
On Instantiating Unleveled
Fully-Homomorphic Signatures
from Falsifiable Assumptions

Romain Gay1 and Bogdan Ursu2(B)

1 IBM Research, Zurich, Switzerland
rga@zurich.ibm.com

2 Consensys, Fort Worth, USA
bogdan.ursu@consensys.net

Abstract. We build the first unleveled fully homomorphic signature
scheme in the standard model. Our scheme is not constrained by any
a-priori bound on the depth of the functions that can be homomor-
phically evaluated, and relies on subexponentially-secure indistinguisha-
bility obfuscation, fully-homomorphic encryption and a non-interactive
zero-knowledge (NIZK) proof system with composable zero-knowledge.
Our scheme is also the first to satisfy the strong security notion of
context-hiding for an unbounded number of levels, ensuring that sig-
natures computed homomorphically do not leak the original messages
from which they were computed. All building blocks are instantiable
from falsifiable assumptions in the standard model, avoiding the need
for knowledge assumptions.

The main difficulty we overcome stems from the fact that bootstrap-
ping, which is a crucial tool for obtaining unleveled fully homomorphic
encryption (FHE), has no equivalent for homomorphic signatures, requir-
ing us to use novel techniques.

1 Introduction

Fully Homomorphic Signatures. A signature scheme is said to be homomor-
phic when given signatures σ1, . . . , σn of messages m1, . . . , mn, it is possible to
publicly compute a signature σf of the message f(m1, . . . , mn) for any function
f . This evaluated signature σf is verified with respect to the verification key of
the scheme, the message m = f(m1, . . . , mn) and the function f .

Given a set of signatures σ1, . . . , σn, unforgeability prevents an adversary from
deriving a signature σf that verifies with respect to a function f and a message
y �= f(m1, . . . , mn). In other words, the signature certifies that the message cor-
responds to the proper evaluation of the function f on the original messages.

Akin to homomorphic encryption, the signing algorithm is a homomorphism
from the message space to the signature space. Computing the addition of sig-
natures σ1 �σ2 results in the signature of the message m1 +m2, where � and +

The corresponding author is based in Zurich, Switzerland, and this work was carried
out during his time at ETH Zurich.

c© International Association for Cryptologic Research 2024
Q. Tang and V. Teague (Eds.): PKC 2024, LNCS 14601, pp. 74–104, 2024.
https://doi.org/10.1007/978-3-031-57718-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57718-5_3&domain=pdf
http://orcid.org/0000-0003-4576-1826
https://doi.org/10.1007/978-3-031-57718-5_3

On Instantiating Unleveled FHS from Falsifiable Assumptions 75

denote the addition in the signature and message space, respectively. The same
goes for multiplication. Schemes equipped with a ring homomorphism (with both
addition and multiplication) are referred to as fully homomorphic, since these
operations are sufficient to capture all possible Boolean functions.
Applications of FHS. Homomorphic signatures are applicable in a wide range
of scenarios, such as:

– Integrity for Network Coding. Network performances can be improved by
encoding ongoing messages into vectors and letting each node perform linear
operations on these encodings, instead of simply forwarding them. Unfor-
tunately, because these encodings are modified by every node, the integrity
property is lost when using traditional signatures. Homomorphic signatures
(or their secret-key counterpart, as in [AB09]) that support linear operations
can be used to preserve integrity throughout the network. In particular, each
node updates not only the encoded messages, but also the homomorphic sig-
natures associated with them.

– Verifying Delegated Computations. A client that wishes to delegate some
computation on his data to a cloud provider could authenticate it via homo-
morphic signatures, then send it away to the cloud. The cloud performs the
computation and updates the signatures accordingly, then sends the result
back to the client, who can then verify the evaluated signature. If verifica-
tion is successful, then the client is guaranteed that the cloud computed the
intended function on the data. It is the perfect complement to fully homo-
morphic encryption (FHE), which preserves the confidentiality of the data in
use, but not its integrity.

– Anonymous Credentials. Consider the scenario where a user obtains signa-
tures σ1, . . . , σn of her credentials m1, . . . , mn, produced by some authority
(the authority is associated to the vk of the signature scheme). Later on, the
user is asked by a service provider (say, an insurance company) to prove that her
credentials satisfy a policy expressed by a predicate P. The user can compute
the signature σP and send it to the provider. If this signature verifies success-
fully with respect to vk and the message 1 (the output of the predicate should
be 1), then it proves the user’s credentials fulfill the policy. Assuming the homo-
morphic signatures satisfy some mild re-randomizability property (so that eval-
uated signatures look fresh), this does not reveal the underlying credentials to
the provider (only that they satisfy the policy). Giving the policy explicitly
to the user provides some transparency (for instance, the predicate P can be
signed by a trusted regulator, ensuring the insurance company is not perform-
ing some discriminatory screening). We can even evaluate a function f on the
signatures that not only indicates whether the user is eligible to an insurance
scheme, but also outputs the price to be paid based on the credentials.

State of the Art. The first construction of homomorphic signatures [AB09] was
limited to additive homomorphism in the secret-key setting i.e. it is a message
authentication (MAC) scheme. Later on, [BF11a] built the first homomorphic
signature for constant-degree polynomials, subsequently improved by [CFW14].

76 R. Gay and B. Ursu

In [GW13], the authors built the first fully homomorphic MAC from FHE, while
[CF13] built an homomorphic MAC with better efficiency for a restricted class
of functions. Then, [GVW15] built the first leveled fully homomorphic signature
(FHS) scheme.

All existing works suffer from the fact that the depth of the functions that
can be homomorphically evaluated is bounded at setup. In other words, these are
leveled FHS. This stands in contrast with FHE, where unleveled schemes can be
obtained via bootstrapping [Gen09] and circular security. Bootstrapping requires
an FHE encryption of the secret decryption key, and relies on evaluating homo-
morphically the (shallow) decryption algorithm to “refresh” ciphertexts. This
idea is not straightforwardly transferable to the signature case, and unleveled
FHS have so far been elusive.

Another approach to building FHS is to use Succinct Arguments of Knowl-
edge (SNARKs) for NP, but this requires the use of strong knowledge assump-
tions, which we discuss in more detail in the full version of this paper [GU23].

Given this state of affair, a natural question comes up:

Can we build unleveled FHS from falsifiable assumptions?

This was left as an open problem in [GVW15], and has remained unsolved until
our construction.
Our Result. We answer the question positively. Namely, we build the first
unleveled FHS from falsifiable assumptions, in the standard model. Our fea-
sibility result relies on indistinguishability obfuscation (iO), of which promis-
ing constructions appeared recently in [BDGM20a,JLS21,GP21,WW21,AP20,
BDGM20b,DQV+21,JLS22], unleveled fully homomorphic encryption and a
non-interactive zero-knowledge proof system (NIZK). While iO is not a falsifi-
able assumption itself1, most of the iO candidates rely on falsifiable assumptions.
The second building block, fully-homomorphic encryption, can be instantiated
using circularly-secure LWE [GSW13], and alternatively using indistinguishabil-
ity obfuscation [CLTV15]. Instantiating the FHE scheme using [CLTV15] yields
a fully homomorphic signature construction that does not require any circular
security assumption.
Building Blocks. We give more details on the building blocks, and the assump-
tions over which they can be instantiated. To build our FHS, we use an unleveled
Fully-Homomorphic Encryption (FHE) scheme, which can be chosen to be either:

– a variant of the FHE scheme from [GSW13], slightly modified to ensure that it
has unique random coins (which is needed for technical reasons in the proof).
This scheme can be built from circularly-secure LWE.

– the FHE scheme of [CLTV15], which is instantiable using subexponentially-
secure iO and a re-randomizable public-key encryption scheme. This second
type of FHE scheme does not require a circular assumption. Moreover, the

1 Formally, the iO security game does not fulfill falsifiability because the challenger
cannot efficiently check that the circuits submitted by the adversary are functionally
equivalent.

On Instantiating Unleveled FHS from Falsifiable Assumptions 77

re-randomizable encryption scheme can be any one of the following:
Goldwasser-Micali [GM82], ElGamal [ElG85], Paillier [Pai99] or Damgard-
Jurik [DJ01] (which are secure assuming QR, DDH, or DCR).

Moreover, we rely on Non-Interactive Zero Knowledge (NIZK) proof sys-
tems satisfying a proof of knowledge property and composable zero-knowledge,
which can also be built from subexponentially secure iO and lossy trapdoor func-
tions [HU19]. Lossy trapdoor functions can be based on a multitude of standard
assumptions such as DDH, k-LIN, QR or DCR. Other NIZK systems also offer
the properties required, but from bilinear maps [GS08].

The NIZKs above [HU19,GS08] allow that the common reference string
(CRS) can be either generated honestly to be binding, which ensures sound-
ness (i.e. the fact that only true statements can be proved), or alternatively, the
CRS is generated in a hiding way, providing a simulation mode that ensures
zero-knowledge. In fact, the binding CRS is generated together with an extrac-
tion trapdoor that can be used to extract efficiently a witness from any valid
proof (thereby ensuring that the statement proved is indeed true). The simu-
lated CRS is generated together with a simulation trapdoor. In this case, the
simulation trapdoor can be used to generate proofs on any statement (without
requiring a witness). The two modes (real or simulated) are computationally
indistinguishable.

Technical Overview

Overview of Our Construction. The verification key vk of our scheme con-
tains several FHE encryptions of an arbitrary message (for example the message
equals to 0). The number of such encryptions, N , determines the arity of the
functions that can be homomorphically evaluated. We require that the FHE is
unleveled. This differs from the FHS scheme from [GVW15] which uses homo-
morphic commitments instead of FHE encryptions. They crucially rely on the
fact that these commitments are non-binding, which prevents from bootstrap-
ping and only yields leveled FHS. To produce signatures, we rely on the NIZK
proof system. To sign a message mi for i = 1, . . . , N , the signer produces a
simulated proof stating (falsely) that the i’th encryption from vk, which we
denote by cti, is an FHE encryption of mi. This can be done since the NIZK
common reference string CRS is simulated with an associated simulation trap-
door tdsim. Creating these simulated proofs requires the trapdoor, which is set
to be the signing key. A signature is simply the ZK proof πi stating that the
ciphertext cti is an encryption of mi. To homomorphically evaluate a function
f on signatures σ1, . . . , σN of the messages m1, . . . , mN , we use an obfuscated
circuit containing the simulation trapdoor tdsim that, given as input the tuple
(σ1,m1, . . . , σn,mn, f), first checks that the signatures σi are valid ZK proofs
(of false statements), by running the verification algorithm of the NIZK proof
system. If the check is successful, then it homomorphically evaluates the func-
tion f on the FHE encryptions ct1, . . . , ctN that are part of vk, which yields an

78 R. Gay and B. Ursu

FHE ciphertext ctf . It also generates a proof π that ctf is an FHE encryption of
f(m1, . . . , mn), using tdsim. The signature σf is set to be the proof π, which the
evaluation circuit outputs. To verify a signature σf with respect to a function f
and a value y, the verifier algorithm computes ctf by evaluating f on the FHE
encryptions ct1, . . . , ctN from vk and verifies that σ is a valid proof stating that
ctf is an FHE encryption of y.

Let us now have a look at the proof of unforgeability. For simplicity, we con-
sider the selective setting, where the adversary first sends messages m�

1, . . . , m
�
n,

then receives vk and the signatures σ�
1 , . . . , σ

�
n. Finally, the adversary sends a

forgery (σf , f, y). It wins if the signature σf verifies successfully with respect
to vk, f, y and y �= f(m�

1, . . . , m
�
n). The first step of the proof is to switch the

FHE encryptions ct1 . . . ctN of 0 in the vk to FHE encryptions of m�
1, . . . , m

�
n,

respectively. This way, we can change the signatures σ�
i to proofs that are com-

puted using a witness (where the witness is the randomness used to compute
the FHE encryptions in vk). The main implication is that we do not need to
simulate proofs using tdsim anymore. The intent is to get rid of tdsim altogether
and switch to an honestly computed CRS so that we can use the soundness of
the NIZK to prevent forgeries. Unfortunately it is not clear at this point how
to remove tdsim from Eval, the obfuscated circuit that performs the homomor-
phic evaluations. What if we use proofs of knowledge? This way, if the signatures
input to the Eval algorithm are valid ZK proofs, then Eval can efficiently extract
witnesses (i.e. randomness of the corresponding FHE ciphertexts), which can be
used to compute the randomness of the evaluated FHE ciphertext. This requires
a so-called randomness homomorphism of the FHE scheme. Namely, given the
secret key of the FHE sk, randomness r1, r2 and messages m1,m2 such that
ct1 = FHE.Enc(pk,m1; r1) and ct2 = FHE.Enc(pk,m2; r2), one can compute a
randomness r such that FHE.EvalNAND(ct1, ct2) = FHE.Enc(pk,NAND; r). A
stronger property where a randomness r can be computed only using the pk
is satisfied by most lattice-based FHE schemes (e.g. [GSW13]) and the secret-
key variant is satisfied by the FHE scheme from [CLTV15]. Then, Eval can use
this randomness r as a witness to produce the ZK proof that constitutes the
evaluated signature σf .

This approach runs into a circular issue: while it is true that the σ�
i are

proofs that are computed without tdsim, to use the proof of knowledge property
and extract witnesses, we need to first remove tdsim and switch to an honestly
generated CRS. To do so, we need Eval to produce the signatures σf without
tdsim, but using witnesses instead, which already requires the proof of knowledge
property and an honest CRS.

To solve this circular issue, our scheme uses a different NIZK proof system
for each depth level of the circuit that is homomorphically evaluated. That is, to
evaluate a function f , represented as a depth d circuit, we evaluate the circuit
gate by gate. Starting at the level 0, signatures σ1, . . . , σn of messages m1, . . . , mn

are ZK proofs stating (falsely) that the FHE ciphertexts ct1, . . . , ctN from vk are
encryptions of m1, . . . , mn, respectively, computed using crs0, a simulated crs,
together with a simulation trapdoor td0sim. Then Eval takes as input these level

On Instantiating Unleveled FHS from Falsifiable Assumptions 79

0 signatures σ1, . . . , σn, the messages m1, . . . , mn and a n-ary gate g, verifies
that the σi are valid proofs, computes the gate g on the messages which yields
the value y = g(m1, . . . , mn), homomorphically evaluates g on the ciphertexts
ct1, . . . , ctn which yields ctg, and computes a ZK proof π stating that ctg is an
FHE encryption of y using crs1, a simulated crs, together with a simulation trap-
door td1sim. The Eval algorithm performs just one more level of the homomorphic
computation. It is repeated many times to obtain the final signature σf for the
function f . To keep track of the gate-by-gate evaluation of the circuit, each sig-
nature will be of the form σ = (π, i, ct), where i ∈ N indicates the level of the
signature, π is a proof computed using (crsi, tdi

sim), and ct is an homomorphically
evaluated ciphertext (if i = 0 it is one ciphertext from vk). This way, Eval takes
as input signatures of level i, and outputs signatures of level i + 1.

To prove the unforgeability of this scheme, as before, we start by replacing
the FHE ciphertexts ct1, . . . , ctN from the vk to encryptions of the messages
m�

1, . . . , m
�
N chosen by the adversary, using the semantic security of FHE. Then,

we generate level 0 signatures using witnesses (the randomness used to compute
the cti) instead of td0sim. At this point, we can switch crs0 to a real CRS, gener-
ated along with an extraction trapdoor, since td0sim is not used anymore. The rest
of the proof proceeds using a hybrid argument over all the levels i = 1, . . . , d
where d is the (unbounded) depth of the circuit chosen by the adversary. By
induction, we assume crsi is generated honestly along with an extraction trap-
door tdi

ext. Therefore, we can switch the way Eval computes the ZK proof for the
level i + 1. Instead of using a simulation trapdoor tdi+1

sim with respect to crsi+1

and computing simulated proofs, it instead extracts witnesses from the level i
signatures using tdi

ext, and uses them to compute the proofs without the trap-
door tdi+1

sim . At this point tdi+1
sim is not used anymore so we can also switch crsi+1

to a real CRS, and go to the next step until we reach the depth of the function
f chosen by the adversary.

While using a different CRS for each level seems to solve the circularity issue,
this approach creates another problem: if we simply generate all crsi for all levels
in advance and put them in vk, we necessarily have to bound the maximum depth
of the functions that can be homomorphically evaluated. In other words, we have
a leveled FHS. To avoid that, Eval samples the crsi on the fly using a pseudo-
random function (the key of the PRF is hard-coded in the obfuscated circuit
Eval). This complicates the security proof, but it can be made to work using
puncturing techniques. Namely, to switch crsi from a simulated to real CRS and
use the proof of knowledge property of the proof system associated to crsi, we
need crsi to be generated with truly random coins, as opposed to a PRF. We
simply hard-code the PRF value on i, puncture the PRF key, and switch the
value to random (this is a standard technique for security proofs using iO, see for
instance [SW14]). The crucial fact that makes these techniques applicable is that
at any point in our security proof, we only require the CRS of one specific level
to be generated with truly random coins. That is, we only need to hard-code the
value of one CRS to perform the hybrid argument that goes over each level one
by one. Ultimately, we show that the CRS for the last level, which corresponds to

80 R. Gay and B. Ursu

the depth of f chosen by the adversary, is generated honestly, and the soundness
of the proof system directly prevents any successful FHS forgery.
High-Level Description of our FHS Scheme. In this description, SimSetup
generates a simulated CRS with an associated simulation trapdoor tdsim. In the
unforgeability proof, we will use the honest variant Setup that generates a real
CRS along with an extraction trapdoor tdext. For simplicity, we consider an
algorithm Eval that only evaluates binary NAND gates (this is without loss of
generality). Our scheme is as follows:

– vk = (FHE.Enc(0), . . . ,FHE.Enc(0), crs0), where (crs0, td0sim) ← SimSetup(1λ),
where λ ∈ N denotes the security parameter. The verification key vk contains
N FHE encryptions of 0, namely ct1 . . . ctN .

– sk = K, where K is a PRF key.
– EvalNAND

(
(σ0, m0), (σ1, m1)

)
= ˜C[td0sim,K]

(
(σ0, m0), (σ1, m1)

)
, where ˜C[td0sim,K]

denotes an obfuscation of the circuit C[td0sim,K] that has the values td0sim and
K hard-coded, described in Fig. 1 below, σ0 and σ1 are signatures of level
i ∈ N of the messages m0 and m1 respectively, and a binary NAND gate is
homomorphically evaluated.

– Verify(σf , f, y): parses σf as (ct, π, d). Proof π is a ZK proof with respect to
crsd where d is the depth of f and (crsd, tdd) = SimSetup(1λ;PRFK(i)), i.e.
SimSetup is run on the pseudorandom coins PRFK(d). Then, it homomorphi-
cally evaluates f on the ciphertexts cti = FHE.Enc(0) from vk to obtain ctf .
It checks that π is a valid proof stating that ctf is an encryption of y, with
respect to crsd (it outputs 1 if the check passes, 0 otherwise). Note that the
ciphertext ct that is part of the signature is not used by Verify. It is only use-
ful if extra homomorphically evaluation are to be performed on the evaluated
signature.

C[td0,K]((σ0, m0), (σ1, m1)):
It parses σ0 = (π0, i, ct0) and σ1 = (ct1, π1, i) where i ∈ N denotes the level of these
signatures, ct0, ct1 denotes FHE ciphertexts, and π0, π1 denotes ZK proofs.

– If i > 0, then it computes (crsi, tdi
sim) = SimSetup(1λ;PRFK(i)) and (crsi+1, tdi+1

sim) =
SimSetup(1λ;PRFK(i + 1)).

– If i = 0, then it only computes (crsi+1, tdi+1
sim) = SimSetup(1λ;PRFK(i + 1)), since

crs0 has already been generated (it is part of vk).

Then it checks that πb is a valid proof stating that ctb is a ciphertext of mb, with
respect to crsi, for all b ∈ {0, 1}. If any of these checks fail, it outputs ⊥. Otherwise, it
evaluates homomorphically the NAND gate on the ciphertexts ct0 and ct1 to obtain ct,
computes m = NAND(m0, m1), and produces a proof π stating that ct is a encryption
of m, using the trapdoor tdi+1

sim . It then outputs σ = (ct, π, i + 1).

Fig. 1. Circuit C[td0,K](·, ·) used by Eval.

On Instantiating Unleveled FHS from Falsifiable Assumptions 81

We summarize the unforgeability proof using the list of hybrid games pre-
sented in Fig. 2. Note that G3.0 = G2, and in the last game G3.d, where d denotes
the depth of the function f chosen by the adversary, security simply follows from
the soundness of the level d NIZK.
Complexity Leveraging and Adaptive Security. In the overview above,
we skipped over some technical details. In the unforgeability proof of our FHS
scheme, the challenger that interacts with the adversary does not know in
advance the depth d of the function f chosen. To solve this problem, the chal-
lenger chooses a super-polynomial e.g. 2ω(log λ) number of levels to perform the
hybrid argument sketched above. This gives a super-polynomial security loss,
which is why we require subexponential security of the underlying assumptions.
A similar complexity leveraging argument can be used to obtain adaptive secu-
rity, where the adversary is not restricted to choose the messages m�

1, . . . , m
�
N

before seeing the verification key of the scheme. The challenger guesses in
advance the messages and acts as though the adversary were selective. The
security loss due to the guessing argument is 2N , which we can accommodate
by choosing appropriately large parameters, relying again on the subexponential
security of the underlying building blocks.
Unique Randomness. For technical reasons, we require additionally that
the FHE has unique randomness: given a message m and a ciphertext

• G0: vk = {FHE.Enc(0)}i, (crs0, td0sim) ← SimSetup(1λ), σ�
i simulated with td0sim. // original security game.

• G1: vk = { FHE.Enc(m�
i) }i, (crs0, td0sim) ← SimSetup(1λ), σ�

i simulated with td0sim. // security of FHE

• G2: vk = {FHE.Enc(m�
i ; ri)}i, (crs0, td0ext) ← Setup(1λ) , σ�

i proved with ri . // real CRS

• G3.�: // games defined for all � = 0, . . . , d, where d is the depth of f
Eval uses the obfuscation of the following circuit which has
the pair (crs�, td�

ext) ← Setup(1λ) and the PRF key K hard-coded:
C[crs�,td�

ext,K]((σ0, m0), (σ1, m1)):
- Parse σb = (ctb, πb, j), for b ∈ {0, 1}
- Compute ct = FHE.Eval(NAND, ct0, ct1)
- If j < �, then compute (crsj , tdj

ext) = Setup(1λ;PRFK(j)),
extract witnesses (r0, r1) from (π0, π1) using tdj

ext,
compute r such that ct = FHE.Enc(NAND(m0, m1); r) using r0, r1, m0, m1,
compute a proof π that ct encrypts NAND(m0, m1) using r.

- If j ≥ �, then compute (crsj+1, tdj+1
sim) = SimSetup(1λ;PRFK(j + 1))

and compute the proof π with tdj+1
sim instead.

- Output σ = (π, ct, j + 1).

Fig. 2. Hybrid games for the selective unforgeability proof of our FHS. We denote by
m�

i the message sent by the adversary, by σ�
i the signatures it receives, by SimSetup

the algorithm that generates a simulated CRS with a trapdoor tdsim, by Setup(1λ) the
honest variant that generates a real CRS together with an extraction trapdoor and by
K a puncturable PRF key. We denote by Setup(1λ; r) the algorithm Setup run with
coins r (which can be truly random or pseudo random). When omitted, truly random
coins are implicitly used. We use the same notations when writing SimSetup(1λ; r) or
FHE.Enc(m; r).

82 R. Gay and B. Ursu

ct = Enc(pk,m; r) there cannot be another randomness r′ �= r such that
Enc(pk,m; r′) = ct. In the full version of this paper [GU23], we show that a
slight modification of the GSW FHE scheme [GSW13] directly achieves such a
property. We also show that the FHE from [CLTV15] can be adapted straight-
forwardly to obtain unique randomness. Simply put, their scheme relies on iO
and a re-randomizable encryption scheme (such as Goldwasser Micali, ElGa-
mal, Paillier or Damgard-Jurik). If the latter has unique randomness, then the
resulting FHE also has this property.
Related Works. The work of [JMSW02] introduced a similar notion of homo-
morphic signature but where the verification algorithm does not take the func-
tion f as an input. That is, signatures can be manipulated homomorphically,
thereby changing the underlying message being signed, but the verification does
not track which function was applied. In that case, the notion of unforgeabil-
ity only makes sense when the homomorphism property is limited, so that
from a set of signatures, one can only get a signature on some but not all
messages. Typically, the messages are vectors, and given signatures on vectors
v1, . . . ,vn, only signatures on the linear combinations of the vectors v1, . . . ,vn

can be obtained. In particular if n is less than the dimension of the vec-
tors, then there are some vectors for which signatures cannot be generated
(those outside the span of v1, . . . ,vn) and the unforgeability property is mean-
ingful. These are referred to as linearly homomorphic signatures, such as in
[BF11b,Fre12,ALP13,LPJY15,CFN15,CLQ16,HPP20]. This is similar to the
notion of equivalence-class signatures [HS14,FHS19,FG18,KSD19], where sig-
natures can be combined homomorphically within a given equivalence class,
but forgeries outside the class are prohibited. The notion also requires a re-
randomizability property, and is used in particular for anonymous credentials.

Other works [LTWC18,FP18,AP19,SBB19] consider the multi-key extension
of homomorphic signatures, where the signatures to be homomorphically evalu-
ated come from different users with different signing keys.

In [BFS14], the authors provide a fully-homomorphic signature from lattices
that has the advantage of being adaptively secure (where the adversary can
send the messages of her choice after receiving the verification key in the secu-
rity game). In [CFN18], the authors study the security notions of homomorphic
signatures in the adaptive setting, provide a simpler and stronger definition,
and a compiler that generically strengthens the security of a scheme. The work
of [Tsa17] establishes an equivalence between homomorphic signatures and the
related notion of attribute-based signatures, and provides new constructions for
both.

Another recent line of work [CFT22,BCFL23] on functional commitments
also addresses the problem of homomorphic signatures. [BCFL23] instanti-
ates the framework of [CFT22] with a functional commitment for circuits of
unbounded depth, resulting in a homomorphic signature that supports circuits
of unbounded depth (though the circuit width is bounded). In this way, [BCFL23]
proposes schemes based on new falsifiable assumptions which rely on pairings
and lattices (the pairing assumption holds in the bilinear generic group model,

On Instantiating Unleveled FHS from Falsifiable Assumptions 83

while the lattice one is an extension of the k-R-ISIS assumption of [ACL+22]).
Comparing our work to [BCFL23], our basic scheme only relies on a bound on
the input size2. Moreover, our scheme allows for arbitrary compositions of signa-
tures, as was the case in [GVW15]. The signatures in [BCFL23] can be composed
only sequentially, by feeding an entire signature as the input to another circuit
(given a signature σ for y = f(m), their scheme can compute a signature σ′ for
z = g(y). Namely, the resulting signature σ′ is with respect to z, circuit g ◦ f
and input m).

As we mentioned already earlier, [CLTV15] builds an unleveled FHE scheme
from subexponentially secure iO and re-randomizable encryption. Remarkably,
their FHE does not require any circular security assumption, since it does not rely
on the bootstrapping technique. Although we use a similar technical complexity
leveraging argument to handle unbounded depth, the technical similarities end
here.
Fully-Homomorphic Signatures from SNARKs. It was claimed in previ-
ous works [GW13,GVW15] that FHS can be built using succinct arguments of
knowledge (SNARKs) for NP. This comes at a cost: in the FHS regime, that
would mean using unfalsifiable assumptions (even in the random oracle model),
as we explain in further details in the full version of this paper [GU23]. This
stands in contrast with our scheme that can be instantiated from falsifiable
assumptions, since general indistinguishability obfuscation itself can be built
from falisifiable assumptions [JLS21,GP21,JLS22].
Full Context-Hiding. Our FHS scheme is also the first to achieve a strong
notion of context hiding, more powerful than the one achieved by [GVW15]. Con-
sider a signature σ for m = f(m1 . . . mN), which was obtained by homomorphi-
cally evaluating a function f for signature-message pairs (σ1,m1) . . . (σN ,mN).
Full context-hiding3 guarantees that the signature σ only certifies m and does
not leak any information on messages m1 . . . mN . A signature σ in [GVW15]
is not context-hiding, but can be post-processed into another signature σ′ that
achieves context-hiding, at the cost that the homomorphism property is broken:
no homomorphic operations can be applied on σ′.

In contrast, our FHS construction achieves full context hiding for signatures
at all levels out-of-the-box, and context-hiding signatures can be homomorphi-
cally combined for an unbounded number of times. Our construction is the first
to achieve this stronger notion of context-hiding in the standard model. More
details can be found in the full version of this paper [GU23].
Roadmap. In Sect. 2 we define the building blocks used in our construction,
then we describe our scheme in Sect. 3 and prove its security in Sect. 4.

Due to space limitations, some of our results are deferred to the full version
of this paper [GU23] which contains:

2 Our bound on the input size can be removed using random oracles, as in [GVW15].
3 Previous work [GVW15] refers to this notion as context hiding. We use the modifier

“full” to differentiate from its weak context hiding counterpart.

84 R. Gay and B. Ursu

– a description of several schemes that satisfy unique randomness, a property
needed from the FHE building block in the proof.

– a variation of the scheme that supports datasets of unbounded length, albeit
by relying on the use of the random oracle model.

– an analysis of the context-hiding security of our scheme.
– a detailed description of how SNARKs can be used to build FHS. While such

an approach would be much more practical in terms of the efficiency of the
scheme, there would also be drawbacks with respect to the falsifiability of the
assumptions used.

– a brief description of multi-data FHS, which allows for the signing of multiple
datasets by associating each one with a label (the label is an arbitrary binary
string, for example an encoding of a filename or a timestamp). Signing and
verification is done with respect to the label, but the scheme uses the same
signing and verification key for multiple labels. A generic transformation from
single-data to multi-data FHS is known due to [GVW15] and is recalled in
the full version of this paper [GU23].

2 Preliminaries

Notation. Throughout this paper, λ denotes the security parameter. For all
n ∈ N, [n] denotes the set {1, . . . , n}. An algorithm is said to be efficient if it
is a probabilistic polynomial time (PPT) algorithm. A function f : N → N is
negligible if for any polynomial p there exists a bound B > 0 such that, for any
integer k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on λ occurs with over-
whelming probability when its probability is at least 1 − negl(λ) for a negligible
function negl. Given a finite set S, the notation x ←r S means a uniformly
random assignment of an element of S to the variable x. For all probabilistic
algorithms A, all inputs x, we denote by y ← A(x) the process of running A on
x and assigning the output to y. The notation AO indicates that the algorithm
A is given an oracle access to O. For all algorithm A,B, . . ., all inputs x, y, . . .
and all predicates P, we denote by Pr[a ← A(x); b ← B(a); . . . : P(a, b, . . .)] the
probability that the predicate P holds on the values a, b, . . . computed by first
running A on x, then B on y and a, and so forth. For two distributions D1,D2,
we denote by Δ(D1,D2) their statistical distance. We denote by D1 ≈c D2 two
computationally indistinguishable distribution ensembles D1 and D2. We denote
by D1 ≈s D2 two statistically close ensembles.

Subexponential Security. The security definitions we consider will require
that for every efficient algorithm A, there exists some negligible function negl
such that for all λ ∈ N, A succeeds in “breaking security” w.r.t. the secu-
rity parameter λ with probability at most negl(λ). All the definitions that we
consider can be extended to consider subexponential security; this is done by
requiring the existence of a constant ε > 0, such that for every PPT algorithm
A, A succeeds in “breaking security” w.r.t. the security parameter λ with prob-
ability at most 2−λε

. The security notion of obfuscation (Sect. 2.3) and NIZK

On Instantiating Unleveled FHS from Falsifiable Assumptions 85

(Sect. 2.4) are traditionally defined for non-uniform adversaries. We write our
security definitions for uniform adversaries for simplicity, but they can be easily
adapted to non-uniform adversaries.

2.1 Puncturable Pseudorandom Functions

A pseudorandom function (PRF) is a tuple of PPT algorithms (PRF.KeyGen,
PRF.Eval) where PRF.KeyGen generates a key which is used by PRF.Eval to
evaluate outputs. The core property of PRFs states that for a random choice of
key, the outputs of PRF.Eval are pseudo-random. Puncturable PRFs (pPRFs)
have the additional property that keys can be generated punctured at any input
x in the domain. As a result, the punctured key can be used to evaluate the PRF
at all inputs but x. Moreover, revealing the punctured key does not violate the
pseudorandomness of the image of x. This notion can be generalized to allow
they key to be punctured at multiple points.

As observed in [BW13,BGI14,KPTZ13], it is possible to construct such punc-
tured PRFs for the original PRF construction of [GGM84], which can be based
on any one-way functions [HILL99]. While this PRFs support puncturing for
a polynomial number of times, in this paper we only to puncture at sets that
contain at most two points.

Definition 1 (Puncturable Pseudorandom Function). A puncturable
pseudorandom function (pPRF) is a triple of PPT algorithms (PRF.KeyGen,
PRF.Puncture,PRF.Eval) such that:

– PRF.KeyGen(1λ): on input the security parameter, it outputs a key K in the
key space Kλ. It also defines a domain Xλ, a range Yλ and a punctured key
space K∗

λ.
– PRF.Puncture(K,S): on input a key K ∈ Kλ, a set S ⊆ Xλ, it outputs a

punctured key K{S} ∈ K∗
λ,

– PRF.Eval(K,x): on input a key K (punctured or not, i.e. K ∈ Kλ ∪ K∗
λ), and

a point x ∈ Xλ, it outputs a value in Yλ.

We require the PPR algorithms to meet the following conditions:

Functionality Preserved under Puncturing. For all λ ∈ N, for all subsets
S ⊆ Xλ,

Pr[K ← PRF.KeyGen(1λ),K{S} ← PRF.Puncture(K,S) :
∀x′ ∈ Xλ \ S : PRF.Eval(K,x′) = PRF.Eval(K{S}, x′)] = 1.

Pseudorandom at Punctured Points. For every stateful PPT adversary
A and every security parameter λ ∈ N, the advantage of A in Exp-pPRF
(described in Fig. 3) is negligible, namely:

AdvcPRF(λ,A) :=
∣
∣ Pr[Exp-pPRF(1λ,A) = 1] − 1

2

∣
∣ ≤ negl(λ).

86 R. Gay and B. Ursu

For ease of notation we often write PRF(·, ·) instead of PRF.Eval(·, ·). When S
is a singleton set S = {x}, we denote the punctured key at S as K{S} = K{x},
and when S = {x1, x2}, we denote K{S} = K{x1, x2}.

Theorem 2. [GGM84,BW13,BGI14,KPTZ13] Consider a fixed polynomial
p(λ), and two arbitrary polynomials n(λ),m(λ) in the security parameter λ. If
one-way functions exist, then there exists a puncturable PRF family that maps
n(λ) bits to m(λ) bits and which supports punctured sets S of p(λ) size.

As explained at the beginning of this section, in this paper we use puncturing
for sets that contain at most two elements.

Experiment Exp-pPRF(1λ, A)
S ← A(1λ)
b ←r {0, 1}
K ← PRF.KeyGen(1λ)
K{S} ← PRF.Puncture(K, S)
Y = ∅
for all x ∈ S

y0 ← PRF.Eval(K, x)
y1 ←r Yλ

Y = Y
⋃{yb}

b′ ← A(K{S}, Y)
Return b = b′

Fig. 3. Experiment Exp-pPRF(1λ, A) for the pseudo-randomness at punctured points.

2.2 Fully Homomorphic Encryption

We recall the definition of unleveled FHE here, where there is no a-priori bound
on the depth of circuits that can be homomorphically evaluated. For simplicity
we consider messages to be bits.

Definition 3 (Fully Homomorphic Encryption). A fully homomorphic
encryption scheme FHE is a tuple of PPT algorithms (FHE.KeyGen,FHE.Enc,
FHE.Dec,FHE.Eval), where:

– FHE.KeyGen(1λ): outputs a public encryption/evaluation key pk and a secret
key sk.

– FHE.Enc(pk,m): outputs an encryption ct of message m ∈ {0, 1}. We denote
by R the randomness space of FHE.Enc.

– FHE.Dec(sk, ct): uses sk to decrypt ct. It outputs a message.
– FHE.Eval(pk, f, ct1 . . . ctN): it is a deterministic algorithm that takes as input

a circuit f of arity N , and employs pk to compute an evaluated ciphertext
ctf .

An FHE scheme must satisfy the following requirements:

On Instantiating Unleveled FHS from Falsifiable Assumptions 87

Encryption Correctness. For all λ ∈ N, all messages m ∈ {0, 1}, all
(pk, sk) in the support of FHE.KeyGen(1λ), all ciphertexts ct in the support of
FHE.Enc(pk,m), we have FHE.Dec(sk, ct) = m.

Evaluation Correctness. For all λ ∈ N, all (pk, sk) in the support of
FHE.KeyGen(1λ), all messages m1, . . . , mN ∈ {0, 1}, all ciphertexts (ct1 . . . ctN)
such that FHE.Dec(sk, cti) = mi for all i ∈ [N], all circuits f of arity N , it holds
that:

FHE.Dec(sk,FHE.Eval(pk, f, ct1 . . . ctN)) = f(m1, . . . , mN).

Randomness Homomorphism. There exists an efficient deterministic algo-
rithm FHE.EvalRand such that for all λ ∈ N, all (pk, sk) in the support of
Setup(1λ), all messages m1, . . . , mN ∈ {0, 1} and randomness r1, . . . , rN ∈ R,
all circuits f of arity N , writing rf = FHE.EvalRand(sk, pk, r1, . . . , rN ,m1,
. . . , mN , f) and cti = FHE.Enc(pk,mi; ri) for all i ∈ [N], we have:

FHE.Enc(pk, f(m1, . . . , mN); rf) = FHE.Eval(pk, f, ct1, . . . , ctN).

For most lattice-based FHE schemes, such as [GSW13], a stronger property
holds: EvalRand can be publicly evaluated from the initial randomness and mes-
sages, and does not require sk (only pk). Nevertheless, the FHE scheme based on
iO from [CLTV15] does require the use of the secret key to compute the eval-
uated randomness (which will consist of the key of a puncturable PRF). Both
variants can be used as a building block in our construction.

Unique Randomness. For all λ ∈ N, all (pk, sk) in the support of
FHE.KeyGen(1λ), all messages m ∈ {0, 1}, all r ∈ R where R denotes the
randomness space, there is no r′ ∈ R such that r′ �= r and Enc(pk,m; r) =
Enc(pk,m; r′).

Selective IND-CPA Security. For any PPT adversary A, we require that
AdvFHEIND-CPA(λ,A) in the experiment Exp-IND-CPA from Fig. 4 is negligible,
namely:

AdvFHEIND-CPA(λ,A) :=
∣
∣ Pr[Exp-IND-CPAFHE(1λ,A) = 1] − 1

2
]
∣
∣ ≤ negl(λ)

Experiment Exp-IND-CPAFHE(1λ, A)
(m0, m1) ← A(1λ);
(pk, sk) ← FHE.Setup(1λ)
b ←r {0, 1}
ct ← FHE.Enc(pk, mb)
b′ ← A(pk, ct)
Return b = b′

Fig. 4. Experiment Exp-IND-CPA for the selective indistinguishable security of FHE.

88 R. Gay and B. Ursu

2.3 Indistinguishability Obfuscation

We recall the definition of indinstuighuishability obfuscation, originally from
[BGI+01].

Definition 4 (Indistinguishability Obfuscator). An indistinguishability
obfuscator for a circuit class {Cλ}λ∈N

is an efficient algorithm iO such that:

– Perfect correctness: for all λ ∈ N, all C ∈ Cλ, all inputs x, we have:

Pr[C ′ ← iO(1λ, C) : C ′(x) = C(x)] = 1

– Security: for all efficient algorithms A, there exists a negligible function
negl such that for all λ ∈ N, all pairs of circuits C0, C1 ∈ Cλ such that
C0(x) = C1(x) for all inputs x, we have:

AdviO(λ,A) := |Pr[A(iO(1λ, C0)) = 1] − Pr[A(iO(1λ, C1)) = 1]| ≤ negl(λ)

2.4 Non-interactive Zero Knowledge Proofs

Given a binary relation R : X × W → {0, 1} defined over a set of statements
X and a set of witnesses W, let LR be the language defined as LR = {x ∈
X | ∃w ∈ W : R(x,w) = 1}. A Non-Interactive Zero Knowledge proof system
for the binary relation R (originally introduced in [BFM88]) allows a prover in
possession of a statement x and a witness w such that R(x,w) = 1 to produce
a proof that convinces a verifier of the fact that x ∈ LR without revealing
any information about w. The soundness property ensures that no proof can
convince the verifier of the validity of a false statement, i.e. a statement x /∈ LR.
We require the existence of an extractor that efficiently gets a witness from a
valid proof π of a statement x, using an extraction trapdoor. Such proof systems
are called proofs of knowledge. We focus on NIZK for relations R where the size
of all statements and witnesses are bounded, which we call size-bounded relation.
We now give the formal definition of NIZK proof of knowledge.

Definition 5 (NIZK-PoK). Let R be a size-bounded relation. A Non-
Interactive Zero-Knowledge Proof of Knowledge (NIZK-PoK) for R consists of
the following PPT algorithms:

– Setup(1λ): on input the security parameter, it outputs a common reference
string crs and an extraction trapdoor tdext.

– Prove(crs, x, w): on input crs, a statement x and a witness w, it outputs an
argument π.

– Verify(crs, x, π): on input crs, a statement x and an argument π, it determin-
istically outputs a bit representing acceptance (1) or rejection (0).

The PPT algorithms satisfy the following properties.

On Instantiating Unleveled FHS from Falsifiable Assumptions 89

Composable Zero-Knowledge. There exist two PPT algorithms SimSetup
and Sim such that for all PPT adversaries A, the following advantages
AdvcrsΠ (λ,A) and AdvZKΠ (λ,A) are negligible in λ:

AdvcrsΠ (λ, A) =
∣∣∣1/2 − Pr

[
(crs, tdext) ← Setup(1λ), (crssim, tdsim) ← SimSetup(1λ),

b ← {0, 1}, crs0 = crs, crs1 = crssim, b′ ← A(crsb) : b′ = b
]∣∣∣.

AdvZKΠ (λ, A) =
∣∣∣1/2 − Pr

[
(x, w) ← A(1λ), (crssim, tdsim) ← SimSetup(1λ),

π0 ← Prove(crssim, x, w), π1 ← Sim(crssim, tdsim, x),

b ← {0, 1}, b′ ← A(crssim, tdsim, πb) : R(x, w) = 1 ∧ b′ = b
]∣∣∣.

Completeness on Simulated CRS. For all efficient adversaries A, the fol-
lowing advantage is negligible in the security parameter λ ∈ N: Pr

[

(x,w) ←
A(1λ), (crssim, tdsim) ← NIZK.SimSetup(1λ), π ← NIZK.Prove(crssim, x, w) :
R(x,w) = 1 ∧ NIZK.Verify(crssim, x, π) = 0

]

.

Knowledge-Soundness. There exists an efficient algorithm Extract such that
the following probability νsound(λ) is a negligible function of λ ∈ N, defined as:

νsound(λ) = Pr
[

(crs, tdext) ← Setup(1λ) : ∃ π, x, w ∈ Supp(Extract(crs, tdext, x, π))

s.t. Verify(crs, x, π) = 1 ∧ R(x,w) = 0
]

.

We say subexponential knowledge-soundness holds if νsound is subexponential in
the security parameter λ.

2.5 Fully Homomorphic Signatures

We recall the definition of Fully-Homomorphic Signature (FHS), which was orig-
inally given in [BF11a]. When many datasets are present, the signing algorithm
takes as an additional input a tag τ that identifies the dataset that is being signed.
Only signatures issued for the same tag can be combined together. For simplic-
ity, we focus on the single dataset setting here (where there are no tags), since
[GVW15] showed how to generically transform any FHS for single dataset to
many datasets. This transformation relies on regular (non-homomorphic) signa-
ture schemes. Again for simplicity, we focus on bit messages and Boolean func-
tions.

Definition 6 (FHS, Single Dataset). An FHS scheme is a tuple of PPT
algorithms Σ = (KeyGen,Sign,Verify,Eval), such that:

– KeyGen(1λ, 1N): on input the security parameter λ and a data-size bound N ,
it generates a public verification key vk, along with a secret signing key sk.

90 R. Gay and B. Ursu

– Sign(sk,m, i): on input the secret key sk, a message m ∈ {0, 1} and an index
i ∈ [N], it outputs a signature σ.

– Eval(vk, f, (m1, σ1), . . . , (mN , σN)): on input the public key vk, a function f of
arity N and pairs (mi, σi), it deterministically outputs an evaluated signature
σ of the message f(m1, . . . , mN).

– Verify(vk, f, y, σ) : on input the public key vk, a function f , a value y and a
signature σ, it outputs a bit. 0 means the signature σ is deemed invalid, 1
means it is considered valid.

The algorithms satisfy the following properties.

Perfect Signing Correctness. For all λ,N ∈ N, all pairs (vk, sk) in the support
of KeyGen(1λ, 1N), all i ∈ [N], all messages m ∈ {0, 1}, all signatures σ in
the support of Sign(sk,m, i), we have Verify(vk, idi,m, σ) = 1, where idi is the
projection function that takes N messages m1, . . . , mN ∈ {0, 1}, and outputs
the i’th message mi.

In our scheme, we achieve a weaker, computational variant of the correctness
property, which roughly states that an efficient algorithm cannot find messages
(with more than negligible probability) on which properly generated signatures
do not verify successfully.

Computational Signing Correctness. For all efficient algorithms A, the
following probability, defined for all λ,N ∈ N is negligible in λ: Pr[(vk, sk) ←
Setup(1λ, 1N), (m1, . . . , mN) ← A(vk),∀i ∈ [N], σi ← Sign(sk,mi, i) : ∃ i ∈
[N] s.t. Verify(vk, idi,mi, σi) = 0].

Perfect Evaluation Correctness. For all λ,N ∈ N, all pairs (vk, sk) in
the support of KeyGen(1λ, 1N), all messages m1, . . . , mN ∈ {0, 1}, all signa-
tures σ1, . . . , σN in the support of Sign(sk,m1), . . . ,Sign(sk,mN) respectively,
for all functions f of arity N , writing σf = Eval(vk, f, (σ1,m1), . . . , (σN ,mN))
and y = f(m1, . . . , mN), we have Verify(vk, f, y, σf) = 1. Moreover, it is
possible to perform additional homomorphic operations on signatures that
have already been evaluated on. That is, correctness holds when functions
are composed. Namely, for all
 ∈ N, all functions g of arity
, all tuples
(σ1, f1,m1), . . . , (σ�, f�,m�) such that for all i ∈ [
], Verify(vk, fi,mi, σi) = 1,
writing Eval(vk, g, (m1, σ1), . . . , (m�, σ�)) = σ and y = g(m1, . . . , m�), we have
Verify(vk, g, y, σ) = 1.

Similarly to signing correctness, we define a computational variant of the
evaluation correctness. For simplicity, we split the property into two properties:
the first is a computational evaluation correctness that only consider one-shot
homomorphic evaluation, but does not take into account the possibility of per-
forming homomorphic evaluations in several steps, i.e. composing functions. The
second property, called weak context hiding, states that composing functions
using Eval many times yields the same signature as using Eval once on the com-
posed function. The (non-weak) context hiding property additionally requires

On Instantiating Unleveled FHS from Falsifiable Assumptions 91

that evaluated signatures be independent of the underlying dataset, apart from
the output of the evaluated function.

Computational Evaluation Correctness. For all efficient algorithms A, the
following probability, defined for all λ,N ∈ N, is negligible in λ: Pr[(vk, sk) ←
Setup(1λ, 1N), (m1, . . . , mN , f) ← A(vk),∀i ∈ [N], σi ← Sign(sk,mi, i), σf ←
Eval(vk, f, (m1, σ1), . . . , (mN , σN)), y = f(m1, . . . , mN) : Verify(vk, f, y, σf) = 0].

Weak Context Hiding. For all λ,N, t,
 ∈ N, all (vk, sk) in the support of
Setup(1λ, 1N), all messages m1, . . . , mt ∈ {0, 1}, functions θ1, . . . , θt and sig-
natures σ1, . . . , σt such that for all i ∈ [t], Verify(vk, θi,mi, σi) = 1, all t-ary
functions f1, . . . , f�, all
-ary functions g, we have:

σg◦�f = σh,

where σg◦�f = Eval(vk, g, (σf1 , f1(�m)), . . . , (σf�
, f�(�m))), σfj

= Eval(vk,
fj , (σ1,m1), . . . , (σt,mt)) for all j ∈ [
], σh = Eval(vk, h, (σ1,m1), . . . , (σt,mt)),
h is the t-ary function defined on any input m1, . . . , mt as h(�m) =
g(f1(�m), . . . , f�(�m))), which we denote by h = g ◦ �f . We are also using the
notation �m = (m1, . . . , mt).

Pre-processing. The scheme can be endowed with a pre-processing algorithm
Process. Just like the FHS scheme from [GVW15], our Verify algorithm works in
two steps. The first step only depends on the inputs vk and f . Thus, it can be
run offline, before knowing the signature σ and message y to verify. It produces
a short processed vk, denoted by αf (whose size is independent of the size of f).
This first phase constitutes the Process algorithm. The second, online step takes
as input αf , y and σ and outputs a bit. The online step runs in time independent
of the complexity of f .

Adaptive Unforgeability. For all stateful PPT adversaries A and all data
bound N ∈ N, the advantage AdvforgΣ (λ,A) defined below is a negligible function
of the security parameter λ ∈ N:

AdvforgΣ (λ,A) = Pr
[

(sk, vk) ← Setup(1λ, 1N), (m1, . . . , mN) ← A(vk),

∀i ∈ [N], σi ← Sign(sk,mi, i), (f, y, σ�) ← A(σ1, . . . , σN) :

Verify(vk, f, y, σ�) = 1 ∧ y �= f(m1, . . . , mn)
]

.

Selective unforgeability is defined identically except the adversary A must send
the messages m1, . . . , mn of its choice before seeing the public key vk.

92 R. Gay and B. Ursu

3 Construction

We describe our unleveled FHS scheme in Fig. 5. We choose to focus on single
dataset FHS (as per Definition 6) rather that multi datasets for simplicity, since
the work of [GVW15] presents a generic transformation from single to multi
datasets, relying only on (non-homomorphic) signatures. Our FHS is for bit
messages, and can evaluate arbitrary Boolean circuits. Without loss of generality,
we focus on evaluating binary NAND gates.

We use a puncturable PRF, an indistinguishability obfuscator iO, an FHE
scheme and a NIZK-PoK as building blocks, whose definition are given in the
previous section. Our construction can be implemented using the dual-mode
NIZK from [GS08] (from pairings) or [HU19] (from iO and lossy trapdoor func-
tions), for instance. The FHE can be implemented using most lattice-based FHE
(with bootstrapping since the FHE must be unleveled, which requires circular
security), or with the construction from [CLTV15], which does not require any
circularity assumption (it relies on iO and lossy trapdoor functions). Altogether,
if we use the NIZK from [HU19] and the FHE from [CLTV15] we obtain our
main result, which follows from Theorem 12 (unforgeability of our FHS).

Theorem 7 (Main Result). Assume the existence of subexponentially secure
iO and lossy trapdoor functions. Then subexponentially adaptively unforgeable
unleveled FHS exist.

3.1 Choice of Parameters

In our FHS, we rely on building blocks PRF, iO, NIZK, FHE that are subex-
ponentially secure, that is, for which efficient adversaries can succeed with at
most advantage 2−κε

in breaking the security, for a constant ε > 0, where κ is
the parameter chosen to run the setup of these primitives. We denote by κ1 the
parameter used for FHE and by κ2 the parameter used for PRF, iO, and NIZK.
Correctness is satisfied as long as the Eqs. (1) and (2) hold. Adaptive unforgeabil-
ity is satisfied as long as the Eq. (3) holds. These equations are simultaneously
satisfied when:

κ1 = (N + log N + 2 log2 λ)1/ε

κ2 =
(|ct| + N + log N + 2 log2 λ + O(1)

)1/ε

where |ct| denotes the size of the FHE ciphertexts.

3.2 Correctness of the FHS

In this section we prove the computational signing correctness, the computa-
tional evaluation correctness, the weak context hiding and the pre-processing
property of our scheme, all given in Definition 6.

On Instantiating Unleveled FHS from Falsifiable Assumptions 93

FHS.KeyGen(1λ, 1N)
(fpk, fsk) ← FHE.Setup(1κ1)
{ct′i ← FHE.Enc(0)}i∈{1...N}
K1, K2 ← PRF.KeyGen(1κ2)
ObfGenCRS ← iO(1κ2 ,PubGenCRS)
ObfEval ← iO(1κ2 ,EvalNAND)
vk = (fpk, {ct′i},ObfGenCRS,ObfEval)
sk = (K1, K2, fsk)
Return (vk, sk)

FHS.Sign(sk, m, i)
(crssim, tdsim) = GenCRS(0)
π ← NIZK.Sim(crssim, tdsim, statm,ct′i)
σ = (ct′i, π, 0)
Return σ

FHS.Verify(vk, f, y, σ)
Parse σ as (ct, π, level)
ctf = FHE.Eval(fpk, f, ct′1, . . . , ct

′
N)

crs = ObfGenCRS(level)
Return NIZK.Verify(crs, staty,ctf , π)

FHS.Eval(vk, f, (m1, σ1) . . . (mN , σN))
Evaluate each NAND gate of f
using ObfEval and return the result.

GenCRS(level)
Hardcoded: key K1

r = PRF(K1, level)
(crssim, tdsim) = NIZK.SimSetup(1κ2 ; r)
Return (crssim, tdsim)

PubGenCRS(level)
(crssim, tdsim) = GenCRS(level)
Return crssim

EvalNAND((σ0, m0), (σ1, m1))
Hardcoded: key K2

Parse σb as (ctb, πb, levelb), for b ∈ {0, 1}
Return ⊥ if level0 �= level1
level = level0
(crssim, tdsim) = GenCRS(level)
If NIZK.Verify(crssim, statmb,ctb , πb) = 0

for some b ∈ {0, 1} then return ⊥
ct = FHE.Eval(fpk,NAND, ct0, ct1)
m = NAND(m0, m1)
(crs′sim, td′

sim) = GenCRS(level+ 1)
ρ = PRF(K2, (m, ct, level+ 1))
π = NIZK.Sim(crs′sim, td′

sim, statm,ct; ρ)
σ = (ct, π, level+ 1)
Return σ

Fig. 5. Fully-homomorphic signature scheme FHS = (FHS.KeyGen,FHS.Sign,FHS.
Verify,FHS.Eval). PRF is a puncturable pseudo-random function, NIZK is a proof of
knowledge (NIZK PoK), FHE is a fully-homomorphic encryption scheme, and iO is an
indistinguishability obfuscator. By statm,ct we denote the statement which claims that
∃ r ∈ R such that ct = FHE.Enc(fpk, m; r), where R denotes the randomness space of
the FHE encryption algorithm. Parameters κ(λ) = (N +2 log2 λ+5)1/ε, where ε > 0 is
a constant whose existence is ensure by the subexponential security of the underlying
building blocks.

Lemma 8 (Computational Signing Correctness). The FHS scheme from
Fig. 5 satisfies the computational signing correctness as per Definition 6, assum-
ing NIZK satisfies the subexponential composable zero-knowledge and complete-
ness on simulated crs properties (as per Definition 5), FHE satisfies the subex-
ponential (selective) IND-CPA security (as per Definition 3), PRF satisfies the
subexponential pseudorandomness at punctured points and the functionality
preservation under puncturing (as per Definition 1) and iO satisfies the correc-
ntess and subexponential security properties (as per Definition 4).

Proof. We first explain how to prove the computational signing property in the
selective case, where A sends the messages m1, . . . , mN ∈ {0, 1} before receiving
vk. In this case, we can prove correctness using a hybrid argument, where we

94 R. Gay and B. Ursu

first switch the ciphertexts ct′i from vk to FHE.Enc(fpk,mi; ri), using the selective
IND-CPA security of FHE. Then, we want to change the way FHS.Sign(sk,mi, i)
computes the ZK proofs, using π ← NIZK.Prove(crssim, statmi,ct′i , ri), where ri is a
witness for statmi,ct′i , instead of producing π ← NIZK.Sim(crssim, tdsim, statmi,ct′i).
This change would be justified by the composable zero knowledge property of
NIZK. Finally, we would conclude the correctness proof using the completeness
of NIZK on the simulated crssim. To perform these changes, we first need to
puncture the PRF key K1 on the point 0, and hardcode the pair (crssim, tdsim) =
NIZK.SimSetup(1κ2 ;PRF(K1, 0)) in the obfuscated circuits (which relies on the
functionality preservation under puncturing of PRF and the security of iO), then
switch the value PRF(K1, 0) to truly random (which relies on the pseudoran-
domness at punctured points of PRF). Then, we can switch the way the proof
π is computed by FHS.Sign(sk,mi, i) as we explained, using the composable
zero-knowledge property of NIZK. Finally use the completeness on simulated crs
property of NIZK. To obtain correctness in the adaptive case, where A can choose
the messages m1, . . . , mN after seeing vk, we simply guess all the messages mi

in advance, which incurs a security loss of 2N . Since we assume subexponential
security of the underlying building blocks, we know that an adversary against
the selective correctness can only succeed with a probability N · 2−κε

1 + 4 · 2−κε
2

for ε > 0 where κ1 is the parameter used for FHE, and κ2 is the parameter used
for NIZK, PRF and iO. Note that ε does not depend on N , so we can choose
κ1, κ2 as polynomials in the security parameter λ and the arity N such that
2N (N · 2−κε

1 + 4 · 2−κε
2) is a negligible function of λ, e.g.

κ1, κ2 ≥ (N + log N + log2 λ)1/ε. (1)

Lemma 9 (Computational Evaluation Correctness). The FHS scheme
from Fig. 5 satisfies the computational evaluation correctness as per Definition 6,
assuming NIZK satisfies the subexponential zero-knowledge and and complete-
ness on simulated crs properties (as per Definition 5), FHE satisfies the subexpo-
nential (selective) IND-CPA security and the randomness homomorphism prop-
erties (as per Definition 3), PRF satisfies the subexponential pseudorandomness
at punctured points and the functionality preservation under puncturing (as per
Definition 1) and iO satisfies the subexponential security and the perfect correct-
ness properties (as per Definition 4).

Proof. First, we prove the evaluation correctness in the selective case where the
adversary A sends the messages m1, . . . , mN and the depth d of the circuit f
before seeing the public key vk. Then, A receives vk and chooses the circuit
f of depth d. To obtain computational evaluation correctness in the adaptive
setting where A can choose f and the messages m1, . . . , mN after seeing vk (as
per Definition 3), we will use a guessing argument together with the subexpo-
nential security of the underlying building blocks similarly than for proving the
signing correctness. Namely, we choose a superpolynomial function L(λ), e.g.
L(λ) = 2log

2 λ and we guess the messages m1, . . . , mN at random over {0, 1}N

and the depth d at random between 1 and L(λ). Because we choose L(λ) super-
polynomial, we know that the depth d chosen by A is less than L(λ), so the guess

On Instantiating Unleveled FHS from Falsifiable Assumptions 95

of the depth is correct with probability 1/L(λ). Overall the guessing incurs a
security loss of 2NL(λ).

Now we prove the selective variant of computational evaluation soundness. To
begin with, we switch the ciphertexts ct′i in vk to FHE encryptions of mi of the
form FHE.Enc(fpk,mi; ri), using the selective IND-CPA security of FHE, just as in
the computational signing correctness proof. Moreover, by perfect correctness of
iO, we know that an evaluated signature σf = Eval(vk, f, (σ1,m1), . . . , (σN ,mN))
is of the form σf = (ct, π, d) where ct = FHE.Eval(fpk, f, ct′1, . . . ct

′
N), and d is

the depth of f . By evaluation correctness of FHE, we know that ct is an encryp-
tion of the message f(m1, . . . , mN). In fact, by the randomness homomorphism
property of FHE, we know that ct = FHE.Enc(fpk, f(m1, . . . , mN); rf) where
rf = FHE.EvalRand(fsk, r1, . . . , rN ,m1, . . . , mN , f). Then, we want to switch the
way the proof π in σf is computed: using NIZK.Prove and the witness rf instead of
using NIZK.Sim and the simulation trapdoor tdsim. This switch would be justified
by the composable zero-knowledge property of NIZK. We would then conclude the
proof using the completeness of NIZK on simulated crs. Only to use these proper-
ties of NIZK, we first need to generate (crssim, tdsim) of level d using truly random
coins, as opposed to pseudo-random. As typical, this requires puncturing the PRF
key K1 and hardcoding the pair (crssim, tdsim) = NIZK.Setup(1κ2 ;PRF(K1, d))
in the obfuscated circuits (thanks to the security of iO and the functionality
preservation under puncturing of PRF), then switching the value PRF(K1, d) to
truly random (thanks to the pseudo-randomness at punctured points property of
PRF). Afterwards, we can use the properties of NIZK to conclude the proof, as we
explained.

Since we assume subexponential security of the underlying building blocks,
we know that an adversary against the selective computational evaluation cor-
rectness can only succeed with a probability N ·2−κε

1 +4 ·2−κε
2 for ε > 0 where κ1

is the parameter used for FHE, and κ2 is the parameter used for NIZK, PRF and
iO. Note that ε does not depend on N , so we can choose κ1, κ2 as polynomials in
the security parameter λ and the arity N such that 2NL(λ)(N · 2−κε

1 + 4 · 2−κε
2)

is a negligible function of λ, e.g.

κ1, κ2 ≥ (N + log N + 2 log2 λ)1/ε. (2)

Lemma 10 (Weak Context Hiding). The FHS scheme from Fig. 5 satisfies
the weak context hiding property as per Definition 6, assuming the perfect cor-
rectness of iO.

Proof. This property follows straightforwardly from the description of the Eval
algorithm and the correctness of iO. Indeed, Eval evaluates circuits gate by gate,
using the EvalNAND algorithm (see Fig. 5), which performs deterministic evalu-
ation on the FHE ciphertext, and then derive a ZK proof deterministically from
the statement and the depth level (using PRF on the key K2). Thus, we have
σg◦�f = σh.

Lemma 11 (Pre-processing). The FHS scheme from Fig. 5 satisfies the pre-
processing property as per Definition 6.

96 R. Gay and B. Ursu

Proof. This simply follows from the description of FHS.Verify. First, during a
pre-processing phase, it computes the values ctf and crs from vk and f . This can
be performed offline, since it does not require to know the message y and the
signature σ. The result is a short pre-processed key αf = (ctf , crs). Then, during
the online phase, FHS.Verify uses αf , σ and y to run the NIZK.Verify algorithm.
The running time of this online phase is independent from the size or depth of f .

4 Proof of Unforgeability

Theorem 12 (Adaptive Unforgeability). Assuming subexponential security
of PRF, FHE, iO, and NIZK, the FHS from Fig. 5 satisfies subexponential unforge-
ability as per Definition 6.

Proof of Theorem 12. We first prove the selective unforgeability (as per Def-
inition 6), where the adversary A must send the messages m1, . . . , mN before
receiving vk. Then we show how to obtain adaptive unforgeability using a guess-
ing argument and the subexponential security of the underlying building blocks
(just as in the proof of computational signing and evaluation correctness in the
previous section).

To prove unforgeability in the selective setting, we use a sequence of hybrid
games, starting with G0, defined exactly as the selective unforgeability game
from Definition 6. For any game Gi, we denote by Advi(A) the advantage of A
in Gi, that is, Pr[Gi(1λ,A) = 1], where the probability is taken over the random
coins of Gi and A. Before we proceed to describe the other hybrids, we make
several technical remarks.

Remark 13. When we hardcode a value in a subprogram, it is understood that
this value is also hardcoded in all the programs that run it, and if a PRF key
K is punctured in a subprogram, it is also punctured in all the programs that
run it.

Remark 14 (Padding the programs). The security of iO can only be invoked for
programs of the same size. For brevity, we assume without loss of generality that
all programs in the security proof are padded to the size of the longest program.
Since our hybrids extend up to a superpolynomial level L(λ) = 2ω(log λ), this
implies a small increase in the programs contained in the real verification key
(since the last hybrid must keep track of the level, and its bit representation
requires ω(log λ) bits). For example, choosing L(λ) = 2log

2 λ would only incur a
multiplicative increase by a factor of log2 λ bits.

Remark 15 (Bounding the Sizes of Punctured PRF Keys). The security proof
will require that PRF keys K1 and K2 are punctured at levels i = 0 . . . L(λ),
where L(λ) = 2log

2 λ. Puncturing increases the size of the keys. In existing con-
structions of PRFs (e.g. [GGM84]), the size of the punctured keys only grows
logarithmically with the number of levels This results in a size-increase of the

On Instantiating Unleveled FHS from Falsifiable Assumptions 97

keys (and therefore of the programs) of up to O(log2 λ). In particular, it is impor-
tant to note that this size increase is independent of the value of the specific level
at which the adversary will output a forgery.

– Game G1: same as G0, except that we change the FHS.KeyGen algorithm.
Instead of computing the ct′i in the verification key as encryptions of 0, we
compute ct′i ← FHE.Enc(mi; ri), where mi are the messages sent by A. The
randomness ri used to compute the ciphertext ct′i is stored in the secret key
sk.

Lemma 16 (From G0 to G1). For every PPT adversary A, there exists a PPT
adversary B, such that: |Adv0(A) − Adv1(A)| ≤ AdvFHEIND-CPA(κ1,B).

Proof. The reduction B starts by sending (0 . . . 0) and (m1 . . . mN) to the IND-
CPA challenger. It receives (ct′1 . . . ct′N), which it embeds in the vk. During the
execution of FHS.KeyGen, all the other obfuscated programs in vk are generated
as before, but using the ciphertexts received from the challenger.

– Game G2: same as G1, except that we change the FHS.Sign algorithm and
replace it with HybridSign, defined in Fig. 6. The latter computes the sig-
natures σ1, . . . , σN sent to A (after A sends the messages m1, . . . , mN) as
σi = (ct′i, πi, 0) where ct′i = FHE.Enc(fpk,mi; ri) is the i’th FHE encryption
contained in vk, 0 indicates the level, and πi is computed using the witness
ri (which is stored in sk), instead of using a simulation trapdoor.

Lemma 17 (From G1 to G2). For every PPT adversary A, there exist PPT
adversaries B1, B2, B3 such that:

|Adv1(A) − Adv2(A)| ≤ 2
(

AdvcPRF(κ2,B1) + AdviO(κ2,B2)
)

+ N · AdvZK(κ2,B3).

Proof. To switch from proofs πi generated using NIZK.Sim and the simula-
tion trapdoor tdsim to proofs generated using NIZK.Prove and the witnesses ri,
as described in Fig. 6, we want to use the composable zero-knowledge prop-
erty of NIZK. To do so, we first have to hard-code the pair (crssim, tdsim) =
NIZK.SimSetup(1κ2 ;PRF(K1, 0)) in the obfuscated circuit instead of using the
key K1 on the point 0. To generate the pairs (crssim, tdsim) for all other levels
i �= 0, we compute (crssim, tdsim) = NIZK.SimSetup(1κ2 ;PRF(K1{0}, i)), where
K1{0} is a key punctured at the point 0. Because puncturing preserves the func-
tionality of PRF (as per Definition 1), this does not change the input/output
behavior of the obfuscated circuit. Thus we can use the iO security to argue
that this change is computational undetectable by the adversary. Then, we
switch the hardcoded pair (crssim, tdsim) = NIZK.SimSetup(1κ2 ;PRF(K1, 0)) to
(crssim, tdsim) = NIZK.SimSetup(1κ2 ; r0), where r0 is truly random. This is pos-
sible by the pseudorandomness property at punctured points of PRF. Then,
we use the composable zero-knowledge property of NIZK to switch πi to πi ←

98 R. Gay and B. Ursu

NIZK.Prove(crssim, statct′i,mi
, ri) for all i ∈ [N]. Finally we switch back the gener-

ation of the pairs (crssim, tdsim) using pseudo-random coins for all levels (instead
of using truly random coins for the level 0) and we unpuncture the key K1.

HybridSign(sk, mi, i)

crssim = PubGenCRS(0)

πi ← NIZK.Prove(crs, statmi,ct′i , ri)

σi = (ct′i, πi, 0)
Return σi

Fig. 6. In G2, we replace the FHS.Sign algorithm with HybridSign. Changes are high-
lighted in gray.

– Game G3,�: At this point, the proof proceeds in a series of L(λ) = 2log
2 λ

hybrids where G3,� is defined for all
 = {0, . . . , L(λ)} identically to G2, except
that:
1. the program GenCRS is replaced by HybridGenCRS�, described in Fig. 7.

The latter generates a crs with an extraction trapdoor using NIZK.Setup
on any level <
, and generates a simulated crs with a simulation trapdoor
using NIZK.SimSetup on any level ≥
.

2. the program EvalNAND is replaced by HybridEvalNAND�, described in
Fig. 7. For any level <
, the latter generates proofs for the next level
using witnesses obtained using an extraction trapdoor and the random-
ness homomorphic property of FHE. For any level ≥
, it generates proofs
for the next level using a simulation trapdoor.

Note that G3,0 = G2. In Theorem 18, we prove that for all
 ∈ {0, . . . , L(λ) −
1}, G3,� ≈c G3,�+1.

– Game G4: same as G3,L(λ), except the game guesses the depth of the function
f chosen by the adversary A for his forgery, by sampling d� ←r {1, . . . , L(λ)}.
At the end of the game, A sends the forgery (f, y, σ�). If d� �= d, then the game
G4 outputs 0. Otherwise it proceeds as in G3,L(λ). Since L(λ) has been chosen
super polynomial in λ, we know that the function f has depth d ≤ L(λ). Thus,
with probability 1/L(λ), the guess is correct, i.e. we have d� = d. Therefore,

Adv4(A) =
Adv3,L(λ)(A)

L(λ)
.

– Game G5: same as G4, except we puncture the key K1 at d� and hardcode
the value PRF(K1, d

�) in the obfuscated circuit. Since puncturing preserve
the functionality, we can use the security of iO to argue that there exists a
PPT adversary B5 such that:

|Adv5(A) − Adv4(A)| = AdviO(κ2,B5).

On Instantiating Unleveled FHS from Falsifiable Assumptions 99

– Game G6: same as G5, except we change the value PRF(K1, d
�) hardcoded in

the obfuscated circuit is turned to a truly random value. By the pseudoran-
domness of PRF on punctured points, we know there exists a PPT B6 such
that:

|Adv6(A) − Adv5(A)| = AdvcPRF(κ2,B6).

We now proceed to bound Adv6(A). By the knowledge soundness property
of NIZK, we know that Adv6(A) ≤ νsound(κ2). Putting things together, we
have Adv4(A) ≤ νsound(κ) + AdvcPRF(κ2,B6) + AdviO(κ2,B5) and Adv3(A) =
L(λ)Adv4(A). Together with the result of Theorem 18, we have:

Adv0(A) ≤(2|ct|+2 + L(λ) + 8)AdviO(κ2, B1) + (2|ct|+2 + L(λ) + 6)AdvcPRF(κ2, B2)

+ Advcrs(κ2, B3) + (2|ct|+1 + N)AdvZK(κ2, B4)

+ (L(λ) + 2)νsound(κ2) + AdvFHE
IND-CPA(κ1, B5).

The subexponential security of the building blocks implies that there exists
a constant ε > 0 such that AdviO(κ2,B1),AdvcPRF(κ2,B2),Advcrs(κ2,B3),
AdvZK(κ2,B4), νsound(κ2) ≤ 2−κε

2 and AdvFHE
IND-CPA(κ1,B5) ≤ 2−κε

1 . Thus, we
have

Adv0(A) ≤ 2−κε
2(5 · 2|ct|+1 + 3L(λ) + N + 17) + 2−κε

1 .

Since we chose L(λ) = log2 λ, selective security can be achieved by choosing
for instance

κ2 ≥ (|ct| + log N + 2 log2 λ + O(1))1/ε,

κ1 ≥ (log2 λ)1/ε.

To achieve adaptive unforgeability, we use the same guessing technique as
for the proof of computation correctness (both signing and evaluation) in
the previous section. Namely, we simply guess the messages m�

1, . . . , m
�
N ←r

{0, 1} in advance, then proceed as in the selective game (but with the guesses
m�

i instead of the real messages chosen by the adversary). If the guess is
correct, we have the same advantage as in the selective security game. If
the guess is incorrect, the game outputs 0. This guessing argument incurs
a security loss of 2N . That is, the advantage of an adaptive adversary A
against the unforgeability of our FHS is less than 2N times the security loss
in the selective setting written above. Therefore, adaptive unforgeability can
be achieved by choosing for instance

κ2 ≥ (|ct| + N + log N + 2 log2 λ + O(1))1/ε, κ1 ≥ (N + log2 λ)1/ε (3)

This concludes the unforgeability proof. ��

Theorem 18 (From G3,� to G3,�+1). For every PPT adversary A, there exist
PPT adversaries B1,B2,B3,B4, such that:

|Adv3,�(A) − Adv3,�+1(A)| ≤ (2|ct|+2 + 6)AdviO(κ2,B1) + (2|ct|+2 +
4)AdvcPRF(κ2,B2) + 2|ct|+1AdvZK(κ2,B3) + Advcrs(κ2,B4) + 2νsound(κ2).

100 R. Gay and B. Ursu

HybridGenCRS�(level)
Hardcoded: key K1

s = PRF(K1, level)
Return (crs, tdext) = NIZK.Setup(1κ2 ; s) for level < �
Return (crssim, tdsim) = NIZK.SimSetup(1κ2 ; s) for level ≥ �

HybridEvalNAND�((σ0, m0), (σ1, m1))
Hardcoded: key K2

Parse σb as (ctb, πb, levelb), for b ∈ {0, 1}
Return ⊥ if level0 �= level1
j = level0
(crsj , tdj) = HybridGenCRS�(j)
If NIZK.Verify(crsj , statmb,ctb , πb) = 0 for some b ∈ {0, 1} then output ⊥
ct = FHE.Eval(fpk,NAND, ct0, ct1)
m = NAND(m0, m1)
(crsj+1, tdj+1) = HybridGenCRS�(j + 1)
ρ = PRF(K2, (m, ct, j + 1))
If j < �

rb = NIZK.Extract(crsj , tdj , statmb,ctb , πb) for b ∈ {0, 1}
r = FHE.EvalRand(fsk,NAND, r1, r2)
π = NIZK.Prove(crsj+1, statm,ct, r; ρ)

If j ≥ �
π = NIZK.Sim(crsj+1, tdj+1, statm,ct; ρ)

σ = (ct, π, j + 1)
Return σ

Fig. 7. Algorithms HybridGenCRS� and HybridEvalNAND�, used in the games G3,�, for
all � ∈ {0, . . . , L(λ)}.

Due to space constraints, we provide the technical proof of this theorem in
the full version of the paper [GU23].

Acknowledgements. We would like to thank Geoffroy Couteau and Dennis Hofheinz
for their input during discussions that led to this work.

References

AB09. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for
network coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud,
D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01957-9 18

ACL+22. Albrecht, M.R., Cini, V., Lai, R.W.F., Malavolta, G., Thyagarajan, S.A.:
Lattice-based SNARKs: publicly verifiable, preprocessing, and recursively
composable. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology,
CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 102–132. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-15979-4 4

https://doi.org/10.1007/978-3-642-01957-9_18
https://doi.org/10.1007/978-3-031-15979-4_4

On Instantiating Unleveled FHS from Falsifiable Assumptions 101

ALP13. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-
hiding quotable and linearly homomorphic signatures. In: Kurosawa, K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 24

AP19. Aranha, D.F., Pagnin, E.: The simplest multi-key linearly homomorphic
signature scheme. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT
2019. LNCS, vol. 11774, pp. 280–300. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30530-7 14

AP20. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without
maps: attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 110–140.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 5

BCFL23. Balbás, D., Catalano, D., Fiore, D., Lai, R.W.F.: Chainable functional
commitments for unbounded-depth circuits. In: Rothblum, G., Wee, H.
(eds.) Theory of Cryptography, TCC 2023. LNCS, vol. 14371, pp. 363–393.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48621-0 13

BDGM20a. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from
homomorphic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 79–109. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45721-1 4

BDGM20b. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings
are not necessary for iO: circular-secure LWE suffices. Cryptology ePrint
Archive (2020)

BF11a. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial func-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
149–168. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
20465-4 10

BF11b. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary
fields and new tools for lattice-based signatures. In: Catalano, D., Fazio,
N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp.
1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19379-8 1

BFM88. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: 20th ACM STOC, May 1988, pp.
103–112. ACM Press (1988)

BFS14. Boyen, X., Fan, X., Shi, E.: Adaptively secure fully homomorphic signa-
tures based on lattices. Cryptology ePrint Archive, Paper 2014/916 (2014).
https://eprint.iacr.org/2014/916

BGI+01. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidel-
berg (2001). https://doi.org/10.1007/3-540-44647-8 1

BGI14. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54631-0 29

BW13. Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-42045-0 15

https://doi.org/10.1007/978-3-642-36362-7_24
https://doi.org/10.1007/978-3-030-30530-7_14
https://doi.org/10.1007/978-3-030-30530-7_14
https://doi.org/10.1007/978-3-030-45721-1_5
https://doi.org/10.1007/978-3-031-48621-0_13
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/978-3-642-19379-8_1
https://doi.org/10.1007/978-3-642-19379-8_1
https://eprint.iacr.org/2014/916
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15

102 R. Gay and B. Ursu

CF13. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic cir-
cuits. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 336–352. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38348-9 21

CFN15. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go
private: constructions and applications to (homomorphic) signatures with
shorter public keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 13

CFN18. Catalano, D., Fiore, D., Nizzardo, L.: On the security notions for homo-
morphic signatures. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 183–201. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-93387-0 10

CFT22. Catalano, D., Fiore, D., Tucker, I.: Additive-homomorphic functional com-
mitments and applications to homomorphic signatures. In: Agrawal, S.,
Lin, D. (eds.) Advances in Cryptology, ASIACRYPT 2022, Part IV. LNCS,
vol. 13794, pp. 159–188. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-22972-5 6

CFW14. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with effi-
cient verification for polynomial functions. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 21

CLQ16. Chen, W., Lei, H., Qi, K.: Lattice-based linearly homomorphic signatures
in the standard model. Theoret. Comput. Sci. 634, 47–54 (2016)

CLTV15. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of prob-
abilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015, Part II. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46497-7 19

DJ01. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC
2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44586-2 9

DQV+21. Devadas, L., Quach, W., Vaikuntanathan, V., Wee, H., Wichs, D.: Suc-
cinct LWE sampling, random polynomials, and obfuscation. In: Nissim,
K., Waters, B. (eds.) TCC 2021, Part II. LNCS, vol. 13043, pp. 256–287.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1 9

ElG85. ElGamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

FG18. Fuchsbauer, G., Gay, R.: Weakly secure equivalence-class signatures from
standard assumptions. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part
II. LNCS, vol. 10770, pp. 153–183. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-76581-5 6

FHS19. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures
on equivalence classes and constant-size anonymous credentials. J. Cryp-
tol. 32(2), 498–546 (2019)

FP18. Fiore, D., Pagnin, E.: Matrioska: a compiler for multi-key homomorphic
signatures. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol.
11035, pp. 43–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98113-0 3

https://doi.org/10.1007/978-3-642-38348-9_21
https://doi.org/10.1007/978-3-642-38348-9_21
https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/978-3-319-93387-0_10
https://doi.org/10.1007/978-3-319-93387-0_10
https://doi.org/10.1007/978-3-031-22972-5_6
https://doi.org/10.1007/978-3-031-22972-5_6
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-030-90453-1_9
https://doi.org/10.1007/978-3-319-76581-5_6
https://doi.org/10.1007/978-3-319-76581-5_6
https://doi.org/10.1007/978-3-319-98113-0_3
https://doi.org/10.1007/978-3-319-98113-0_3

On Instantiating Unleveled FHS from Falsifiable Assumptions 103

Fre12. Freeman, D.M.: Improved security for linearly homomorphic signatures:
a generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30057-8 41

Gen09. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st
ACM STOC, May/June 2009, pp. 169–178. ACM Press (2009)

GGM84. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions (extended abstract). In: 25th FOCS, October 1984, pp. 464–479.
IEEE Computer Society Press (1984)

GM82. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental
poker keeping secret all partial information. In: 14th ACM STOC, May
1982, pp. 365–377. ACM Press (1982)

GP21. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security.
In: 53rd ACM STOC, June 2021, pp. 736–749. ACM Press (2021)

GS08. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3 24

GSW13. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 5

GU23. Gay, R., Ursu, B.: On instantiating unleveled fully-homomorphic sig-
natures from falsifiable assumptions. Cryptology ePrint Archive, Paper
2023/1818 (2023). https://eprint.iacr.org/2023/1818

GVW15. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: 47th ACM STOC, June 2015, pp.
469–477. ACM Press (2015)

GW13. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 301–320. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 16

HILL99. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

HPP20. Hébant, C., Phan, D.H., Pointcheval, D.: Linearly-homomorphic signa-
tures and scalable mix-nets. In: Kiayias, A., Kohlweiss, M., Wallden,
P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 597–627.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 21

HS14. Hanser, C., Slamanig, D.: Structure-preserving signatures on equiva-
lence classes and their application to anonymous credentials. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp.
491–511. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45611-8 26

HU19. Hofheinz, D., Ursu, B.: Dual-mode NIZKs from obfuscation. In: Galbraith,
S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921,
pp. 311–341. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5 12

https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://eprint.iacr.org/2023/1818
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1007/978-3-030-45388-6_21
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1007/978-3-030-34578-5_12
https://doi.org/10.1007/978-3-030-34578-5_12

104 R. Gay and B. Ursu

JLS21. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-
founded assumptions. In: 53rd ACM STOC, June 2021, pp. 60–73. ACM
Press (2021)

JLS22. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN
over Fp, DLIN, and PRGs in NC0. In: Dunkelman, O., Dziembowski, S.
(eds.) Advances in Cryptology, EUROCRYPT 2022. LNCS, vol. 13275,
pp. 670–699. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
06944-4 23

JMSW02. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature
schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45760-7 17

KPTZ13. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Dele-
gatable pseudorandom functions and applications. In: ACM CCS 2013,
November 2013, pp. 669–684. ACM Press (2013)

KSD19. Khalili, M., Slamanig, D., Dakhilalian, M.: Structure-preserving signatures
on equivalence classes from standard assumptions. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 63–
93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 3

LPJY15. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic
structure-preserving signatures and their applications. Des. Codes Crypt.
77(2), 441–477 (2015)

LTWC18. Lai, R.W.F., Tai, R.K.H., Wong, H.W.H., Chow, S.S.M.: Multi-key homo-
morphic signatures unforgeable under insider corruption. In: Peyrin,
T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273,
pp. 465–492. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 16

Pai99. Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 16

SBB19. Schabhüser, L., Butin, D., Buchmann, J.: Context hiding multi-key lin-
early homomorphic authenticators. In: Matsui, M. (ed.) CT-RSA 2019.
LNCS, vol. 11405, pp. 493–513. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-12612-4 25

SW14. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: 46th ACM STOC, May/June 2014, pp. 475–484.
ACM Press (2014)

Tsa17. Tsabary, R.: An equivalence between attribute-based signatures and
homomorphic signatures, and new constructions for both. In: Kalai, Y.,
Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 489–518.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 16

WW21. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling.
In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part III.
LNCS, vol. 12698, pp. 127–156. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-77883-5 5

https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/978-3-030-34618-8_3
https://doi.org/10.1007/978-3-030-03329-3_16
https://doi.org/10.1007/978-3-030-03329-3_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-12612-4_25
https://doi.org/10.1007/978-3-030-12612-4_25
https://doi.org/10.1007/978-3-319-70503-3_16
https://doi.org/10.1007/978-3-030-77883-5_5
https://doi.org/10.1007/978-3-030-77883-5_5

	On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable Assumptions
	1 Introduction
	2 Preliminaries
	2.1 Puncturable Pseudorandom Functions
	2.2 Fully Homomorphic Encryption
	2.3 Indistinguishability Obfuscation
	2.4 Non-interactive Zero Knowledge Proofs
	2.5 Fully Homomorphic Signatures

	3 Construction
	3.1 Choice of Parameters
	3.2 Correctness of the FHS

	4 Proof of Unforgeability
	References

