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Abstract. Laconic cryptography enables secure two-party computation
(2PC) on unbalanced inputs with asymptotically-optimal communication
in just two rounds of communication. In particular, the receiver (who
sends the first-round message) holds a long input and the sender (who
sends the second-round message) holds a short input, and the size of
their communication to securely compute a function on their joint inputs
only grows with the size of the sender’s input and is independent of the
receiver’s input size. The work on laconic oblivious transfer (OT) [Cho
et al. CRYPTO 2017] and laconic private set intersection (PSI) [Alamati
et al. TCC 2021] shows how to achieve secure laconic computation for
OT and PSI from the Diffie-Hellman assumption.

In this work, we push the limits further and achieve laconic branching
programs from the Diffie-Hellman assumption. In particular, the receiver
holds a large branching program P and the sender holds a short input x.
We present a two-round 2PC protocol that allows the receiver to learn x
iff P (x) = 1, and nothing else. The communication only grows with the
size of x and the depth of P , and does not further depend on the size
of P .

Keywords: Laconic cryptography · unbalanced secure computation ·
branching programs

1 Introduction

Suppose a server holds a large set of elements Y (which could be exponentially
large) that can be represented as a polynomial-sized branching program P , that
is, y ∈ Y iff P (y) = 1. The server would like to publish a succinct digest of Y
such that any client who holds a small set X can send a short message to the
server to allow her to learn the set intersection X ∩ Y but nothing beyond that.

This is a special case of the secure two-party computation (2PC) [Yao86]
problem, where two mutually distrustful parties, each holding a private input
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x and y respectively, would like to jointly compute a function f over their pri-
vate inputs without revealing anything beyond the output of the computation.
Garbled circuits [Yao86] together with oblivious transfer (OT) [Rab81,Rab05]
enables 2PC for any function f with two rounds of communication: one message
from the receiver to the sender and another message from the sender back to the
receiver. This approach achieves the optimal round complexity; nevertheless, it
requires the communication complexity to grow with the size of f . In particular,
if we represent f as a Boolean circuit, then the communication grows with the
number of gates in the circuit, which grows at least with the size of the inputs
x and y. For unbalanced input lengths (i.e., |x| � |y| or |x| � |y|), is it possible
to make the communication only grow with the shorter input and independent of
the longer input?

Long Sender Input. When the sender has a long input, i.e. |x| � |y|, we can
use fully homomorphic encryption (FHE) [Gen09] to achieve communication
that only grows with the receiver’s input length |y| plus the output length.
This technique works for any function but can only be based on variants of the
learning with errors (LWE) assumption [GSW13]. For simpler functions that can
be represented by a branching program, in particular, if the sender holds a private
large branching program P and the receiver holds a private short input y, the
work of Ishai and Paskin [IP07] illustrates how to construct 2PC for P (y) where
the communication only grows with |y| and the depth of P , and does not further
depend on the size of P . Their construction is generic from a primitive called rate-
1 OT, which can be built based on a variety of assumptions such as DCR, DDH,
QR, and LWE assumptions with varying efficiency parameters [IP07,DGI+19,
GHO20,CGH+21]. In this setting, there are works in secure BP evaluation for
applications in machine learning and medicine [BPSW07,BFK+09,KNL+19,
CDPP22]. Our results concern the dual setting, in which the receiver has the
longer input and is the party that learns the output. Moreover, this should be
achieved in only two rounds of communication.

Long Receiver Input. When the receiver has a long input, i.e. |x| � |y|, a recent
line of work on laconic cryptography [CDG+17,QWW18,DGGM19,ABD+21,
ALOS22] focuses on realizing secure 2PC with asymptotically-optimal commu-
nication in two rounds. In particular, the receiver has a large input and the size of
her protocol message only depends on the security parameter and not her input
size. The second message (sent by the sender) as well as the sender’s computa-
tion may grow with the size of the sender’s input, but should be independent of
the receiver’s input size.

In this dual setting, the work of Quach, Wee, and Wichs [QWW18] shows
how to realize laconic 2PC for general functionalities using LWE. Regarding
laconic 2PC for simpler functions from assumptions other than LWE, much less
is known compared to the setting of long sender inputs.

The work of Cho et al. [CDG+17] introduced the notion of laconic oblivious
transfer (laconic OT), where the receiver holds a large input D ∈ {0, 1}n, the
sender holds an input (i ∈ [n],m0,m1), and the two-round protocol allows the
receiver to learn (i,mD[i]) and nothing more. The communication complexity as
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well as the sender’s computation only grow with the security parameter and is
independent of the size of D. Besides LWE [QWW18], laconic OT can be built
from DDH, CDH, and QR [CDG+17,DG17].1 Recent work [ABD+21,ALOS22]
extends the functionality to laconic private set intersection (laconic PSI), where
the sender and receiver each holds a private set of elements X and Y respectively
(|X| � |Y |), and the two-round protocol allows the receiver to learn the set
intersection X ∩ Y and nothing more. The communication complexity and the
sender’s computational complexity are both independent of |Y |. Laconic PSI can
be built from CDH/LWE [ABD+21] or pairings [ALOS22].

Both laconic OT and laconic PSI can be viewed as special cases of a branching
program. Recall that in the setting of long sender input, where a sender has a
large branching program, we have generic constructions from rate-1 OT, which
can be built from various assumptions. However, in the dual setting of long
receiver input, we no longer have such a generic construction. Laconic OT seems
to be a counterpart building block in the dual setting, but it does not give us
laconic branching programs. Given the gap between the two settings, we ask the
following question:

Can we achieve laconic branching programs from assumptions other than
LWE?

This diversifies the set of assumptions from which laconic MPC can be real-
ized. It also increases our understanding of how far each assumption allows us
to expand the functionality, which helps in gaining insights into the theoretical
limits of the assumptions themselves.

1.1 Our Results

We answer the above question in the affirmative. In particular, as a natural
counterpart to the aforementioned setting of long sender input, when the receiver
holds a private large branching program BP and the sender holds a private short
input x, we construct a two-round 2PC protocol allowing the receiver to learn
x iff BP(x) = 1, and nothing else. The communication only grows with |x| and
the depth of BP, and does not further depend on the size of BP. Furthermore,
the sender’s computation also only grows with |x| and the depth of BP. The
receiver’s computation grows with the number of BP nodes and the number
of root-to-leaf paths. Our construction is based on anonymous hash encryption
schemes [BLSV18], which can in turn be based on CDH/LWE [DG17,BLSV18].

Sender Security. We achieve what we call weak sender security which says if
BP(x) = 0, then no information about x is leaked; else, there are no privacy guar-
antees for x. A stronger security requirement would be that in the latter case, the
1 Importantly, in laconic OT, the receiver’s second-phase computation time should

have at most a polylog dependence on |D|. This can be achieved in the laconic
OT setting because the index i is known to the receiver. In other settings, such as
laconic PSI, this cannot be realized (without pre-processing) because not probing a
particular database entry leaks information about the sender’s input.
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receiver only learnsBP(x), and no other information about x. Unfortunately, real-
izing strong sender security is too difficult in light of known barriers: it generically
implies a notion called private laconic OT [CDG+17,DGI+19]. Private laconic
OT is laconic OT in which the index i chosen by the sender is also kept hidden from
the receiver. The only existing construction of private laconic OT with polylog-
arithmic communication uses techniques from laconic secure function evaluation
and is based on LWE [QWW18]. In particular, it is not known if private laconic
OT can be realized using Diffie-Hellman assumptions.

Strong sender security allows one to achieve laconic PSI cardinality, a gener-
alization of laconic PSI. In the PSI cardinality problem, the receiver learns only
the size of the intersection and nothing about the intersection set itself. Strong
sender security for a receiver with a large set S and a sender with a single element
x would allow the receiver to only learn whether or not x ∈ S. This immedi-
ately implies laconic PSI cardinality by having the sender send a second-round
protocol message for each element in its set. Laconic PSI cardinality generi-
cally implies private laconic OT, establishing a barrier. The same barriers pre-
vented [DKL+23] from building laconic PSI cardinality. We can get laconic PSI
as an application of our results (and other applications discussed below), but our
results do not allow us to realize laconic PSI cardinality. More specifically, after
receiving the second-round message from the sender, the receiver in our protocol
works by checking which path in their BP tree (if any) decrypts to “accept”.
If there is an accepting path, then BP(x) = 1, where x is the sender’s input.
But this reveals the value of x since the receiver knows which path resulted in
acceptance.

Applications. Our laconic branching program construction directly implies
laconic OT and laconic PSI, as their functionalities can be represented as branch-
ing programs. Moreover, we can capture other functionalities not considered by
previous work, such as private-set unions (PSU). A branching program for PSU
can be obtained by making local changes to a branching program for PSI. (See
Sect. 5.) This demonstrates the versatility of our approach, giving a unifying
construction for all these functionalities. In contrast, the accumulator-based PSI
constructions in [ABD+21,ALOS22,DKL+23] are crucially tied to the PSI set-
ting, and do not seem to extend to the PSU setting. This is because the sender’s
message to the receiver only provides enough information to indicate which ele-
ment (if any) in the receiver’s set is also held by the sender. In essence, only
the index of this element within the receiver’s set needs to be conveyed in the
sender’s message. In the PSU setting, on the other hand, there could be elements
in the union that do not exist in the receiver’s set. So, the sender’s message needs
to contain more information than an index. If the sender’s element is not in the
receiver’s set, the receiver needs to be able to recover the sender’s element from
the message.

Our techniques can be used in unbalanced PSI where the receiver holds a large
set (possibly of exponential size) that can be represented as a branching program.
For instance, a recent work by Garimella et al. [GRS22] introduced the notion
of structure-aware PSI where one party’s (potentially large) set Y is publicly
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known to have a certain structure. As long as the publicly known structure can
be represented as a branching program, our techniques can be used to achieve
a two-round fuzzy-matching PSI protocol where the communication only grows
with the size of the smaller set |X| and the depth of the branching program, and
does not further depend on |Y |, which could potentially be exponentially large.

2 Technical Overview

Our constructions are based on hash encryption (HE) schemes [DG17,BLSV18].
An HE scheme, parameterized by n = n(λ) (where λ is the security parameter),
consists of a hash function Hash(pp, ·) : {0, 1}n → {0, 1}λ and associated HEnc
and HDec functions. One can encrypt n pairs of plaintexts m := (mi,b) (for i ∈ [n]
and b ∈ {0, 1}) with respect to h := Hash(pp, z) to get cth ← HEnc(h,m).2 The
ciphertext cth is such that given z, one may recover (m1,z1 , . . . , mn,zn

) from cth,
while maintaining semantic security for (mi,1−zi

) even in the presence of z. HE
can be realized using CDH/LWE [DG17,BLSV18].

Consider a simple example where the receiver R has a depth-one BP on bits
(see Definition 3 for branching programs) where the root node encodes index
i∗ ∈ [n] and its left child encodes accept (b0 := acpt) and its right child encodes
reject (b1 := rjct). This BP evaluates an input x by checking the bit value at
index i∗. If x[i∗] = 0, then the value of left child is output: b0 = acpt. If x[i∗] = 1,
then the value of right child is output: b1 = rjct. As a starting point, suppose
R only wants to learn if BP(x) = 1, where x is the sender’s input. The receiver
hashes h := Hash(pp, (i∗, b0, b1)), padding the input if necessary, and sends h
to the sender, S. S has the following circuit F[x] with their input x hardwired:
on input (j, q0, q1), F[x] outputs qx[j]. S garbles F[x] to get a garbled circuit ˜F
and corresponding labels (lbi,b). S uses the hash value, h, from R to compute
cth ← HEnc(h, (lbi,b)). Finally, S sends (˜F, cth) to R. The receiver, given her hash
pre-image value z := (i∗, acpt, rjct) can only recover (lbi,z[i]), allowing her in turn
to learn F[x](z) from the garbled circuit, outputting either accept (BP(x) = 1)
or reject (BP(x) = 0).

Beyond Depth 1. Next, consider the BP of depth 2 in Fig. 1 held by the receiver,
R. Each internal node encodes an index, rot, lft, rgt ∈ [n]. The four leaves have
values with variables (b00, b01, b10, b11). For i, j ∈ {0, 1}, bij ∈ {acpt, rjct}. Sup-
pose x[rot] = 0, where x is the sender’s input, so the root-leaf path induced by
BP(x) first goes left. If the sender, S, ‘by some miracle’ knows the hash value
h0 := Hash(pp, (lft, b00, b01)), he can, as above, send a garbled circuit for F[x]
and an HE ciphertext wrt h0 of the underlying labels, allowing R to evaluate
F[x](lft, b00, b01). But S does not know the value of h0, nor does he know whether
the first move is left or right, because the BP is hidden from S. Moreover, R
cannot send both h0 := Hash(pp, (lft, b00, b01)) and h1 := Hash(pp, (rgt, b10, b11))
because (a) there will be a size blowup (the communication will grow with the
size, and not the depth, of the BP), and (b) R will learn more information than
2 HEnc also takes the public parameter pp as input, but we omit it here for brevity.
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Fig. 1. Depth 2 BP example

necessary because S does not know a priori whether the induced computation
travels left or right, so he has to encrypt the labels under both h0 and h1. But
encrypting the labels (lbi,b) under both h0 and h1 will allow the receiver to
recover two labels for an index on which (lft, b00, b01) and (rgt, b10, b11) differ,
destroying garbled-circuit security.

Fixing Size Blow-Up via Deferred Encryption. We fix the above issue via deferred
encryption techniques [DG17,BLSV18,GHMR18,ABD+21], allowing the sender
to defer the HE encryptions of (lbi,b) labels to the receiver herself at decryp-
tion time! To enable this technique, the receiver further hashes (h0, h1) such
that during decryption, the receiver, through the evaluation of a garbled cir-
cuit, will obtain an HE encryption of (lbi,b) labels with respect to hx[rot], where
(lbi,b) and (h0, h1) are as above. To do this, we have to explain how the receiver
further hashes down h0 and h1, and how she can later perform deferred encryp-
tion. First, the receiver R computes the hash value hr := Hash(pp, (h0, h1, rot)),
and sends hr to S. Next the sender S(x) garbles F[x] to get (˜F, lbi,b) as above.
Then, he forms a circuit G[x, (lbi,b)] with x and (lbi,b) hardwired, which on an
input (h′

0, h
′
1, u) outputs HEnc(h′

xu
, (lbi,b)). The sender garbles G[x, (lbi,b)] to get

(˜G, (lb′
i,b)). Before proceeding, let us consider R’s perspective. If R is given ˜G and

the labels (lb′
i,z′[i]), where z′ := (h0, h1, rot), she can evaluate ˜G on these labels,

which will in turn release an HE encryption of labels (lbi,b) under hxrot , as desired.
To ensure R only gets the (lb′

i,z′[i]) labels, S encrypts the {lb′
i,b} labels under hr,

and sends the resulting HE ciphertext cth′, as well as ˜F and ˜G to R. From cth′

and z′ := (h0, h1, rot), R can only recover the labels (lb′
i,z′[i]), as desired.

How Can the Receiver Decrypt? The receiver will evaluate ˜G on the decrypted
(lb′

i,z′[i]) labels, releasing an HE encryption cth of (lbi,b) labels under hxrot . The
receiver does not know whether cth is encrypted under h0 or h1, so she tries to
decrypt with respect to the pre-images of both hash values and checks which
one (if any) is valid. However, this results in the following security issue: an
HE scheme is not guaranteed to hide the underlying hash value with respect to
which an HE ciphertext was made. For example, imagine an HE scheme where
HEnc(h, (mi,b)) appends h to the ciphertext. Employing such an HE scheme
(which is semantically secure) in the above construction will signal to the receiver
if cth′ was encrypted under h0 or h1, namely the bit value of x[rot]. This breaks



Laconic Branching Programs from the Diffie-Hellman Assumption 329

sender security if BP(x) = 0. Moreover, even if the HE encryption scheme is
anonymous in the sense of hiding h, decrypting an hb-formed HE encryption
under the pre-image of h1−b may result in ⊥, or in junk labels that do not work
on ˜F. We use the same technique as in [ABD+21] of using anonymous hash
encryption and garbled circuits to resolve this issue.

Signalling the Correct Output of F. In the above examples, F[x] outputs either
acpt or rjct, indicating if BP(x) equals 1 or 0, respectively. But, in the desired
functionality, F[x] outputs x if BP(x) = 1. We cannot simply modify F[x] to
output x if qxj

= acpt since in that case if the receiver evaluates ˜F on junk labels
she will not be able to tell the difference between the junk output and x. Similar
to [ABD+21], we address this problem by having S include a signal value in the
ciphertext and in their message to R. Then we can modify F[x] to output x and
the decrypted signal value. The receiver compares this output signal value with
the true value. If they are equal, R knows that output x is not junk.

Handling Unbalanced Branching Programs. The above discussion can be
naturally extended to the balanced BP setting, wherein we have a full binary
tree of depth d. When the BP is unbalanced, like our BPs for PSI and PSU, the
above approach does not work, because the sender does not know a priori which
branches stop prematurely. We solve this issue via the following technique. We
design the circuit G to work in two modes: normal mode (as explained above)
and halting mode, which is triggered when its input signals a leaf node. In halting
mode, the circuit G will release its hardwired input x, assuming the halt is an
accept. Executing the above blueprint requires striking a delicate balance to have
both correctness and security.

Comparison with [ABD+21]. At a high level, the garbled-circuit-based laconic
PSI construction of [ABD+21] is an ad hoc and specific instantiation of our
general methodology. In particular, for a receiver with m = 2k elements (for
k := polylog(λ)), the construction of [ABD+21] builds a full binary tree of depth
k, with the m elements appearing sorted in the leaves, Merkle hashed all the
way up in a specific way. In particular, the pre-image of each node’s hash value
is comprised of its two children’s hashes as well as some additional encoded
information about its sub-tree, enabling an evaluator, with an input x, to make
a deterministic left-or-right downward choice at each intermediate node. This
is a very specific BP instantiation of PSI, where the intermediate BP nodes,
instead of running index predicates (e.g., going left/right if the ith bit is 0/1),
they run full-input predicates Φ : x 	→ {0, 1}, where Φ is defined based on the
left sub-tree of the node. Our approach, on the other hand, handles branching
programs for index predicates, and we subsume the results of [ABD+21] as a
special case. In particular, we show how to design simple index-predicate BPs for
PSI, PSU, and wildcard matching, the latter two problems are not considered
by [ABD+21].

In summary, our construction generalizes and simplifies the approach
of [ABD+21], getting much more mileage out of the garbled-circuit based app-
roach. For example, [ABD+21] builds a secure protocol for a specific PSI-based
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BP which is in fact a decision tree: namely, the in-degree of all internal nodes
is one. On the other hand, we generalize this concept to handle all decision
trees and even the broader class of branching programs, in which the in-degree
of intermediates nodes can be greater than one. Moreover, we introduce some
new techniques (e.g., for handling unbalanced BPs) that may be of independent
interest.

Comparison with [DGGM19]. The work of Döttling, Garg, Goyal, and Mala-
volta [DGGM19] builds laconic conditional disclosure of secrets (CDS) involving
a sender holding an NP instance x and a message m, and a receiver holding x
and a potential witness w for x. If R(x,w) = 1, where R is the corresponding
relation R, the receiver learns m; else, the receiver learns no information about
m. They show how to build two-round laconic CDS protocols from CDH/LWE
with polylogarithmic communication and polylogarithmic sender computation.
The CDS setting is incomparable to ours. The closest resemblance is to think of
x, the BP input, as the NP instance, and of the BP as the NP witness w. But
then under CDS, the input x is not kept hidden from the receiver. In particular,
it is not even clear whether laconic CDS implies laconic PSI.

3 Preliminaries

Throughout this work, λ denotes the security parameter. negl(λ) denotes a neg-
ligible function in λ, that is, a function that vanishes faster than any inverse
polynomial in λ.

For n ∈ N, [n] denotes the set {1, . . . , n}. If x ∈ {0, 1}n then the bits of x can
be indexed as x[i] := xi for i ∈ [n], where x = x1 . . . xn (note that indexing begins
at 1, not 0). x := y is used to denote the assignment of variable x to the value y.
If A is a deterministic algorithm, y ← A(x) denotes the assignment of the output
of A(x) to variable y. If A is randomized, y $← A(x) is used. If S is a (finite) set,
x $← S denotes the experiment of sampling uniformly at random an element x
from S. If D is a distribution over S, x $← D denotes the element x sampled from
S according to D. If D0,D1 are distributions, we say that D0 is statistically
(resp. computationally) indistinguishable from D1, denoted by D0 ≈s D1 (resp.
D0

c≡ D1), if no unbounded (resp. PPT) adversary can distinguish between the
distributions except with probability at most negl(λ).

If Π is a two-round two-party protocol, then (m1,m2) ← trΠ(x0, x1, λ)
denotes the protocol transcript, where xi is party Pi’s input for i ∈ {0, 1}. For
i ∈ {0, 1}, (xi, ri,m1,m2) ← viewΠ

i (x0, x1, λ) denotes Pi’s “view” of the execution
of Π, consisting of their input, random coins, and the protocol transcript.

Definition 1 (Computational Diffie-Hellman). Let G(λ) be an algorithm
that outputs (G, p, g) where G is a group of prime order p and g is a gener-
ator of the group. The CDH assumption holds for generator G if for all PPT
adversaries A

Pr
[

ga1a2 ← A(G, p, g, ga1 , ga2) :
(G, p, g) ← G(λ)

a1, a2 ←$Zp

]

≤ negl(λ).



Laconic Branching Programs from the Diffie-Hellman Assumption 331

Definition 2 (Learning with Errors). Let q, k ∈ N where k ∈ poly(λ),
A ∈ Z

k×n
q and β ∈ R. For any n = poly(k log q), the LWE assumption holds if

for every PPT algorithm A we have

|Pr [1 ← A(A, sA+ e)] − Pr [1 ← A(A,y)]| ≤ negl(λ)

for s $← {0, 1}k, e $← DZn,β and y $← {0, 1}n, where DZn,β is some error distribu-
tion.

The following definitions related to branching programs are modified from [IP07].

Definition 3 (Branching Program (BP)). A (deterministic) branching pro-
gram over the input domain {0, 1}λ and output domain {0, 1} is defined by a tuple
(V,E, T,Val) where:

– G := (V,E) is a directed acyclic graph of depth d.
– Two types of nodes partition V :

• Interior nodes: Have outdegree 2.3 The root node, denoted v
(0)
1 , has inde-

gree 0.
• Terminal/leaf nodes: Have outdegree 0. T denotes the set of terminal
nodes. Leaf nodes are labeled as T = {u1, . . . , u|T |}. Each ui ∈ T encodes
a value in {0, 1}.

– For every non-root node u ∈ V \ {v
(0)
1 } there exists a path from v

(0)
1 to u.

– Each node in V encodes a value in [λ]. These values are stored in the array
Val such that for all v ∈ V , Val[v] = i for some i ∈ [λ].

– The elements of the edge set E are formatted as an ordered tuple (v, v′, b)
indicating a directed edge from v ∈ V to v′ ∈ V with label b ∈ {0, 1}. If b = 0
(resp. b = 1), v′ is the left (resp. right) child of v.

BP Evaluation. The output of a branching program is defined by the function
BP : {0, 1}λ → {0, 1}, which on input x ∈ {0, 1}λ outputs a bit. Evaluation of
BP (see Fig. 2, right, and relevant function definitions below) follows the unique
path in G induced by x from the root v

(0)
1 to a leaf node u ∈ T . The output of

BP is the value encoded in u, Val[u].

– Γ : V \ T × {0, 1} → V takes as input an internal node v and a bit b and
outputs v’s left child if b = 0 and v’s right child if b = 1.

– Evalint : V \ T × {0, 1}λ → V takes as input an interior node v and a string of
length λ and outputs either v’s left or right child (Γ (v, 0) or Γ (v, 1), respec-
tively). See Fig. 2, left.

– Evalleaf : T → {0, 1} takes as input a terminal node u ∈ T and outputs the
value Val[u].

3 We assume no nodes have outdegree 1 since such nodes can be removed from the
BP w.l.o.g.
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Fig. 2. Interior node evaluation function Evalint and BP evaluation function BP.

Definition 4 (Layered BP). A BP of depth d is layered if the node set V can
be partitioned into d + 1 disjoint levels V =

⋃d
i=0 V (i), such that V (0) = {v

(0)
1 },

V (d) = T , and for every edge e = (u, v) we have u ∈ V (i), v ∈ V (i+1) for
some level i ∈ {0, . . . , d}. We refer to V (i) as the i-th level of the BP, or the
level at depth i. Nodes on level i are labelled from leftmost to rightmost: V (i) =
{v

(i)
1 , . . . , v

(i)

|V (i)|}.

We require that all branching programs in this work are layered.

4 Semi-honest Laconic 2PC with Branching Programs

Our construction uses hash encryption schemes with garbled circuits. The fol-
lowing definitions are taken directly from [ABD+21].

Definition 5 (Hash Encryption [DG17,BLSV18]). A hash encryption sch-
eme HE = (HGen,Hash,HEnc,HDec) and associated security notions are defined
as follows.

– HGen(1λ, n): Takes as input a security parameter 1λ and an input size n and
outputs a hash key pp.

– Hash(pp, z): Takes as input a hash key pp and z ∈ {0, 1}n, and deterministi-
cally outputs h ∈ {0, 1}λ.

– HEnc(pp, h, {mi,b}i∈[n],b∈{0,1}; {ri,b}): Takes as input a hash key pp, a
hash output h, messages {mi,b} and randomness {ri,b}, and outputs
{cthi,b}i∈[n],b∈{0,1}, (written concisely as {cthi,b}). Each ciphertext cthi,b is
computed as cthi,b = HEnc(pp, h,mi,b, (i, b); ri,b), where we have overloaded
the HEnc notation.

– HDec(z, {cthi,b}): Takes as input a hash input z and {cthi,b} and outputs n
messages (m1, . . . , mn). Correctness is required such that for the variables
above, (m1, . . . , mn) = (m1,z[1], . . . , mn,z[n]).

– Semantic Security: Given z ∈ {0, 1}n, no adversary can distinguish between
encryptions of messages made to indices (i, z̄i). For any PPT A, sam-
pling pp $←HGen(1λ, n), if (z, {mi,b}, {m′

i,b}) $← A(pp) and if mi,z[i] = m′
i,z[i]

for all i ∈ [n], then A cannot distinguish between HEnc(pp, h, {mi,b}) and
HEnc(pp, h, {m′

i,b}), where h ← Hash(pp, z).
– Anonymous Semantic Security: For a random {mi,b} with equal rows

(i.e., mi,0 = mi,1), the output of HEnc(pp, h, {mi,b}) is pseudorandom even
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in the presence of the hash input. Formally, for any z ∈ {0, 1}n, sampling
pp $←HGen(1λ, n), h ← Hash(pp, z), and sampling {mi,b} uniformly at random
with the same rows, then v := (pp, z,HEnc(pp, h, {mi,b})) is indistinguishable
from another tuple in which we replace the hash-encryption component of v
with a random string.

The following results are from [BLSV18,GGH19].

Lemma 1. Assuming CDH/LWE there exists anonymous hash encryption
schemes, where n = 3λ (i.e., Hash(pp, ·) : {0, 1}3λ 	→ {0, 1}λ).4 Moreover, the
hash function Hash satisfies robustness in the following sense: for any input
distribution on z which samples at least 2λ bits of z uniformly at random,
(pp,Hash(pp, z)) and (pp, u) are statistically close, where pp $←HGen(1λ, 3λ) and
u $← {0, 1}λ.

We also review garbled circuits and the anonymous property, as defined
in [BLSV18].

Definition 6 (Garbled Circuits). A garbling scheme for a class of circuits
C := {C : {0, 1}n 	→ {0, 1}m} consists of (Garb,Eval,Sim) satisfying the following.

– Correctness: For all C ∈ C, m ∈ {0, 1}n, Pr[Eval(˜C, {lbi,m[i]}) = C(m)] = 1,
where (˜C, {lbi,b}) $←Garb(1λ,C).

– Simulation Security: For any C ∈ C and m ∈ {0, 1}n: (˜C, {lbi,m[i]}) c≡
Sim(1λ,C,C(m)), where (˜C, {lbi,b}) $←Garb(1λ,C).

– Anonymous Security5 [BLSV18]: For any C ∈ C, if the output of C(x) for
x ∈ {0, 1}n is uniformly random, then the output of Sim(1λ,C, y) is pseudo-
random.

Lemma 2 ([BLSV18]). Anonymous garbled circuits can be built from one-way
functions.

Hash Encryption Notation. We assume Hash(pp, ·) : {0, 1}n 	→ {0, 1}λ, where
n = 3λ. {lbi,b} denotes a sequence of pairs of labels, where i ∈ [n] and
b ∈ {0, 1}. For r := {ri,b}, HEnc(pp, h, {lbi,b}; r) denotes ciphertexts {cthi,b},
where cthi,b = HEnc(pp, h, lbi,b, (i, b); ri,b). We overload notation as follows. {lbi}
denotes a sequence of 3λ elements. For r := {ri,b}, HEnc(pp, h, {lbi}; r) denotes a
hash encryption where both plaintext rows are {lbi}; namely, ciphertexts {cthi,b},
where cthi,b = HEnc(pp, h, {mi,b}; ri,b) and mi,0 = mi,1 = lbi, for all i.

Definition 7 (BP-2PC Functionality). We define the evaluation of a branch-
ing program in the two-party communication setting (BP-2PC) to be a two-round
protocol between a receiver R and a sender S such that:
4 The CDH construction of [BLSV18] satisfies a weaker notion of anonymity, in which

only some part of the ciphertext is pseudorandom. But for ease of presentation, we
keep the notion as is.

5 Called blind garbled circuits in [BLSV18].
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– R holds a branching program BP with evaluation function BP : {0, 1}λ →
{0, 1} and S holds a string id ∈ {0, 1}λ. In the first round of the protocol, R
sends the message m1 to S. In the second round S sends m2 to R.

– Correctness: If BP(id) = 1, then R outputs id. Otherwise, R outputs ⊥.
– Computational (resp., statistical) receiver security: BP-2PC achieves

receiver security if for all id ∈ {0, 1}λ, and all pairs of branching programs
BP0,BP1 we have that viewBP

S -2PC(BP0, id, λ) ≈ viewBP
S -2PC(BP1, id, λ). If

the distributions are computationally (resp., statistically) indistinguishable
then we have computational (resp., statistical) security.

– Computational (resp., statistical) sender security: BP-2PC achieves
sender security if for all branching programs BP, and all pairs id0, id1 ∈
{0, 1}λ with BP(id0) = 0 = BP(id1), we have that viewBP

R -2PC(BP, id0, λ) ≈
viewBP

R -2PC(BP, id1, λ). If the distributions are computationally (resp. statis-
tically) indistinguishable, we have computational (resp. statistical) security.

4.1 The BP-2PC Construction

In this section, we give a construction for a BP-2PC protocol, inspired by laconic
OT techniques [CDG+17,ABD+21]. Construction 1 uses hash encryption and
garbling schemes. A high-level overview is as follows.

1. The receiver party R hashes their branching program in a ‘specific way’ from
the leaf level up to the root. R then sends the message m1 = (dm, hroot) to
the sender, where dm is the maximum BP depth and hroot is the hash value
of the root node of the hashed BP.

2. The sender party S gets the message m1 = (dm, hroot) and garbles one circuit
for every possible level of the hash tree, (i.e., generates dm garbled circuits).
S starts with the leaf level and garbles circuit F (Fig. 3). F takes as input
a leaf node value and two random strings. If the leaf node value is 1, F
outputs the hardcoded sender element id and a random, fixed, signal string
r. Otherwise, F outputs two random strings (id′, r′). Then for every level
from the leaf parents to the root, S garbles the circuit V (also in Fig. 3).
Each V garbled by the sender has the labels of the previously generated
garbled circuit hardcoded. After garbling, S computes a hash encryption of
the root-level garbled circuit labels using the hash image hroot. Finally, S

sends m2 := (˜Cdm , . . . , ˜C0, {cth(0)i,b }, r) to R, where ˜Cw is the garbled circuit

associated with level w, {cth(0)i,b } is the encryption of the labels for ˜C0, and r
is the signal value.

3. For all root-to-leaf paths through the BP, R runs DecPath (Fig. 3, bottom)
on m2 searching for the path that will decrypt to a signal value equal to r
from m2. On input a path pth and m2, DecPath outputs a pair (idpth, rpth) to
R. If rpth = r, then R takes idpth to be S’s element.

Construction 1 (BP-2PC). We require the following ingredients for the two-
round, two-party communication BP construction.
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1. An anonymous and robust hash encryption scheme HE = (HGen,Hash,HEnc,
HDec), where Hash(pp, ·) : {0, 1}3λ 	→ {0, 1}λ.

2. An anonymous garbling scheme GS = (Garb,Eval,Sim).
3. Circuits F, V, and procedure DecPath, defined in Fig. 3.

The receiver holds a-potentially unbalanced-branching program BP of depth
d ≤ λ+1 as defined in Definition 3. The sender has a single element id ∈ {0, 1}λ.
BP-2PC := (GenCRS,R1,S,R2) is a triple of algorithms built as follows.

GenCRS(1λ): Return crs $←HGen(1λ, 3λ).
R1(crs,BP): BP has terminal node set T = {u1, . . . , u|T |}. Nodes in level

0 ≤ w ≤ d are labelled from leftmost to rightmost: V (w) = {v
(w)
1 , . . . , v

(w)

|V (w)|}.
– Parse crs := pp. The receiver creates a hashed version of BP, beginning at

the leaf level: For j ∈ [|T |], sample xj , x
′
j

$← {0, 1}λ and compute h
(d)
j ←

Hash(pp, (Val[uj ]×λ, xj , x
′
j)). Val[uj ]×λ indicates that Val[uj ] is copied λ times

to obtain either the all zeros or all ones string of length λ.
The remaining levels are hashed from level d − 1 up to 0 (the root):
1. For w from d − 1 to 0, |V (w)| nodes are added to level w. The hash value

of each node is the hash of the concatenation of its left child, right child,
and the index encoded in the current node. Formally: For j ∈ [|V (w)|], set
h
(w)
j ← Hash(pp, (h(w+1)

2j−1 , h
(w+1)
2j ,Val[v(w)

j ])), where Val[v(w)
j ] is the value

of the bit encoded in the j-th node of level w. If needed, padding is added
so that |Val[v(w)

j ]| = λ.
2. Let m1 := (dm, hroot), where dm = λ + 1 is the maximum tree depth and

hroot := h
(0)
1 is the root hash value. For all i ∈ [|T |], w ∈ {0, . . . , d}, and

j ∈ [|V (w)|], set st := ({xi}, {x′
i}, {v

(w)
j }). Send m1 to S.

S(crs, id,m1):

– Parse m1 := (dm, hroot) and crs := pp. Sample r, id′, r′ $← {0, 1}λ and padding
pad $← {0, 1}2(n−1). Let Cdm := F[id, id′, r, r′] (Fig. 3). Garble (˜Cdm , {lb(dm)i,b })
$←Garb(Cdm). For w from dm − 1 to 0 do:
1. Sample random rw and let Cw := V[pp, id, {lb(w+1)

i,b }, rw, r, id′, r′, pad].

2. Garble (˜Cw, {lb(w)
i,b }) $←Garb(Cw).

– Let {cth(0)i,b } $←HEnc(pp, hroot, {lb(0)i,b }).
– Send m2 := (˜Cdm , . . . , ˜C0, {cth(0)i,b }, r) to R2.

R2(crs, st,m2): Parse st := ({xi}, {x′
i}, {v

(w)
j }) and m2 := (˜Cdm , . . . , ˜C0, {cth(0)i,b },

r). ∀ leaves u ∈ T , let pthu := ((Val[u]×λ, x, x′), . . . , hroot) be the root to leaf u
path in BP. Let � be the length of pthu and let

(idu, ru) ← DecPath(pthu, ˜Cdm , . . . , ˜C0, {cth(0)i,b }).

If ru = r, then output idu and halt. If for all u ∈ T , ru �= r, then output ⊥.
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Fig. 3. Circuits F,V and procedure DecPath for construction 1. Circuits based on those
in Table 1 of [ABD+21].

R2 must run DecPath on every root-to-leaf path. R2 is written above as if there
is a unique path from the root to each leaf. But since we allow nodes to have
in-degree > 1, a leaf may be reachable from more than one path. In such a case,
the path iteration in R2 should be modified so that all paths are explored.

Communication Costs. The first message m1 is output by R1 and sent to S. m1

consists of the maximum depth dm and the hash digest hroot, which are O(log λ)
and λ bits, respectively. So the receiver’s communication cost is poly(dm, λ), and
since we assume dm = λ + 1, this is poly(dm, λ).Next, m2 is output by S and
sent to R2. m2 consists of ˜C0, ˜Ci for i ∈ [dm], {cth(0)i,b }i∈[n],b∈{0,1}, and r. So the
sender’s communication cost grows with poly(λ, dm, |id|), which is poly(λ).

Computation Costs. R1: performs |V | Hash evaluations and samples 2|T | random
strings of length λ. S: samples poly(λ, dm) random bits, garbles an F circuit,
garbles dm V circuits, and performs a hash encryption of 6λ garbled labels. The
sender’s computation cost is poly(λ, dm). R2: runs DecPath for every root-leaf
path. Each iteration of DecPath requires at most dm + 1 HDec and GS.Eval
evaluations. In total, R’s computation cost is O(λ, dm, |V |, |PTH|), where |PTH|
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is the total number of root-to-leaf paths in the BP. So we require |V | and |PTH|
to be poly(λ).

Lemma 3. Construction 1 is correct in the sense that (1) if BP(id) = 1, then
with overwhelming probability R2 outputs id and (2) if BP(id) = 0, then with
overwhelming probability R2 outputs ⊥.

Theorem 1. If HE is an anonymous and robust hash encryption (defined in
Lemma 1), and GS is an anonymous garbling scheme, then the BP-2PC protocol
of Construction 1 provides statistical security for the receiver and semi-honest
security for the sender.

The proofs of Lemma 3 and Theorem 1 are in Sects. 6 and 7, respectively.

5 Applications

Construction 1 can be used to realize multiple functionalities by reducing the
desired functionality to an instance of BP-2PC. One step of the reductions
involves constructing a branching program based on a set of bit strings.

At a high level, SetBP (Fig. 4) creates a branching program for a set of
elements S := {x1, . . . , xm} in three main steps. For concreteness, suppose the
goal is to use this BP for a private set intersection.

First, for every prefix a ∈ {ε} ∪ {0, 1} ∪ {0, 1}2 ∪ · · · ∪ {0, 1}λ of the elements
in S, a node va is added to the set of nodes V . If a ∈ S, then the value encoded
in va is set to 1; this is an ‘accept’ leaf. If |a| < λ, then the encoded value is set
to |a| + 1. When the BP is being evaluated on some input, |a| + 1 will indicate
the bit following prefix a. Next, edges are created between the BP levels. For
|a| < λ, if for b ∈ {0, 1}, node va‖b exists in V , then a b-labelled edge is added
from va to va‖b. For b ∈ {0, 1}, if va‖b /∈ V , then node va‖b is added to V with
an encoded bit 0. This is a ‘reject’ leaf. Then a b-labelled edge is added from va

to va‖b. Finally, the BP is pruned. If two sibling leaves are both encoded with
the same value, they are deleted and their parent becomes a leaf encoding that
same value.

The definition below generalizes this concept by allowing us to capture both
PSI and PSI via an indicator bit bpth. In the description above, bpth is set to 1
for the PSI setting. For PSU we set bpth = 0.

Construction 2 (Set to branching program). Figure 4 defines a procedure
to create a branching program from an input set S. SetBP(S, bpth) takes as input
a set S := {x1, . . . , xm} of m strings, all of length λ and a bit bpth and outputs
a tuple (V,E, T,Val) defining a branching program. The output BP is such that
if x ∈ S, then BP(x) = bpth, and if x /∈ S, then BP(x) = 1 − bpth.

Procedure SetBP runs in time O(λ|S|). In particular, when |S| = poly(λ),
SetBP generates the BP in time O(poly(λ)). The output BP has depth d ≤ λ+1
and the number of nodes is 2d + 1 ≤ |V | ≤ 2d+1 − 1. Evaluation of BP(x) for
arbitrary x ∈ {0, 1}λ takes time O(poly(λ)).
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Fig. 4. Procedure for constructing a BP from a set of m λ-bit strings. See Construc-
tion 2. Based on a description in [CGH+21].

BP Evaluation Runtime: Recall the BP evaluation algorithm in Fig. 2. Each loop
iteration moves down the tree one level. The number of iterations is at most the
tree depth, which is ≤ λ + 1 for a BP created in Fig. 4. Each iteration takes
constant time, so evaluation of BP(x) for any x ∈ {0, 1}λ takes time O(poly(λ)).

5.1 Private Set Intersection (PSI)

Assume a sender party has a set SS = {id} where id ∈ {0, 1}λ and a receiver has
a polynomial-sized set SR ⊂ {0, 1}λ. In this setting, we define PSI as follows.

Definition 8 (Private set Intersection (PSI) functionality with |SS|
= 1). Let Π be a two-party communication protocol. Let R be the receiver
holding set SR ⊂ {0, 1}λ and let S be the sender holding singleton set SS = {id},
with id ∈ {0, 1}λ. Π is a PSI protocol if the following hold after it is executed.

– Correctness: R learns SR ∩ {id} if and only if id ∈ SR.
– Receiver security: Π achieves receiver security if ∀id ∈ {0, 1}λ, and all

pairs SR0, SR1 ⊂ {0, 1}λ we have that viewΠ
S (SR0, id, λ) ≈ viewΠ

S (SR1, id, λ).
If the distributions are computationally (resp., statistically) indistinguishable
then we have computational (resp., statistical) security.
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– Sender security: Π achieves sender security if ∀λ ∈ N, SR ⊂ {0, 1}λ, and all
pairs id0, id1 ∈ {0, 1}λ \SR we have that viewΠ

R (SR, id0, λ) ≈ viewΠ
R (SR, id1, λ).

If the distributions are computationally (resp., statistically) indistinguishable
then we have computational (resp., statistical) security.

The PSI functionality can be achieved by casting it as an instance of BP-2PC:

1. R runs SetBP(SR, 1) (Fig. 4) to generate a branching program BPpsi such that
BPpsi(x) = 1 if x ∈ SR and BPpsi(x) = 0 otherwise.

2. R and S run BP-2PC with inputs BPpsi and id, respectively. By construction
of BP-2PC:

{

R learns id if BPpsi(id) = 1 =⇒ id ∈ SR

R does not learn id if BPpsi(id) = 0 =⇒ id /∈ SR

,

which satisfies the PSI correctness condition and security follows from the
security of Construction 1 for BP-2PC.

The computation and communication costs of the receiver and sender do not
depend on |SR|. If the receiver holds a polynomial-sized BP describing a set SR

of exponential size, then this PSI protocol can run in polynomial time.6

5.2 Private Set Union (PSU)

As before, assume the sender has a singleton set SS = {id} where id ∈ {0, 1}λ

and the receiver has a set SR. In this setting, we define PSU as follows.

Definition 9 (Private set union (PSU) functionality with |SS| = 1).
Let Π be a two-party communication protocol. Let R be the receiver holding set
SR ⊂ {0, 1}λ and let S be the sender holding singleton set SS = {id}, with
id ∈ {0, 1}λ. Π is a PSU protocol if the following hold after execution of the
protocol.

– Correctness: R learns SR ∪ {id}.
– Receiver security: Π achieves receiver security if ∀id ∈ {0, 1}λ, and all

pairs SR0, SR1 ⊂ {0, 1}λ we have that viewΠ
S (SR0, id, λ) ≈ viewΠ

S (SR1, id, λ).
If the distributions are computationally (resp., statistically) indistinguishable
then we have computational (resp., statistical) security.

– Sender security: Π achieves sender security if ∀SR ⊂ {0, 1}λ, and all pairs
id0, id1 ∈ SR we have that viewΠ

R (SR, id0, λ) ≈ viewΠ
R (SR, id1, λ). If the dis-

tributions are computationally (resp., statistically) indistinguishable then we
have computational (resp., statistical) security.

The PSU functionality can be achieved by casting it as an instance of BP-2PC:

6 This assumes R already has the polynomial-sized BP and does not have to build it
from their exponential-sized set SR.
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1. R runs SetBP(SR, 0) (Fig. 4) to generate a branching program BPpsu such
that BPpsu(x) = 1 if x /∈ SR and BPpsu(x) = 0 otherwise.

2. R and S run BP-2PC with inputs BPpsu and id, respectively. By construction
of BP-2PC:

{

R learns id if BPpsu(id) = 1 =⇒ id /∈ SR

R does not learn id if BPpsu(id) = 0 =⇒ id ∈ SR

,

which satisfies the PSU correctness condition and security follows from the
security of Construction 1 for BP-2PC.

The computation and communication costs of the receiver and sender do not
depend on |SR|. If the receiver holds a polynomial-sized BP describing a set SR

of exponential size, then this PSU protocol can run in polynomial time.7

5.3 Wildcards

Definition 10 (Wildcard). In a bit string a wildcard, denoted by an asterisk
∗, is used in place of a bit to indicate that its position may hold either bit value.
In particular, the wildcard character replaces only a single bit, not a string. (E.g.
00∗ = {000, 001} and ∗ ∗ 0 = {000, 010, 100, 110}.)

SetBP in Fig. 4 creates a branching program based on a set that does not
contain strings with wildcards. Figure 5 presents a modified version called SetBP∗

which creates a BP based on a singleton set containing a string with wildcard
elements. Using SetBP∗ instead of SetBP in the constructions for PSI and PSU
above allows the receiver’s set to contain wildcards.

SetBP∗ runs in O(λ) time. The resulting BP has depth k, or λ−k, where k is
the number of wildcard indices, and will contain 2k+1 nodes, where k ≤ λ is the
number of non-wildcard indices. Since the depth leaks the number of wildcards
in x, the receiver’s message m1 to the sender in Construction 1 contains the
maximum depth dm, instead of the true depth.
Overview of SetBP∗. SetBP∗ (Fig. 5) starts by forming an ordered ascending list
of all indices of x without wildcards. Then it loops over each of these indices. A
node is added to the BP for every prefix of x ending with an explicit (as opposed
to *) bit value. Each node value is set to the index of the next non-wildcard bit
in x. The node representing the final non-wildcard index is given value bpth. For
example, if x = 0 ∗ 1 ∗ 0, then we add prefix nodes vε, v0, v0∗1, v0∗1∗0, (where vε

is the root), and set their values to 1, 3, 5, bpth, respectively.
Each iteration adds an edge from the previous prefix node to the one just

created. This edge is labelled with the bit value at the current non-wildcard
index. Continuing with the example, in the iteration that node v0∗1 is created,
an edge from v0 to v0∗1 is added with label 1. Since SR only contains one element,
we also create a 1 − bpth leaf representing the prefix of the current interior node
7 This assumes R already has the polynomial-sized BP and does not have to build it

from their exponential-sized set SR.
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Fig. 5. Procedure for constructing a BP from a singleton set with a λ-bit string with
wildcards. See Construction 2 and Sect. 5.3.

with the final bit flipped. An edge labelled with this flipped bit is also added from
the previous node. In the example, v0∗0 is created with value 1 − bpth and edge
(v0∗, v0∗0, 0) is added. Once all non-wildcard indices of x have been considered,
the BP is returned. If |SR| > 1, SetBP∗ can be run multiple times to add more
leaf nodes to the BP. After the first SetBP∗ run, the zero-set initialization of
V,E, T should be omitted.

5.4 Fuzzy Matching

A fuzzy match [GRS22] in our PSI setting refers to the inclusion of an element
x ∈ SR in the intersection SR ∩ SS if SS contains an element that is δ-close to
x. The receiver sets a distance threshold δ, which defines an �∞ ball of radius
δ around all points in SR. If an element in SS falls within any of these balls,
it counts as a match and the point in SR at the center of this ball will be
included in the intersection set. Construction 1 can be used for PSI with fuzzy
matches defined with the �∞-norm as the distance metric (as considered in the
structure-aware PSI [GRS22]). This may be accomplished if the receiver’s BP
can be modified with the addition of wildcards to allow any BP input within an
�∞ ball centred at a point of SR to be accepted as a fuzzy match.

6 Proof of Lemma 3

Proof. (Condition (1): BP(id) = 1 ⇒ R2 outputs id w.o.p.)
Claim 1: When DecPath is evaluated on the correct path, it will output (id, r).
Proof of claim 1: Consider the root-to-leaf path of length � induced by the
evaluation of BP(id). By hypothesis BP(id) = 1, so the path leaf node encodes
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the value 1. For concreteness, suppose the induced path has the leftmost leaf of
the BP, u1 ∈ T , as the leaf endpoint. With this in mind, denote the path as,

pth[u1] := ((1λ, x1, x
′
1

︸ ︷︷ ︸

z�

), (h(�)
1 , h

(�)
2 ,Val[v(�−1)

1 ]
︸ ︷︷ ︸

z�−1

), . . . , (h(1)
1 , h

(1)
2 ,Val[v(0)

1 ]
︸ ︷︷ ︸

z0

), hroot).

(1)
For the remainder of the proof, node labels v will be identified with their encoded
values Val[v] to save space. Let (idu1 , ru1) ← DecPath(pth[u1], ˜Cdm , . . . , ˜C0,

{cth(0)i,b }), where ˜Cdm , . . . , ˜C0, {cth(0)i,b } are defined as in the construction. Then it
suffices to show that ru1 = r. Consider an arbitrary iteration w ∈ {0, . . . , � − 2}
of the loop in step 2 of DecPath:

2. (a) {lb(w)
i } ← HDec(zw, {cth(w)

i,b })

← HDec((h
(w+1)
1 , h

(w+1)
2 , v

(w)
1 ),HEnc(pp, h

(w)
1 , {lb(w)

i,b }; rw))

← HDec((h
(w+1)
1 , h

(w+1)
2 , v

(w)
1 ),HEnc(pp,Hash(pp, (h

(w+1)
1 , h

(w+1)
2 , v

(w)
1 )), {lb(w)

i,b }; rw))

Since the two terms indicated are equal, the labels {lb(w)
i } output by HDec

are the subset of {lb(w)
i,b } corresponding to the bits of zw := (h(w+1)

1 , h
(w+1)
2 ,

v
(w)
1 ). More precisely, lb(w)

i,0 := lb
(w)
i,zw[i] and lb

(w)
i,1 := lb

(w)
i,zw[i] for all i ∈ [n].

2. (b) {cth(w+1)
i,b } ← Eval(˜Cw, {lb(w)

i }).

{cth(w+1)
i,b } ← V[pp, id, {lb(w+1)

i,b }, rw, r, id′, r′, pad](h(w+1)
1 , h

(w+1)
2 , v

(w)
1 )

{cth(w+1)
i,b } ← HEnc(pp, h

(w+1)
1

︸ ︷︷ ︸

=Hash(pp,(h
(w+2)
1 ,h

(w+2)
2 ,v

(w+1)
1 ))

, {lb(w+1)
i,b }; rw) (2)

The first input h
(w+1)
1 is used in the input to HEnc because pth[u1] was defined

to have the leftmost leaf as an endpoint. In other words, travelling from the root,
pth[u1] always progresses to the left child.

In the final iteration of the loop, when w = � − 1, the steps expanded above
remain the same except for Eq. 2. When w = � − 1, Eq. 2 is instead

{cth(�)i,b} ← HEnc(pp, h
(�)
1

︸︷︷︸

=Hash(pp,(1λ,x1,x′
1))

, {lb(�)i,b}; r�−1).

With this in mind, the final two steps of DecPath are as follows.

3. {lb(�)i } ← HDec(z�, {cth(�)i,b})

{lb(�)i } ← HDec((1λ, x1, x
′
1),HEnc(pp,Hash(pp, (1

λ, x1, x
′
1)), {lb(�)i,b}))
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Since the two terms indicated above are equal, the labels {lb(�)i } output by
HDec are the subset of labels {lb(�)i,b} used in the input to HEnc, where the subset
corresponds to the bits of z� = (1λ, x1, x

′
1).

4. {idu1 , ru1 , pad} ← Eval(˜C�, {lb(�)i })

{idu1 , ru1 , pad} ← V[pp, id, {lb(�+1)
i,b }, r�, r, id

′, r′, pad](1λ, x1, x
′
1)

{idu1 , ru1 , pad} ← {idu1 ← id, ru1 ← r, and pad $← {0, 1}2(n−1)}

Then return (idu1 , ru1) to the receiver. The first input to V is 1λ, so the tuple
(idu1 , ru1) is equal to (id, r).

The receiver compares ru1 from DecPath with r in m2. Since these strings
are equal, the receiver takes idu1 output from DecPath as the sender’s element.
Hence, the receiver learns id when BP(id) = 1, completing the proof of claim 1.

In the above, we made use of the correctness properties of garbled circuit
evaluation and HE decryption. These guarantees give us that Pr[idu1 = id∧ru1 =
r | (idu1 , ru1) ← DecPath(pth[u1],m2)] = 1 when pth[u1] is the correct path
through the BP. In order for the correctness condition (1) to be met, it must
also be true that there does not exist any other path pth[u′] �= pth[u1] such that
ru′ = r where (idu′ , ru′) ← DecPath(pth[u′],m2). In other words, there must not
exist an incorrect path that decrypts the correct signal value r.

Claim 2: With at most negligible probability, there exists an incorrect path
that when input to DecPath, decrypts to the correct signal value r.
Proof of claim 2: To show that occurs with negligible probability, consider run-
ning DecPath on an incorrect path pth[u′] �= pth[u1]. Let pth[u1] and pth[u′] have
lengths � and �′, respectively where 1 ≤ �, �′ ≤ d. Suppose these paths are equal
at level α − 1 and differ at level α onward, for some α ∈ {0, . . . ,min{�, �′}}.
Suppose u1 ∈ T is the leftmost leaf, as above, and u′ ∈ T \ {u1} is the leaf
endpoint of pth[u′]. Let these paths be given by the following.

pth[u1] := ((u
(�)×λ
1 , x1, x

′
1

︸ ︷︷ ︸

z�

), (h
(�)
1 , h

(�)
2 , v

(�−1)
1

︸ ︷︷ ︸

z�−1

), . . . , (h
(α+1)
1 , h

(α+1)
2 , v

(α)
1

︸ ︷︷ ︸

zα

), (3)

(h
(α)
1 , h

(α)
2 , v

(α−1)
1

︸ ︷︷ ︸

zα−1

), . . . , (h
(1)
1 , h

(1)
2 , v

(0)
1

︸ ︷︷ ︸

z0

), hroot)

pth[u′] := ((u′(�′)×λ, x, x′
︸ ︷︷ ︸

z′
�′

), (h(�′), h′(�′), v(�′−1)

︸ ︷︷ ︸

z′
�′−1

), . . . , (h
(α+1)
3 , h

(α+1)
4 , v

(α)
2

︸ ︷︷ ︸

z′
α

), (4)

(h
(α)
1 , h

(α)
2 , v

(α−1)
1

︸ ︷︷ ︸

z′
α−1

), . . . , (h
(1)
1 , h

(1)
2 , v

(0)
1

︸ ︷︷ ︸

z′
0

), hroot).

Since pth[u′] differs from the correct path at level α, the steps of DecPath(pth[u′],
m2) and DecPath(pth[u1],m2) will be identical until loop iteration w = α. Con-
sider iteration w = α − 1 of DecPath(pth[u′],m2):
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2. (a) {lb′(α)
i } ← HDec(z′

α, {cth(α)
i,b })

← HDec((h
(α+1)
3 , h

(α+1)
4 , v

(α)
2 ),HEnc(pp, h

(α)
1 , {lb(α)

i,b }; rα−1))

← HDec((h
(α+1)
3 , h

(α+1)
4 , v

(α)
2 ),HEnc(pp, (h

(α+1)
1 , h

(α+1)
2 , v

(α)
1 ), {lb(α)

i,b }; rα−1)).

Since the indicated terms are equal, the {lb(α−1)
i } labels output are the labels

of circuit ˜Cα−1 corresponding to the bits of z′
α−1.

2. (b) {cth(α)
i,b } ← Eval(˜Cα−1, {lb(α−1)

i })

← V[pp, id, {lb(α)
i,b }, rα−1, r, id

′, r′, pad](h(α)
1 , h

(α)
2 , v

(α−1)
1 )

← HEnc(pp, h(α)
1 , {lb(α)

i,b }; rα−1).

In the last line, h
(α)
1 is used in the hash encryption due to the assumption that

the correct path has the leftmost leaf as an endpoint, meaning id[v(α+1)
1 ] = 0.8

Next, the w = α iteration of the loop proceeds as follows.

2. (a) {lb′(α)
i } ← HDec(z′

α, {cth(α)
i,b })

← HDec((h
(α+1)
3 , h

(α+1)
4 , v

(α)
2 ),HEnc(pp, h

(α)
1 , {lb(α)

i,b }; rα−1))

← HDec((h
(α+1)
3 , h

(α+1)
4 , v

(α)
2 ),HEnc(pp, (h

(α+1)
1 , h

(α+1)
2 , v

(α)
1 ), {lb(α)

i,b }; rα−1)).

The two indicated terms are not equal. Decrypting an HE ciphertext with
an incorrect hash preimage produces an output containing no PPT-accessible
information about the encrypted plaintext. For this reason, a prime was added
above to the LHS labels to differentiate them from the labels encrypted on the
RHS. Thus {lb′(α)

i } provides no information about {lb(α)
i,b }.

2. (b) {cth(α+1)
i,b } ← Eval(˜Cα, {lb′(α)

i }).

Note that {lb′(α)
i } are not labels of ˜Cα, and certainly not a subset of those labels

corresponding to a meaningful input. So the output {cth(α+1)
i,b } is a meaningless

set of strings, not a ciphertext.

For w from α to �′, every HDec operation will output {lb′(w)
i } which are not

circuit labels for ˜Cw and every evaluation Eval(˜Cw, {lb′(w)
i }) will output strings

with no relation to ˜Cw. In step 4, {idu′ , ru′ , pad} ← Eval(˜C�′ , {lb′(�′)
i }) is com-

puted. Since {lb′(�′)
i } are not labels, the evaluation output is meaningless. In

particular, the tuple (idu′ , ru′) output to R2 contains no PPT-accessible infor-
mation about (id, r). Hence Pr [ru′ = r] ≤ 2−λ + negl(λ). By assumption on the
size of BP, there are a polynomial number of root-to-leaf paths, thus by the
8 It is straightforward to change the proof to apply to cases of different correct paths.
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union bound the probability that any incorrect root-to-path causes DecPath to
output r is,

Pr[∃ u ∈ T \ {u1} s.t. ru = r | (idu, ru) ← DecPath(pth[u],m2)] ≤ poly(λ)

2λ
+ negl(λ).

The probability that R2 outputs id when BP(id) = 1 is the probability that none
of the incorrect paths output a signal value equal to r:

Pr [R2 outputs id | BP(id) = 1] ≥ 1 − poly(λ)
2λ

− negl(λ).

Thus proving claim 2 and correctness condition (1).

(Condition (2): BP(id) = 0 ⇒ R2 outputs ⊥ w.o.p.) In the proof of Theorem 1
we will show that when BP(id) = 0,

(˜Cdm , . . . , ˜C0, {cth(0)i,b }, r)
c≡ (˜C′

dm , . . . , ˜C′
0, {cth′(0)

i,b }, r′), (5)

where all primed values are sampled uniformly random. On the LHS, the circuits
all have r hardcoded, while the RHS is independent of r. So, for all fixed u ∈ T ,

Pr
[

ru = r | (idu, ru) ← DecPath(pth[u], (˜C′
dm , . . . , ˜C′

0, {cth′(0)
i,b }, r′))

]

≤ 1
2λ

,

where pth[u] denotes the path from the root to leaf u. By assumption on the size
of BP, there are a polynomial number of root-to-leaf paths, thus by the union
bound the probability that any root-to-leaf paths decrypt to output r is,

Pr
[

∃u ∈ T s.t. ru = r | (idu, ru) ← DecPath(pth[u], (˜C′
dm , . . . , ˜C′

0, {cth′(0)
i,b }, r′))

]

≤ poly(λ)
2λ

.

By Eq. 5, we must also have that the analogous probability for inputs
(˜Cdm , . . . , ˜C0, {cth(0)i,b }, r) is computationally indistinguishable. Thus,

Pr
[

∃u ∈ T s.t. ru = r | (idu, ru) ← DecPath(pth[u], (˜Cdm , . . . , ˜C0, {cth(0)i,b }, r))
]

≤ poly(λ)
2λ

+ negl(λ).

If R2 receives ru from DecPath s.t. ru = r, then R2 outputs idu. It follows that,

Pr [R2 outputs ⊥ | BP(id) = 0] ≥ 1 − poly(λ)
2λ

− negl(λ),

which completes the proof of Lemma 3. ��
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7 Proof of Theorem 1

Proof (Theorem 1 receiver security proof ). Note that node labels will be
identified with their encoded values to save space. Following Definition 7, for
any pair (BP0,BP1) consider the distribution below for i ∈ {0, 1}.

viewBP
S -2PC(BPi,id, λ) = (id, rS,m1,m2)

= (id, rS, (dm, hrooti), (˜Cdm , . . . , ˜C0,HEnc(pp, hrooti , {lb(0)i,b }), r)),

where rS are the sender’s random coins, hrooti is the root hash, and dm is
the maximum depth of branching program BPi. Since both BPs have security
parameter λ, both will have dm = λ + 1. Let di be the depth of BPi.

Robustness of HE implies that for all pp $←HGen(1λ, 3λ) and u ∈ T , the
distribution (pp,Hash(pp, (uλ, x, x′))), where x, x′ $← {0, 1}λ, is statistically close
to (pp, h$) where h$

$← {0, 1}λ. Hence Hash(pp, (uλ, x, x′)) statistically hides u.
At level di, BPi will have at least two leaf nodes with the same parent. Let u1, u2

be two such leaves and let v(di−1) be the parent. Node v(di−1) will then have
hash value,

h(di−1) ← Hash(pp, (h(di)
1 , h

(di)
2 , v(di−1)))

← Hash(pp, (Hash(pp, (uλ
1 , x1, x

′
1)),Hash(pp, (u

λ
2 , x2, x

′
2)), v

(di−1))).

Since h
(di)
1 and h

(di)
2 are both statistically close to uniform, we have that h(di−1) is

also statistically close to uniform. Continuing up the tree in this way, we see that
the root hash hrooti is also indistinguishable from random. Thus hroot0 ≈s hroot1 ,
which gives us viewBP

S -2PC(BP0, id, λ) ≈s viewBP
S -2PC(BP1, id, λ). ��

Proof (Theorem 1 sender security proof ).
Sender security will be proved through a sequence of indistinguishable hybrids in
two main steps. First, all garbled circuits in the sender’s message m2 are replaced
one at a time with simulated circuits. Then m2 is switched to random.

Sender security only applies when BP(id) = 0, so this will be assumed for the
proof. For concreteness, suppose the path induced on the BP by evaluating id
has the leftmost leaf as an endpoint. In particular, let

pth := ((Val[v(�)
1 ]×λ, x1, x

′
1

︸ ︷︷ ︸

z�

), (h(�)
1 , h

(�)
2 ,Val[v(�−1)

1 ]
︸ ︷︷ ︸

z�−1

), . . . , (h(1)
1 , h

(1)
2 ,Val[v(0)

1 ]
︸ ︷︷ ︸

z0

), hroot)

(6)
be the leaf-root path induced on the hashed BP by evaluation of id, where � is the
path length and d is the BP depth.9 Since BP(id) = 0, the terminal node encodes
value 0, i.e., Val[v(�)

1 ] = 0. We let hroot ← Hash(pp, z0) and h
(i)
1 ← Hash(pp, zi)

for all 1 ≤ i ≤ �, where the zi values are defined as in Eq. 6. To save space, often

9 We assume � ≥ 1. If the receiver’s BP has depth 0, then two dummy leaves can be
introduced as root children.
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node labels v will be identified with their encoded index values Val[v] and the
padding superscript will be omitted from leaf node values.

Hyb0: [Fig. 6 left] The sender’s message m2 := (˜Cdm , . . . , ˜C0, {cth(0)i,b }, r) is formed
as described in the construction.

Hyb1: [Fig. 6 right] All circuits are simulated. The circuits are simulated so that
if R runs DecPath on pth with simulated circuits, then every step occurs, from
the view of R, as it would in Hyb0. This requires knowledge of pth and the
correct sequence of hash preimages z�, . . . , z0, where z� = (0λ, x1, x

′
1) and zj =

(h(j+1)
1 , h

(j+1)
2 , v

(j)
1 ) for j ∈ {0, . . . , �−1}. By assumption of pth, every evaluation

Eval(˜Cj , {lb(j)i }), where {lb(j)i } ← HDec(zj , {cth(j)i,b }), done in DecPath for j ∈
{0, . . . , �−1} will output ciphertexts HEnc(pp, h(j+1)

1 , {lb(j+1)
i,b }; rj)10. Moreover,

evaluation of Eval(˜C�, {lb(�)i }) outputs {id′, r′, pad} for random id′, r′ $← {0, 1}λ

and pad $← {0, 1}2(n−1). Simulating circuits ˜C�, . . . , ˜C0 is straightforward.
To simulate circuits ˜Cdm , . . . , ˜C�+1 note that none of these circuits can be used

by R in DecPath to obtain a meaningful output. Only this behaviour needs to be
mimicked. To this end, we define “ghost” values zdm , . . . , z�+1 with their associ-
ated hash values. The deepest is defined to be uniformly random: zdm

$← {0, 1}3λ.
Then for j ∈ {dm − 1, . . . , � + 1} define,

Fig. 6. Hyb0 and Hyb1 for the proof of Theorem 1.

10 The use of h
(j+1)
1 in HEnc is from the assumption that pth has the leftmost leaf as

an endpoint and hence the first hash input is always used in the V encryption. In
the general case, this hash value would be changed accordingly.
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h′(j) := Hash(pp, (

zj
︷ ︸︸ ︷

h′(j+1)
︸ ︷︷ ︸

Hash(pp,zj+1)

, h′(j+1), v′(j)))

where v′
j

$← {0, 1}λ. In this way, two-thirds of the zj preimage is uniformly random
which allows us to invoke the HE robustness property. Moreover, the zj values
create a chain of preimages similar to the zj values for 0 ≤ j ≤ � − 1.

Lemma 4. Hybrids Hyb0 and Hyb1 are computationally indistinguishable.

Fig. 7. Method of generating circuits in Hyb1.p depending on the value of p−1 relative
to the value of �. Use of h

(w+1)
1 in HEnc on the LHS is from the assumption that pth

has the leftmost leaf as an endpoint. ′′ is the ditto symbol.

Hyb2: Sample m2 at random.

Lemma 5. Hybrids Hyb1 and Hyb2 are computationally indistinguishable.

If m2 is pseudorandom to the receiver, then m2 created with some id0 is com-
putationally indistinguishable from m2 created with some other id1. Therefore
we have viewBP

R -2PC(BP, id0, λ)
c≡ viewBP

R -2PC(BP, id1, λ), hence the above two
lemmas establish computational sender security.

7.1 Proof of Lemma 4

To prove that Hyb0

c≡ Hyb1, we define a chain of dm+1 hybrids between Hyb0

and Hyb1. Then we prove each game hop is indistinguishable.

Hyb1.p for 0 ≤ p ≤ dm (Fig. 8 ): Let pth be as in Eq. 6 and recall we assume
that Val[v(�)

1 ] = 0. In Hyb1.p circuits ˜C0, . . . , ˜Cp−1 are simulated and circuits
˜Cp, . . . , ˜Cdm are honestly generated (as in Hyb0). In Hyb1.0, all circuits are
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generated honestly11 and in Hyb1.dm all circuits are simulated except for ˜Cdm .
The way a particular circuit ˜Ci for i ≤ p − 1 is simulated depends on if i < �,
i = �, or i > �, where � is the length of path induced by id. These differences are
shown in Fig. 7. As in Hyb1, simulating circuits ˜C�+1, . . . , ˜Cdm−1 is done using
ciphertexts created with “ghost” z values.

Fig. 8. Hyb1.p for 0 ≤ p ≤ dm. The last p+1 circuits in Hyb1.p are generated honestly
and the remainder are simulated. See Lemma 4.

Lemma 6. Hyb0

c≡ Hyb1.0 and Hyb1

c≡ Hyb1.dm .

Proof. First we will prove Hyb0

c≡ Hyb1.0 (Fig. 6 and Fig. 8). In both hybrids all
circuits are honestly generated, but they differ in two ways. The first is in how the
labels {lb(dm)} are formed. Both hybrids generate the tuple (˜Cdm , {lb(dm)i,b }) $←Garb

(F[id, id′, r, r′]) but Hyb1.0 additionally does {lb(dm)i } := {lb(dm)i,zdm [i]}. If � < dm,

then zdm is random. In that case, Eval(˜Cdm , {lb(dm)i,zdm [i]}) will return {id′, r′} w.o.p.

If � = dm then zdm := (0λ, x1, x
′
1) and so Eval(˜Cdm , {lb(dm)i,zdm [i]}) will return {id′, r′}

with probability 1. Hence the difference between the sets of labels is indistin-
guishable by the BP(id) = 0 assumption.

11 When p = 0, Hyb1.p is defined so that circuits ˜C0, . . . , ˜C−1 are simulated, which we
define to mean that no circuits are simulated.
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The second difference between Hyb0 and Hyb1.0 is in how {cth(0)i,b } is formed.

In Hyb0 we define {cth(0)i,b } $←HEnc(pp, hroot, {lb(0)i,b }). While Hyb1.0 does {cth(0)i,b }
$←HEnc(pp, hroot, {lb(0)i }), where {lb(0)i } := {lb(0)i,z0[i]

}. Since hroot ← Hash(pp, z0),

by semantic security of hash encryption we have that HEnc(pp, hroot, {lb(0)i }) c≡
HEnc(pp, hroot, {lb(0)i,b }), completing the proof of Hyb0

c≡ Hyb1.0.

Next we prove Hyb1

c≡ Hyb1.dm . In Hyb1 (Fig. 6) all circuits are sim-
ulated. In Hyb1.dm (Fig. 8) all circuits except for ˜Cdm are simulated. The
hybrids are the same after constructing ˜Cdm and its labels. So, either hybrid
can be simulated with r, the induced path pth, and (˜Cdm , {lb(dm)i }). For
brevity, let (˜C, {lbi}) and (˜C′, {lb′

i}) denote the distribution of (˜Cdm , {lb(dm)i })
in Hyb1 and Hyb1.0, respectively. Then (˜C, {lbi}) $←Sim(F, {id′, r′}) for random
id′, r′ $← {0, 1}λ. In Hyb1.0, letting Cdm := F[id, id′, r, r′] for random r, we have
( ˜C′, {lbi,b}) $←Garb(Cdm) and {lb′

i} := {lbi,zdm [i]}, where zdm
$← {0, 1}3λ if � < dm

and zdm := (Val[v(dm)
1 ]×λ, x1, x

′
1) otherwise, where Val[v(dm)

1 ]×λ = 0λ. By gar-
bling simulation security ( ˜C′, {lb′

i})
c≡ Sim(F,Cdm(zdm))

c≡ Sim(F, {id′, r′}). If
� < dm and zdm is random, then Cdm(zdm) = {id, r} with probability 2−λ. If
� = dm and zdm := (0λ, x1, x

′
1) then Cdm(zdm) = {id′, r′} with probability 1. Thus,

(r, pth, ˜C, {lbi}) c≡ (r, pth, ˜C′, {lb′
i}), proving Hyb1

c≡ Hyb1.0 and completing the
proof of Lemma 6. ��

Lemma 7. For all p ∈ {0, . . . , dm − 1}, Hyb1.p

c≡ Hyb1.p+1.

Proof. First, consider the circuits created in either hybrid:

Hyb1.p :

Garb
︷ ︸︸ ︷

˜Cdm , . . . , ˜Cp+1, ˜Cp,

Sim
︷ ︸︸ ︷

˜Cp−1, . . . , ˜C0

Hyb1.p+1 : ˜Cdm , . . . , ˜Cp+1
︸ ︷︷ ︸

Garb

, ˜Cp, ˜Cp−1, . . . , ˜C0
︸ ︷︷ ︸

Sim

˜Cdm , {lb(dm)i,b }, . . . , ˜Cp+1, {lb(p+1)
i,b } are the same in both hybrids. They differ only

in the distribution of (˜Cp, {lb(p)i }); it is generated honestly in Hyb1.p and simu-
lated in Hyb1.p+1. There are three possible ways (˜Cp, {lb(p)i }) can be simulated
in Hyb1.p+1 depending on the value of p relative to � (see Fig. 7, but note that it
shows Hyb1.p, not Hyb1.p+1). First, if p < �, then (˜Cp, {lb(p)i }) is simulated using
a hash encryption of {lb(p+1)

i } with zp+1. If p = �, then (˜Cp, {lb(p)i }) is simulated
using random output since BP(id) = 0. Finally, if p > �, then (˜Cp, {lb(p)i }) is
simulated using a hash encryption of {lb(p+1)

i } using “ghost” value zp+1. We will
prove that in each case it holds that (˜Cp, {lb(p)i })Hyb1.p

c≡ (˜Cp, {lb(p)i })Hyb1.p+1
.
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1. If p < �:

Hyb1.p :

{

(˜Cp, {lb(p)i,b }) $←Garb(V[pp, id, {lb(p+1)
i,b }, rp, r, id

′, r′, pad])

{lb(p)i } := {lb(p)i,zp[i]
} where zp = (h(p+1)

1 , h
(p+1)
2 , v

(p)
1 )

Hyb1.p+1 :

{

{cth(p+1)
i,b } ← HEnc(pp, h(p+1)

1 , {lb(p+1)
i }; rp)

(˜Cp, {lb(p)i }) $←Sim(V, {cth(p+1)
i,b })

(7)

By simulation security of garbled circuits,

(˜Cp, {lb(p)i })Hyb1.p

c≡ Sim(V,Cp(zp))
c≡ Sim(V,HEnc(pp, h(p+1)

1 , {lb(p+1)
i,b }; rp)). (8)

The use of h
(p+1)
1 in Eq. 8 is due to the assumption that the path induced

by id has the leftmost node as its terminal node. So by definition of Cp, its
hardwired labels {lb(p+1)

i,b } will be encrypted under h
(p+1)
1 . Equation 8 is iden-

tical to the RHS of Eq. 7, and thus when p > � we have (˜Cp, {lb(p)i })Hyb1.p

c≡
(˜Cp, {lb(p)i })Hyb1.p+1

.
2. If p = �:

Hyb1.p :

{

(˜Cp, {lb(p)i,b }) $←Garb(V[pp, id, {lb(p+1)
i,b }, rp, r, id

′, r′, pad])

{lb(p)i } := {lb(p)i,zp[i]
} where zp = (0λ, x1, x

′
1)

Hyb1.p+1 :

{

(˜Cp, {lb(p)i }) $←Sim(V, {id′, r′, pad})
where id′, r′ $← {0, 1}λ ; pad $← {0, 1}2(n−1)

(9)

By simulation security of garbled circuits,

(˜Cp, {lb(p)i })Hyb1.p

c≡ Sim(V,Cp(zp))
c≡ Sim(V, {id′, r′, pad}). (10)

When p = �, zp = (0λ, x1, x
′
1) which causes Cp(zp) to output a random ID

and signal string. So, the RHS of Eq. 10 is identical to the first line of Eq. 9.
Thus if p = �, we have (˜Cp, {lb(p)i })Hyb1.p

c≡ (˜Cp, {lb(p)i })Hyb1.p+1
.

3. If p > �:

Hyb1.p :

{

(˜Cp, {lb(p)i,b }) $←Garb(V[pp, id, {lb(p+1)
i,b }, rp, r, id

′, r′, pad])

{lb(p)i } := {lb(p)i,zp[i]
} where zp = (h′(p+1), h′(p+1), v′(p))

Hyb1.p+1 :

⎧

⎪

⎨

⎪

⎩

{cth(p+1)
i,b } ← HEnc(pp, h′(p+1), {lb(p+1)

i }; rp)
(˜Cp, {lb(p)i }) $←Sim(V, {cth(p+1)

i,b })
where h′(p+1) ← Hash(pp, zp+1) is pseudorandom

(11)
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Consider evaluating ˜Cp on labels {lb(p)i,zp[i]
} as in Hyb1.p:

Eval(˜Cp, {lb(p)i,zp[i]
}) = V[pp, id, {lb(p+1)

i,b }, rp, r, id
′, r′, pad](h′(p+1), h′(p+1), v′(p))

=

{

HEnc(pp, h′(p+1), {lb(p+1)
i,b }; rp) if id[v′

p] = 0
HEnc(pp, h′(p+1), {lb(p+1)

i,b }; rp) otherwise

= HEnc(pp, h′(p+1), {lb(p+1)
i,b }; rp). (12)

Equation 12 is identical to the RHS of Eq. 11 (first), up to the labels
{lb(p+1)

i } in Eq. 11 vs. {lb(p+1)
i,b } in Eq. 12. By simulation security, the

labels {lb(p+1)
i } in Eq. 11 are computationally indistinguishable from labels

{lb(p+1)
i,zp+1[i]

}. Thus {lb(p+1)
i,zp+1[i]

}Hyb1.p

c≡ {lb(p+1)
i }Hyb1.p+1

. By HE semantic secu-

rity, HEnc(pp, h′(p+1), {lb(p+1)
i,b }; rp)

c≡ HEnc(pp, h′(p+1), {lb(p+1)
i }; rp), and hence

(˜Cp, {lb(p)i })Hyb1.p

c≡ (˜Cp, {lb(p)i })Hyb1.p+1
when p > �, which completes the proof

of Lemma 7. ��

7.2 Proof of Lemma 5

Lemma 5 states that Hyb1

c≡ Hyb2. So, we must show that m2 := (˜Cdm , . . . , ˜C0,

{cth(0)i,b }, r), as sampled in Hyb1, is computationally indistinguishable from ran-
dom. We will argue that each element of m2 is pseudorandom.

First consider the circuit ˜Cdm . It is formed as (˜Cdm , {lb(dm)i }) $←Sim(F, {id′, r′})
where id′, r′ $← {0, 1}λ. Since the inputs id′, r′ are random, by anonymous security
of garbled circuits the distribution (˜Cdm , {lb(dm)i }) is pseudorandom.

For w from dm − 1 to � + 1 the circuits are formed as (˜Cw, {lb(w)
i }) $←Sim(V,

{cth(w+1)
i,b }) where {cth(w+1)

i,b } $←HEnc(pp, h′(w+1), {lb(w+1)
i }). {cth(w+1)

i,b } is pseu-
dorandom by anonymous semantic security of HE, and so by anonymous security
of GS, (˜Cw, {lb(w)

i }) is also pseudorandom.
For w = � we have (˜C�, {lb(�)i }) $←Sim(V, {id′, r′, pad}) where id′, r′ $← {0, 1}λ,

pad $← {0, 1}2(n−1), so again by anonymous security of garbled circuits, the dis-
tribution (˜C�, {lb(�)i }) is pseudorandom.

For w from � − 1 to 0 we have {cth(w+1)
i,b } $←HEnc(pp, h(w+1)

1 , {lb(w+1)
i }) and

(˜Cw, {lb(w)
i }) $←Sim(V, {cth(w+1)

i,b }). Where, again, the use of h
(w+1)
1 in HEnc is

from the assumption on pth. For all w from �−1 to 0, {cth(w+1)
i,b } is pseudorandom

by anonymous semantic security of HE, and thus by anonymous security of GS,
(˜Cw, {lb(w)

i }) is also pseudorandom.
Next in m2 is the ciphertext, which in Hyb1 is formed as {cth(0)i,b } $←HEnc(pp,

hroot, {lb(0)i }). {cth(0)i,b } is pseudorandom by anonymous semantic security of HE.
The final element of m2 is the signal string r, which is sampled uniformly at
random. Hence m2 is pseudorandom in the view of R, proving Hyb1

c≡ Hyb2

and completing the proof. ��
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Remark 1. In the proofs above, we assumed that the path induced by evaluat-
ing BP(id) always travelled to the left child. In the general case, the path in Eq. 6
ending in v

(�)
1 just needs to be changed to the path induced by BP(id) ending in

the appropriate leaf u ∈ T . The proofs should then be updated accordingly.
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