMR+21], we set the number of mega-bins as
{1305, 16130, 210255} and the number of items in each mega-bin as {51, 62, 72}
for set sizes n = {212, 216, 220} respectively. These parameter choices have been
tested to be much more optimal than their default ones.

PSI. We first compare our mqRPMT-based PSI protocol to the classical DH-
PSI protocol reported in [PRTY19] and the one re-implemented by ourselves.

PSO from mqRPMT 407

Table 1. Communication cost and running time of mqRPMT.

Protocol T Running time (s) Comm. (MB)

LAN WAN total

212 216 220 212 216 220 212 216 220

mqRPMT� 1 0.50 7.20 114.16 1.39 9.68 136.27 0.52 8.35 133.6

2 0.31 3.89 62.09 1.14 6.54 86.60

4 0.22 2.37 40.41 1.11 5.08 62.77

Speedup 1.6–2.3 × 1.9–3.0 × 1.8–2.8 × 1.2–1.3 × 1.5–1.9 × 1.6-2.2 × – – –

mqRPMT� 1 0.50 8.00 128.00 1.35 10.15 141.52 0.27 4.35 69.6

2 0.32 5.05 80.69 1.18 7.11 94.19

4 0.23 3.54 58.40 1.08 5.54 71.26

Speedup 1.6-2.2 × 1.6-2.3 × 1.6-2.2 × 1.1-1.3× 1.4-1.8 × 1.5-2 × – – –

mqRPMT� 1 0.26 3.51 54.85 0.81 5.41 68.68 0.26 4.23 67.66

2 0.15 1.79 28.24 0.75 3.83 41.38

4 0.10 1.07 15.32 0.72 3.09 28.31

Speedup 1.7-2.6 × 2.0-3.3 × 1.9-3.6 × 1.1-1.1 × 1.4-1.8 × 1.7-2.4 × – – –

We remark that the PSI protocols in comparison are not competitive to the
state-of-the-art PSI protocol. We include them merely for illustrative purpose
and completeness. PSI protocols build upon public-key techniques are used to be
thought inefficient, but our experiment results demonstrate that they could be
practical by leveraging modern crypto library and carefully choosing optimized
parameters. By using fast elliptic curve operations provided by OpenSSL, our
mqRPMT-based PSI protocol is 3.4 − 10.5× faster than the DH-PSI protocol4

implemented in [PRTY19]. By further exploiting the features of Curve25519 in
important ways (see Sect. 7.5 in details), our re-implemented DH-PSI protocol
(denoted by DH-PSI�) achieves a 6.3 − 26.1× speedup, which is arguably the
most efficient DH-PSI implementation known to date (Table 2).

Recently, Rosulek and Trieu [RT21] proposed a PSI protocol based on Diffie-
Hellman key agreement, which requires the least time and communication of any
known PSI protocols for small sets. Somewhat surprisingly, Table 3 shows that
for small sets our mqRPMT-based PSI protocol is faster than their protocol in
the LAN setting, and our re-implemented DH-PSI protocol is much faster than
their protocol in all settings with marginally larger communication cost.

PSI-card. We compare our mqRPMT-based PSI-card protocol to the PSI-card
protocol in [GMR+21]. Table 4 shows that our protocol achieves a 2.4 − 10.5×
speedup, and reduces the communication cost by a factor of 10.9 − 14.8×.

4 We remark that except inefficiency, their implementation also has a severe security
issue. More precisely, they realize the hash-to-point function {0, 1}∗ → G as x �→
gH(x), where H is some cryptographic hash function. However, such hash-to-point
function cannot be modeled as random oracle anymore since it exposes the algebra
structure of output in the clear, and hence totally compromise security. Similar issue
also appears in libPSI.

408 Y. Chen et al.

Table 2. Communication cost and running time of PSI protocol.

PSI

Running time (s) Comm. (MB)

LAN WAN total

212 216 220 212 216 220 212 216 220

[PRTY19]� 5.51 88.64 1418.20 5.82 90.79 1498.67 0.30 4.74 76.60

Our PSI� 0.50 7.24 114.66 1.71 10.50 142.45 0.67 10.38 165.77

Our PSI� 0.55 8.04 128.18 1.73 11.02 148.18 0.41 6.38 101.63

Our PSI� 0.29 3.56 55.11 1.19 6.38 75.56 0.40 6.25 99.71

DH-PSI� 0.22 3.39 54.79 0.92 5.57 69.31 0.28 4.57 74.1

Table 3. Communication cost and running time of PSI protocol on small sets.

PSI

Running time (ms) Comm. (KB)

LAN WAN total

28 29 210 28 29 210 28 29 210

[RT21]� 50.0 71.0 147.3 224.1 260.2 457.9 17.9 34.1 66.3

Our PSI� 41.9 69.5 99.3 577.0 582.9 646.1 38.6 63.5 113.3

DH-PSI� 16.49 31.80 56.91 210.42 227.33 252.32 18.48 36.68 72.8

Table 4. Communication cost and running time of PSI-card protocol.

PSI-card

Running time (s) Comm. (MB)

LAN WAN total

212 216 220 212 216 220 212 216 220

[GMR+21] 1.00 8.41 126.01 8.60 27.46 323.52 2.93 55.49 1030

Our PSI-card� 0.49 7.20 114.31 1.30 9.68 136.06 0.53 8.59 137.31

Our PSI-card� 0.53 8.00 128.00 1.35 10.16 141.31 0.28 4.58 73.20

Our PSI-card� 0.27 3.51 54.89 0.82 5.42 68.31 0.27 4.46 71.30

PSI-card-sum. We compare our mqRPMT-based PSI-card-sum protocol to the
PSI-card-sum protocol (the most efficient and also the deployed one based on
DH-protocol+Paillier) in [IKN+20].5 As shown in Table 5, compared with the

5 We do not compare the protocol described in [GMR+21] since its functionality is not
the standard one, as we elaborated in the introduction. Putting aside the functional-
ity difference, our protocol is still more advantageous than the protocol of [GMR+21]
since our random masking trick is much simpler and efficient than the AHE-based
technique adopted by the latter. In more detail, the upper bound of intersection sum
in [GMR+21] is closely tied to the AHE scheme in use, which requires sophisticated
parameter tuning and ciphertext packing techniques. Whereas in our protocol, the
upper bound of intersection sum can be flexibly adjusted according to applications.

PSO from mqRPMT 409

protocol presented in [IKN+20], our protocol achieves a 28.5 − 76.3× improve-
ment in running time and a 7.4× reduction in communication cost.

Table 5. Communication cost and running time of PSI-card-sum protocol.

PSI-card-sum

Running time (s) Comm. (MB)

LAN WAN total

212 216 220 212 216 220 212 216 220

[IKN+20]� (deployed) 23.64 176.34 – 30.10 186.29 – 2.72 43.24 –

Our PSI-card-sum� 0.51 7.22 113.66 1.46 9.68 136.27 0.65 10.12 161.40

Our PSI-card-sum� 0.57 8.12 129.66 1.94 11.83 157.66 0.39 6.10 97.34

Our PSI-card-sum� 0.31 3.73 57.44 1.36 6.53 76.16 0.37 5.75 95.30

We assume each associated value is a non-negative integer in [0, 232) conditioned on
the upper bound of intersection sum being 232. We note that the implementation
of [IKN+20] only works in our environment at set sizes 212 and 216. For set size 220,
we encounter a run time error reported in [Pri] that has not been fixed yet. The
corresponding cells are marked with “–”.

PSU. We compare our mqRPMT-based PSU protocol to the state-of-the-art
PSU protocols in [GMR+21,ZCL+23,JSZ+22]. [ZCL+23] provides two PSU
protocols from public-key and symmetric-key respectively. [JSZ+22] also pro-
vides two PSU protocols called PSU-S and PSU-R. We choose the most efficient
PKE-PSU [ZCL+23] and PSU-R [JSZ+22] for comparison. Among all the men-
tioned PSU protocols, only our PSU protocol achieves strict linear communica-
tion and computation complexity. The experimental results in Table 6 indicate
that our PSU protocol is the most superior one. Comparing to the state-of-the-
art PSU protocol of [ZCL+23]6, our protocol achieves a 2.7 − 17× improvement
in running time and a 2× reduction in communication cost.

Private-ID. We compare our private-ID protocol described in Sect. 6.2 to the
state-of-the-art protocols in [BKM+20,GMR+21]. As shown in Table 7, our
private-ID protocol achieves a 2.7 − 4.8× speedup comparing to the current
most computation efficient private-ID protocol [GMR+21], while requires 1.3×
less communication for sufficiently large sets7 than the current most communi-
cation efficient private-ID protocol [BKM+20]. Hence, our private-ID protocol
is arguably the most computation and communication efficient one to date.
6 A recent work [BPSY23] proposed a new construction of OKVS and used it to

improve the performance of the PSU protocol in [ZCL+23] by approximately 30%.
However, if suitable parameters of the new OKVS construction exist when set sizes
are less than 210 is unclear. Our PSU protocol still performs the best even comparing
with their optimized protocol.

7 We note that our protocol requires more communication for sets of size 212. This is
because the underlying multi-point OPRF [RR22] is built using VOLE, which has
noticeable startup cost, arising relatively large constant terms in the computation
and communication complexities of multi-point OPRF.

410 Y. Chen et al.

Table 6. Communication cost and running time of PSU protocol.

PSU

Running time (s) Comm. (MB)

LAN WAN total

212 216 220 212 216 220 212 216 220

[GMR+21] 1.16 10.06 151.34 10.34 38.52 349.43 3.85 67.38 1155

[ZCL+23]� 4.87 12.19 141.38 5.78 15.75 182.88 1.35 21.41 342.38

[ZCL+23]� 5.10 15.13 187.29 5.82 17.37 210.06 0.77 12.20 195.17

[JSZ+22] 2.29 8.50 516.04 5.33 27.00 736.30 3.59 70.37 1341.55

Our PSU� 0.52 7.27 114.44 1.70 10.56 143.29 0.69 10.61 169.37

Our PSU� 0.57 8.04 128.20 1.76 10.92 148.15 0.42 6.61 105.23

Our PSU� 0.30 3.55 55.48 1.19 6.38 74.96 0.41 6.48 103.31

Table 7. Communication cost and running time of private-ID protocol.

Private-ID

Running time (ms) Comm. (MB)

LAN WAN total

212 216 220 212 216 220 212 216 220

[GMR+21] 1.65 11.023 158.76 13.82 43.00 385.12 4.43 76.57 1293

[BKM+20]� 2.21 37.56 671.75 7.98 46.97 710.94 1.00 15.97 226.70

Our Private-ID� 0.55 7.28 115.63 5.34 14.83 163.43 3.12 16.91 237.55

Our Private-ID� 0.65 8.43 134.16 5.69 15.68 169.05 2.85 12.91 173.50

Our Private-ID� 0.34 3.78 59.76 5.04 10.87 94.89 2.82 12.74 171.54

7.5 Tips for ECC-Based Implementations

In what follows, we summarize the lessons we learned during the implementation
of ECC-based protocols, with the hope to uncover some dark details and correct
imprecise impressions.

We first highlight the following two caveats when implementing with standard
elliptic curves:

Pros and cons of point compression technique. Point compression is a standard
trick in elliptic-curve cryptography (ECC), which can roughly reduce the storage
cost of EC point by half, at the cost of performing decompression when needed.
Point decompression was empirically thought to be cheap, but experiment indi-
cates that it could be as expensive as scalar multiplication. Our perspective is
that point compression offers a natural trade-offs between communication and
computation. The above experimental results demonstrate that the total running
time gives a large weight to communication cost in bandwidth constrained sce-
narios. Therefore, in the WAN setting (involving parties cannot be co-located)
we recommend not to apply point compression trick, while in the LAN setting
(involving parties are co-located) we recommend to apply point compression

PSO from mqRPMT 411

trick. A quick take-away is that point compression trick pays off in the setting
where communication is much more expensive than computation.

Tricky hash-to-point operation. The hash to point operation is very tricky in
ECC. So far, there is no universal method to securely map arbitrary bit strings
to points on elliptic curves. Here, the vague term “securely” indicates the hash
function could be modeled as a random oracle. A folklore method is the “try-and-
increment” algorithm [BLS01], which is also the method adopted in this work.
Nevertheless, even such simple hash-to-point operation could be as expensive as
scalar multiplication, which should be avoided if possible.

Regarding the two caveats discussed above, the following questions arise: (1)
is it possible to get the best of two worlds of point compression; (2) could the
hash-to-point operation be cheaper. Luckily, the answers are affirmative under
some circumstances.

With the aim to avoid ASIACRYPT potential implementation pitfalls, Bern-
stein [Ber06] built a Montgomery curve called Curve25519 in 2006, in which
25519 indicates that the characteristic of the base field is 2255 − 19. Due to
many efficiency/security advantages, Curve25519 has been widely deployed in
numerous applications and has become the de facto alternative to NIST P-256.
Here, we highlight two notable features of Curve25519: (i) one can perform
somewhat scalar multiplication using only X coordinate; (ii) by design, any 32-
byte bit array corresponds the X coordinate of a valid EC point. Please refer
to [Kle21] for more technique details. Exactly by leveraging these two features,
Bernstein constructed a non-interactive key exchange (NIKE) protocol called
X25519 based on Curve25519, which outperforms other EC NIKE protocols
since it only depends on the X coordinate of the EC point.

Recall that our cwPRF-based mqRPMT protocol can be realized from any
EC NIKE protocol and associated hash-to-point function. Compared with stan-
dard EC curves like NIST P-256, Curve25519 is particularly beneficial for the
implementation of our protocol. More precisely, feature (i) brings us the best of
two worlds of point compression (without making trade-off anymore), while fea-
ture (ii) makes the hash-to-point function almost free, simply hashing the input
to a 32-byte bit array via standard cryptographic hash function. To the best of
our knowledge, this is the first time that Curve25519 fully unleashes its power
in the area of private set operations. In general, Curve25519 is a perfect match
for schemes/protocols enabled by cwPRF.

Public-key operations are always rashly thought to be much expensive than
symmetric-key operations, and thus the design discipline of many practical pro-
tocols opts to avoid public-key operations as much as possible. Our experimental
results indicate that this impression is not precise anymore after rapid advances
on ECC-based cryptography in recent years. By leveraging optimized implemen-
tation, public-key operations could be as efficient as symmetric-key operations.
As a concrete example, in EC group with 128 bit security level one EC point
scalar operation takes 0.026 ms and one EC point addition takes 0.00028 ms on
a laptop.

412 Y. Chen et al.

8 Summary and Perspective

This work demonstrates that mqRPMT protocol is complete for most private set
operations. In particular, we created a unified PSO framework from mqRPMT,
which is rather attractive given its conceptual simplicity and modular nature.
The high level abstraction is useful for allowing us to interpret various PSO pro-
tocols through the lens of mqRPMT, and helps to greatly reduces the deployment
and maintenance costs of PSO in the real world. We also presented two generic
constructions of mqRPMT and instantiated them from the DDH assumption,
yielding a family of PSO protocols with optimal asymptotic complexity and
good concrete efficiency that are superior or competitive to existing ones. In
summary, we regard the PSO framework from mqRPMT together with its effi-
cient implementations as the main contribution of this work. We emphasize that
our framework does not intend to fully cover the current state of the art, which
is a rapidly moving target. Instead, it mainly aims to distill common principles
and clean abstractions that can apply broadly and systematically.

Along the way of constructing mqRPMT, we introduced cwPRF and pOPRF.
The notion of cwPRF can be viewed as the right cryptographic abstraction of the
celebrated DH functions, demonstrating the versatility of the DDH assumption.
The notion of pOPRF is of independent interest. It enriches the OPRF family,
and helps us to understand which OPRF-based PSI protocols can (or cannot)
be adapted to PCSI/PSU protocols. We left more applications and efficient con-
structions of pOPRF as an interesting problem.

Acknowledgement. We thank the anonymous reviewers for their valuable comments
on this paper. We thank Yilei Chen for helpful discussions on the post-quantum con-
structions of cwPRF. This work was supported by the National Key Research and
Development Program of China (Grant No. 2021YFA1000600), the National Natural
Science Foundation of China (Grant No. 62272269 and No. 61932019), Taishan Scholar
Program of Shandong Province, and Major Programs of the National Social Science
Foundation of China (Grant No. 22&ZD147).

References

[AES03] Agrawal, R., Evfimievski, A.V., Srikant, R.: Information sharing across
private databases. In: ACM SIGMOD 2003, pp. 86–97 (2003)

[ALSZ15] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivi-
ous transfer extensions with security for malicious adversaries. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 673–701.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5 26

[Ber06] Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung,
M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol.
3958, pp. 207–228. Springer, Heidelberg (2006). https://doi.org/10.1007/
11745853 14

[BKM+20] Buddhavarapu, P., Knox, A., Mohassel, P., Sengupta, S., Taubeneck, E.,
Vlaskin, V.: Private matching for computer (2020). https://eprint.iacr.
org/2020/599

https://doi.org/10.1007/978-3-662-46800-5_26
https://doi.org/10.1007/978-3-662-46800-5_26
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2020/599

PSO from mqRPMT 413

[Blo70] Burton, H.: Bloom. Commun. ACM 13(7), 422–426 (1970)
[BLS01] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.

In: Boyd, C. (ed.) Short signatures from the weil pairing. LNCS, vol. 2248,
pp. 514–532. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45682-1 30

[BPSY23] Bienstock, A., Patel, S., Seo, J.Y., Yeo, K.: Near-optimal oblivious key-
value stores for efficient PSI, PSU and volume-hiding multi-maps. In:
USENIX Security 2023, pp. 301–318 (2023)

[CDGB22] Chen, Y., Ding, N., Dawu, G., Bian, Y.: Practical multi-party private
set intersection cardinality and intersection-sum under arbitrary collu-
sion. In: Deng, Y., Yung, M. (eds.) Information Security and Cryptology.
Inscrypt 2022. LNCS, vol. 13837, pp. 169–191. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-26553-2 9

[CGT12] De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of
cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R.,
Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5 17

[CHLR18] Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homo-
morphic encryption with malicious security. In: ACM CCS 2018, pp.
1223–1237 (2018)

[CLR17] Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homo-
morphic encryption. In: ACM CCS 2017, pp. 1243–1255 (2017)

[CM20] Chase, M., Miao, P.: Private set intersection in the internet setting
from lightweight oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 34–63. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 2

[CMdG+21] Cong, K., et al.: Labeled PSI from Homomorphic Encryption with
Reduced Computation and Communication. In: ACM CCS 2021, pp.
1135–1150. ACM (2021)

[DC17] Davidson, A., Cid, C.: An efficient toolkit for computing private set oper-
ations. In: ACISP 2017 (2017)

[DCW13] Dong, C., Chen, L., Wen, Z.: When private set intersection meets big
data: an efficient and scalable protocol. In: ACM CCS 2013, pp. 789–800
(2013)

[DRRT18] Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private
contact discovery. Proc. Priv. Enhanc. Technol. 2018(4), 159–178 (2018)

[FIPR05] Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and
oblivious pseudorandom functions. In: TCC 2005, pp. 303–324 (2005)

[Fri07] Frikken, K.: Privacy-preserving set union. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72738-5 16

[GKRS22] Guo, S., Kamath, P., Rosen, A., Sotiraki, K.: Limits on the efficiency of
(ring) LWE-based non-interactive key exchange. J. Cryptol. 35, 1 (2022)

[GMR+21] Garimella, G., Mohassel, P., Rosulek, M., Sadeghian, S., Singh, J.: Private
set operations from oblivious switching. In: Garay, J.A. (ed.) PKC 2021.
LNCS, vol. 12711, pp. 591–617. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-75248-4 21

[GPR+21] Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious
key-value stores and amplification for private set intersection. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 395–425.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1 14

https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-031-26553-2_9
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-540-72738-5_16
https://doi.org/10.1007/978-3-030-75248-4_21
https://doi.org/10.1007/978-3-030-75248-4_21
https://doi.org/10.1007/978-3-030-84245-1_14

414 Y. Chen et al.

[HEK12] Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled cir-
cuits better than custom protocols? In: NDSS 2012 (2012)

[HFH99] Huberman, B.A., Franklin, M.K., Hogg, T.: Enhancing privacy and trust
in electronic communities. In: ACM Conference on Electronic Commerce,
pp. 78–86 (1999)

[HLS+16] Hogan, K., et al.: Secure multiparty computation for cooperative cyber
risk assessment. In: IEEE Cybersecurity Development, SecDev 2016, pp.
75–76 (2016)

[HN10] Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious
adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 312–331. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7 19

[IKN+20] Ion, M., et al.: On deploying secure computing: private intersection-sum-
with-cardinality. In: IEEE EuroS&P 2020, pp. 370–389 (2020)

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45146-4 9

[JSZ+22] Jia, Y., Sun, S.-F., Zhou, H.-S., Du, J., Gu, D.: Shuffle-based private set
union: faster and more secure. In: USENIX 2022 (2022)

[KK13] Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring
short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 4

[KKRT16] Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched
oblivious PRF with applications to private set intersection. In: ACM CCS
2016, pp. 818–829 (2016)

[Kle21] Kleppmann, M.: Implementing curve25519/x25519: a tutorial on elliptic
curve cryptography (2021). https://www.cl.cam.ac.uk/teaching/2122/
Crypto/curve25519.pdf

[KLS+17] Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set inter-
section for unequal set sizes with mobile applications. Proc. Priv. Enhanc.
Technol. 4, 177–197 (2017)

[KMP+17] Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical
multi-party private set intersection from symmetric-key techniques. In:
ACM CCS 2017, pp. 1257–1272 (2017)

[KRTW19] Kolesnikov, V., Rosulek, M., Trieu, N., Wang, X.: Scalable private set
union from symmetric-key techniques. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 636–666. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34621-8 23

[KS05] Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg
(2005). https://doi.org/10.1007/11535218 15

[LG23] Liu, X., Gao, Y.: Scalable multi-party private set union from multi-
query secret-shared private membership test. In: Guo, J., Steinfeld, R.
(eds.) Advances in Cryptology. ASIACRYPT 2023. LNCS, vol. 14438,
pp. 237–271. Springer, Singapore (2023). https://doi.org/10.1007/978-
981-99-8721-4 8

https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-40084-1_4
https://www.cl.cam.ac.uk/teaching/2122/Crypto/curve25519.pdf
https://www.cl.cam.ac.uk/teaching/2122/Crypto/curve25519.pdf
https://doi.org/10.1007/978-3-030-34621-8_23
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-981-99-8721-4_8
https://doi.org/10.1007/978-981-99-8721-4_8

PSO from mqRPMT 415

[LV04] Lenstra, A., Voss, T.: Information security risk assessment, aggrega-
tion, and mitigation. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 391–401. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27800-9 34

[Mea86] Meadows, C.A.: A more efficient cryptographic matchmaking protocol
for use in the absence of a continuously available third party. In: IEEE
Symposium on Security and Privacy, pp. 134–137 (1986)

[MPR+20] Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided mali-
cious security for private intersection-sum with cardinality. In: Miccian-
cio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 3–33.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 1

[NTL+11] Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.:
Location privacy via private proximity testing. In: NDSS 2011 (2011)

[NTY21] Nevo, O., Trieu, N., Yanai, A.: Simple, fast malicious multiparty private
set intersection. In: ACM CCS 2021, pp. 1151–1165 (2021)

[Opea] https://github.com/openssl
[Opeb] https://www.openmp.org/resources/openmp-compilers-tools/

[Pri] https://github.com/google/private-join-and-compute/issues/16
[PRTY19] Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight

private set intersection from sparse OT extension. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 13

[PSTY19] Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-
based PSI with linear communication. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 122–153. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17659-4 5

[PSZ14] Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based
on OT extension. In: USENIX 2014, pp. 797–812 (2014)

[PSZ18] Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection
based on OT extension. ACM Trans. Priv. Secur. 21(2), 7:1-7:35 (2018)

[RA18] Resende, A.C.D., Aranha, D.F.: Faster unbalanced private set intersec-
tion. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957,
pp. 203–221. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-662-58387-6 11

[Rab05] Rabin, M.O.: How to exchange secrets with oblivious transfer (2005).
https://eprint.iacr.org/2005/187

[RR17] Rindal, P., Rosulek, M.: Improved private set intersection against mali-
cious adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 235–259. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56620-7 9

[RR22] Raghuraman, S., Rindal, P.: Blazing fast PSI from improved OKVS and
subfield VOLE. In: ACM CCS 2022 (2022)

[RS21] Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-PSI from
vector-OLE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12697, pp. 901–930. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-77886-6 31

[RT21] Rosulek, M., Trieu, N.: Compact and malicious private set intersection
for small sets. In: ACM CCS 2021, pp. 1166–1181 (2021)

https://doi.org/10.1007/978-3-540-27800-9_34
https://doi.org/10.1007/978-3-030-56877-1_1
https://github.com/openssl
https://www.openmp.org/resources/openmp-compilers-tools/
https://github.com/google/private-join-and-compute/issues/16
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-662-58387-6_11
https://doi.org/10.1007/978-3-662-58387-6_11
https://eprint.iacr.org/2005/187
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-030-77886-6_31

416 Y. Chen et al.

[Sha80] Shamir, A.: On the power of commutativity in cryptography. In: de
Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582–
595. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-
2 100

[SJ23] Son, Y., Jeong, J.: PSI with computation or circuit-psi for unbalanced
sets from homomorphic encryption. In: ASIA CCS 2023, pp. 342–356.
ACM (2023)

[TCLZ23] Tu, B., Chen, Y., Liu, Q., Zhang, C.: Fast unbalanced private set union
from fully homomorphic encryption (2023)

[TKC07] Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.U.: Privacy preserv-
ing error resilient DNA searching through oblivious automata. In: ACM
CCS 2007, pp. 519–528 (2007)

[WY23] Wu, M., Yuen, T.H.: Efficient unbalanced private set intersection cardi-
nality and user-friendly privacy-preserving contact tracing. In: USENIX
Security 2023 (2023)

[ZCL+23] Zhang, C., Chen, Y., Liu,W., Zhang, M., Lin, D.: Optimal private set
union from multi-query reverse private membership test. In: USENIX
2023 (2023). https://eprint.iacr.org/2022/358

https://doi.org/10.1007/3-540-10003-2_100
https://doi.org/10.1007/3-540-10003-2_100
https://eprint.iacr.org/2022/358

	Private Set Operations from Multi-query Reverse Private Membership Test
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution
	1.3 Technical Overview
	1.4 Related Works
	1.5 Roadmap

	2 Preliminaries
	2.1 MPC in the Semi-honest Model
	2.2 Private Set Operation

	3 Protocol Building Blocks
	3.1 Oblivious Transfer
	3.2 Multi-query Reverse Private Membership Test

	4 The First Generic Construction of mqRPMT
	4.1 Definition of Commutative Weak PRF
	4.2 Construction of Commutative Weak PRF
	4.3 mqRPMT from Commutative Weak PRF

	5 The Second Generic Construction of mqRPMT
	5.1 Definition of Permuted OPRF
	5.2 Construction of Permuted OPRF
	5.3 mqRPMT from Permuted OPRF

	6 Applications of mqRPMT
	6.1 PSO Framework from mqRPMT
	6.2 Private-ID

	7 Performance
	7.1 Implementation Details
	7.2 Experimental Setup
	7.3 Evaluation of mqRPMT
	7.4 Benchmark Comparison of PSO Protocols
	7.5 Tips for ECC-Based Implementations

	8 Summary and Perspective
	References

