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Abstract. Structure-preserving signatures (SPS) have emerged as an
important cryptographic building block, as their compatibility with the
Groth-Sahai (GS) NIZK framework allows to construct protocols under
standard assumptions with reasonable efficiency.

Over the last years there has been a significant interest in the design
of threshold signature schemes. However, only very recently Crites et
al. (ASIACRYPT 2023) have introduced threshold SPS (TSPS) along
with a fully non-interactive construction. While this is an important
step, their work comes with several limitations. With respect to the con-
struction, they require the use of random oracles, interactive complex-
ity assumptions and are restricted to so called indexed Diffie-Hellman
message spaces. Latter limits the use of their construction as a drop-in
replacement for SPS. When it comes to security, they only support static
corruptions and do not allow partial signature queries for the forgery.

In this paper, we ask whether it is possible to construct TSPS with-
out such restrictions. We start from an SPS from Kiltz, Pan and Wee
(CRYPTO 2015) which has an interesting structure, but thresholdizing
it requires some modifications. Interestingly, we can prove it secure in the
strongest model (TS-UF-1) for fully non-interactive threshold signatures
(Bellare et al., CRYPTO 2022) and even under fully adaptive corrup-
tions. Surprisingly, we can show the latter under a standard assumption
without requiring any idealized model. All known constructions of effi-
cient threshold signatures in the discrete logarithm setting require inter-
active assumptions and idealized models.

Concretely, our scheme in type III bilinear groups under the SXDH
assumption has signatures consisting of 7 group elements. Compared
to the TSPS from Crites et al. (2 group elements), this comes at the
cost of efficiency. However, our scheme is secure under standard assump-
tions, achieves strong and adaptive security guarantees and supports
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general message spaces, i.e., represents a drop-in replacement for many
SPS applications. Given these features, the increase in the size of the
signature seems acceptable even for practical applications.

1 Introduction

Structure-Preserving Signatures. Structure-preserving signature schemes
(SPS for short) introduced by Abe et al. [4] are signatures defined over bilinear
groups where the messages, public keys and signatures are required to be source
group elements. Moreover, signature verification just consists of group mem-
bership testing and evaluating pairing product equations (PPE). SPS are very
attractive as they can be combined with efficient pairing-based non-interactive
zero-knowledge (NIZK) proofs due to Groth and Sahai (GS) [46]. This allows to
construct many privacy-preserving cryptographic primitives and protocols under
standard assumptions with reasonable practical efficiency.

SPS have been used in the literature to construct numerous cryptographic
primitives and building blocks. Among them are many variants of signatures
such as blind signatures [4,40], group signatures [4,56], traceable signatures [3],
policy-compliant signatures [16,17], homomorphic and network coding signa-
tures [13,55] and protocols such as anonymous credentials [26], delegatable
anonymous credentials [39], compact verifiable shuffles [30] or anonymous e-
cash [21]. Due to their wide range of applications, SPS have attracted significant
research interest. Looking ahead to the threshold setting (i.e., TSPS), we note
that typical applications of SPS in privacy-preserving applications are as follows:
a user obtains a signature from some entity and then prove possession of a valid
signature without revealing it using GS NIZK. Consequently, thresholdizing the
SPS signing process does not have any impact on the remaining protocol and
thus, TSPS can be considered a drop-in replacement for SPS.

The first SPS scheme presented by Abe et al. in [4] was followed by a line
of research to obtain SPS with short signatures in the generic group model
(GGM) [5,7,44,45], lower bounds [1,5,6], security under standard assump-
tions [2,25,47,50,51,56] as well as tight security reductions [8–10,31,42,49].

Threshold Signatures. Motivated by real-world deployments in decentralized
systems such as distributed ledger technologies, cryptocurrencies, and decentral-
ized identity management, the use of threshold cryptography [37] and in partic-
ular threshold signatures has become a very active field of research in the last
years with a main focus on ECDSA [11,24,28,34,36,43,62], Schnorr [33,53] and
BLS [14] signatures. We recall that an (n, t) threshold signature allows a set of n
potential signers to jointly compute a signature for a message m, which verifies
under a single verification key, as long as at least a threshold t many signers
participate.
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There are different types of constructions in the literature; ones that require
multiple rounds of interaction (e.g., ECDSA [28,43]), ones that require a pre-
processing round that does not depend on the message (often called non-
interactive schemes), e.g,. FROST [53] and finally, ones that are fully non-
interactive. The latter are schemes where all the participating signers can sim-
ply send a partial signature and the final signatures can then be combined from
threshold many valid partial signatures, e.g., BLS [22].

Security of Threshold Signatures. Although many works on threshold
signatures were known in the literature, the rigorous study of security notions
was done only very recently. In particular, Bellare et al. in [18] studied a hier-
archy of different notions of security for non-interactive schemes. As our work
focuses on fully non-interactive schemes, we do not recall the entire hierarchy
but only the ones relevant for this setting. In particular, the TS-UF-0 notion is
the weaker one and prohibits adversaries from querying the signing oracle for
partial signatures on the challenge message, i.e., the message corresponding to
the forged signature. The stronger TS-UF-1 notion, which will be our main focus,
allows adversaries to query the signing oracle up to t−|CS| times for partial sig-
natures, even on the challenge message. Here CS with |CS| < t denotes the set of
(statically corrupted) signers. Surprisingly, the majority of works on threshold
signatures in the literature relied on weaker TS-UF-0-style notions instead of the
much more realistic TS-UF-1 notion.

Another dimension in the security of threshold signatures is whether they
support static or adaptive corruptions. In the case of static corruptions, the
adversary has to declare the set of corrupted signers, CS, before seeing any
parameters of the system apart from (n, t). In contrast, an adaptive adversary
can choose the set of corrupted signers within a security game based on its view of
the execution, which is a realistic assumption in the decentralized setting. All the
notions in [18] consider only a static setting and refer to a complexity leveraging
argument for adaptive security. Precisely, it suggests that for small number of
parties, a guessing argument can yield adaptive security for any statically secure
scheme with a loss of

(
n

t−1

)
, i.e., guessing the set of corrupted parties and aborting

if the guess is wrong. However, this exponential loss of security can become
significant as the number of parties increases, e.g., supporting n ≥ 1024 (cf. [33]).
While there are known generic techniques to lift statically secure schemes to
adaptively secure ones [29,48,57], they all have undesirable side-effects such as
relying on additional heavy tools, e.g., non-committing encryption [27], or relying
on strong assumptions such as reliable erasure of secret states (cf. [33]).

Apart from the adaptively secure threshold RSA signatures [12], until
recently there were no results on adaptively secure threshold signatures based
on popular signature schemes in the discrete logarithm or pairing setting. Only
very recently Bacho and Loss [14] as well as Crites et al. [33] have shown tight
adaptive security for threshold versions of the popular BLS [23] and Schnorr
schemes [60], respectively. Interestingly, all these adaptive security proofs need
to rely on interactive assumptions and in particular variants of the One-More
Discrete Logarithm Assumption [19], which is known as a strong assumption.
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Only very recently and concurrent to this work, Bacho et al. [15] as well as Das
and Ren [35] present schemes from standard and non-interactive assumptions in
the pairing-free discrete logarithm setting and pairing setting, respectively. It is
interesting that only few of the existing works achieve adaptive security under
the TS-UF-1 notion, e.g., [14,35,54], with [54] being the only one from standard
assumptions and without requiring idealized models.

Threshold SPS. Recently, Crites et al. [32] have extended the concept of
threshold signatures to threshold SPS (TSPS). They introduce a definitional
framework for fully non-interactive TSPS and provide a construction that is
proven secure in the Random Oracle Model (ROM) [20] under the hardness of
a new interactive assumption, called the GPS3 assumption, which is analyzed
in the Algebraic Group Model (AGM) [41]. The authors start from an SPS pro-
posed by Ghadafi [44], that is secure in the Generic Group Model (GGM), and
introduce a message indexing technique to avoid non-linear operations in the
signature components and thus to obtain a fully non-interactive threshold ver-
sion. While the TSPS proposed in [32] is highly efficient and compact (only 2
group elements), the defined message space is restricted to a so called indexed
Diffie-Hellman message space. This prevents its use as a drop-in-replacement
for SPS in arbitrary applications of SPS that are desired to be thresholdized.
Additionally, the security of their proposed TSPS is only shown in the TS-UF-0
model, i.e., under static corruptions.

1.1 Our Contributions

In this paper, we ask if it is possible to construct TSPS without the aforemen-
tioned restrictions and we answer this question affirmatively. We start with an
observation that the SPS from Kiltz, Pan and Wee [51] has an interesting struc-
ture that makes it amenable for thresholdizing although this process requires
some modifications of the original scheme. While Crites et al. [32] prove secu-
rity in the TS-UF-0 model, i.e., under static corruptions, we are able to prove
our construction is secure in the strongest model (TS-UF-1) for non-interactive
threshold signatures [18] and even under fully adaptive corruptions (which we
denote as adp-TS-UF-1 security). We provide a brief overview in Table 1 about
our results.

Interestingly, we can do so by relying on standard assumptions, i.e., the
Matrix Diffie-Hellman (MDDH) assumption family [38,58]. While this comes at
some cost in concrete efficiency, as shown in Table 2, the overhead is still not
significant. For instance, when instantiated in type III bilinear groups under
the SXDH assumption (k = 1), then signatures consist of 7 group elements.
When taking the popular BLS12-381 curve giving around 110 bit of security,
this amounts to signatures of size around 380 bytes. Compared to 256 bytes
for an RSA signature with comparable security (2048 bit modulus), this gives
an increase of around 50%. This seems perfectly tolerable for most practical
applications.

As can be seen from Table 2, an important benefit of our TSPS over the
one by Crites et al. [32] is that it is not limited to an indexed Diffie-Hellman
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Table 1. Overview of security notions and our results. t denotes the threshold, M∗

the message corresponding to the forgery, S1 the set recording signer indices of issued
partial signatures and CS the set of corrupted signers.

Security Notion Corruption Model Winning Condition Our Scheme (proof)
TS-UF-0 Static corruptions S1(M∗) = ∅ Theorem 1
TS-UF-1 Static corruptions |S1(M∗)| < t − |CS| Theorem 2
adp-TS-UF-1 Adaptive corruptions |S1(M∗)| < t − |CS| Theorem 3

message space, but works for arbitrary group message vectors. Thus, it represents
a drop-in replacement for SPS when aiming to thresholdize its applications (such
as anonymous credentials, e-cash, etc.). Moreover, we prove the unforgeability
of the proposed TSPS scheme against an adaptive adversary under a stronger
TS-UF-1 notion of security. We recall that in contrast, the TSPS proposed by
Crites et al. in [32] only achieves TS-UF-0 security against a static adversary
based on an interactive assumption, called GPS3, in the AGM and ROM.

Table 2. Comparison with the existing threshold structure-preserving signature by
Crites et al. [32]. iDH refers to the indexed Diffie-Hellman message spaces. � is the
length of the message vector to be signed. |Gi| denote the bit-length of elements in
groups Gi for i ∈ {1, 2}. NI stands for Non-Interactive.

Scheme Message
Space

Signature
Size

Number of
Pairings

Security
Notion

Security
Model

Underlying
Assumption

[32] iDH 2|G1| � + 2 TS-UF-0
(Static)

AGM+
ROM

GPS3
(Interactive)

Ours G1 (3k+3)|G1|
+|G2|

5k+
� + 6

TS-UF-1
(Adaptive)

Standard
Model

Dk-MDDH
(NI)

1.2 Technical Overview

Considering the insights discussed in [32, Section 1], it can be deduced that a
fully non-interactive TSPS scheme does not involve any non-linear operations
during the partial signing phase. The use of non-linear operations prevents the
reconstruction of the final signature from the partial signatures via Lagrange
interpolation. These non-linear operations include the inversion of secret share
keys (i.e., [1/ski]), performing multiplication of distinct randomness and secret
shares (i.e., [riski]), as well as raising either secret shares or distinct random-
ness to a power (e.g., [skζ

i ] or [rζ
i ] for any ζ > 1). By employing an indexing

approach, the authors in [32] were able to circumvent the need for multiplying
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randomness and secret keys, as required by Ghadafi’s SPS [44]. In contrast, in
our proposed TSPS scheme, we adopt a distinct perspective for avoiding the
non-linear operations.

We start from an observation regarding the SPS construction of Kiltz et al.
[51] which computes the first and second components of signature on a message
[m]1 ∈ G

�
1 as:

KPW15 : (σ1, σ2) :=

⎛

⎜
⎝

[(
1 m�)]

1
K

︸ ︷︷ ︸
SP-OTS

+

randomized PRF
︷ ︸︸ ︷
r� [

B�(U + τ · V)
]
1
,
[
r�B�]

1

⎞

⎟
⎠ ,

where τ is a fresh random integer and r is a fresh random vector of proper size.1
Additionally, the secret signing and verification keys are defined as follows:

KPW15 : sk := (K,
[
B�U

]
1
,
[
B�V

]
1
, [B]1) ,

vk := ([KA]2 , [UA]2 , [VA]2 , [A]2) ,

where K, A, B, U and V are random matrices of appropriate dimensions.
As noted by Kiltz et al. in their work [51], their SPS is build based on

two fundamental primitives: (i) a structure-preserving one-time signature (SP-
OTS), (

[(
1 m�)]

1
K), and (ii) a randomized pseudorandom function (PRF),

(r� [
B�(U + τ · V)

]
1
,
[
r�B�]

1
). In their proof of security, we observe that both

the building blocks are involved in a loose manner. In particular, in most of their
proofs, the reduction samples the SP-OTS signing key K. It is easy to verify that
this observation still holds even when they are arguing about the security of the
randomized PRF. Our approach in this work is motivated by this fact which
further inspires us to modify Kiltz et al.’s SPS. This adjustment involves defining
the secret key as sk := K and transferring the remaining parameters to the set
of public parameters, i.e., pp := ([A]2, [UA]2, [VA]2, [B]1, [B�U]1, [B�V]1) and
the verification is defined as vk := [KA]2. This rather simple structure allows
to obtain the first TSPS for general message spaces in the standard model that
can withhold adaptive corruptions without the exponential degradation [18] and
can be proven secure in the TS-UF-1 model.

Consider the following setting. Imagine there are n signers, each equipped
with their own signing key, either obtained through the involvement of a trusted
dealer or by conducting a Distributed Key Generation (DKG). Their collective
objective is to generate a signature for a given message [m]1 ∈ G

�
1. It is clear

that the linear structure of the SP-OTS {[(1 m�)]
1
Ki}i∈S allows for effortless

aggregation when dealing with a collection of them over any subset S ⊆ [1, n].
Since the random quantities τi and ri are independently sampled from a uni-
form distribution by each signer i ∈ [1, n], aggregating the PRF elements is still
challenging. Consequently, we must explore potential modifications needed to

1 Here we follow the group notation by Escala et al. [38]. See Definition 2 for more
details.
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enable the aggregation of these components in comparison to Kiltz et al.’s SPS.
We choose to make the tag τ dependent on the message. Thus, the random-
ized PRF computed by every signer, while still being a random element in the
respective space, now allows aggregation. Moreover, by establishing an injective
mapping between [m]1 and τ , we can observe that the randomized PRF structure
still guarantees the unforgeability in [51] when attempting to forge a signature
on a distinct message. We employ a collision-resistant hash function (CRHF),
H(.), to derive τ from [m]1. This gives the basis of our construction, where each
signer i ∈ [1, n] computes a partial signature on [m]1 as

(σ1, σ2) =
([(

1 m�)]
1
Ki + r�

i

[
B�(U + τ · V)

]
1
,
[
r�

i B
�]

1

)
.

Here the signer i is holding the secret share Ki and chooses a random quan-
tity ri of appropriate size and uses τ = H([m]1). It is easy to verify that this
signature can be aggregated in a non-interactive manner. Looking ahead, as a
first step we prove that this construction achieves TS-UF-0 security, relying on
the well-established and non-interactive standard assumption, i.e., the MDDH
assumption.

In case of a TS-UF-1 adversary, we need to deal with the fact that the adver-
sary is allowed to obtain partial signatures on the forged message [m∗]1. Let
us first consider the case of static corruptions. We cannot apply the unforge-
ability of [51] here as it did not consider strong Uf-CMA security.2 To overcome
this problem, we introduce an information theoretic step to argue that given a
number of partial signatures on the forged message [m∗]1 below the threshold,
the adversary does not gather extra information. In particular, we use Shamir’s
secret reconstruction security to ensure that partial signatures do not really leak
much information. In this argument, we implicitly use the “selective security” of
Shamir’s secret sharing where all the parties in the corrupted set are fixed at
the start of the game.

In the case of adaptive corruptions, an adp-TS-UF-1 adversary not only is
allowed to obtain partial signatures on the forged message [m∗]1, but also it can
corrupt different users to get the corresponding secret keys within the security
game, adaptively. We obviously could follow a standard guessing argument to
achieve adp-TS-UF-1 security based on TS-UF-1 security. However, that direction
unfortunately induces a significant security loss. We critically look at our proof
of TS-UF-1 security we have briefly discussed above. To make our construction
adp-TS-UF-1 secure, we show that it is sufficient to argue that the underlying
secret sharing achieves “adaptive security”. In this work, we indeed form an
argument that Shamir’s secret sharing achieves “adaptive security” which in turn
makes our construction adp-TS-UF-1 secure.

Next, we provide a brief intuition of the formal argument for the “adaptive
security” of Shamir’s secret sharing. Informally speaking, we produce a reduction

2 A signature is called strongly unforgeable when the adversary is not only incapable
of producing a valid signature for a fresh message but also, it cannot generate a new
signature for a challenge message M∗, by observing a valid signature for the same
message M∗.
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B to break the “selective security” of Shamir’s secret sharing given an adaptive
adversary A of the secret sharing. Being an information theoretic reduction, B
basically runs the adaptive adversary A an exponential number of times. Since B
chooses the target set S independently of A’s run, the expected number of paral-
lel runs of A required to ensure all the parties whose secrets A queried are indeed
from S is upper bounded by exponential. Being an information theoretically
secure secret sharing scheme, Shamir’s secret sharing basically achieves “adap-
tive security” due to complexity leveraging but without any degradation in the
advantage of the adversary. While we use Shamir secret sharing as our canonical
choice, we believe that all information-theoretically secure Linear Secret Sharing
schemes can be used instead.

2 Preliminaries

Notation. Throughout the paper, we let κ ∈ N denote the security parameter and
1κ as its unary representation. Given a polynomial p(·), an efficient randomized
algorithm, A, is called probabilistic polynomial time, PPT in short, if its running
time is bounded by a polynomial p(|x|) for every input x. A function negl :
N → R

+ is called negligible if for every positive polynomial f(x), there exists
x0 such that for all x > x0 : negl(κ) < 1/f(x). If clear from the context, we
sometimes omit κ for improved readability. The set {1, . . . , n} is denoted as
[1, n] for a positive integer n. For the equality check of two elements, we use “=”.
The assign operator is denoted with “ :=”, whereas the randomized assignment is
denoted by a ← A, with a randomized algorithm A and where the randomness
is not explicit. We use D1 ≈c D2 to show two distributions like D1 and D2 are
computationally indistinguishable.

Definition 1 (Secret Sharing). For any two positive integers n, t < n, an
(n, t)

Z
a×b
p

-secret-sharing scheme over Z
a×b
p for a, b ∈ N consists of two functions

Share and Rec. Share is a randomized function that takes a secret M ∈ Z
a×b
p and

outputs (M1, . . . ,Mn) ← Share(M,Za×b
p , n, t) where Mi ∈ Z

a×b
p ∀i ∈ [1, n]. The

pair of functions (Share,Rec) satisfy the following requirements.

– Correctness: For any secret M ∈ Z
a×b
p and a set of parties {i1, i2, . . . , ik} ⊆

[1, n] such that k ≥ t, we have

Pr[Rec(Mi1 , . . . ,Mik
: (M1, . . . ,Mn) ← Share(M,Za×b

p , n, t)) = M] = 1 .

– Security: For any secret M ∈ Z
a×b
p and a set of parties S ⊆ [1, n] such that

|S| = k < t, for all information-theoretic adversary A we have

Pr

⎡

⎢
⎣S = {ii}i∈[1,k] ∧ M∗ = M

∣
∣
∣
∣
∣
∣
∣

(M1, . . . ,Mn) ← Share(M,Za×b
p , n, t)

S ← A()
M∗ ← A(Mi1 , . . . ,Mik

)

⎤

⎥
⎦ = 1/p .

We follow standard nomenclature to call this “selective security”. In case of
“adaptive security”, A adaptively chooses ij ∈ [1, n] to get Mij

one at a time.
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We briefly recall the well-known secret sharing scheme due to Shamir [61]. In
(n, t)-Shamir Secret Sharing, a secret s is shared to n parties via n evaluations
of a polynomial of degree (t − 1). Reconstruction of the secret is essentially
Lagrange interpolation where one computes Lagrange polynomials {λij

(x)}j∈S

and linearly combine them with the given polynomial evaluations. The degree of
the original polynomial confirms that one needs at least |S| = t many polynomial
evaluations. In this work, we use Shamir Secret Sharing to secret share a matrix
of size a× b, i.e., we use ab-many parallel instances of Shamir Secret Sharing. To
keep our exposition simpler, we however assume that we have an (n, t)-Shamir
Secret Sharing scheme (Share,Rec) which operates on matrices. Since, our work
here uses Shamir Secret Sharing quite generically, it is convenient to make such
abstraction without going into the details.

Definition 2 (Bilinear Groups). Let an asymmetric bilinear group genera-
tor, ABSGen(1κ), that returns a tuple G := (p,G1,G2,GT ,P1,P2, e), such that
G1, G2 and GT are cyclic groups of the same prime order p such that there is
no known homomorphism between G1 and G2. P1 and P2 are the generators of
G1 and G2, respectively, where e : G1 × G2 → GT is an efficiently computable
(non-degenerate) bilinear map with the following properties:

– ∀ a, b ∈ Zp, e([a]1, [b]2) = [ab]T = e([b]1, [a]2) ,
– ∀ a, b ∈ Zp, e([a + b]1, [1]2) = e([a]1, [1]2)e([b]1, [1]2) ,

where we use an implicit representation of group elements, in which for ζ ∈
{1, 2, T} and an integer α ∈ Zp, the implicit representation of integer α in group
Gζ is defined by [α]ζ = αPζ ∈ Gζ , where PT = e(P1,P2). To be more general,
the implicit representation of a matrix A = (αij) ∈ Z

m×n
p in Gζ is defined by

[A]ζ and we have:

[A]ζ =

⎛

⎜
⎜
⎜
⎝

α1,1Pζ · · · α1,nPζ

α2,1Pζ · · · α2,nPζ

...
. . .

...
αm,1Pζ · · · αm,nPζ

⎞

⎟
⎟
⎟
⎠

.

For two matrices A and B with matching dimensions we define
e([A]1, [B]2) = [AB]T .

Definition 3 (Matrix Distribution). Let k, � ∈ N
∗ s.t. k < �. We call D�,k a

matrix distribution if it outputs matrices over Z
�×k
p of full rank k in polynomial

time. W.l.o.g, we assume the first k rows of matrix A ← D�,k form an invertible
matrix. For � = k + 1, we write Dk in short.

Next, we recall the Matrix Decisional Diffie-Hellman assumption, which
defines over Gζ for any ζ = {1, 2} and states two distributions ([A]ζ , [Ar]ζ)
and ([A]ζ , [u]ζ), where A ← D�,k, r ← Z

k
p,u ← Z

�
p are computationally indistin-

guishable.
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Definition 4 (D�,k-Matrix Decisional Diffie-Hellman (D�,k-MDDH)
Assumption [38]). For a given security parameter κ, let k, � ∈ N

∗ s.t. k < �
and D�,k be a matrix distribution, defined in Definition 3. We say D�,k-MDDH
assumption over Gζ for ζ = {1, 2} holds, if for all PPT adversaries A we have:

AdvMDDH
D�,k,Gζ ,A(κ) =

∣
∣
∣Pr [A(G, [A]ζ , [Ar]ζ) = 1]

− Pr [A(G, [A]ζ , [u]ζ) = 1]
∣
∣
∣ ≤ negl(κ) ,

where G ← ABSGen(1κ), A ← D�,k, r ← Z
k
p and u ← Z

�
p.

Definition 5 (Dk-Kernel Matrix Diffie-Hellman (Dk-KerMDH) Assump-
tion [58]). For a given security parameter κ, let k ∈ N

∗ and Dk is a matrix
distribution, defined in Definition 3. We say Dk-KerMDH assumption over Gζ

for ζ = {1, 2} holds, if for all PPT adversaries A we have:

AdvKerMDH
Dk,Gζ ,A(κ) = Pr [c ∈ orth(A) | [c]3−ζ ← A(G, [A]ζ))] ≤ negl(κ) ·

The Kernel Matrix Diffie-Hellman assumption is a natural computational analog
of the MDDH assumption. It is well-known that for all k ≥ 1, Dk-MDDH ⇒ Dk-
KerMDH [51,58].

3 Threshold Structure-Preserving Signatures

In this section, we first present our security model for Threshold Structure-
Preserving Signatures (TSPS) and then present our construction and prove its
security.

3.1 TSPS: Syntax and Security Definitions

First, we recall the definition of the Threshold Structure-Preserving Signatures
(TSPS) from [32] and their main security properties: correctness and thresh-
old unforgeability. Informally, a threshold signature scheme enables a group of
servers S of size n to collaboratively sign a message. In this paper, we assume
the existence of a trusted dealer who shares the secret key among the signers.
However, there are straightforward and well-known techniques in particular dis-
tributed key generation (DKG) protocols (e.g., [59]) that eliminate this needed
trust.

Definition 6 (Threshold Structure-Preserving Signatures [32]). Over a
security parameter κ and a bilinear group, an (n, t)-TSPS contains the following
PPT algorithms:

– pp ← Setup(1κ): The setup algorithm takes the security parameter κ as input
and returns the set of public parameters pp as output.
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– ({ski, vki}i∈[1,n], vk) ← KeyGen(pp, n, t): The key generation algorithm takes
the public parameters pp along with two integers n, t s.t. 1 ≤ t ≤ n as inputs.
It then returns secret/verification keys (ski, vki) for i ∈ [1, n] along with a
global verification key vk as output.

– Σi ← ParSign(pp, ski, [m]): The partial signing algorithm takes pp, the ith

party’s secret key, ski, and a message [m] ∈ M as inputs. It then returns a
partial signature Σi as output.

– 0/1 ← ParVerify(pp, vki, [m], Σi): The partial verification algorithm as a
deterministic algorithm, takes pp, the ith verification key, vki, and a mes-
sage [m] ∈ M along with partial signature Σi as inputs. It then returns 1
(accept), if the partial signature is valid and 0 (reject), otherwise.

– Σ ← CombineSign(pp, T, {Σi}i∈T ): The combine algorithm takes a set of par-
tial signatures Σi for i ∈ T along with T ⊆ [1, n] and then returns an aggre-
gated signature Σ as output.

– 0/1 ← Verify(pp, vk, [m], Σ): The verification algorithm as a deterministic
algorithm, takes pp, the global verification key, vk, and message [m] ∈ M
along with an aggregated signature Σ as inputs. It then returns 1 (accept), if
the aggregated signature is valid and 0 (reject), otherwise.

Correctness. Correctness guarantees that a signature obtained from a set T ⊆
[1, n] of honest signers always verifies for |T | ≥ t.

Definition 7 (Correctness). An (n, t)-TSPS scheme is called correct if we
have:

Pr

⎡

⎢
⎣

∀ pp ← Setup(1κ), ({ski, vki}i∈[1,n], vk) ← KeyGen(pp, n, t), [m] ∈ M,

Σi ← ParSign(pp, ski, [m]) for i ∈ [1, n],∀ T ⊆ [1, n], |T | ≥ t,

Σ ← CombineSign
(
pp, T, {Σi}i∈T

)
: Verify (pp, vk, [m], Σ) = 1

⎤

⎥
⎦ = 1 .

Unforgeability. Our security model for threshold unforgeability extends the one
from Crites et al. [32]. Therefore, we need to recall a recent work by Bellare et
al. [18], which investigates existing security notions and proposes stronger and
more realistic security notions for threshold signatures under static corruptions.
In particular, the authors in [18] present a hierarchy of different notions of secu-
rity for non-interactive schemes. We focus on fully non-interactive schemes, i.e.,
ones that do not require one round of pre-processing, and thus in this paper
only the TS-UF-0 and TS-UF-1 notions are relevant. The TS-UF-0 notion is a
less stringent notion of unforgeability. In this context, if the adversary has pre-
viously seen a partial signature on a challenge message [m∗], the act of forging a
signature for that specific message is considered as a trivial forgery. The security
of the original TSPS is proved under this notion of unforgeability.

The stronger TS-UF-1 notion, which is our main focus, allows adversaries to
query the signing oracle up to t − |CS| times for partial signatures, even on the
challenge message. Here CS with |CS| < t denotes the set of (statically corrupted)
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signers. Moreover, the model in [18] as well as the TSPS construction in [32]
only considers static corruptions. But we also integrate the core elements of the
model introduced in the recent work by Crites et al. [33], adapted to fully non-
interactive schemes, to support fully adaptive corruptions. Our model is depicted
in Fig. 1. The dashed box as well as the solid white box in the winning condition
apply to the TS-UF-0 and TS-UF-1 notions, respectively. Grey boxes are only
present in the adaptive version of the game, i.e., adp-TS-UF-0 and adp-TS-UF-1.

Definition 8 (Threshold Unforgeability). Let TSPS = (Setup,KeyGen,
ParSign,ParVerify,CombineSign,Verify) be an (n, t)-TSPS scheme over message
space M and let prop ∈ {TS-UF-b, adp-TS-UF-b}b∈{0,1}. The advantage of a
PPT adversary A playing described security games in Fig. 1, is defined as,

Advprop
TSPS,A(κ) = Pr

[
Gprop

TS,A(κ) = 1
]

.

A TSPS achieves prop-security if we have, Advprop
TSPS,A(κ) ≤ negl(κ).

GGGTS-UF-0
TS,A (κ) , GGGTS-UF-1

TS,A (κ) , GGGadp-TS-UF-0
TS,A (κ) , GGGadp-TS-UF-1

TS,A (κ) :

pp ← Setup(1κ)
(n, t,CS, st0) ← A(pp)
HS := [1, n] \ CS

(vk, {ski}i∈[1,n], {vki}i∈[1,n]) ← KeyGen(pp, n, t)

([m∗], Σ∗, st1) ← AOPSign(.), OCorrupt(.) (st0, vk, {ski}i∈CS, {vki}i∈[1,n])

return
(
Verify(pp, vk, [m∗], Σ∗) ∧ |CS| < t ∧

( S1([m∗]) = ∅ ∨ |S1([m∗])| < t − |CS| )
)

OPSign(i, [m]):
Assert [m] ∈ M ∧ i ∈ HS

)
Σi ← ParSign(pp, ski, [m])
if Σi �= ⊥ :

S1([m]) ← S1([m]) ∪ {i}
return (Σi)

OCorrupt(k):
if k ∈ CS :

return ⊥
else : CS ← CS ∪ {k}

HS ← HS \ {k}
return (skk)

Fig. 1. Games defining the TS-UF-0 , TS-UF-1 , adp-TS-UF-0 , and

adp-TS-UF-1 unforgeability notions of threshold signatures.
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3.2 Core Lemma

Prior to introducing our construction, we first present the core lemma that forms
a basis in the proofs of our proposed TSPS. It extends the core lemmas from [51,
52], however it is important to note that both of these schemes are standard SPS,
where there was no need to simulate signatures on forged messages. In contrast,
both the TS-UF-1 and adp-TS-UF-1 security models necessitate the simulation
of partial signature queries on forged messages. Thus we define our core lemma
with a key difference being the introduction of a new oracle, denoted as O∗∗(·).
Lemma 1 (Core Lemma). Let the game GCore

Dk,ABSGen(κ) be defined as Fig. 2.
For any adversary A with the advantage of AdvCore

Dk,ABSGen,A(κ) :=
|Pr[GCore

Dk,ABSGen(κ)] − 1/2|, there exists an adversary B against the Dk-MDDH
assumption such that with the running time T(A) ≈ T(B) it holds that

AdvCore
Dk,ABSGen,A(κ) ≤ 2qAdvMDDH

Dk,G1,B(κ) + q/p ,

where q is a bound on the number of queries requested by adversary A for oracle
Ob(·). Note that A can only query the other oracles only once.

Init():
A,B ← Dk, U,V ← Z

(k+1)×(k+1)
p

vk := (A,UA,VA, [B]1, [B�U]1, [B�V]1)
b ← {0, 1}
Let a⊥ ← Z

1×(k+1)
p such that a⊥A = 0

q := 0, Qtag := ∅
return vk

O∗([τ∗]2):
return [U + τ∗V]2

O∗∗([τ∗]1):
return

[
B�(U + τ∗V)

]
1

Ob([τ ]1):
μ ← Zp, r ← Z

k
p, q := q + 1

Qtag := Qtag ∪ {τ}
return bμa⊥ + r�B�(U + τV)

]
1 ,

[
r�B�]

1

)

Fig. 2. Game defining the core lemma, GCore
Dk,ABSGen(κ).

Proof Sketch. The proof of this lemma uses the proof of core lemma in
[51,52]. The fundamental concept of these proofs is primarily an information-
theoretic argument that (t�(U + τV),U + τ∗V) is identically distributed to
(μa⊥� + t�(U+ τV),U + τ∗V) for μ ← Zp, a⊥, t ← Z

k+1
p and τ = τ∗. We use[

bμa⊥� + t�(U + τV)
]

1
to simulate Ob([τ ]1), [U + τ∗V]2 to simulate O∗([τ∗]2)

and
[
B�(U + τ∗V)

]
1

to simulate O∗∗([τ∗]1). The detailed proof can be found
in Sect. 3.5. ��
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Setup(1κ):

1: G := (p,G1,G2,GT,P1,P2, e) ← ABSGen(1κ).
2: A,B ← Dk, U,V ← Z

(k+1)×(k+1)
p .

3: pp := [A]2 , [UA]2 , [VA]2 , [B]1 ,
[
B�U

]
1 ,

[
B�V

]
1

)
.

KeyGen(pp, n, t):

1: K ← Z
(�+1)×(k+1)
p .

2: K1, . . . ,Kn ← Share(K,Z
(�+1)×(k+1)
p , n, t).

3: Set vk := [KA]2 and (ski, vki) := (Ki, [KiA]2).

ParSign(pp, ski, [m]1):

1: ri ← Z
k
p.

2: τ := H([m]1).
3: Output Σi := (σ1, σ2, σ3, σ4) s.t.
4: σ1 :=

[(
1 m�

)]
1
Ki + r�

i

[
B�(U + τV)

]
1 ,

σ2 :=
[
r�

i B
�]

1 ,
σ3 :=

[
τr�

i B
�]

1 ,
σ4 := [τ ]2 .

ParVerify(pp, vki, [m]1 , Σi): Output 1 if the following checks hold; else output 0.

1: e(σ1, [A]2) = e
([(

1 m�
)]

1
, vki

)
· e (σ2, [UA]2) · e (σ3, [VA]2) .

2: e(σ2, σ4) = e(σ3, [1]2).

CombineSign(pp, S, {Σi}i∈S):

1: Parse Σi = (σi,1, σi,2, σi,3, σ4) for all i ∈ S.
2: Compute Lagrange polynomials λi for i ∈ S.
3: Output Σ := (σ̂1, σ̂2, σ̂3, σ̂4) s.t.

4: σ̂1 :=
∏
i∈S

σλi
i,1 =

[(
1 m�

) ∑
i∈S

λiKi

]
1

+
∑
i∈S

λir�
i

[
B�(U + τV)

]
1 =[(

1 m�
)
K

]
1
+ r� [

B�(U + τV)
]
1 ,

σ̂2 :=
∏
i∈S

σλi
i,2 =

[∑
i∈S

λir�
i B

�
]
1

=
[
r�B�]

1 ,

σ̂3 :=
∏
i∈S

σλi
i,3 =

[∑
i∈S

τλir�
i B

�
]
1

=
[
τr�B�]

1 ,

σ̂4 := σ4 .

Verify(pp, vk, [m]1 , Σ): Output 1 if the following checks satisfy; else output 0.

1: e(σ̂1, [A]2) = e
([(

1 m�
)]

1
, vk

)
· e(σ̂2, [UA]2) · e(σ̂3, [VA]2) .

2: e(σ̂2, σ̂4) = e(σ̂3, [1]2) .

Fig. 3. Our proposed TSPS construction.
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3.3 Our Threshold SPS Construction

Given a collision resistant hash function, H : {0, 1}∗ → Zp, and message space
M := G

�
1, we present our (n, t)-TSPS construction in Fig. 3. This consists of

six main PPT algorithms – Setup, KeyGen, ParSign, ParVerify, CombineSign and
Verify, as defined in Definition 6. Similar to the settings of Bellare et al. [18], we
also assume there is a dealer who is responsible for generating key pairs for all
signers and a general verification key.

3.4 Security

Theorem 1. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH
Assumption in G2, the proposed Threshold Structure-Preserving Signature con-
struction in Fig. 3 achieves TS-UF-0 security against an efficient adversary mak-
ing at most q partial signature queries.

Proof. We prove the above theorem through a series of games and we use Advi

to denote the advantage of the adversary A in winning the Game i. The games
are described below.

Game 0. This is the TS-UF-0 security game described in Definition 8. As shown
in Fig. 4, an adversary A after receiving the set of public parameters, pp,
returns (n, t, CS), where n, t and CS represents the total number of signers,
the threshold, and the set of corrupted signers, respectively. The adversary
can query the partial signing oracle OPSign(·) to receive partial signatures
and q represents the total number of these queries. In the end, the adversary
outputs a message [m∗]1 and a forged signature Σ∗.

Game 1. We modify the verification procedure to the one described in Fig. 5.
Consider any forged message/signature pair ([m∗]1, Σ∗ = (σ̂1, σ̂2, σ̂3, σ̂4)),
where e(σ̂2, σ̂4) = e(σ̂3, [1]2), |CS| < t and S1([m∗]1) = ∅. It is easy to observe
that if the pair ([m∗]1, Σ∗) meets the Verify∗(·) criteria, outlined in Fig. 5, it
also satisfies Verify(·) procedure, described in Fig. 4. This is primarily due to
the fact that:

e(σ̂1, [A]2) = e
(
[
(
1 m∗�)

]1, [KA]2
) · e(σ̂2, [UA]2) · e(σ̂3, [VA]2)

⇐= e(σ̂1, [1]2) = e([
(
1 m∗�)

]1, [K]2) · e(σ̂2, [U]2) · e(σ̂3, [V]2)

⇐⇒e(σ̂1, [1]2) = e([
(
1 m∗�)

K]1, [1]2) · e(σ̂2, [U + τ∗V]2) ·

Assume there exists a message/signature pair like ([m∗]1, Σ∗ =
(σ̂1, σ̂2, σ̂3, σ̂4)) that satisifies Verify(·) and not Verify∗(·), then we can com-
pute a non-zero vector c in the kernal of A as follows:

c := σ̂1 − ([
(
1 m∗�)

K]1 + σ̂2U + σ̂3V) ∈ G
1×(k+1)
1 ·

According to Dk-KerMDH assumption over G2 described in Definition 5, com-
puting such a vector c is considered computationally hard. Thus,

|Adv0 − Adv1| ≤ AdvKerMDH
Dk,G2,B0

(κ) ·
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GGG0(κ):

1: G ← ABSGen(1κ),
2: A,B ← Dk,
3: U,V ← Z

(k+1)×(k+1)
p .

4: pp := ([A]2, [UA]2, [VA]2, [B]1, [B�U]1, [B�V]1).
5: (n, t,CS, st0) ← A(pp).
6: Assert CS ⊂ [1, n].
7: Sample K ← Z

(�+1)×(k+1)
p .

8: (K1, . . . ,Kn) ← Share(K,Z
(�+1)×(k+1)
p , n, t).

9: vk := [KA]2.
10: for i ∈ [1, n]:
11: ski := Ki, vki := [KiA]2.
12: ([m∗]1, Σ∗, st1) ← AOPSign(.)

st0, vk, {ski}i∈CS, {vki}i∈[1,n]
)
.

13: return (Verify(pp, vk, [m∗]1, Σ∗) ∧ |CS| < t ∧ S1([m∗]1) = ∅)
OPSign(i, [m]1):

1: Assert [m]1 ∈ M ∧ i ∈ HS
)
.

2: ri ← Z
k
p.

3: τ := H([m]1).
4: σ1 :=

[(
1 m�

)
Ki + r�

i B
�(U + τV)]

]
1
,

σ2 := [r�
i B

�]1,
σ3 := [τr�

i B
�]1,

σ4 := [τ ]2.
5: Σi := (σ1, σ2, σ3, σ4).
6: if Σi �= ⊥ :
7: S1([m]1) := S1([m]1) ∪ {i}.
8: return Σi

Verify(pp, vk, [m∗]1, Σ∗) :

1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4).

2: return
(

e(σ̂1, [A]2) = e
([(

1 m∗�
)]

1
, [KA]2

)
· e(σ̂2, [UA]2) · e(σ̂3, [VA]2)

∧ e(σ̂2, σ̂4) = e(σ̂3, [1]2)
)

Fig. 4. Game0.



Adaptive Threshold SPS from Standard Assumptions 179

Verify∗(pp, vk, [m∗]1, Σ∗):
1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4 = [τ∗]2).
2: return

(
e(σ̂1, [1]2) = e [ 1 m∗�)

K]1, [1]2
) · e(σ̂2, [U + τ∗V]2) ∧

e(σ̂2, σ̂4) = e(σ̂3, [1]2)
)

Fig. 5. Modifications in Game1.

Game 2. On receiving a partial signature query on a message [mi]1, the query
list is updated to include the message [mi]1 along with its corresponding
tag, τi := H([mi]1). The challenger aborts if an adversary can generate two
tuples ([mi]1, τi), ([mj ]1, τj) with [mi]1 = [mj ]1 and τi = τj . By the collision
resistance property of the underlying hash function we have,

|Adv1 − Adv2| ≤ AdvCRHF
H (κ) ·

Game 3. In this game, we introduce randomness to the partial signatures by
adding μa⊥ to each partial signature, where μ is chosen uniformly at random
and the vector a⊥ is a non-zero vector in the kernel of A. The new partial
signatures satisfy the verification procedure as a⊥A = 0. Figure 6 describes
the new partial signing oracle, OPSign∗

(.).

OPSign∗
(i, [m]1):

1: Assert [m]1 ∈ M ∧ i ∈ HS
)
.

2: ri ← Z
k
p, τ := H([m]1), μ ← Zp.

3: σ1 := [ 1 m�)
Ki + μa⊥ + r�

i B
�(U + τV)]1,

σ2 := [r�
i B

�]1 ,
σ3 := [τr�

i B
�]1 ,

σ4 := [τ ]2 .
4: Σi := (σ1, σ2, σ3, σ4).
5: if Σi �= ⊥ :
6: S1([m]1) := S1([m]1) ∪ {i}.
7: return Σi

Fig. 6. Modifications in Game3.

Lemma 2. |Adv2 − Adv3| ≤ 2qAdvMDDH
Dk,G1,B1

(κ) + q/p.

Proof. We prove this lemma through a reduction to the core lemma, Lemma
1. Let us assume there exists an adversary A that can distinguish the games
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BInit(·),Ob(·),O∗(·),O∗∗(·)
1 :

1: Assert [m]1 ∈ M ∧ i ∈ HS
)
.

2: (A,UA,VA, [B]1, [B�U]1, [B�V]1) ← Init().
3: pp := ([A]2, [UA]2, [VA]2, [B]1, [B�U]1, [B�V]1).
4: (n, t,CS, st0) ← A(pp).
5: Assert CS ⊂ [1, n].
6: Sample K ← Z

(�+1)×(k+1)
p .

7: (K1, . . . ,Kn) ← Share(K,Z
(�+1)×(k+1)
p , n, t).

8: vk := [KA]2.
9: for i ∈ [1, n]:

10: ski := Ki, vki := [KiA]2.
11: (m∗, Σ∗, st1) ← AOPSign∗(.)

(st0, vk, {ski}i∈CS, {vki}i∈[1,n]).
12: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4)
13: if (Verify∗(pp, vk, [m∗]1, Σ∗) ∧ |CS| < t ∧ S1([m∗]1) = ∅) :
14: result := true
15: else : result := false
16: return b̃ ← A(result)

OPSign∗
(i, [m]1):

1: τ := H([m]1).
2: (val1, val2) ← Ob(τ).
3: σ1 :=

[(
1 m�

)
Ki

]
1

· val1.
σ2 := val2,
σ3 := [τ ]1 · val2,
σ4 := [τ ]2.

4: Σi := (σ1, σ2, σ3, σ4).
5: if Σi �= ⊥ :
6: S1([m]1) := S1([m]1) ∪ {i}.
7: return Σi

Verify∗(pp, vk, [m∗]1, Σ∗) :

1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4).

2: return
(

e (σ̂1, [1]2) = e
([(

1 m∗�
)
K

]
1
, [1]2

)
· e(σ̂2, O∗(σ̂4))

∧ e(σ̂2, σ̂4) = e(σ̂3, [1]2)
)

Fig. 7. Reduction to the core lemma in Lemma 1.
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Game2 and Game3, we can use it to build an adversary B1, defined in Fig. 7,
which breaks the core lemma, Lemma 1. The adversary B1 has access to four
oracles, Init(·),Ob(·),O∗(·),O∗∗(·), however in this reduction, we only use the
first three oracles, defined as follows:

Oracle Init(·): The oracle Init provides the set of public parameters pp.
Oracle Ob(·): On the i-th query to this oracle on [τ ]1, it outputs(

[bμa⊥ + r�
i B

�(U + τ · V)]1, [r�
i B

�]1
)

depending on a random bit b.
Oracle O∗(·): On input [τ∗]2, it returns [U + τ∗V]2.

When the lemma challenger selects the challenge bit as b = 0, it leads to the
game Game2, and when b = 1, it results in the game Game3. All the other values
are simulated perfectly. Thus, |Adv2 − Adv3| ≤ AdvCore

Dk,ABSGen,B1
(κ) holds and

therefore we have,

|Adv2 − Adv3| ≤ 2qAdvMDDH
Dk,G1,B(κ) + q/p · ��

Game 4. In this game, we apply the modifications described in Fig. 8. Shamir
secret sharing (see Definition 1) ensures that (K1, . . . ,Kn) in Game3 and
(K̃1, . . . , K̃n) in Game4 have identical distributions. W.l.o.g, Ki in Game3 and
K̃i in Game4 are identically distributed. In Game4, on the other hand, K̃i and
Ki = K̃i −uia⊥ are identically distributed. Combining these observations, it
follows that Ki in Game3 and Ki in Game4 are identically distributed for all
i ∈ [1, n]. Consequently, it can be deduced that K in Game3 and K+u0a⊥ in
Game4 are identically distributed. Therefore, this change is just a conceptual
change and we have,

|Adv3 − Adv4| = 0 ·
Now, we give a bound on Adv4 via an information-theoretic argument. We
first consider the information about u0 (and subsequently {ui}i∈[1,n]\CS)
leaked from vk (and subsequently {vki}i∈[1,n]) and partial signing queries:

– vk := [KA]2 =
[
K̃A

]

2
and vki := [KiA]2 =

[
K̃iA

]

2
for all i ∈ [1, n].

– The output of the jth partial signature query on (i, [m]1) for [m]1 = [m∗]1
completely hides {ui}i∈[1,n]\CS (and subsequently u0 as the adversary has
only |CS| many ui with |CS| < t), since

(
1 m�)

Ki + μja⊥ =
(
1 m�)

K̃i +
(
1 m�)

uia⊥ + μja⊥ .

distributed identically to
(
1 m�)

K̃i+μja⊥. This is because μja⊥ already
hides

(
1 m�)

uia⊥ for uniformly random μj ← Zp.
The only way to successfully convince the verification to accept a signature
Σ∗ on m∗, the adversary must correctly compute

(
1 m∗�)

(K + u0a⊥) and
thus

(
1 m∗�)

u0. Observe that, {ui}i∈[1,n]\CS (and thereby u0) are completely
hidden to the adversary,

(
1 m∗�)

u0 is uniformly random from Zp from the
adversary’s viewpoint. Therefore, Adv4 = 1/p. ��
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GGG3(κ): GGG4(κ):

1: G ← ABSGen(1κ),
2: A,B ← Dk,
3: U,V ← Z

(k+1)×(k+1)
p .

4: pp := ([A]2, [UA]2, [VA]2, [B]1, [B�U]1, [B�V]1).
5: (n, t,CS, st0) ← A(pp).
6: Assert CS ⊂ [1, n].
7: Sample K ← Z

(�+1)×(k+1)
p .

8: (K1, . . . ,Kn) ← Share(K,Z
(�+1)×(k+1)
p , n, t)

Sample u0 ← Z�+1
p

(u1, . . . ,un) ← Share(u0,Z
(�+1)
p , n, t)

(K̃1, . . . , K̃n) ← Share(K,Z
(�+1)×(k+1)
p , n, t)

Ki := K̃i + uia⊥, ∀i ∈ [1, n]
9: vk := [KA]2.

10: for i ∈ [1, n]:
11: ski := Ki, vki := [KiA]2.
12: ([m∗]1, Σ∗, st1) ← AOPSign(.)

(st0, vk, {ski}i∈CS, {vki}i∈[1,n]) .

13: return
(
Verify∗(pp, vk, [m∗]1, Σ∗) ∧ |CS| < t ∧ S1([m∗]1) = ∅

)

Verify∗(pp, vk, [m∗]1, Σ∗) :

1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4 = [τ∗]2).

2: return
(

e(σ̂1, [1]2) = e
([(

1 m∗�
)
(K + u0a⊥ )

]
1
, [1]2

)
e (σ̂2, [U + τ∗V]2)

∧ e(σ̂2, σ̂4) = e(σ̂3, [1]2)
)

Fig. 8. Modification from Game3 to Game4.

Theorem 2. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH
Assumption in G2, our Threshold Structure-Preserving Signature construction
achieves TS-UF-1 security against an efficient adversary making at most q partial
signature queries.

Proof Sketch. The difference between TS-UF-0 and TS-UF-1 lies in the fact that,
in the latter model, an adversary can request OPSign(·) queries on [m∗]1 for
which it aims to forge a signature. The natural restriction in Fig. 1 is expressed
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as |S1([m∗]1)| < t−|CS|, where t is the threshold value and the corrupted parties
CS are fixed at the beginning of the game. As this security model allows partial
signature oracle queries on [m∗]1, we next explore the changes we need to make
on the proof of Theorem 1.

Game0, Game1 and Game2 stay the same. To handle TS-UF-1 adversaries, we
introduce an additional game Game′

2 to handle partial signature queries on the
forged message. In Game′

2, the challenger makes a list of all the partial signa-
ture queries and guesses the message on which forgery will be done. However,
the guess will be made on the list of partial signature queries. More precisely,
let A make partial signature queries on [m1]1 , . . . , [mQ]1 s.t. Q ≤ q, the chal-
lenger of Game′

2 rightly guesses the forged message with 1/Q probability which
introduces a degradation in the advantage. This small yet powerful modification
allows the challenger in Game3 to add a uniformly random quantity μ to partial
signature oracle queries on [m]1 = [m∗]1. This concept is formulated by adding
an additional line between lines number 2 and 3 in Fig. 6. In particular, the new
Game′

3 (See Fig. 9) would set μ = 0 if [m]1 = [m∗]1. Next, we give an intuitive
explanation of the indistinguishability of Game′

2 and Game′
3 which basically is a

modification of the proof of Lemma 2.

OPSign∗
(i, [m]1):

1: assert [m]1 ∈ M ∧ i ∈ HS
)

2: ri ← Z
k
p, τ := H([m]1), μ ← Zp If [m]1 = [m∗]1, set μ := 0

3: σ1 := 1 m�)
Ki + μa⊥ + r�

i B
�(U + τ · V)

]
1,

σ2 := [r�
i B

�]1,
σ3 := [τr�

i B
�]1,

σ4 := [τ ]2
4: Σi := (σ1, σ2, σ3, σ4)
5: if Σi �= ⊥ :
6: S1([m]1) := S1([m]1) ∪ {i}
7: return Σi

Fig. 9. Game′
3 in the proof of Theorem 2.

The novelty of this research lies in the need to simulate partial signature
queries on the forged message [m∗]1, a challenge not addressed in previous works
like [51,52] upon which this study is based. It’s important to mention that an
extra oracle, termed O∗∗(·), is sufficient for our objectives. On any partial sig-
nature query on the forged message [m∗]1, the reduction calls O∗∗([τ∗]1) for
τ∗ ← H([m∗]1). Next we see that a single query to O∗∗([τ∗]1) is sufficient to
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handle multiple partial signature queries on [m∗]1. In particular, given a partial
signature oracle query on (i, [m∗]1), the reduction uses O∗∗(·) of the so-called
core-lemma (in Lemma 1) to get X =

[
B�(U + τ∗V)

]
1
, where τ∗ = H([m∗]1).

The reduction then replies with
( [(

1 m∗�)]
1
Ki+r� ·X,

[
r�B�]

1
,
[
τ∗r�B�]

1
,

[τ∗]2
)

as a partial signature response to A. Thus, a single call to O∗∗(·) suffices
to handle all partial signature queries on [m∗]1.

We define Game4 as being identical to the proof of Theorem 1. In fact,
the argument for the indistinguishability of Game3 and Game4 from the proof
of Theorem 1 applies here as well. The argument that Adv4 is negligible
however requires a small modification. Similar to the proof of Theorem 1, we
can show that all verification keys vk and {vki}i∈[1,n] stay the same. Further-
more, all partial signature queries on [m]1 = [m∗]1 do not leak any informa-
tion about {ui}i∈[1,n]\CS. Since, partial signature oracle queries are allowed on
[m∗]1, observe that at most {ui}i∈S1([m∗]1) are leaked to the adversary. To sum-
marise, an adversary in TS-UF-1 gets at most {ui}i∈S1([m∗]1)�CS even when it is
unbounded. Due to the natural restriction, |S1([m∗]1)|+|CS| < t ensures that u0

stays completely hidden to the adversary. Thus,
(
1 m∗�)

u0 is uniformly random
from Zp from the adversary’s viewpoint. Therefore, Adv4 ≤ 1/p. ��
Theorem 3. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH
Assumption in G2, the proposed Threshold Structure-Preserving Signature con-
struction in Fig. 3 achieves adp-TS-UF-1 security against an efficient adversary
making at most q partial signature queries.

Proof. The difference between TS-UF-1 and adp-TS-UF-1 is that an adversary
of the later model has access to OCorrupt(.) oracle and can corrupt the honest
signers, adaptively. As per Fig. 1, an adp-TS-UF-1 adversary proposes a corrupted
set CS at the start of the game which it updates incrementally as the game
progresses. At the time of forgery, the natural restriction in Fig. 1 formulates
as |S1([m∗]1)| < t − |CS|, where t is the threshold value and CS contains the
list of corrupted signers at the forgery phase. Given that this security model
permits an adversary to obtain the secret keys of users it may have queried
using the OPSign(.) oracle in the past, our next step involves investigating the
main modifications required for the proof in Theorem 2.

Game0, Game1, Game2, and Game′
2 stay the same. In the proof of Theorem

2, we also have showed that Game′
2 and Game′

3 to be indistinguishable due to
the so-called core lemma, Lemma 1. We reuse the reduction in Fig. 7 towards
this purpose. The reduction in Fig. 7 samples K ← Z

(�+1)×(k+1)
p and gener-

ates (K1, . . . ,Kn) ← Share(K,Z
(�+1)×(k+1)
p , n, t). Recall that, the adp-TS-UF-1

adversary A of Lemma 2 corrupts a party i ∈ [1, n] adaptively. Since the reduc-
tion of Lemma 2 already knows Ki in plain, it can handle the OCorrupt(.) oracle
queries quite naturally.
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The indistinguishability of Game3 and Game4 are argued exactly the same as
in Theorem 2. We now focus on Adv4. In Game4, the adversary gets to update
CS adaptively. Intuitively, all Ki are independently sampled. Giving out a few
of them to the adversary does not change the adversary’s view. In the proof of
Theorem 2, we already have managed to address partial signature queries on
forged message. Except a few details, this ensures our proof will work out. We
next give a formal argument.

We prove this theorem through a series of games and we use Advi to
denote the advantage of the adversary A in winning the Game i. The games
are described below.

Game 0. This is the adp-TS-UF-1 security game described in Definition 8. As
shown in Fig. 10, an adversary A after receiving the set of public parameters,
pp, returns (n, t, CS), where n, t and CS represents the total number of signers,
the threshold, and the set of corrupted signers, respectively. The adversary
can query the partial signing oracle OPSign(·) to receive partial signatures. Let
Q represent the number of distinct messages where partial signing queries
are made. In the end, the adversary outputs a message [m∗]1 and a forged
signature Σ∗.

Game 1. We modify the verification procedure to the one described in Fig. 11.
Consider any forged message/signature pair ([m∗]1, Σ∗ = (σ̂1, σ̂2, σ̂3, σ̂4))
where e(σ̂2, σ̂4) = e(σ̂3, [1]2), |CS| < t and S1([m∗]1) = ∅. Note that if the
pair ([m∗]1, Σ∗) meets the Verify∗(·) conditions, outlined in Fig. 11, it also
satisfies Verify(·) procedure, described in Fig. 10. This is primarily due to the
fact that:

e(σ̂1, [A]2) = e
(
[
(
1 m∗�)

]1, [KA]2
) · e(σ̂2, [UA]2) · e(σ̂3, [VA]2)

⇐= e(σ̂1, [1]2) = e([
(
1 m∗�)

]1, [K]2) · e(σ̂2, [U]2) · e(σ̂3, [V]2)

⇐⇒e(σ̂1, [1]2) = e([
(
1 m∗�)

K]1, [1]2) · e(σ̂2, [U + τ∗V]2) ·

Assume there exists a message/signature pair ([m∗]1, Σ∗ = (σ̂1, σ̂2, σ̂3, σ̂4))
that satisfies Verify(.) and not Verify∗(.), then we can compute a non-zero
vector c in the kernel of A as follows:

c := σ̂1 − ([
(
1 m∗�)

K]1 + σ̂2U + σ̂3V) ∈ G
1×(k+1)
1 ·

According to Dk-KerMDH assumption over G2 described in Definition 5, such
a vector c is hard to compute. Thus,

|Adv0 − Adv1| ≤ AdvKerMDH
Dk,G2,B0

(κ) ·
Game 2. On receiving a partial signature query on a message [mi]1, a list is

updated with the message [mi]1 and the corresponding tag τi := H([mi]1).
The challenger aborts if an adversary can generate two tuples ([mi]1, τi),
([mj ]1, τj) with [mi]1 = [mj ]1 and τi = τj . By the collision resistance property
of the underlying hash function we have:

|Adv1 − Adv2| ≤ AdvCRHF
H (κ) ·
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GGG0(κ):

1: G ← ABSGen(1κ),
2: A,B ← Dk,
3: U,V ← Z

(k+1)×(k+1)
p .

4: pp := ([A]2, [UA]2, [VA]2, [B]1, [B�U]1, [B�V]1).
5: (n, t,CS, st0) ← A(pp).
6: Assert CS ⊂ [1, n].
7: Sample K ← Z

(�+1)×(k+1)
p .

8: (K1, . . . ,Kn) ← Share(K,Z
(�+1)×(k+1)
p , n, t).

9: vk := [KA]2.
10: ski := Ki, vki := [KiA]2 for i ∈ [1, n].
11: ([m∗]1, Σ∗, st1) ← AOPSign(·),OCorrupt(·)(st0, vk, {ski}i∈CS, {vki}i∈[1,n]).

12: return
(
Verify(pp, vk, [m∗]1, Σ∗) ∧ |CS| < t ∧ S1([m∗]1) = ∅

)
OPSign(i, [m]1):

1: Assert [m]1 ∈ M ∧ i ∈ HS
)
.

2: ri ← Z
k
p.

3: τ := H([m]1).
4: σ1 :=

[(
1 m�

)
Ki + r�

i B
�(U + τV)

]
1
.

σ2 := [r�
i B

�]1,
σ3 := [τr�

i B
�]1,

σ4 := [τ ]2.
5: Σi := (σ1, σ2, σ3, σ4).
6: if Σi �= ⊥ :
7: S1([m]1) := S1([m]1) ∪ {i}.
8: return Σi

OCorrupt(j):

1: CS ← CS ∪ {j}
2: HS ← CS \ {j}
3: return skj

Verify(pp, vk, [m∗]1, Σ∗) :

1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4).

2: return
(

e(σ̂1, [A]2) = e
([(

1 m∗�
)]

1
, [KA]2

)
· e(σ̂2, [UA]2) · e(σ̂3, [VA]2)

∧ e(σ̂2, σ̂4) = e(σ̂3, [1]2)
)

Fig. 10. Game0.



Adaptive Threshold SPS from Standard Assumptions 187

Verify∗(pp, vk, [m∗]1, Σ∗):
1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4 = [τ∗]2).

2: return
(

e(σ̂1, [1]2) = e [ 1 m∗�)
K]1, [1]2

) · e(σ̂2, [U + τ∗V]2) ∧

e(σ̂2, σ̂4) = e(σ̂3, [1]2)
)

Fig. 11. Modifications in Game1.

Game 2′. In Game′
2, the challenger randomly chooses an index j∗ ← [1, Q] as

its guess of the message on which the forgery will be done. This game is the
same as Game 2 except that the challenger aborts the game immediately if
forged message [m∗]1 = [mj∗ ]1.
The challenger of Game′

2 rightly guesses the forged message [m∗]1 with
1/Q probability which introduces a degradation in the advantage of Game′

2:
Adv2′ = 1

QAdv2.
Game 3′. This game is same as Game′

2 except we introduce randomness to
the partial signatures by adding μa⊥ to each partial signature query on all
messages [m]1 except [m]∗1 on which the forgery is done.

OPSign∗
(i, [m]1):

1: assert [m]1 ∈ M ∧ i ∈ HS
)

2: ri ← Z
k
p, τ := H([m]1), μ ← Zp If [m]1 = [m∗]1, set μ := 0

3: σ1 := 1 m�)
Ki + μa⊥ + r�

i B
�(U + τ · V)

]
1,

σ2 := [r�
i B

�]1,
σ3 := [τr�

i B
�]1,

σ4 := [τ ]2
4: Σi := (σ1, σ2, σ3, σ4)
5: if Σi �= ⊥ :
6: S1([m]1) := S1([m]1) ∪ {i}
7: return Σi

Fig. 12. Game′
3 in the proof of Theorem 3.

We show that, we can make a reduction algorithm B for the so-called core-
lemma (in Lemma 1) using A. At the start of the game, B randomly chooses
an index j∗ ← [1, Q] as its guess of the message on which forgery will be done.
If [m∗]1 = [mj∗ ]1 = [m∗]1, B aborts. Otherwise, B outputs A’s output as it
is. In particular, B does the following:
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1. B receives pp from the challenger.
2. B samples K ← Z

(�+1)×(k+1)
p .

3. B then secret shares K into (K1, . . . ,Kn) ← Share(K,Z
(�+1)×(k+1)
p , n, t).

4. On a OCorrupt(.) oracle query on j ∈ [1, n], B returns Kj .
5. B simulates the partial signature query on (i, [m]1) as following:

– If [m]1 = [m∗]1, it makes a query (i, τ∗) on O∗∗(.) where τ∗ ←
H([m∗]1).

• Let B receives val as the response of the above queries.
• B samples ri ← Z

k
p and returns Σi := (

[(
1 m�)

Ki

]
1
·r�

i ·val, r�
i ·

val, τ · r�
i · val, [τ ]2) to A as the partial signature.

– If [m]1 = [m∗]1, it makes a query (i, τ) on Ob(·), where τ ← H([m]1).
– Let B receives (val1, val2) as the response of the above queries.
– It returns Σi :=

([(
1 m�)

Ki

]
1

· val1, val2, τ · val2, [τ ]2
)

to A as
the partial signature.

6. On Verify∗(.) on (vk, [m∗]1 , Σ∗), B queries on O∗(·) on [τ∗]2 where τ∗ ←
H([m∗]1).

• Let Σ∗ is (σ1, σ2, σ3, σ4 = [τ∗]2).
• Let B receives val as the response of the above query.
• B verifies the signature: e(σ1, [1]2) = e

([(
1 m∗�)

K
]
1
, [1]2

) ·
e(σ2, val) ∧ e(σ2, σ4) = e(σ3, [1]2).

Game′
2 and Game′

3 are indistinguishable due to the so-called core-lemma
(in Lemma 1), then we have:

|Adv2′ − Adv3′ | ≤ 2QAdvMDDH
Dk,G1,B1

(κ) + Q/p ·
Game 4. This game is same as Game′

3 except that {Ki}i∈[n] are sampled. In
particular, we sample Ki = K̃i + uia⊥ for i ∈ [1, n].
Shamir secret sharing (see Definition 1) ensures that (K1, . . . ,Kn) in Game3
and (K̃1, . . . , K̃n) in Game4 are identically distributed. W.l.o.g, Ki in Game′

3

and K̃i in Game4 are identically distributed. In Game4, on the other hand, K̃i

and Ki = K̃i − uia⊥ are identically distributed. Considering both together,
Ki is Game′

3 and Ki in Game4 are identically distributed for all i ∈ [1, n].
Thus further ensures that K in Game′

3 and K+u0a⊥ in Game4 are identically
distributed. Therefore, this change is just a conceptual change and Adv3′ −
Adv4 = 0.
Finally, we argue that Adv4 = 1/p. Notice that, the adversary gets to update
CS adaptively. To complete the argument, we have to ensure that even after
getting Ki = K̃i +uia⊥ for i ∈ [CS] chosen adaptively and even after having
several partial signatures (possibly on the corrupted keys too), u0 is still
hidden to the adversary.

– Firstly, vk and {vki}i∈[1,n] do not leak anything about u0 and {ui}i∈[1,n]

respectively. Note that, A gets ski = Ki = K̃i + uia⊥ for i ∈ [CS] as a
part of Input.
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– The output of jth partial signature query on (i, [m]1) for [m]1 = [m∗]1
completely hides {ui}i∈[1,n]\CS (and subsequently u0 as the adversary has
only |CS| many ui where |CS| < t), since

(
1 m�)

Ki + μja⊥ =
(
1 m�)

K̃i +
(
1 m�)

uia⊥ + μja⊥ ·

distributed identically to
(
1 m�)

K̃i+μja⊥. This is because μja⊥ already
hides

(
1 m�)

uia⊥ for uniformly random μj ← Zp.
– In case of the jth partial signature query on (i, [m∗]1), observe that

at most {ui}i∈S1([m∗]1) are leaked to the adversary. To summarise, an
adp-TS-UF-1 adversary gets at most {ui}i∈S1([m∗]1) even when it is
unbounded.

– Finally, we take a look at the corrupted set CS. We emphasize that this
set was updated through out the game adaptively.

From the above discussion, it is clear that the information theoretically adver-
sary can at most gets hold of {ui}i∈S1([m∗]1)�CS adaptively. Note that, the
only way to sucessfuly convince the verification to accept a signature Σ∗ on
m∗, the adversary must correctly compute

(
1 m∗�)

(K + u0a⊥) and thus(
1 m∗�)

u0. So the question now reduces to if the adversary can compute u0

from {ui}i∈S1([m∗]1)�CS which it got adaptively. Since Shamir secret sharing
is information theoretically secure, the advantage of an adversary in case of
selective corruption of users is same as the advantage of an adversary in case
of adaptive corruption of users. Thus, u0 is completely hidden to the adap-
tive adversary,

(
1 m∗�)

u0 is uniformly random from Zp from its viewpoint.
Therefore, Adv4 = 1/p (Fig. 12).

��

3.5 Proof of Core Lemma

Proof of Lemma 1. We proceed through a series of games from Game0 to Gameq.
Note that, Init outputs the same in all the games. In Gamei, the first i queries
to the oracle Ob(.) are responded with ([μa⊥ + r�B�(U + τV)]1, [r�B�]1)
and the next q − i queries are responded with ([r�B�(U + τV)]1, [r�B�]1).
The intermediate games Gamei and Gamei+1 respond differently to the i + 1-th
query to Ob(.). The Gamei responds with ([r�B�(U+ τV)]1, [r�B�]1) whereas
Gamei+1 responds with ([μa⊥ + r�B�(U + τV)]1, [r�B�]1). We compute the
advantage of the adversary in differentiating the two games below. The advantage
of the adversary in Gamei is denoted by Advi for i = 0, . . . , q. On querying Ob(·),
Gamei responds to i + 1-th query with

([r�B�(U + τV)]1, [r�B�]1) ,

where r ← Z
k
p.



190 A. Mitrokotsa et al.

We define a sub-game Gamei.1 where [Br]1 is replaced with [w]1, [w]1 ←
G

k+1
1 . From the MDDH assumption, a MDDH adversary cannot distinguish

between the distributions ([B]1, [Br]1) and ([B]1, [w]1). Thus,

([r�B�(U + τV)]1, [r�B�]1) ≈c ([w�(U + τV)]1, [w]1) ·

All the other values can be perfectly simulated in the reduction by choosing
U and V from the appropriate distributions. In the next sub-game Gamei.2,
we introduce the randomness μa⊥ to [w�(U + τV)]1 and proceed to use an
information-theoretic argument to bound the advantage in this experiment. As
shown in [52], for every A,B ← Dk, τ = τ∗, the following distributions are
identically distributed

(vk, [w�(U + τV)]1,U + τ∗V) and (vk, [μa⊥ +w�(U + τV)]1,U + τ∗V) ·

with probability 1 − 1/p over w. The values [B�U]1 and [B�V]1 are part of
the public values vk := (A,UA,VA, [B]1, [B�U]1, [B�V]1) and anyone can
compute [B�(U + τ∗V)]1 corresponding to a τ∗. Thus, for τ = τ∗, we have the
two following identical distributions:

(vk, [w�(U + τV)]1, [U + τ∗V]2, [B�(U + τ∗V)]1) and

(vk, [μa⊥ +w�(U + τV)]1, [U + τ∗V]2, [B�(U + τ∗V)]1) · (1)

From Equation (1), the subgames Gamei.1 and Gamei.2 are statistically close.
We use the MDDH assumption again in the next sub-game Gamei.3 and replace
[w]1 with [Br]1. The resulting distribution is

(vk, [μa⊥ + r�B�(U + τV)]1, [U + τ∗V]2, [B�(U + τ∗V)]1) ,

which is same as Gamei+1. Thus, from the two MDDH instances as well as the
information-theoretic argument,

|Advi − Advi+1| ≤ 2AdvMDDH
Dk,G1,B(κ) + 1/p ·

��

4 Conclusion

In this paper, we give the first construction of a non-interactive threshold
structure-preserving signature (TSPS) scheme from standard assumptions. We
prove our construction secure in the adp-TS-UF-1 security model where the
adversary is allowed to obtain partial signatures on the forged message and
additionally allow the adversary to adaptively corrupt parties. Although the sig-
natures are constant-size (and in fact quite small), we consider improving the
efficiency of TSPS under standard assumptions as an interesting future work.
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