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Abstract. We present ReSolveD, a new candidate post-quantum signa-
ture scheme under the regular syndrome decoding (RSD) assumption
for random linear codes, which is a well-established variant of the well-
known syndrome decoding (SD) assumption. Our signature scheme is
obtained by designing a new zero-knowledge proof for proving knowl-
edge of a solution to the RSD problem in the recent VOLE-in-the-head
framework using a sketching scheme to verify that a vector has weight
exactly one. We achieve a signature size of 3.99 KB with a signing time of
27.3 ms and a verification time of 23.1 ms on a single core of a standard
desktop for a 128-bit security level. Compared to the state-of-the-art
code-based signature schemes, our signature scheme achieves 1.5×–2×
improvement in terms of the common “signature size + public-key size”
metric, while keeping the computational efficiency competitive.

1 Introduction

Zero-knowledge (ZK) proof is an important cryptographic tool that enables
a prover to convince a verifier of the validity of a statement without reveal-
ing any further information. ZK proofs find a lot of applications in various
contexts, e.g., secure multi-party computation (MPC), machine learning, and
blockchain. Using the Fiat-Shamir heuristic [28], we can transform public-coin
zero-knowledge proofs into signature schemes. In particular, this is the main
approach to building code-based signature schemes. The recent call of NIST for
standardizing post-quantum signatures expressed its primary interest in addi-
tional signature schemes that are not based on structured lattices [44], which
promotes the research of non-lattice-based signature schemes, particularly code-
based signatures.

The well-known syndrome decoding (SD) problem over a binary field F2 asks,
given a matrix H ∈ F

(m−k)×m
2 and a target vector y ∈ F

m−k
2 , to recover a noise

vector e ∈ F
m
2 such that H · e = y for some sparse e of exact weight w � m.
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The worst-case SD problem in certain parameter regimes is known to be NP-
hard [6,13], and its average-case analogue is one of the most promising assump-
tions for post-quantum cryptography. In the seminal work from three decades
ago, Stern [51] introduced the first zero-knowledge proof to prove knowledge
of a solution to the SD problem. However, the communication cost is signif-
icant due to the high soundness error, and thus the signature size would be
very large (i.e. about 37 KB for 128-bit security), when being compiled using
the Fiat-Shamir transform. Since then, a few prior works (e.g., [2,20,29,41,52])
optimized Stern’s protocol, but the communication cost is still high. To avoid the
issue of high soundness error, subsequent code-based signature schemes resort
to different code-based problems, e.g., (a) LESS (and some subsequent improve-
ments) [5,14,47] adopts the linear/permutation code equivalence problem, and
(b) Durandal [3] depends on the rank SD problem over F2m . Recently, based
on the SD problem, the works [1,15,18,26,27,30,42] obtain significantly lower
soundness errors by building zero-knowledge proofs based on the MPC-in-the-
head paradigm [35], and achieve the best efficiency for now in terms of the
common “signature size + public-key size” metric. We summarize the efficiency
and assumptions of recent code-based signature schemes in Table 1. Among these
schemes, Wave [22] is the only signature scheme that departs from the line that
transforms zero-knowledge proofs with Fiat-Shamir. Instead, Wave adopts the
hash-and-sign paradigm that depends on the existence of a code-based trap-
door permutation, which leads to a very large size of public keys. Wave achieves
smaller signature sizes but relies on a non-standard code-based assumption. For
the common “signature size + public-key size” metric, the Fiat-Shamir-based
schemes still offer better performance.

In this work, we focus on designing a new code-based signature scheme under
the regular syndrome decoding (RSD) assumption [4], a well-established variant
of the well-known SD assumption. Specifically, RSD is the same as SD, except
for requiring that the noise vector e is regular, i.e., e ∈ F

m
2 is divided into

w consecutive blocks of length m/w, where each block has exactly one noisy
coordinate. Recent works [26,38] presented a reduction from SD to RSD, which
builds confidence in the hardness of the RSD problem from a theoretic point of
view. Furthermore, the hardness of the RSD problem was thoroughly analyzed
by Carozza et al. [18], which gives us more confidence. As far as we know, the
regular structure of noises does not lead to significantly better attacks when
the code rate is kept large (and thus the recent algebraic attack [17] can be
bypassed).

1.1 Our Contributions

In this paper, we put forward a new zero-knowledge (ZK) protocol on proving
knowledge of a solution to the RSD problem over F2. By using the Fiat-Shamir
transform, we compile the zero-knowledge protocol into a code-based signature
scheme (called ReSolveD). Compared to the state-of-the-art code-based signature
schemes, ReSolveD reduces the total size of the signature and public key by
a factor of 1.5×–2×, while keeping the signing and verification performance
competitive. In Table 1, we compare the efficiency of ReSolveD with the recent
code-based signature schemes at the 128-bit security level. Note that LESS [47]
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Table 1. Comparison of code-based signature schemes for 128-bit security
level. Reported runtimes are extracted from original publications, using a 3.5 GHz
Intel Xeon E3-1240 v5 for Wave [22], a 2.8 GHz Intel Core i5-7440HQ for Durandal [3],
a 2.1 GHz Intel Core i7-12700 CPU for LESS [47], a 3.8 GHz Intel Core i7 supports
AVX2 and AES instructions for [26,27], a 3.1 GHz Intel Core i9-9990K using AVX2
for [1], an Intel Xeon E-2378 with frequency fixed at 2.6 GHz for [42] and a conservative
upper bound assuming a 3.8 GHz CPU for [18]. We benchmarked our ReSolveD-128 on
a Ubuntu 20.04 LTS machine with AMD Ryzen 5 3600 CPU and 16 GB of RAM using
AVX2.

Scheme Sizes in KB Runtimes in ms Assumption

|sig| |pk| |sig| + |pk| tsign tverify

Wave [22] 1.59 3276.8 3278.39 300 − large-weight SD over F3, (U, U + V )-codes indist.

Durandal-I [3] 4.06 15.25 19.31 4 5 Rank-SD over F2m

Durandal-II [3] 5.02 18.61 23.63 5 6 Rank-SD over F2m

LESS-FM-I [5] 15.2 9.77 24.97 − − Linear Code Equivalence

LESS-FM-II [5] 5.25 205.74 210.95 − − Perm. Code Equivalence

LESS-FM-III [5] 10.39 11.57 21.96 − − Perm. Code Equivalence

LESS-1b [47] 8.4 13.6 22 125.52 129.24 Linear Code Equivalence

LESS-1i [47] 5.8 40.8 46.6 121.10 125.43 Linear Code Equivalence

LESS-1 s [47] 5.0 95.2 100.2 98.38 101.62 Linear Code Equivalence

CF-LESS-1(s = 2) [21] 2.42 13.61 16.04 − − CF Code Equivalence

CF-LESS-1(s = 4) [21] 1.80 40.81 42.61 − − CF Code Equivalence

GFS-256 [30] 23.98 0.11 24.09 − − SD over F256

GFS-1024 [30] 19.76 0.12 19.88 − − SD over F1024

FJR21-fast [27] 22.6 0.09 22.69 12.9 12.2 SD over F2

FJR21-short [27] 16.0 0.09 16.09 62.3 56.6 SD over F2

BGKM-Sig1 [15] 24.0 0.1 24.1 − − SD over F2

BGKM-Sig2 [15] 19.3 0.2 19.5 − − (QC)SD over F2

BGKM-Sig3 [15] 15.6 0.2 15.8 − − (QC)SD over F2

FJR22-Var1f [26] 15.6 0.09 15.69 − − SD over F2

FJR22-Var1s [26] 10.9 0.09 10.99 − − SD over F2

FJR22-Var2f [26] 17.0 0.09 17.09 13.4 12.7 SD over F2

FJR22-Var2s [26] 11.8 0.09 11.89 64.2 60.7 SD over F2

FJR22-Var3f [26] 11.5 0.14 11.64 6.4 5.9 SD over F256

FJR22-Var3s [26] 8.26 0.14 8.4 29.5 27.1 SD over F256

AGH+-fast [1] 11.83 0.14 11.97 1.30 0.98 SD over F256

AGH+-short [1] 8.28 0.14 8.42 2.87 2.59 SD over F256

AGH+-shorter [1] 6.63 0.14 6.77 26.43 25.79 SD over F256

AGH+-shortest [1] 5.56 0.14 5.7 320.66 312.67 SD over F256

MHJ+-Vanilla-short [42] 8.27 0.14 8.6 4.5 4.17 SD over F256

MHJ+-Vanilla-shorter [42] 6.6 0.14 6.94 45.06 42.02 SD over F256

MHJ+-PoW-short [42] 7.78 0.14 8.11 4.34 4 SD over F256

MHJ+-PoW-shorter [42] 6.06 0.14 6.34 42.55 39.75 SD over F256

CCJ-rsd-f [18] 12.52 0.09 12.61 2.8∗ − RSD over F2

CCJ-rsd-m1 [18] 9.69 0.09 9.78 17∗ − RSD over F2

CCJ-rsd-m2 [18] 9.13 0.09 9.22 31∗ − RSD over F2

CCJ-rsd-s [18] 8.55 0.09 8.64 65∗ − RSD over F2

ReSolveD-128-Var1 3.99 0.08 4.07 27.3 23.1 RSD over F2

ReSolveD-128-Var2 3.43 0.08 3.51 158.73 153.11 RSD over F2

and CF-LESS [21] lack of parameter sets for 128-bit security, instead we use
their parameters for NIST category 1 security. While the work [1] describes
three variants of their code-based signature scheme, Table 1 only shows the third
one that has the best performance among the three. The shortest version of
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the signature scheme [1] has a signature size that is closest to the first variant
of ReSolveD among prior code-based signature schemes, but the signing and
verification timings are more than 10× larger than our scheme. Notice that the
shortest version of [1] also offers the smallest size in the “signature + public key”
metric. Our second variant achieves 1.5× improvement in terms of that metric
with half of the running time. In Sect. 6.2, we also compare ReSolveD with other
kinds of post-quantum signature schemes.

While most code-based signature schemes in the Fiat-Shamir line adopt the
MPC-in-the-head framework to design ZK proofs, we construct a ZK proof on
RSD problems in the VOLE-in-the-head framework [10]. In the VOLE-in-the-
head framework, Baum et al. present a non-interactive version of the SoftSpo-
kenOT technique [49] to generate information-theoretic message authentication
codes (IT-MACs), and then transform a designated-verifier ZK proof based on
IT-MACs (e.g., QuickSilver [56]) to a publicly-verifiable ZK proof. Our starting
point is to prove knowledge of a solution to the RSD problem using a ZK proof
based on IT-MACs, and then transform it to a public-coin ZK proof using the
VOLE-in-the-head paradigm. Due to the additive homomorphism and unforge-
ability of IT-MACs, the equation H · e = y is easy to prove. The key point is to
prove that e is a regular noise with an exact Hamming weight t.

Notice that we can use the approaches implied in previous code-based sig-
nature schemes (e.g., [1,26]) to prove the validity of e, but fail to obtain a
code-based signature scheme with signature size shorter than the state-of-the-
art schemes listed in Table 1. This requires us to exploit an approach that has
better compatibility with VOLE-in-the-head. In particular, we refine the sketch-
ing technique [16], which is used in verifiable function secret sharing (FSS),
to prove the constraint on noise e. Additionally, we adopt the recent half-tree
technique [32] to optimize the computation of GGM-based random vector com-
mitments. See Sect. 1.2 for more details of our technique.

1.2 Technical Overview

We give a high-level overview of the technical route underlying the ReSolveD sig-
nature scheme, then we highlight the technical contributions, which include a
novel method for validating the noise vector of an RSD problem and the half-tree
optimization integrated into the VOLE-in-the-Head framework.

Code-Based Signatures from VOLE-in-the-Head. A canonical paradigm in code-
based signatures is to first design a public-coin ZK proof for code-based problems
and then apply the Fiat-Shamir transform to make it a signature scheme. While
there are multiple choices in the design of ZK proofs, the recent VOLE-in-the-
Head framework [10] provides a promising new direction. In particular, within
this framework, we can generate IT-MAC relations in a public-coin fashion and
then convert designated-verifier ZK (which relies on such relations) into publicly-
verifiable ones. Given the rapid development of designated-verifier ZK [7,8,11,
23,24,53–56], this inspires us to design a designated-verifier ZK tailored to the
RSD problem and convert it into a code-based signature scheme using VOLE-
in-the-Head.
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In more detail, the IT-MAC generation of VOLE-in-the-Head begins with
the prover committing to a series of GGM trees. For each tree, the prover opens
all but one leaf node to the verifier, which allows them to generate a small
field VOLE correlation with the punctured index as the global key using the
technique in SoftSpokenOT [49]. By applying de-randomization and consistency
checking [37,45,46,49], the small field VOLE correlations can be aggregated so
that the global key size is large enough to ensure the binding property of IT-
MAC. Then the generated IT-MAC correlations are utilized by the subsequent
designated-verifier ZK protocol.

One caveat of the above process is that to open the GGM-based vector com-
mitment, the prover needs to know the punctured index, which is also the IT-
MAC global key. Nevertheless, once the global key is known by the prover, the
binding property fails to hold, and so does the soundness of the designated-
verifier ZK upon which it relies. The crucial observation in [10,19] is that since
the DVZK proof is public-coin, the vector commitment opening can be post-
poned until the proof has been completed. In this way, even if the prover learns
the global key, it can no longer change the proof messages that have already
been sent.

Checking the Noise Vector Using IT-MAC. We introduce the design of IT-MAC-
based designated-verifier ZK for the RSD problem. Our starting point is the
QuickSilver protocol [56] that provides an efficient method to verify the quadratic
relations among multiple IT-MAC authenticated triples. We now explain how
the validity check of the RSD noise vector can be streamlined into the verification
of multiple quadratic relations, a task in which the QuickSilver protocol excels.

We assume without loss of generality that the public matrix H is in the
systematic form, i.e., H = [I‖HB] and that the witness is split accordingly as
e = [eA‖eB]. Since IT-MACs are linearly homomorphic, the prover can commit
to eB and both parties check the Hamming weight constraint on the “virtual”
witness e = [y − HB · eB‖eB] to implicitly check the linear constraint.

Instead of relying on polynomials [1,26] or share-conversions [18] to check
the weight constraint, we prove the validity for each noise block by utilizing the
sketching technique introduced by Boyle, Gilboa and Ishai [16]. More concretely,
when proving the validity of the solution e = [e0‖e1‖ . . . ‖ew−1] ∈ F

m
2 to a RSD

problem, we first define w matrices Li ∈ F
4×m/w

2λ each consisting of four rows for
all i ∈ [0, w) (i.e., the linear sketches). The first two rows are uniformly sampled
and defined as ri

0, ri
1 ← F

m/w

2λ . The third row is defined as the component-wise
product of the first two rows, namely ri

0 ◦ ri
1. The last row is an all-1 vector.

Then we can compute the sketch �zi� by right-multiplying Li with �ei� where
�ei� is the noise block authenticated using IT-MAC [12,43].
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�zi� =

�

�
�
�

zi
0

zi
1

zi
2

zi
3

�

�
�
	 =

⎡
⎢⎢⎣

(ri
0)

T

(ri
1)

T

(ri
0 ◦ ri

1)
T

1 ... 1

⎤
⎥⎥⎦ · �ei�.

Finally, the verification procedure checks that the sketch zi = (zi
0, z

i
1, z

i
2, z

i
3)

satisfies the condition that zi
0 ·zi

1−zi
2 = 0 and zi

3−1 = 0 for all i ∈ [0, w). We view
the above expression as a degree-2 polynomial in ri

0, r
i
1, . . . , r

i
m/w whose coefficients

are determined by ei. Note that if ei is not a unit vector, then the condition holds
with probability less than 2/2λ from Schwartz-Zippel Lemma [50,59].

Using the sketching technique, we can convert the validity check of each
noise block into the verification of a simple multiplication relation. By running
the QuickSilver protocol which shows a way to prove low-degree polynomials
with very high efficiency, we can reduce all w linear checks to a single check by a
random-linear combination. We note that due to the application of the sketching
technique, our protocol still outperforms the polynomial-based protocols of [1,26]
even if we replace the MPC-in-the-Head proof with VOLE-in-the-Head.

Half-Tree Optimization. We observe that a large portion of the computational
overhead in the VOLE-in-the-Head framework originates from generating the
vector commitments. By applying the half-tree technique [32] we can populate
the GGM tree with half the number of calls to symmetric-key ciphers in the ran-
dom permutation model [31]. In VOLE-in-the-Head, the number of GGM trees
is linearly correlated with the communication overhead. Therefore, by optimiz-
ing the computational complexity in GGM tree generation, we can use fewer
but deeper trees, opening more possibilities in the communication-computation
trade-off.

1.3 Paper Organization

This paper is organized as follows: In Sect. 2 and Sect. 3, we introduce nota-
tions and definitions for necessary background knowledge on regular syndrome
decoding problem, VOLE-in-the-Head paradigm and linear sketching technique.
We present our more efficient zero-knowledge proof and signature scheme which
yields shorter proof and signature size in Sect. 4 and Sect. 5 respectively. To
conclude, we provide experimental evaluations of our construction and make
comparisons with other state-of-the-art signature schemes in Sect. 6.

2 Preliminaries

2.1 Notation

We use λ to denote the computational security parameter. We use log to denote
logarithms in base 2. We define [a, b) = {a, . . . , b−1} and write [a, b] = {a, . . . , b}
and [n] = [1, n]. We write x ← S to denote sampling x uniformly at random
from a finite set S. We use {xi}i∈S to denote the set that consists of all elements
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Table 2. Symbols and their meanings in this paper.

Notation Meaning

a , �a� A vector and its authentication

ai, a [i, j] The i-th coordinate and sub-vector with indices [i, j] of a

U, U[i], Uj A matrix, its i-th row and its j-th column

Ik The k × k identity matrix

M[a ], K[a ] IT-MAC tag and local key

m Length of the noise vector in RSD

m − k Length of the syndrome vector in RSD

w, d Hamming weight of the noise vector in RSD

F2, F
2τ′ , F

2ττ′ The base field in syndrome decoding and two extension fields

τ, τ ′ Degrees of field extensions where τ ′ = O(log(λ)) and ττ ′ ≥ λ

diag(Δ) The diagonal matrix with vector Δ on its diagonal

[a‖b ], [A‖B] The concatenation of two vectors or two matrices

[1 ... 1] The all-one row vector

a ◦ b The component-wise multiplication between two vectors

len(a ), wt(a ) The length and Hamming weight of a vector a

with indices in set S. When the context is clear, we abuse the notation and use
{xi} to denote such a set.

We use bold lower-case letters like a for column vectors and bold uppercase
letters like A for matrices. We let ai denote the i-th component of a (with a0

the first entry) and a[i, j] denote the subvector of a with indices [i, j]. Let len(a)
be the length of the vector a. Let wt(a) be the Hamming weight of the vector
a and let [a‖b], [A‖B] denote the concatenation of two vectors and matrices,
respectively. Let Ik denote the k × k identity matrix and [1 ... 1] denote the all-
one row vector where the dimension is implicit in the context. Let diag(a) be
the diagonal matrix with the vector a on its main diagonal. We use the notation
a ◦ b to denote the component-wise multiplication between two vectors a and b.

We consider the regular syndrome decoding problem over F2 in this work.
Let τ, τ ′ ∈ N and fix two monic irreducible polynomials f1(X), f2(X) of degrees
τ, τ ′ respectively. We define F2τ′ ∼= F2[X]/f2(X) and F2ττ′ ∼= F2τ′ [X]/f1(X).
Therefore, we can pack τ elements in F2τ′ or ττ ′ elements in F2 into one element
in F2λ . We also require ττ ′ ≥ λ. We list the symbols and their definitions of this
paper in Table 2.

2.2 Hash Functions

In our protocol, we utilize universal hash functions and circular correlation robust
hash functions. Following prior works [31], we define the security requirements
in Definition 1 and Definition 2.

Definition 1. A linear ε-almost universal family of hashes is a family of matri-
ces H ⊆ F

r×(n+h)
2 such that for any nonzero v ∈ F

n+h
2 , PrH←H[H ·v = 0] ≤ ε. A

matrix H is n-hiding if the distribution H · v is independent of v[0, n) for a uni-
formly random v ← F

n+h
2 . The hash family H is n-hiding if every hash function

in this family is n-hiding.
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Definition 2. Let H : {0, 1}λ → {0, 1}λ be a function. For Γ ∈ {0, 1}λ, define
Occr

Δ (x, b) = H(x⊕Γ )⊕ b ·Γ . We don’t allow the distinguisher to query the same
x with both 0 and 1 to avoid the trivial attack. For a distinguisher D, we define
the following advantage

AdvccrH :=
∣∣∣∣ Pr
Γ←{0,1}λ

[DOccr
Δ (·)(1λ) = 1] − Pr

f←Fλ+1,λ

[Df(·)(1λ) = 1]
∣∣∣∣ ,

where Fλ+1,λ denotes the set of all functions mapping (λ + 1)-bit inputs to λ-bit
outputs. H is (t, q, ε)-circular correlation robust if for all D running in time t
and making at most q queries to the oracle we have AdvccrH ≤ ε.

2.3 Regular Syndrome Decoding

We recall the regular syndrome decoding problem (RSD) where the noise vector
is the concatenation of several unit vectors. We inherit the notations from [26]
(named d-split syndrome decoding in that paper).

Definition 3. Let m, k,w, d be positive integers such that m > k, m > w and
d = w. The regular noise syndrome decoding problem with parameters (m, k,w, d)
is the following problem: Let H,e and y be such that:

1. H is uniformly sampled from F
(m−k)×m
2 ,

2. e is uniformly sampled from {[e0‖...‖ew−1] : ∀i ∈ [0, w),ei ∈ F
m
w
2 , ‖ei‖0 = 1},

3. y is defined as y := H · e. From (H,y), find e.

Systematic Form of RSD. Following previous works [18,26] we assume with-
out loss of generality that the matrix H is in the systematic form, i.e., H =
[Im−k‖HB]. Therefore, in the zero-knowledge protocol, the solution e = [eA‖eB]
can be compressed into a smaller one eB since the complete witness can be lin-
early expressed as e = [y − HB · eB‖eB].

The benefit of this optimization is two-fold. Firstly, by compressing the wit-
ness we can reduce the communication complexity of the ZK protocol, and there-
fore the signature size. Secondly, the linear expression implicitly enforces the
constraint that H · e = y, and thus we only need to check the Hamming weight
constraint on the “virtual” vector e = [y − HB · eB‖eB] in the ZK protocol.

The Hardness of RSD. A number of works studied the hardness of regular
syndrome decoding under different parameter regimes [33,38]. In particular,
some recent works utilize the regular noise structure into the state-of-the-art
cryptanalysis algorithms of syndrome decoding [17,18,25]. To the best of our
knowledge, the chosen parameters for our signature scheme lie in a region
where the exact relationship between the hardness of RSD and SD remains
unclear [25]. In Table 3, we choose parameters such that the RSD solution is
unique (

(
m
w

)w
< 2m−k) while the same parameter would lead to multiple solu-

tions if we drop the regularity constraint (
(
m
w

)
> 2m−k). In this region, the reg-

ular structure of noises does not lead to significantly better attacks [17,18,25].
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Fig. 1. Functionality for DVZK proofs of authenticated multiplication triples.

2.4 Information-Theoretic Message Authentication Codes

We use information-theoretic message authentication codes (IT-MACs) [12,43]
over F2λ . Specifically, let Δ ∈ F2λ be a global key. We use �x� = (K[x],M[x], x) to
denote that an element x ∈ F (where F ∈ {F2,F2λ} known by one party can be
authenticated by the other party who holds Δ and a local key K[x] ∈ F2λ , where a
MAC tag M[x] = K[x]+x·Δ is given to the party holding x. For a vector x ∈ F

�
2λ ,

we denote by �x� = (�x0�, ..., �x�−1�) a vector of authenticated values. For a
constant value c ∈ F2λ , it is easy to define �c� = (−c · Δ, 0, c). It is well known
that IT-MACs are additively homomorphic. That is, given public coefficients
c0, c1, . . . , c� ∈ F2λ , two parties can locally compute �y� :=

∑�−1
i=0 ci · �xi� + c�.

The IT-MAC authenticated value �x� can be opened by revealing x and M[x]
and the validity can be enforced by checking that M[x] = K[x] + x · Δ. The
security holds since opening �x� to any other value (K[x],M[x′], x′) is equivalent
to guessing the global key since Δ = (M[x] − M[x′]) · (x − x′)−1.

We can open multiple values �x0�, ..., �x�−1� in a batch by sending one MAC
tag as follows. The sender first reveals x′

0, ..., x
′
�−1, then using the additive homo-

morphism of IT-MAC, both parties can define �yi� = �xi�−x′
i for i ∈ [0, �). Now

it suffices to check that ∀i ∈ [0, �), yi = 0.
For task of checking multiple zero values �y0�, ..., �y�−1�, we can save commu-

nication by opening a random linear combination χ0 · �y0� + ... + χ�−1 · �y�−1�.
In particular, the sender can only send

∑�−1
i=0 χi ·M[yi] since

∑�−1
i=0 χi · yi = 0 for

uniformly random χi ← F2λ .

2.5 Designated-Verifier Zero-Knowledge for Quadratic Relations

Based on IT-MACs, a family of streamable designated-verifier zero-knowledge
(DVZK) proofs with fast prover time and a small memory footprint has been
proposed [7,8,11,23,24,53–56]. While these DVZK proofs can prove arbitrary
circuits, we only need them to prove a simple multiplication relation for our
purpose. Specifically, given a set of authenticated triples {(�xi�, �yi�, �zi�)}i∈[0,�)

over F2λ , these DVZK protocols can enable a prover P to convince a verifier V
that zi = xi · yi for all i ∈ [0, �). This is modeled by an ideal functionality shown
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in Fig. 1. In this functionality, an authenticated value �x� is input by two parties
P and V, meaning that P inputs (x,M) and V inputs (K,Δ). We say that �x� is
valid, if M = K + x · Δ.

QuickSilver. We use the QuickSilver protocol [56] to instantiate FDVZK. The
benefit of using this protocol is two-fold. Firstly, the protocol is public-coin
in the FsVOLE-hybrid model, making it compatible with the VOLE-in-the-Head
technique to be explained next. Secondly, the QuickSilver protocol excels at
proving many quadratic relations as required in proving the Hamming weight
constraint in the RSD problem, which only requires sending 2λ bits in total.

We briefly sketch how to prove multiple quadratic constraints in QuickSilver.
Suppose the prover wants to prove zi = xi · yi for i ∈ [0, �), the verifier samples
random challenges χ0, ..., χ�−1 ∈ F and evaluates the following value using the
IT-MAC relation M[x] = K[x] + x · Δ.

∑
i∈[0,�)

χi· (K[xi] · K[yi] + Δ · K[zi]) =
∑

i

χi · (xiyi − zi) · Δ2

+
∑

i

χi · (−xiM[yi] − yiM[xi] + M[zi]) · Δ +
∑

i

χi · M[xi]M[yi].

If the quadratic relations hold then this value should be a linear function of Δ.
To prove this, P simply sends the masked coefficients c1, c0 of that function to
V, who checks that c1 · Δ + c0 equals the masked left-hand side.

2.6 The Zero-Knowledge Functionality

We recall the definition of the ideal zero-knowledge functionality in Fig. 2. Look-
ing ahead, we will construct a public-coin designated-verifier zero-knowledge pro-
tocol that realizes the functionality FRSD−ZK in the FsVOLE-hybrid model, which
can then be transformed into a publicly-verifiable zero-knowledge protocol using
the techniques in [10].

Functionality FRSD−ZK

Both parties P and V have access to the RSD instance y = H · e for y ∈ F
m−k
2

and H ∈ F
(m−k)×m
2 . We assume the matrix H = [Im−k‖HB] is in the systematic

form.

– Input. Upon receiving (input, e) from P and (input) from V, the functionality
stores the input e. Let e = [e0‖...‖ew−1], where len(ei) = m/w for i ∈ [0, w).

– Prove. Upon receiving (prove) from both parties, the functionality checks that
e satisfies the following two constraints:
• Linear Constraint: It holds that H · e = y.
• Hamming Weight Constraint: It holds that wt(ei) = 1 for i ∈ [0, w).
If both constraints are satisfied, the functionality sends true to V. Otherwise, it
sends false.

Fig. 2. The zero-knowledge functionality for regular syndrome decoding
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3 VOLE-in-the-Head and Linear Sketching

In this section, we recapture the VOLE-in-the-head technique in [10] as well as
the sketching technique of [16] that form the basis of our signature scheme in
Sect. 5.

3.1 VOLE-in-the-Head

VOLE-in-the-Head is a technique proposed by Baum et al. [10] which allows
transforming the public-coin designated-verifier zero-knowledge protocols in the
VOLE-hybrid model into the publicly verifiable counterparts1. At the core of
this technique is the observation that GGM-style vector commitment can realize
an all-but-one random oblivious transfer functionality, which can then be trans-
formed into a VOLE protocol using the technique in SoftSpokenOT [49]. One
caveat is that to facilitate the simulation of OT from commitment, the verifier
has to send its choice in the clear; Nevertheless, this suffices for a public-coin
protocol since the verifier’s action is merely sending public coins and the OT’s
output can be delayed to the very end of the protocol.

GGM-Style Vector Commitment. Given a n-level GGM tree, let ri
j denotes

the j-th node on the i-th level where 0 ≤ i < n and 0 ≤ j < 2i. It’s well-
known that if the root node is uniformly random and the tree is generated
as ri+1

2j ‖ri+1
2j+1 := PRG(ri

j) for some length-doubling PRG then the leaf nodes
are pseudorandom. Moreover, for each leaf node, we can derive a random mes-
sage and an authenticator. Then all messages can be committed by hashing the
authenticators while all but one of them can be opened by presenting the sibling
nodes on the punctured path and the authenticator of the punctured message.
We model this vector commitment as an ideal functionality FVC in Fig. 3.

Functionality FVC

Let τ ′ ∈ N, τ ′ ≥ 1 and N = 2τ ′
. The functionality is run between two parties P

and V which are possibly corrupted by the adversary A. We have the following
commands.

– Upon receiving (commit) from P and V, the functionality samples mi ← {0, 1}λ

for i ∈ [0, N). If P is corrupted then it receives {mi}i∈[0,N) from the adversary
and locally records the values. Then it sends (done) to both parties.

– Upon receiving (get, α) from P and V, the functionality sends {mi}i∈[0,N),i�=α

to V.

Fig. 3. The ideal vector commitment scheme supporting all-but-one opening.

1 This technique somewhat resembles the classical MPC-in-the-head technique.
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SoftSpokenOT. Let PRG : F
λ
2 → F

n
2 be a pseudorandom generator. SoftSpo-

kenOT [49] utilizes the fact that the all-but-one OT correlation is equivalent to
the subfield VOLE correlation over the polynomial-sized extension field F2τ′ .
Let Δ ∈ F2τ′ be the OT index. The key observation (which is implicit in
the classical IKNP protocol) is that by defining u′ :=

∑
i∈[0,2τ′ ) PRG(mi),

v :=
∑

i∈[0,2τ′ ) i ·PRG(mi), and w′ :=
∑

i∈[0,2�)(i+Δ) ·PRG(mi), the sender and
receiver can locally compute the respective values and the transformation from
OT to subfield VOLE can be done non-interactively. Notice that in the expres-
sion of w′, the value PRG(mΔ) which is unknown to the receiver is multiplied
by 0 and the receiver can efficiently compute w′. Therefore, w′ = v + u′ · Δ.

Since the field F2τ′ need to be enumerated, we require that τ ′ = O(log λ)
(i.e. small-field VOLE). Nevertheless, the VOLE global key needs to contain
enough entropy to ensure soundness. Therefore, we need to repeat the base
protocol � λ

τ ′ � times and apply a consistency checking protocol to ensure that
the same vector u is used in all small-field VOLE instances (so that the global
keys can be concatenated).

In particular, the sender and receiver would run the above small-field VOLE
protocol for τ := � λ

τ ′ � times, acquiring �u′
0�, ..., �u

′
τ−1�, where u′

i ∈ F
n+h
2 . Then

by viewing each row of the concatenated matrix U′ := [u′
0‖...‖u′

τ−1] as a noisy
codeword of the length-τ repetition code, as the sender sends the syndrome C of
all the codewords to the receiver. Then the sender corrects the matrix U′ into a
structured matrix U := [1 ... 1] ·u where each row is a repetition codeword while
the receiver sets W = W′+[0‖C]·diag(Δ) where Δ denotes the concatenation of
all small-field VOLE global keys. Notice that with the matrix U being structured,
we can transform each row of W,V as well as Δ as elements in the extension
field F2λ , which gives the IT-MAC format.

Finally, we need to check that U is indeed structured. We do this by sacri-
ficing the last h rows of U. In particular, the sender sends ũ = HUHF · u and
Ṽ = HUHF · V for some linear universal hash function HUHF ∈ F

r×(n+h)
2 while

the receiver checks that Ṽ + ũ · [1 ... 1] · diag(Δ) = HUHF · W.

VOLE-in-the-Head. Now we can put together all the pieces and explain the
technique in [10]. Recall that our goal is to transform a designated-verifier zero-
knowledge protocol in the VOLE-hybrid model into a publicly verifiable one. We
additionally require that the DVZK protocol be public-coin. The transformation
proceeds as follows. We state the protocol in the interactive setting but the
interaction can be removed using Fiat-Shamir [28].

1. The prover locally runs the SoftSpokenOT protocol, instantiating the all-but-
one random OT with vector commitment. In particular, the prover generates
the GGM trees and sends the commitments to the verifier. Then the prover
simulates the SoftSpokenOT protocol, sending the correction syndrome and
checking information to the verifier.

2. With the IT-MAC correlations from previous step, the parties simulate the
zero-knowledge protocol using the previous subfield VOLE correlations.
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3. When all interactions of the zero-knowledge protocol are completed, the veri-
fier simply sends the VOLE global key Δ to the prover, who then replies with
the corresponding vector de-commitment. The verifier then checks that
(a) the vector commitment openings are correct;
(b) the consistency checks inside SoftSpokenOT are correct;
(c) the zero-knowledge verification passes.

If all checks pass then the verifier accepts. Otherwise, it rejects the proof.
Intuitively, since the inner ZK protocol in the FsVOLE-hybrid model is public-

coin, the parties can still simulate the protocol before sampling the global key
Δ, and since the proof information is already sent in step 2, revealing the global
key in step 3 does not grant the prover any advantage. In [10], this intuition is
characterized by an ideal functionality Fp,q,SΔ,C,�,L

sVOLE where the receiver’s outputs
are revealed after the prover commits to its inputs. In this work, we only consider
a special case of it, namely we only consider using repetition code and fixing the
set SΔ to be the entire field F2τ′ . We recall the functionality in Fig. 4.

Functionality FsVOLE

The functionality is parameterized by the base field F2 and its extension F2τ′ . We
also define an integer n as the number of random sVOLE correlations to produce
and τ as the repetition parameter such that ττ ′ ≥ λ.
Upon receiving (init) from P and V, the functionality does the following.

– Sample u ← F
n
2 , V ← F

n×τ

2τ′ and Δ ← F
τ
2τ′ . Let W = V+ u · [1 ... 1] · diag(Δ).

• If P is corrupted, then receive u,V from the adversary A and recompute W.
• If V is corrupted, then receive Δ,W from the adversary A and recompute

V = W − u · [1 ... 1] · diag(Δ).
– Send (u,V) to P.
– If P is corrupted, then receive a leakage query L from A.

Upon receiving (get) from P and V, the functionality does the following.

– If Δ �∈ L, then send (check-failed) to V and abort.
– Otherwise, send (Δ,W) to V.

Fig. 4. The subspace VOLE functionality.

3.2 The Linear Sketching Technique

To verify the Hamming weight constraint, we use the linear sketching technique
of Boyle et al. [16]. For general field F, given an IT-MAC authenticated vector
�u� where u ∈ F

n, we can easily check that ‖u‖0 = 1. We first sample two public
random vectors r0, r1 ∈ F

n and define z0, z1, z2, z3 as follows.

z =

⎡
⎢⎢⎣

z0
z1
z2
z3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rT
0

rT
1

(r0 ◦ r1)T

1 ... 1

⎤
⎥⎥⎦ · u.
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Here ◦ denotes the component-wise product between two vectors. Finally, we
check that z0 · z1 = z2 and that z3 = 1. The first check ensures that ‖u‖0 ≤ 1.
Conditioned on passing the first check, the second check ensures that u is a
unit vector. The second check is straightforward and we will elaborate on the
intuition of the first check.

When viewing (r0 ◦r1)T ·u− (
rT
0 · u

) · (rT
1 · u

)
as a multivariate polynomial

over r0, r1, we have that if ‖u‖0 > 1 then the polynomial is non-zero and has
degree of two. Therefore, with the Schwartz-Zippel lemma [50,59], we can show
that the equation z2 = z0 · z1 holds except with probability 2

|F| over the choices
of r0, ..., rn−1. Formally, we have the following lemma by Boyle et al. [16].

Lemma 1. Let F be any finite field. Suppose u ∈ F
n is not a unit vector then

we have the probability

Pr[L ← L(F, n),z = L · u : z0 · z1 = z2 ∧ z3 = 1] ≤ 2
|F| ,

where the distribution L(F, n) is defined by sampling r0, r1 ← F
n and returning

L =

⎡
⎢⎢⎣

rT
0

rT
1

(r0 ◦ r1)T

1 ... 1

⎤
⎥⎥⎦ .

Notice that since IT-MAC is linear homomorphic, we can get the authenti-
cation of z by evaluating �z� = L · �u�. Then, we can use the IT-MAC opening
operation to check that z3 = 1 and use QuickSilver to prove that z0 · z1 = z2.

In our protocol, we perform the checking on u ∈ F2 over the extension field
F2λ to get negligible soundness error. For RSD over larger fields, we can adapt
the above method to prove that the non-zero element is equal to an arbitrary
value in the field. Nevertheless, we focus on RSD over F2 in this work and using
the above sketching technique is sufficient.

4 Designated-Verifier ZK from Linear Sketching

In this section, we present an efficient zero-knowledge proof for the RSD problem
in the FsVOLE-hybrid model and give a security proof for its soundness and zero-
knowledge property.

4.1 Protocol Description

Since we may view the matrix H in its systematic form and therefore implicitly
enforce the linear constraint, we can turn our focus to proving the Hamming
weight constraint. Using the linear sketching technique [16] we can check that
the segment of the witness vector has a Hamming weight of exactly 1 by verifying
a quadratic relation and performing an IT-MAC opening. Using the QuickSil-
ver protocol, we can prove all w quadratic relations corresponding to the entire
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Protocol ΠRSD−DVZK

Both parties P and V have access to the RSD instance (H, y) whereH ∈ F
(m−k)×m
2

and y = H · e. P has the witness e = [e0‖...‖ew−1] where ‖ei‖0 = 1 for i ∈ [0, w).
We assume the matrix H = [Im−k‖HB] is in the systematic form and the vector
e is split into eA and eB. We assume without loss of generality that ττ ′ = λ.

Input: The prover commits to the witness as follows.

1. Both parties call FsVOLE on input (init) and P gets u ∈ F
n
2 and V ∈ F

n×τ

2τ′ . Let
n = k + λ. For i ∈ [0, k) the prover defines Vi ↪→ M[ui]. The prover lifts the
last λ coordinates of u into a mask uQS ∈ F2λ and we define its IT-MAC tag
M[uQS] similarly by lifting the respective rows in V. Finally, the prover sends
d = eB − u[0, k) to the verifier.

Prove: The parties check that the committed witness is valid as follows.

2. The verifier samples the sketch functions L(i) according to Lemma 1 for i ∈
[0, w) and random challenges χQS, χopen ← F

w
2λ and sends them to the prover.

3. The prover defines M[eB] as the first k coordinates of M[u] and reconstructs
M[e] using the linear relation e = [y − HB · eB‖eB]. Let e = [e0‖...‖ew−1].
Using the linear homomorphism of IT-MAC, we define the authentication of
z(i) = L(i) · ei for i ∈ [0, w).

Then the prover uses QuickSilver to prove that z
(i)
0 · z

(i)
1 = z

(i)
2 for i ∈ [0, w).

In particular, it computes mQS
0 = M[uQS] +

∑
i∈[0,w) χQS

i · M[z(i)
0 ] · M[z(i)

1 ] and

mQS
1 = uQS +

∑
i∈[0,w) χQS

i · (z(i)
0 · M[z(i)

1 ] + z
(i)
1 · M[z(i)

0 ] +M[z(i)
2 ]). The prover

also defines mopen
0 =

∑
i∈[0,w) χopen

i · M[z(i)
3 ]. The prover sends mQS

0 , mQS
1 , mopen

0
to the verifier.

4. Both parties call the functionality FsVOLE on input (get) and the verifier gets
Δ = (Δ0, ..., Δτ−1) ∈ F

τ
2τ′ and W ∈ F

n×τ

2τ′ . The verifier defines Δ ↪→ Δ and
Wi ↪→ K[ui] for i ∈ [0, k) as well as the IT-MAC local key K[uQS] using the last
λ rows of W. Then it defines K[eB] = K[u[0, k)] + d · Δ and reconstructs K[e]
using the linear relation e = [y−HB ·eB‖eB]. It also defines the IT-MAC local
keys of z(i) for i ∈ [0, w). The verifier accepts if the following relation holds
and rejects otherwise.

mQS
0 + mQS

1 · Δ = K[uQS] +
∑

i∈[0,w) χQS
i · (K[z(i)

0 ] · K[z(i)
1 ] + Δ · K[z(i)

2 ]) and

mopen
0 + (

∑
i∈[0,w) χopen

i ) · Δ =
∑

i∈[0,w) χopen
i · K[z(i)

3 ] .

Fig. 5. The ZK protocol for syndrome decoding based on linear sketch in the FsVOLE-
hybrid model.

witness vector in a batch using a random linear combination, with essentially
the same communication cost as proving one quadratic relation. The cost of w
openings can also be reduced using another random linear combination. We
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describe the protocol in detail in Fig. 5 and prove its security in the next sub-
section.

4.2 Security Proof

We prove that the protocol ΠRSD−DVZK is an honest verifier zero-knowledge pro-
tocol for regular syndrome decoding in the FsVOLE-hybrid model in Theorem 1.
Our proof is a straightforward extension of the proof in [10]. The only difference
is that we use the linear sketch technique from [16] to check the validity of the
witness vector.

Theorem 1. The protocol ΠRSD−DVZK realizes the functionality FRSD−ZK in the
FsVOLE-hybrid model. The security holds against a malicious prover or a semi-
honest verifier and the soundness error in the former case is bounded by 7

2λ .

Proof. Correctness of the proof follows by definition. In the following, we con-
struct simulators for the malicious prover and verifier cases to argue soundness
and zero-knowledge properties respectively.

Malicious Prover. The simulator SP is constructed as follows.

1. SP simulates the (init) command of the functionality FsVOLE by receiving
the u,V values from A. It also receives the difference vector d and recovers
the witness eB = d + u[0, k). Let e = [y − HB · eB‖eB]. SP sends message
(input, e) to the functionality FRSD−ZK.

2. SP samples the random challenges L(i) for i ∈ [0, w) and χQS,χopen ← F
w
2λ

and sends them to the adversary.
3. SP receives the QuickSilver proof messages mQS

0 ,mQS
1 ,mopen

0 from the adver-
sary.

4. SP simulates the (get) command of FsVOLE and the QuickSilver checking
phase. In particular, SP sends ⊥ to the ideal functionality in the following
two cases.

– Let e = [e0‖...‖ew−1]. There exists i ∈ [0, w) s.t. ‖ei‖0 �= 1 or ‖ei‖0 = 1
but the non-zero element is not 1.

– Let eQS
0 = M[uQS] +

∑
i∈[0,w) χQS

i · M[z(i)0 ] · M[z(i)1 ] − mQS
0 and eQS

1 =

uQS+
∑

i∈[0,w) χQS
i ·(z(i)0 ·M[z(i)1 ]+z

(i)
1 ·M[z(i)0 ]−M[z(i)2 ])−mQS

1 be the errors

in the QuickSilver messages while eopen0 =
∑

i∈[0,w) χopen
i · M[z(i)3 ] − mopen

0

be the error in the opening message. We have eQS
0 �= 0 or eQS

1 �= 0 or
eopen0 �= 0.

Otherwise, SP sends continue to the ideal functionality.

Since the protocol is public-coin, the simulation of the verifier’s messages is
identically distributed with the interaction of the real verifier. Now we analyze
the soundness error, which captures the difference between the abort probability
of the real case and the ideal case. If the verifier in the real world rejects, then
either the relation does not hold (i.e. the witness has too large or zero Hamming
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weight) or the QuickSilver messages are malformed. In both cases, the ideal
verifier also rejects the proof.

Now we focus on the case where the real verifier accepts while the simu-
lator rejects. If the extracted witness e does not satisfy the Hamming weight
constraint, then by Lemma 1 we conclude that except with probability 2

2λ there
exists at least one index i ∈ [0, w) such that the quadratic relation z

(i)
0 ·z(i)1 = z

(i)
2

and z
(i)
3 = 1 does not hold. In this case, we can re-write the real verifier’s first

acceptance condition as follows.

mQS
0 + mQS

1 · Δ = K[uQS] + (
∑

i∈[0,w)

χQS
i · (zi

0 · zi
1 − zi

2)) · Δ2

+
∑

i∈[0,w)

χQS
i · (zi

0 · M[zi
1] + zi

1 · M[zi
0] + M[zi

2]) · Δ

+
∑

i∈[0,w)

χQS
i · M[zi

0] · M[zi
1]

Since the χQS challenge is sampled uniformly at random and independent
from other randomness, except with probability 1

2λ the quadratic term of the
above equation is non-zero. In this case, there exists at most two solutions to the
equation. Since Δ is sampled uniformly at random and independent from other
randomness, the equation holds with at most 2

2λ probability.
Moreover, if z

(i)
3 �= 1 for some i ∈ [0, w), since χopen is uniformly random

over F
w
2λ , the equality

∑
i∈[0,w) χopen

i · z
(i)
3 =

∑
i∈[0,w) χopen

i holds except with
1
2λ probability. Assuming the equality does not hold, the adversary can pass
the check except it correctly guesses the Δ value, which happens except with
1
2λ probability. Using the union bound, we conclude that the soundness error is
upper bounded by 7

2λ .

Semi-Honest Verifier. The simulator SV is constructed as follows.

1. SV simulates the (init) command of the functionality FsVOLE and receives
the messages Δ and W′ from the adversary. Then it samples d ← F

k
2 and

sends it to the adversary.
2. SV receives the random challenges L(i) for i ∈ [0, w) and χQS,χopen ∈ F

w
2λ

from the adversary.
3. SV samples a random value mQS

1 ← F2λ and computes mQS
0 = K[uQS] +∑

i∈[0,w) χQS
i · (K[z(i)0 ] ·K[z(i)1 ]+Δ ·K[z(i)2 ])−mQS

1 ·Δ. It also prepares mopen
0 =∑

i∈[0,w) χopen
i · (K[z(i)3 ] + Δ). It sends mQS

0 ,mQS
1 ,mopen

0 to the adversary.
4. SV simulates the (get) command of FsVOLE by sending Δ,W′ to the adver-

sary.

Notice that we only argue for security against a semi-honest adversary. Due
to the masking of u[0, k), the message d is uniformly random in the view of
the adversary. Also due to the masking of u[k, k + λ), the message mQS

1 is also
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uniformly random. Moreover, the messages mQS
0 ,mopen

0 can be deterministically
evaluated using Δ,d, {L(i)},χQS,χopen,W′,mQS

1 . Therefore, we conclude that
the adversary’s view is identical between the simulated case and the real case.

5 ReSolveD: Shorter Signatures from RSD and VOLEitH

We apply the generic transformation in [10] to convert the public-coin pro-
tocol ΠRSD−DVZK in the FsVOLE-hybrid model into a publicly-verifiable zero-
knowledge proof ΠRSD−PVZK. Then we apply the Fiat-Shamir transform and
present ReSolveD, a post-quantum digital signature scheme from RSD and
VOLE-in-the-Head. We present the signature scheme in Fig. 6.

– KeyGen()
1. Samples a generator matrix in systematic form H = [I‖HB] ∈ F

(m−k)×m
2 as

well as a regular noise e ∈ F
m
2 .

2. Output pk = (H, y = H · e), sk = (pk, e).
– Sign(sk, m)

1. The signer executes the prover’s actions of ΠRSD−PVZK. For all challenges
HUHF, χQS, χopen, Δ, the signer sends the protocol’s transcript concatenated
with the message m to the random oracle to get the respective challenges.

2. Output signature σ as complete transcript of ΠRSD−PVZK.
– Verify(pk, m, σ)

1. The verifier executes the verifier’s actions of ΠRSD−PVZK. The verifier uses
the prover’s messages extracted from the signature σ while for the verifier’s
challenges, the verifier also hashes the partial transcript concatenated with
the signed message m.

2. The verifier accepts the signature if in the simulated execution of ΠRSD−PVZK,
the simualted verifier also accepts. It rejects if otherwise.

Fig. 6. The ReSolveD signature scheme. We assume that the unary form of the security
parameter λ is the implicit input of all three algorithms.

5.1 Signature Description

We describe the protocol ΠRSD−PVZK in Fig. 8. We apply the half-tree optimiza-
tion [32] when constructing the vector commitment scheme, which we recall in
Fig. 7 and prove its security in Lemma 2. Notice that in this construction, we uti-
lize the circular correlation robustness property which is usually instantiated in
the ideal cipher model [31], of which we recall a simplified version in Definition 2.

Lemma 2. Let G1, G2 be two random oracles and H be a (t, q, ε)-circular cor-
relation robust hash function. Then the vector commitment scheme ΠVC−cGGM

(Fig. 7) securely implements the vector commitment functionality FVC (Fig. 3).
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Protocol ΠVC−cGGM

Let G1 : {0, 1}∗ → {0, 1}2λ, G2 : {0, 1}λ → {0, 1}λ × {0, 1}2λ be two random
oracles and H : {0, 1}λ × {0, 1}λ → {0, 1}λ be a hash function. Let τ ′ ∈ N be the
tree depth and define N = 2τ ′

.

– For the commit command, P and V perform the following steps.
1. P samples Γ ← F

λ
2 , r10 ← F

λ
2 and computes r11 = r10 ⊕Γ . It evaluates the full

binary tree using the recursive relation ri+1
2j = H(ri

j), ri+1
2j+1 = H(ri

j) ⊕ ri
j for

i ∈ [2, τ ′), j ∈ [0, 2i) and computes (mi, comi) ← G2(rτ ′
i ) for i ∈ [0, 2τ ′

) and
the sum of all even indexed nodes on each level {Ki

0}i∈[1,τ ′] =
∑

j∈[0,2i−1) ri
2j .

2. P sends the commitment com := G1(com0, ..., comN−1) to V and locally stores
the de-commitment information decom := (Γ, {Ki

0}i∈[1,τ ′]) and the messages
{mi}i∈[0,N).

– For the (get, α) command, P and V perform the following steps.
1. Let α1, α2, ..., ατ ′ be the binary decomposition of α ∈ [0, N), P sends the

opening information decomα := ({Ki
ᾱi

:= Ki
0 ⊕ ᾱi · Γ}i∈[1,τ ′], comα) to V.

2. Upon receiving the opening information, V defines r1ᾱ1 = Ki
ᾱ1 from decomα.

For i ∈ [2, τ ′], j ∈ [0, 2i−1) and j �= α1‖...‖αi−1, it evaluates ri
2j =

H(ri−1
j ) and ri

2j+1 = H(ri−1
j ) ⊕ ri−1

j and defines ri
α1‖...‖αi−1‖ᾱi

= Ki
ᾱi

⊕∑
j∈[2i−1],j �=α1‖...‖αi−1

ri
2j+ᾱi

.

3. For each leaf node i ∈ [0, N) \ α, V derives (mi, comi) = G2(rτ ′
i ). V checks

that com = G1(com0, ..., comN−1) using the comα information in decomα.
If the equality does not hold then it outputs ⊥. Otherwise, it outputs
{mi}i∈[0,N),i�=α.

Fig. 7. The correlated GGM tree construction.

Proof. The protocol correctness follows by definition. Now we argue security
against a malicious P and V respectively.

Malicious Prover. The simulator SP receives the commitment com from the
adversary and then recovers the hashed values {comi}i∈[0,N) and {rτ ′

i }i∈[0,N)

from the random oracle queries and send {mi}i∈[0,N) to FVC where (mi, comi) =
G(rτ ′

i ) for i ∈ [0, N).
For the (get, α) command, SP receives the de-commitment information

decomα = {Ki
ᾱi

}i∈[1,τ ′] from the adversary and runs the checking procedures
of the verifier. If the check fails then it sends ⊥ to FVC.

Unless there exists a collision in the random oracle queries, then the ideal
execution successfully extracts the committed messages. The collision probability
is upper bounded by Q

2λ where Q is the number of random oracle queries from
by A.

Malicious Verifier. The simulator SV samples com ← {0, 1}λ and sends it to A
to simulate (commit). For the (get, α) command, the simulator samples Ki

ᾱi
←
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{0, 1}λ for i ∈ [1, τ ′], comα ← {0, 1}λ and sends them to A. Then it receives the
{mi}i∈[0,N),i �=α message from FVC and programs the random oracle such that
when evaluating the leaf nodes rτ ′

i for i ∈ [0, N), i �= α the verification process
would pass.

We argue indistinguishability via a hybrid argument.

– Hybrid1. This is the real distribution of a malicious verifier.
– Hybrid2. In this hybrid, we sample comα uniformly at random and update
com = G2(com0, ..., comN−1) accordingly. Since G2 is a random oracle, the
only way that an adversary can distinguish between Hybrid1 and Hybrid2

is by querying the pre-image of comα in Hybrid1, which implies extracting
Γ and contradicts the CCR security of H.

– Hybrid3. In this hybrid, we sample {Ki
ᾱi

}i∈[1,τ ′] uniformly at random. We
show in Lemma 3 that the adversary’s advantage can be bounded by the CCR
security of H.

– Hybrid4. This is the ideal distribution, which is identical to Hybrid3.

Lemma 3. The advantage of distinguishing Hybrid2 and Hybrid3 in the proof
of Lemma 2 can be bounded by the circular correlation robustness of the hash
function H.

Proof. We can sample the adversary’s view using an oracle O(·) such that the
view corresponds to Hybrid2 (resp. Hybrid3) if O is the real oracle Occr

Γ

(resp. the ideal oracle f) as follows.

– For i = 1, we sample K1
ᾱ1

uniformly at random.
– For i ∈ [2, τ ′] we compute

Ki
ᾱi

=

{
O(

⊕i−1
j=1 Kj

ᾱj
, 0) if ᾱi = 0,

O(
⊕i−1

j=1 Kj
ᾱj

, 1)
⊕i−1

j=1 Kj
ᾱj

if ᾱi = 1.

– Sample comα uniformly at random and compute com = G2(com0, ..., comN−1).

Notice that if O is a random function then the output distribution is Hybrid3

whereas if O = Occr
Γ (·) then we have if ᾱi = 0 then

Ki
ᾱi

= H(
i−1⊕
j=1

Kj
ᾱj

)

= H(ri−1
αi−1‖...‖α1

)

And if ᾱi = 1 then

Ki
ᾱi

= H(
i−1⊕
j=1

Kj
ᾱj

) ⊕ Δ ⊕
i−1⊕
j=1

Kj
ᾱj

= H(ri−1
αi−1‖...‖α1

) ⊕ ri−1
αi−1‖...‖α1

,

which is the same as in Hybrid2.
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Remark 1. We note that the construction of CCR hash functions in the random
permutation model [31] requires a permutation on λ-bit strings. For some block
ciphers (e.g. AES-128) the offered security level matches the block size and we
can model the block cipher as a random permutation and apply the construction
in [31]. Whereas other block ciphers with λ-bit security level do not provide a
permutation on λ-bit strings (e.g. AES-192 and AES-256 has block size of 128 bits
despite having higher security levels.) In this case, we use the standard GGM tree
construction based on length-doubling PRG. We leave the efficient construction
of CCR hash functions at the security level beyond 128 from standard symmetric
primitives in the latter case (e.g. AES-192 and AES-256) as a future work.

5.2 Security Proof

We state the security of our protocol ΠRSD−PVZK under Fiat-Shamir transforma-
tion in Theorem 2. Since we prove the protocol ΠVC−cGGM securely realizes the
vector commitment functionality FVC in Lemma 2, the security proof of the con-
version from designated-verifier zero-knowledge (Fig. 5) to the non-interactive
zero-knowledge is identical to the work of [10], we omit it in this paper.

Theorem 2. Let PRG : {0, 1}λ → F
n
2 be a pseudorandom generator, the zero-

knowledge protocol ΠRSD−PVZK, after Fiat-Shamir transformation, is a zero-
knowledge non-interactive proof system in the random oracle model.

5.3 Communication

We theoretically estimate the communication cost of ΠRSD−PVZK. Firstly, during
the inner protocol ΠRSD−DVZK the prover needs to send d and mQS

0 ,mQS
1 ,mopen

0 ,
which takes k elements in F2 and 3 elements in F2λ respectively.

Moreover, during the simulation of the FsVOLE setup, the prover needs to run
τ instances of the vector commitment protocol ΠVC−cGGM, each of which the
communication cost is (τ ′ + 4) ·λ bits. Then, in SoftSpokenOT the prover needs
to send the de-randomization matrix C as well as the checking information ũ, Ṽ,
which takes (τ −1) ·(k+λ+h) elements in F2, r elements in F2 and r ·τ elements
in F2τ′ respectively.

Optimizations. We can use some existing techniques in the literature to optimize
communication [9,18]. We list three main optimizations as follows.

– When running τ instances of ΠVC−cGGM the commitment message com can be
combined by hashing all the leaf nodes across τ binary trees at once, saving
2λ · (τ − 1) bits of communication.

– Since in the RSD witness all elements in a block XOR to 1, the prover can
commit to the first m

w − 1 coordinates of each block and linearly express the
remaining element. Thus, we can reduce the witness length by a ratio of w

m .
– The values Ṽ,mQS

0 ,mopen
0 can be computed by the verifier and therefore to

check for equality, it suffices for the prover to send a hash of those values.
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Protocol ΠRSD−PVZK

Both parties P and V have access to the RSD instance (H, y) whereH ∈ F
(m−k)×m
2

and y = H·e. The prover also knows the witness e = [e0‖...‖ew−1] where ‖ei‖0 = 1
for i ∈ [0, w). We assume the matrix H = [Im−k‖HB] is in the systematic form and
the vector e is split into eA and eB. Let n = k+λ, N = 2τ ′

and HUHF ⊆ F
r×(n+h)
2

be a family of n-hiding, ε-universal hash function. Let PRG : {0, 1}λ → F
n+h
2 be a

pseudorandom generator. We assume without loss of generality that ττ ′ = λ.

1. P and V run τ instances of the vector commitment functionality FVC and send
(commit) to them. Denote the messages as {ki

j} for i ∈ [0, τ), j ∈ [0, N). The
prover then defines U′,V for the index i ∈ [0, τ).

U′ =

⎡
⎣. . .

∑
j PRG(k

i
j) . . .

⎤
⎦ , V =

⎡
⎣. . .

∑
j j · PRG(ki

j) . . .

⎤
⎦

The prover also defines u = U′[0] as the first column of U′ and C := [U′[1] ⊕
u‖ · · · ‖U′[τ − 1]⊕ u] ∈ F

n×(τ−1)
2 where U′[i] denotes the i-th column of U′. P

sends C to V.
2. V samples random challenge HUHF ← HUHF and sends it to P.
3. P defines the SoftSpokenOT check messages ũ = HUHF · u and Ṽ = HUHF · V

and sends them to V.
4. P and V run step 1–3 of ΠRSD−DVZK using the first n rows of u and V.
5. V samples the random challenge Δ = (Δ0, ..., Δτ−1) and call (get, Δi) for

i ∈ [0, τ). With the opened messages, it computes

W′ :=

⎡
⎣∑

j(j + Δ0) · PRG(k0
j ) . . .

∑
j(j + Δτ−1) · PRG(kτ−1

j )

⎤
⎦

If the following two checks pass then V accepts the proof. Otherwise, V rejects.

– SoftSpokenOT. V checks that

Ṽ + ũ · [1 ... 1] · diag(Δ) = HUHF · W′ + [0‖C] · diag(Δ)
)

.

– QuickSilver. The verifier runs the consistency check in step 4 of ΠRSD−DVZK.

Fig. 8. The publicly verifiable zero-knowledge protocol for regular syndrome decoding.

Taking into account all the optimizations outlined above, we conclude the
theoretical estimate of the communication of ΠRSD−PVZK as follows.

Comm =
(
(1 − w

m
)k + λ + h

)
· (τ − 1)

︸ ︷︷ ︸
C

+ r︸︷︷︸
ũ

+ (1 − w

m
)k

︸ ︷︷ ︸
d

+ λ︸︷︷︸
mQS

1

+ ((τ ′ + 2) · τ + 2) · λ︸ ︷︷ ︸
VC Openings

+ 2λ︸︷︷︸
Equality Check

bits.
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6 Performance Evaluation

In this section, we implement the ReSolveD signature scheme, which achieves
highly competitive performance and a much smaller signature size when com-
pared to other state-of-the-art code-based signature schemes. We first describe
the parameters and implementation details of the scheme, then we report the
evaluation results in terms of signature and key sizes as well as running time.

6.1 Parameters

We follow the approach from prior art [18] in the selection of parameters for the
regular syndrome decoding instance. In particular, we select the minimal param-
eters that can offer the required bit security against state-of-the-art attacks that
account for the regularity of the noise vector. Specifically, we estimate the com-
plexity of the linearization attack, information syndrome decoding (ISD) attack
and birthday paradox according to the formulas in [18] and take their minimal
as the estimation of bit security. Using this estimation, we choose the smallest
parameters that have complexity estimation of 2128, 2143, 2207 and 2272 accord-
ing to the practice of previous works and the NIST’s L1, L3 and L5 security
levels.2

Table 3. The parameters for the ReSolveD signature scheme.

Parameter Set m k w τ Estimated Bit Security

ReSolveD-128-Var1 1302 738 217 14 128.20

ReSolveD-128-Var2 1302 738 217 10 128.20

ReSolveD-L1 1470 834 245 11 143.20

ReSolveD-L3 2196 1248 366 17 207.48

ReSolveD-L5 2934 1668 489 22 272.29

Regarding the parameters of VOLE-in-the-Head, we follow the approach in
the specification of FAEST [9]. In particular, with the security parameter λ and
the repetition parameter τ , we compute τ ′

0 = �λ/τ�, τ ′
1 = �λ/τ�, and τ0 = λ

mod τ , τ1 = τ − τ0. In this way, since τ0τ
′
0 + τ1τ

′
1 = λ, we can ensure that by

sampling τ0 instances of FVC with depth τ ′
0 and τ1 instances of FVC with depth

τ ′
1 we can get a global key with λ bits of entropy.

We select parameters such that our scheme demonstrates better performance
in terms of the “signature size + public-key size” metric while still maintaining
comparable running time compared to other NIST submissions. The parameters

2 We select the parameters of ReSolveD-128 and ReSolveD-L{1,3,5} independently,
because the former targets at signatures with 128-bit security while the latter targets
other NIST submissions.
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are shown in Table 3. We note that the parameter selection listed in Table 3 has
considered recent attacks that exploit the regular noise structure [17,25].

We implement our signature scheme by adapting the implementation of
FAEST3.

We run the experiments on a Ubuntu 20.04 LTS machine with an AMD
Ryzen 5 3600 CPU and 16 GB of RAM. For the time being, we only optimized
the 128-bit version of ReSolveD with the AVX2 instruction set while we leave
the respective optimization of ReSolveD-L1, ReSolveD-L3 and ReSolveD-L5 to a
future work. The performance of ReSolveD under the first two sets of parame-
ters with AVX2 optimization is reported in Table 1, while we compare the un-
optimized version of ReSolveD under the other three sets of parameters with the
reference implementation of other NIST submissions in the next subsection.

6.2 Comparison with Other Post-Quantum Signature Schemes

We give a detailed comparison between ReSolveD and NIST’s new submissions
SDitH [40] and FAEST [9] in Table 4. This is because SDitH shares a similarity in
the underlying intractability assumption and FAEST utilizes the same VOLE-in-
the-Head technique. In summary, ReSolveD and FAEST share almost the same

Table 4. Detailed comparison of ReSolveD compared to NIST’s new submissions SDitH
and FAEST with its EM variants for NIST security L1, L3 and L5.

Scheme Sizes in Bytes Runtimes in ms Assumption

|sig| |sk| |pk| |sig| + |pk| tkeygen tsign tverify

ReSolveD-L1 3916 32 96 4012 4.36 97.51 80.21 RSD over F2

ReSolveD-L3 8532 48 143 8675 9.97 257.37 226.71 RSD over F2

ReSolveD-L5 14944 64 191 15135 17.66 537.54 469.72 RSD over F2

FAEST-L1-S 5006 32 32 5038 0.19 129.14 124.89 AES

FAEST-L3-S 12744 56 64 12808 1.01 401.76 371.87 AES

FAEST-L5-S 22100 64 64 22164 1.47 624.62 586.12 AES

FAEST EM-L1-S 4566 32 32 4598 0.18 112.06 108.85 EM-AES

FAEST EM-L3-S 10824 48 48 10872 0.46 297.66 288.40 EM-AES

FAEST EM-L5-S 20956 64 64 21020 1.41 540.35 540.04 EM-AES

SDitH-L1-gf256 8224 404 120 8344 6.08 33.23 28.62 SD over F256

SDitH-L1-gf251 8224 404 120 8344 4.41 14.76 12.32 SD over F251

SDitH-L3-gf256 19544 616 183 19727 7.31 113.98 98.82 SD over F256

SDitH-L3-gf251 19544 616 183 19727 5.30 34.46 28.32 SD over F251

SDitH-L5-gf256 33992 812 234 34226 10.59 209.67 186.77 SD over F256

SDitH-L5-gf251 33992 812 234 34226 8.74 59.33 54.85 SD over F251

3 We adapted the reference implementation of FAEST at https://github.com/faest-
sign/faest-ref. We also note that OpenSSL is required to facilitate fast evaluation.

https://github.com/faest-sign/faest-ref
https://github.com/faest-sign/faest-ref
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Table 5. Comparison of signature sizes and runtimes at NIST L1 security for some
standardized schemes and previous/new submissions from the NIST PQC standardiza-
tion project. Numbers for Picnic are taken from [36] running on a 3.6 GHz Intel Xeon
W-2133, others are taken from their technical report with a base clock frequency of
up 2.6 GHz Intel Core i7-6600U CPU for Dilithium, a 2.3 GHz Intel Core i5-8259U for
Falcon, a 3.1 GHz Intel Xeon E3-1220 CPU for SPHINCS+ and a 3.6 GHz AMD Ryzen
5 3600 CPU for SPHNICS-α.

Scheme Sizes in KB Runtimes in ms Assumption

|sig| |pk| |sig| + |pk| tsign tverify

Dilithium2 [39] 2.36 1.28 3.64 0.128 0.046 MLWE

Falcon-512 [48] 0.65 0.88 1.53 0.168 0.036 NTRU

SPHINCS+-SHAKE-L1-F [34] 16.69 0.03 16.72 18.37 1.08 Hash

SPHINCS+-SHAKE-L1-S [34] 7.67 0.03 7.70 355.64 0.38 Hash

SPHINCS+-SHA2-L1-F [34] 16.69 0.03 16.72 10.86 0.69 Hash

SPHINCS+-SHA2-L1-S [34] 7.67 0.03 7.70 207.98 0.28 Hash

SPHINCS-α-SHAKE-L1-F [58] 16.33 0.03 16.36 15.85 0.99 Hash

SPHINCS-α-SHAKE-L1-S [58] 6.72 0.03 6.75 316.60 1.36 Hash

SPHINCS-α-SHA2-L1-F [58] 16.33 0.03 16.36 7.40 0.56 Hash

SPHINCS-α-SHA2-L1-S [58] 6.72 0.03 6.75 149.18 0.75 Hash

Picnic1-L1-FS [57] 32.09 0.03 32.12 1.37 1.10 AES

Picnic2-L1-FS [57] 12.05 0.03 12.08 40.95 18.20 AES

Picnic3-L1 [57] 12.30 0.03 12.33 5.17 3.96 AES

Picnic3-L1-K12 [57] 12.30 0.03 12.33 3.98 2.87 AES

Picnic3-L1-64 [57] 11.14 0.03 11.17 23.25 17.21 AES

Picnic3-5-L1 [57] 13.38 0.03 13.41 5.59 4.63 AES

ReSolveD-L1 3.82 0.09 3.91 95.51 80.21 RSD

secret key size, but ReSolveD is smaller in signature size while faster in signing
and verification time than the short version of FAEST and its EM variant, with
only slightly larger public key size and slower key generation time in the same
security level. The size of ReSolveD outperforms SDitH where the signature size
(resp., secret key size) is more than 2× (resp., 12×) smaller than that in SDitH.
However, the running time of our scheme is much slower.

We also compare our ReSolveD with post-quantum signature schemes to be
standardized by NIST including Dilithium [39], Falcon [48] and SPHINCS+ [34]
and other previous/new submissions to NIST such as Picnic [57] and SPHINCS-
α [58] in Table 5. Lattice-based signatures are currently the most efficient post-
quantum signature schemes which achieve both smaller signature sizes and faster
running times. However, these schemes are based on structured lattice problems
such as Ring/Module-LWE and NTRU, on the contrary, our ReSolveD relies
on no algebraic or geometric structures. Meanwhile, ReSolveD is competitive
with Dilithium in the “signature size + public-key size” metric (with the former
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being 3.91 KB and the latter being 3.64 KB), although the runtimes of Dilithium
significantly outperform us. Compared with the SPHINCS family and the Picnic
family, our ReSolveD also achieves about 2×–4× smaller in sizes than SPHINCS+

and SPHINCS-α, and is more than 3× smaller than Picnic. Nevertheless, our
ReSolveD is slower in terms of signing and verification. We plan to develop an
optimized implementation of our scheme in the future work.
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