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Abstract. In this paper, we study both the implications and poten-
tial impact of backdoored parameters for two RSA-based pseudoran-
dom number generators: the ISO-standardized Micali-Schnorr generator
and a closely related design, the RSA PRG. We observe, contrary to
common understanding, that the security of the Micali-Schnorr PRG is
not tightly bound to the difficulty of inverting RSA. We show that the
Micali-Schnorr construction remains secure even if one replaces RSA
with a publicly evaluatable PRG, or a function modeled as an effi-
ciently invertible random permutation. This implies that any crypto-
graphic backdoor must somehow exploit the algebraic structure of RSA,
rather than an attacker’s ability to invert RSA or the presence of secret
keys. We exhibit two such backdoors in related constructions: a family of
exploitable parameters for the RSA PRG, and a second vulnerable con-
struction for a finite-field variant of Micali-Schnorr. We also observe that
the parameters allowed by the ISO standard are incompletely specified,
and allow insecure choices of exponent. Several of our backdoor construc-
tions make use of lattice techniques, in particular multivariate versions of
Coppersmith’s method for finding small solutions to polynomials modulo
integers.

1 Introduction

In 2013, a collection of leaks due to Edward Snowden revealed the existence
of a large-scale U.S. government effort called the SIGINT Enabling Project.,
intended to compromise the integrity of cryptographic systems. Equipped with
a $200M annual budget, the project sought to “insert vulnerabilities into commer-
cial encryption systems” and to “influence policies, standards and specification
for commercial public key technologies" [3]. These leaks also revealed that the
U.S. National Security Agency authored and maintained sole editorial control of
the 2005 ISO 18031 standard on random bit generation [55], a standard that was
largely incorporated into the U.S. ANSI X9.82 standard. A draft of the ANSI
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standard in turn forms the basis for the U.S. National Institute for Standards
and Technology’s NIST Special Publication 800-90A, which defines requirements
for random bit generation in government-approved cryptographic products.

Even before the Snowden leaks, the NIST/ANSI and ISO standards have
drawn scrutiny for their inclusion of a number-theoretic PRG known as the Dual
Elliptic Curve Deterministic Random Bit Generator (Dual EC DRBG), a con-
struction that is exploitable by a party that generates the system public param-
eters and retains a secret trapdoor [62]. The Snowden leaks inspired renewed
investigation of this standard and its deployment, revealing that Dual EC was
more widely deployed than many academic researchers had realized. Moreover,
later investigation revealed that TLS and IPsec implementations incorporating
Dual EC [17,18] also made specific implementation decisions that rendered them
practically exploitable by an adversary who possesses the Dual EC trapdoor.

Even if the standardized parameters were not deliberately backdoored, the
mere possibility of such parameters poses a threat to users of a standardized
PRG. In one noteworthy case, an undocumented implementation of Dual EC in
Juniper NetScreen’s firewalls appears to have been exploited in practice; in 2012
an outside group compromised the NetScreen codebase and replaced Juniper’s
Dual EC constants with parameters of their own devising [17]. These parameters
were in place for over three years, presumably enabling the outside group to
decrypt the communications of Juniper NetScreen customers, which at the time
included the U.S. Federal Government. Demonstrating the existence, or ruling
out the possibility, of methods to backdoor the parameter generation process
is the only way to mitigate the risk of parameter substitution attacks which
otherwise undermine the security of commercial encryption technology.

The MS DRBG Generator. While Dual EC is the only number-theoretic genera-
tor adopted as a NIST standard, the current draft of ISO 18031 (and early drafts
of the ANSI X9.82 standard) also include a second public-key generator that has
received surprisingly little successful analysis. Based on a design by Micali and
Schnorr [50,51], the MS DRBG algorithm is a pseudorandom number generator
whose security is purportedly related to the hardness of breaking RSA. In brief,
the algorithm is instantiated using a state s0 and an RSA public key (N, e), and
at each stage the algorithm applies the RSA function to the state to obtain an
integer zi+1 = se

i mod N . The most significant bits of zi+1 become the new state
si+1 for the next iteration of the algorithm, and the least significant bits of zi+1

are the output bi+1 of the pseudorandom number generator for that iteration.
While RSA (and Rabin)-based pseudorandom generators have been studied

in the academic literature for many years [13,32,33,50,51,63], two aspects of the
MS DRBG standard draw attention. First, in contrast with common practice for
RSA-based generators, the generator outputs up to a 1−2/e fraction of the bits
(or up to 864 bits for a 1024-bit modulus with a claimed 80-bit security level.)1

1 Previous RSA-based generators (including some early drafts of MS DRBG) recom-
mend outputting lg lgN bits at each iteration (where lg denotes base-2 logarithm).
MS DRBG’s larger output is justified by a novel pseudorandomness assumption
introduced by Micali and Schnorr [51].
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More critically, the MS DRBG standard includes a design choice that is reminis-
cent of the Dual EC generator: namely, it incorporates a series of recommended
public parameters that are intended to be used in production as the modulus N .
As with Dual EC, the provenance of these moduli is not documented in the stan-
dard. However, correspondence from the ANSI standards process (revealed under
the Freedom of Information Act [52]) supports the conclusion that both Dual EC
and MS DRBG were authored by the National Security Agency, which also gen-
erated the parameters for both specifications. Unlike the Dual EC parameters
(which could conceivably have been generated such that the generating party
would not learn a trapdoor) according to the standard the MS DRBG moduli
are the product of primes p, q chosen by the standard author. The NSA’s knowl-
edge of this secret factorization calls into question the security of the generator
when used in a setting where the NSA is adverse to its user.

MS DRBG has not, to our knowledge, been used in any real-world systems.
This is perhaps unsurprising; there is virtually no reason ever to use a number
theoretic DRBG instead of one based on symmetric cryptography: symmetric
DRBGs have much better performance and still derive their security from well-
studied cryptographic assumptions. However, several surprisingly widespread
implementations of Dual EC DRBG (e.g., Juniper’s NetScreen implementation)
were unknown to researchers and were only discovered by chance long after
the deprecation of Dual EC. MS DRBG, though still in the ISO standard, has
received far less attention than Dual EC from the research community. It is pos-
sible there were (or are) MS DRBG implementations used in production that
have not received public scrutiny.

Given the known vulnerabilities in Dual EC DRBG and the (allegedly) iden-
tical provenance of MS DRBG, it is therefore reasonable to ask whether MS
DRBG is vulnerable to an analogous attack. Concretely:

Does knowledge of the factors of (or malicious construction of) the recom-
mended moduli imply a practical attack on the MS DRBG generator?

This question is surprisingly difficult to answer. While the literature is replete
with studies of RSA-based generators, the majority of this work naturally
assumes that the factorization of N is kept secret. In that setting, standard
results on RSA hardcore bits can be used to argue the indistinguishability of
generator output. Clearly such arguments no longer apply in settings where the
factorization is known to the attacker. And yet in contrast to many other RSA-
based constructions, knowledge of the factorization does not point to an obvious
attack strategy against MS DRBG or similar RSA-based generators. Such gaps
between “best reduction” and “best attack” are hardly unknown in the literature.
We argue, however, that the history and provenance of the MS DRBG standard
make it worthy of a closer look.

Our Results. We study both the implications and potential impact of backdoored
parameters for the Micali-Schnorr generator and for the RSA PRG, a closely
related design that was never standardized. To our knowledge, we are the first to
identify vulnerabilities in these algorithms from this perspective in the literature.
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First, we observe that the security of the Micali-Schnorr PRG is not tightly
bound to the difficulty of inverting RSA. We show that the Micali-Schnorr con-
struction remains secure even if one replaces RSA with a publicly evaluatable
PRG or an ideal (and efficiently invertible) random permutation. While these
results appear obvious in hindsight, they do not appear to have been articulated
in the literature on RSA-based generators nor to have been known to the stan-
dards bodies. These observations imply that any cryptographic backdoor must
somehow exploit the algebraic structure of RSA, rather than an attacker’s ability
to merely invert RSA or the presence of secret keys. We exhibit two such back-
doors in related constructions: a family of exploitable parameters for the RSA
PRG, and a second vulnerable construction for a finite-field variant of Micali-
Schnorr. We also observe that the parameters allowed by the ISO standard are
incompletely specified, and allow insecure choices of exponent. Several of our
backdoor constructions make use of lattice techniques, in particular multivari-
ate versions of Coppersmith’s method for finding small solutions to polynomials
modulo integers. We evaluate the impact of our attacks in the context of net-
work protocols and find that the ISO weak exponent vulnerability would be
exploitable in the context of IPsec.

Ultimately, although we were unsuccessful in fully solving the question we set
out to answer, that of either finding an efficiently exploitable backdoor for the
Micali-Schnorr generator or ruling out the possibility, we hope that this work will
bring more attention to this unsolved problem and point the way to potentially
fruitful cryptanalytic advances.

1.1 Technical Overview

Our goal in this work is to evaluate the hypothesis that the standardization of
ISO/ANSI MS DRBG may represent an intentional attempt to subvert cryp-
tographic systems. This possibility is intriguing for two different reasons: first,
a better understanding would offer new historical context on the development
of public-key standards and the intentions of nation-state cryptologic agen-
cies. From a technical perspective, detailed investigation of this question might
uncover the existence of heretofore non-public attacks on public-key cryptosys-
tems. While factoring-based PRG constructions are some of the earliest work
in this area, they appear to have received surprisingly little attention from a
modern perspective, and this question shines new light on the tightness of the
connection between the hardness assumptions and the security of the output.

Our approach is to assume the worst case: that the authors of the standard
retained the factorization of each recommended modulus (or maliciously gen-
erated these moduli), and additionally possessed techniques that enabled them
to practically exploit this knowledge. From this starting point we then attempt
to “re-derive” the necessary techniques and to evaluate whether they can be
used in practical settings. Our primary focus in this work is on techniques that
enable state recovery given some quantity of generator output, since knowledge
of the internal generator state would enable a passive attacker to obtain future
generator output and possibly compromise the security of encryption protocols.
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Indistinguishability, State Recovery and Backtracking Resistance. Like most
standardized generators, MS DRBG uses an iterated construction. The generator
is initially seeded with a state s0 that is updated through application of a pur-
ported one-way function. The same function is also used to produce output bits.
As with any PRG, knowledge of previous outputs must not provide an attacker
with a meaningful advantage in predicting future output bits. This can only be
achieved if all internal states remain secret until the generator is reseeded, since
knowledge of any state permits the prediction of all future states and outputs.
Both ISO and ANSI require an even stronger security property: the compromise
of any intermediate state si must not enable prediction or distinguishing of gen-
erator outputs from previous cycles. We show that neither MS DRBG nor RSA
PRG achieve this property when the factorization of N is known.

Eliminating the Obvious. A natural approach for a subversion attacker2 to break
these PRGs is to simply invert the RSA function to recover some internal gen-
erator state after observing generator output. However, in MS DRBG (as well
as more traditional RSA and Rabin-based generators) this direct approach fails
because the construction does not output all bits of RSA function output.

While the security assumptions that underlie the security proof for MS
DRBG [51] are clearly false if the factorization of the modulus N is known,
straightforward attempts to reverse the security reduction are also futile, for a
similar reason. Micali and Schnorr’s reduction relies on two elements: a novel
indistinguishability assumption for partial RSA outputs (repeated herein as
Assumption 1), which is combined with rejection sampling and the ACGS algo-
rithm of Alexi, Chor, Goldreich, and Schnorr [5] (in Theorem 1) to reduce this
to the hardness of the RSA problem. An adversary who can falsify Assumption 1
still does not obtain all bits of the ciphertext from the generator’s output. Even
when the attacker has access to an inversion oracle, both sides of the reduction
are efficient to solve, so even reversing this portion of the reduction is unlikely
to lead to a practical subversion attack. Moreover, the running time of this
reduction algorithm for parameters of practical interest is much more expensive
than simply brute forcing the unknown state would be, which makes Theorem 1
vacuous in the case of MS DRBG.3

Eliminating Black Box Attacks. Given the above, we turn our attention to
whether being able to falsify Assumption 1 in a black box way suffices for a
distinguishing attack on MS DRBG. Stated broadly, this assumption implies
that for some length-expanding function F : {0, 1}k → {0, 1}n with k � n,
the ensemble {b1, b2, . . . , bh} is indistinguishable from random, when each bi ←
F (si−1) mod 2n−k and si ← �F (si−1)/2n−k� (with s0 a random k-bit string,
and h an arbitrary number of outputs). It is relatively easy to argue this assump-
tion holds when F is itself a PRG (or is modeled as a random function or permu-

2 An attacker with backdoor information; see Sect. 5.1.
3 Naturally ISO has specified parameters so that brute force and collision attacks

against the state are infeasible.



On the Possibility of a Backdoor in the Micali-Schnorr Generator 357

tation on {0, 1}n) as we prove in Sect. 4. We observe that the MS PRG construc-
tion instantiated with such a random permutation remains secure even when
the inverse oracle is available to an adversary, or when the function contains no
secrets or keys. Indeed, this construction is analogous to several common PRG
constructions based on hash functions. The theorems we prove are straightfor-
ward, and their implications are obvious in retrospect, but they encode obser-
vations about the security of the MS DRBG construction that do not appear to
have been formalized in the literature.

The main question then is whether such an assumption can hold when F is
realized via the RSA function in the unusual setting where the factorization is
known. These results suggest that any attacks on the MS or RSA PRGs must
exploit algebraic properties of RSA and modular exponentiation, rather than
being able to take advantage of factorization in a black-box way.

Algebraic Attacks. After eliminating the possibility of an “obvious” factoring-
based backdoor, we give several candidate backdoor constructions and algorith-
mic weaknesses for RSA PRG and MS PRG that exploit algebraic properties of
modular exponentiation. Most of our state recovery attacks make use of lattice-
based techniques, in particular variants of multivariate Coppersmith’s method.
A straightforward application of Coppersmith-type methods to break MS and
RSA PRG is ruled out by the ISO parameters; such attacks seem unlikely to
allow recovery of a state larger than n/e bits for generic parameters (for RSA
exponent e), while the ISO parameters set the state size at 2n/e bits.

We give backdoor constructions that introduce additional structure that
results in feasible attacks that work beyond these known bounds. For RSA PRG,
we show how to efficiently generate RSA moduli that embed cyclic and linear
recurrence relations in the PRG output and how to hide these recurrences in the
factorization of N ; we also give an algorithm exploiting these recurrences for an
efficient full state recovery attack from parameter ranges that were not known to
be previously exploitable. Unfortunately, extending this idea to MS PRG does
not seem to result in an efficiently exploitable backdoor without some further
structure that allows us to simplify the exponentially many polynomial terms
generated by the recurrence relations. We illustrate such an algebraic structure
by showing that a variant of MS PRG defined over small-characteristic finite
fields is trivially broken by using the linearity of the Frobenius endomorphism.

Finally, we show that the existence of RSA decryption exponents allows the
efficient generation of apparently unnoticed weak exponent choices for MS PRG
that are not ruled out by the parameters in the ISO standard. These weak
exponents allow an efficient state recovery attack for the output lengths and
state sizes in the ISO standard from a single PRG output block. We further
observe that if this PRG were used to generate nonces and secret keys in the
IPsec protocol (as Dual EC was in real-world implementations), this attack would
allow an efficient state recovery attack from a single handshake nonce generated
from raw PRG output.
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Future Directions. The problem of designing an efficient backdoor for the Micali-
Schnorr scheme has floated around the cryptographic community as an open
problem since at least 2013 [37], with little success.

In this work, we rule out some obvious-seeming approaches that are dead
ends, and illuminate some potentially fruitful directions for future exploration.
In the end, we leave the question of identifying or ruling out an efficiently
exploitable general backdoor in the Micali Schnorr algorithm unsolved in this
paper. Ultimately, a solution to this problem may involve new ideas in the crypt-
analysis of RSA.

2 Background

The ISO, NIST, and ANSI standards refer to the (pseudo)random number gen-
eration algorithms they describe as random bit generators (RBGs) and to deter-
ministic pseudorandom number generation algorithms as deterministic random
bit generators (DRBGs).

ISO-18031 lists a number of (informal) security requirements for RBGs. We
list the most relevant of these below, and mark the exact text from the standard
in quotes. We have given names to these properties for future convenience.

Indistinguishability “Under reasonable assumptions, it shall not be feasible
to distinguish the output of the RBG from true random bits that are uni-
formly distributed.” Indistinguishability has been extensively studied in the
academic literature [14,65].

State Compromise Resistance “The RBG shall not leak relevant secret infor-
mation (e.g., internal state of a DRBG) through the output of the RBG.”
While indistinguishability is the main requirement for a PRG in the aca-
demic literature, the focus of many practical attacks is a full state compro-
mise [17,18,20].

The following properties4 are listed as optional requirements:

Backtracking Resistance “Given all accessible information about the RBG
(comprising some subset of inputs, algorithms, and outputs), it shall be com-
putationally infeasible (up to the specified security strength) to compute or
predict any previous output bit.”

Prediction Resistance “Given all accessible information about the RBG (com-
prising some subset of inputs, algorithms, and outputs), it shall be infeasible
(up to the specified security strength) to compute or predict any future out-
put bit at the time that [prediction resistance] was requested.”

4 The standard calls these properties “backward secrecy” and “forward secrecy”, but in
the opposite way from the academic literature; we rename these properties to avoid
confusion.
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We will use the term “PRG” to refer to the algorithms in this paper, and
the term DRBG when we specifically reference the ISO standard. There have
also been extensive academic efforts to formalize requirements for pseudorandom
number generation under various attack models including recovery from state
compromise [28].

2.1 The RSA PRG

The ISO standard introduces MS DRBG as a variant of the “so-called RSA gen-
erator”, which iteratively applies RSA encryption to a starting seed to generate a
sequence of states and outputs some least significant bits of each state as output.
Micali and Schnorr [50] name this algorithm “the ‘incestuous’ generator”.

We summarize this algorithm in Algorithm 1 below. Let N be an integer
RSA modulus of length lgN = n. Let k be the length of the PRG output on a
single iteration, so we have k < n. The length of the state is r = n bits. e will
be a positive integer that is the RSA exponent; in order for (N, e) to be valid
RSA parameters e should be relatively prime to ϕ(N). (The choice e = 2 is the
Rabin generator used in Blum-Blum-Shub [13].)

Algorithm 1: RSA PRG
Input : A number of iterations h
Output: hk pseudorandom bits

1 Sample initial state s0 ←$ [1, N ] using truly random coins.
2 for i ← 1 to h do
3 si ← se

i−1 mod N

4 bi ← si mod 2k

5 end
6 Output the concatenation b1||b2|| . . . ||bh.

There is a simple formula for the ith state in terms of the initial state:

si ≡ sei

0 mod N

Output Length. There are several choices of output lengths discussed in the
literature on this PRG.

– k = lg n. Micali and Schnorr [51] show that the RSA PRG is secure for
k = lg n bits of the RSA function, based on the Alexi-Chor-Goldreich-Schnorr
theorem [5] that these bits are hardcore.

– k = 1. Fischlin and Schnorr [33] improve the running time of the ACGS
reduction and use this running time to propose concrete parameters of k = 1
bit of output with a 1000-bit modulus N .

– k = (1/2 − 1/e − ε − o(1))n. Steinfeld, Pieperzyk, and Wang [63] prove the
security of outputting more bits under the hardness of improving on the
Coppersmith bound for solving polynomials modulo RSA moduli [21].



360 H. Davis et al.

2.2 The Micali-Schnorr PRG (MS PRG)

Like the RSA PRG, the Micali-Schnorr PRG iteratively applies the RSA func-
tion, but it separates the bits used to generate the next state from the bits that
are output. It splits each RSA output into its most and least significant bits.
The least significant bits become PRG output, while the most significant bits
become the RSA input for the PRG’s next iteration.

Let N be an integer RSA modulus of length lgN = n. Let k be the length
of the PRG output on a single iteration, so we have k < n. r will be the internal
state length; for the Micali-Schnorr algorithm we have r = n − k. e will be a
positive integer that is the RSA exponent; this is specified so that e is relatively
prime to ϕ(N).

Micali-Schnorr as Published in Their Papers. There are two published
versions of the Micali-Schnorr paper. The first version, “Efficient, Perfect Ran-
dom Number Generators,” appeared in CRYPTO ’88 [50]. The journal version
of the paper, “Efficient, Perfect Polynomial Random Number Generators,” was
published in the Journal of Cryptology in 1991 [51].

The algorithm for the Micali-Schnorr PRG as published in the original paper
takes as input a requested number of iterations h and outputs hk pseudorandom
bits. Micali and Schnorr refer to this construction as the “sequential polynomial
generator of the weaning type.”

Algorithm 2: The Micali-Schnorr algorithm
Input : A number of iterations h
Output: hk pseudorandom bits

1 Sample initial state s0 ←$ [1, N2−k] using truly random coins.
2 for i ← 1 to h do
3 zi ← se

i−1 mod N

4 bi ← zi mod 2k

5 if version from [50] then
6 si ← �zi2

−k� + 1;
7 else if ISO-18031 version then
8 si ← �zi2

−k�;
9 end

10 Output b1||b2|| . . . ||bh.

Output Length. In the original paper, Micali and Schnorr discuss the following
choices for k and n.

– k = O(lg n) = O(lg lgN) They list this as a suitable choice for the PRG.
The algorithm in Micali and Schnorr’s reduction runs in time polynomial in
2knε−1 so if the PRG is insecure for k = O(lg n) then this gives a polynomial
time RSA decryption algorithm.
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– k = O(n1/3) They argue that this choice is suitable by comparing the resulting
reduction time to the running time of the number field sieve for factoring, and
note that if the algorithm is insecure for this parameter, it would beat the
number field sieve.

– k = n(1− 1/e) is clearly insecure. For this choice, the security proof does not
apply because se

0 < N , so no mod operation occurs and “RSA” decryption is
easy in this case.

– k = n(1 − 2/e) is left as an open question, but Micali and Schnorr promote
this choice as one that would produce an efficient generator if indeed it is
secure. The security of this choice is based on the indistinguishability of RSA
encryptions of short (n − k-bit) plaintexts from random integers modulo N .
This is the value chosen by the ISO standard.

Fig. 1. A portion of ISO 18031 Appendix D.2 with the default 1024-bit modulus [43].

ISO/IEC 18031 Micali-Schnorr. The Micali-Schnorr algorithm was stan-
dardized in ISO/IEC 18031 as a deterministic random bit generator, named MS
DRBG, alongside the Dual EC DRBG design. Dual EC was removed from ISO
18031 in a 2014 Technical Corrigendum.

The version of the Micali-Schnorr algorithm that appears in ISO/IEC
18031 [43] differs in one minor respect from the academic publication. Specifi-
cally, it alters line 6 so that si ← �zi2−k�. (That is, it does not increment the
result.) It isn’t clear what effect, if any, this change has on the security of the
scheme, and it is not documented in either publication. In personal communica-
tion, Micali told us he does not recall the reason for the original choice or the
change.

Output Length. The ISO standard requires that the output length satisfies 8 ≤
k ≤ min(n − 2γ, n(1 − 2/e)), where γ is the target security level. The default k
is the largest value this inequality allows, rounded down to a multiple of 8.

The introduction to MS DRBG (section C.4.3.1) applies very different output
security bounds to RSA PRG than MS DRBG: it states that the k = lg lgN least
significant bits the RSA generator outputs “are (asymptotically in N) known to
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be as secure as the RSA function f . The Micali-Schnorr generator MS_DRBG()
uses the same e and N to produce many more random bits per iteration, while
eliminating the reuse of bits as both output and seed” [43].

Modulus and Exponent Generation. The ISO standard states that implemen-
tations “shall” permit either an implementation-generated “private modulus” or
the use of one of the default moduli in the standard (see Fig. 1). The stan-
dard requires the length of the modulus to conform to the requested security
strength: a 1024-bit N for γ = 80; 2048 bits for γ = 112; 3072 for γ = 128; 7680
for γ = 192; and 15360 for γ = 256.

The ISO standard also specifies that custom RSA moduli should be generated
so that p− 1, p+1, q − 1, and q+1 have a prime factor of at least γ bits. It also
states that the default moduli have been generated so that p = 2p1+1, q = 2q1+1
for p1, q1 primes, and that p+1 and q+1 have “the required large prime factor”.

It is also required that e be relatively prime to (p − 1)(q − 1). While this is
necessary for these to be well-defined RSA parameters, the decryption exponent
d = e−1 mod (p−1)(q−1) is never used in the normal course of random number
generation, so it is not clear why this requirement needs to be present.

The default moduli are stated to have “strong” primes as factors, which
“essentially guarantees” that ϕ(N) will be relatively prime to odd e, but the
factorization of these default moduli is not given, so users are unable to verify
this for themselves when using the default moduli with user-generated e. If a
user-generated exponent is not supplied, the default e = 3 is used.

Backtracking and Prediction Resistance. The standard states: “[backtracking
resistance] is inherent in the algorithm, even if the internal state is compromised.”
This is not true against an adversary who knows the factors of the modulus: if
the state and all but a few previous output bits are compromised, the adversary
can learn the remaining bits by decrypting the candidate zi values and checking
whether the result is less than N/2k. The standard ensures prediction resistance
by requiring the implementation to reseed every 50,000 outputs.

ANSI X9.82. The Dual EC and MS DRBG algorithms were the two number-
theoretic (public-key cryptographic) PRG designs promoted by the NSA for
inclusion in ANSI X9.82 [45]. A version of MS DRBG was present in early drafts
of the ANSI X9.82 specification from 2004 until it was removed in August 2005.

The text of the entire X9.82 DRBG specification is largely identical to the
standard ultimately published by ISO in 2005 [43]. A number of draft versions
of the X9.82 standard as well as internal discussions and documentation have
been made available as part of a FOIA request from NIST in 2014 and 2015 [52],
which provide interesting insights into the development of the standard. There
is evidence that this text was written by the US government [11].

There appear to have been differing views among committee members on the
number of bits that should be output from MS PRG. Early proposals suggested
outputting far fewer bits than the ISO version ultimately standardized. A set of
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2004 slides from the NSA at a NIST workshop suggested outputting only the
“hardcore” bits for each modulus size, which are provably as hard to predict as
the entire state under the RSA assumption. For a 1024-bit RSA modulus the
suggestion was 10 bits, and for 2048 and 3072-bit moduli the suggestion was 11
bits [45].

An undated (but apparently early) draft of X9.82 includes the comments
“The MS generator allows a much larger percentage of N bits to be used on
each iteration, and has an additional advantage that no output bits are used
to propagate the sequence. (It does, however, rely on a stronger assumption
for its security than the intractability of integer factorization.) As the X9.82
standard evolved, committee members argued for restricting the number of bits
generated on each exponentiation to O(lg lgN) hard bits, as is done in Blum-
Blum-Shub. The result is that the efficiency argument for choosing MS over
BBS doesn’t apply. Nonetheless, a user does have more options in the choice of
parameters” [2]. Later drafts of the text mention only the larger output lengths
ultimately adopted by ISO.

The sole comments we have located that justify the decision to drop Micali-
Schnorr from the standard come from a document titled “DRBG recommen-
dations from the X9.82 Editing Group” which states “We recommend keeping
DUAL_EC_DRBG. Despite the fact that it is much slower than the other
DRBGs, it offers a third distinct technology that can serve as a hedge against
breakthroughs in cryptanalysis of hashes and block ciphers. . . .We suggest drop-
ping HASH_DRBG and the MS_DRBG, as well as support for the other NIST
curves in the DUAL_EC_DRBG” [1].

2.3 Related Work

Backdoored Random Number Generation. In addition to works cited in the
introduction, a long line of literature considers the possibility of algorithm sub-
stitution attacks (previously referred to as “subversion” and “kleptographic”)
attacks [8,10,19,31,56,60,66,67]. To formalize this work into the setting of
PRGs, Dodis et al. [27] give a formal treatment and prove that such schemes
are equivalent to public-key encryption schemes with pseudorandom ciphertexts.
Degabriele et al. [25] extend these results to consider backdoored PRNGs (which
unlike PRGs may take additional inputs for prediction resistance).

Backdoored RSA Parameters. There is a surprisingly long line of work on gen-
erating “backdoored” RSA parameters [7,16,23,46,54,64,66–68]. These works
focus on trapdoors that admit efficient factorization or recovery of private keys
given only a public key (N, e). In contrast, our work begins from the assumption
that the adversary possesses the factorization of N and addresses the problem
of compromising an algorithm using this knowledge.

MS DRBG. Some previous works have considered MS DRBG. Fouque,
Vergnaud, and Zapalowicz give a time/memory tradeoff for recovering the state
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faster than brute force [34], and Fouque and Zapalowicz study the statistical dis-
tance of short RSA [35]. In a 2013 blog post Matthew Green posed the problem
of finding a practical attack against MS DRBG when the factors are known [37].
Antonio Sanso suggested in a 2017 blog post that Mersenne or other special-
form primes might lead to a backdoor in Micali-Schnorr [61]. Lynn Engelberts
extended Sanso’s analysis of special form primes in a 2020 masters thesis. [30]

Security Proofs for Number-Theoretic PRGs. The limited applicability of asymp-
totic security proofs on concrete parameters for number-theoretic PRGs has been
studied by Koblitz and Menezes [48].

3 Security Reductions for the MS and RSA PRGs

The security reduction that Micali and Schnorr give to their “sequential” con-
struction has two steps. First, they define a security question, which they label
Q1. We rephrase this as an assumption below:

Assumption 1 [51] (Q1). The following distributions are polynomially indis-
tinguishable (for public e and N)

– (N, se mod N) for s ←$ [1, N2−k]
– (N, r) for r ←$ [1, N ].

The authors next provide a polynomial-time reduction that transforms a dis-
tinguisher algorithm for the Micali-Schnorr PRG into a distinguisher for Assump-
tion 1. The proof uses a hybrid argument. It is this assumption that is used to
justify the large output sizes used in the ISO version of MS PRG. The second
half of the reduction completes the reduction to the hardness of RSA inversion,
and gives a security reduction for both MS PRG and RSA PRG.

Theorem 1 [51]. Let N be an RSA modulus. Every probabilistic algorithm that
ε-rejects ciphertexts of random messages s ←$ [1, N2−k] can be transformed into
a probabilistic algorithm for decrypting arbitrary RSA ciphertexts; this algorithm
terminates after at most (2kε−1n)O(1) steps.

This reduction contains several steps that are fundamentally exponential
time in k, the number of bits of output. In particular, the algorithm samples
2k messages until it expects to find one with the required number of zeros.
Thus, this reduction is only polynomial time for lg n bits of output. Fischlin and
Schnorr [33] have improved the running time of the ACGS algorithm [5] used in
the decryption step, but the reduction remains exponential in k.

In addition to being exponential time in the output length k, running the
reduction will be more expensive than simply brute forcing the unknown bits of
the plaintext when k > n/2, that is, when the output is larger than the state. In
fact, the constants hidden in the O(1) result in significantly worse parameters.

The exponential cost in the reduction in the proof of Theorem 1 appears to
be the reason for only outputting lg n bits of output for the RSA PRG. It is
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interesting that the ISO standard accepts much more generous parameters for
Micali-Schnorr output than for the RSA PRG without having attempted to find
an analogously relaxed assumption that might permit more generous outputs as
Steinfeld, Pieprzyk, and Wang [63] ultimately did.

Statistical Indistinguishability Results and Mod p Variants. Micali and Schnorr
also consider a variant of their PRG defined modulo a prime p, and hypothesize
that this variant is still secure despite the fact that their factoring-based assump-
tions no longer hold. The journal version of their paper [51] contains theorems
proving the statistical randomness of the (n/2−k − (lg n)2) least significant bits
of se mod N for s ←$ [1, N2−k

] when N is prime or an RSA modulus.
Fouque and Zapalowicz [35] give a more general version of this theorem for

RSA moduli that applies to size bounds above
√

N and prove that the lgN
least significant bits of se mod N for s < M for a chosen bound M < N are
statistically indistinguishable from uniform. They apply their bounds to Micali-
Schnorr and find that asymptotically, this bound dictates that the output is not
statistically indistinguishable when more than n/3 bits are output.

These statistical indistinguishability results provide evidence that least sig-
nificant bits of modular exponentiation (modulo primes or RSA moduli) are
indistinguishable from uniform at much less aggressive parameters than ISO
chose. However, such statistical indistinguishability results cannot apply when
the output exceeds the length of the seed. Thus they do not rule out the possi-
bility of attacks on the PRG with long or multiple outputs.

4 Ruling Out Black-Box Attacks

In this section, we will try to make more precise the intuition that the security
of MS and RSA PRG is more closely related to the assumption of pseudoran-
domness of RSA ciphertexts than the hardness of inverting RSA. This offers a
more formal explanation for why there does not appear to be a black-box way
to use an RSA decryption oracle to break the security of MS PRG.

We begin by defining a generic Micali-Schnorr-type construction, which we
call MS-f -PRG. In this variant the RSA operation is replaced by some function
f . That is, Step 3 of Algorithm 2 in Sect. 2.2 becomes zi ← f(si−1), for f that
we will instantiate below.

4.1 Micali-Schnorr Is Secure with a PRG

The Micali-Schnorr construction is still secure when instantiated with a PRG.

Theorem 2. If f : [1, 2n−k] → [1, 2n] is a secure pseudorandom generator, then
the output of MS-f-PRG is pseudorandom.

The proof is the same as the proof of Theorem 5.1 in [51], substituting the
pseudorandomness of f for Assumption 1.
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While this finding is not surprising, it illustrates that the security of MS-f -
PRG need not depend on any secret information. This informs how a provably
secure variant of MS PRG could be instantiated, but unfortunately it does not
enable a proof for the variants with RSA modulus N or prime modulus p (as
discussed in the original work of Micali and Schnorr [51]). In the context of an
adversary who knows the factorization of N , f(s) = se mod N with short seed
s < 2n−k is distinguishable from random: simply decrypt f(s) and check if the
seed is short. This function is clearly not a PRG, and so we gain no information
about the security of this construction. A similar argument applies in the prime
modulus case f(x) = xe mod p.

4.2 MS PRG Is Still Secure When Implemented with a Random
Permutation

We next show that the Micali-Schnorr construction is secure when the one-way
RSA function is replaced with a public (invertible) random permutation. While
this analysis is clearly quite artificial, it offers a useful bound on the efficiency
of generic attacks (i.e., attacks that do not exploit special properties of the RSA
function) when the factorization of N is known.5 This suggests that if it is indeed
possible to backdoor the Micali-Schnorr construction, the backdoor must take
advantage of some nontrivial algebraic property of RSA.

We begin by defining our variant of the MS PRG in which RSA encryption is
replaced with a publicly accessible random permutation. Concretely, at line 3 of
Algorithm 2 we replace the RSA evaluation zi ← se

i−1 mod N with zi ← f(si−1)
where f : [1, N −1] → [1, N −1] is a publicly accessible random permutation. We
give the attacker the ability to decrypt by making the inverse permutation f−1

publicly accessible. With this modification, we obtain the following theorem.

Theorem 3. No adversary A that makes q total queries to black-box oracles
for random permutations f and f−1 can distinguish the hk-bit output string of
our modified variant of Algorithm 2 from a random hk-bit string with advantage
greater than (h+1)2

2N + 2hq
N2−k + hq

N + 2hq
N−q + ε (for some negligible ε).

A proof of Theorem 3 can be found in the full version [24].

4.3 RSA-PRG as a Sponge

The iterative construction of RSA-PRG—apply a transformation to the state,
then output a fraction of the bits—is widely used in symmetric cryptography
and is known as the sponge construction. If we replace RSA encryption with a
random function f in the RSA PRG construction, we can use theorems developed
for cryptographic sponge constructions to obtain strong bounds on the security
of the resulting construction. These theorems hold for functions that are fixed
public and efficiently invertible permutations.
5 More critically, this construction does not have any implications for the security of

MS PRG instantiated with the RSA function, since RSA encryption quite clearly
behaves differently than a random function.
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Theorem 4. Let f-PRG be the RSA PRG construction except replacing the
x 
→ xe mod N operation with a fixed, public, efficiently invertible random per-
mutation f : ZN → ZN . Then the output of f-PRG is indistinguishable from
random to any adversary that runs in time polynomial in lgN − k and has
black-box access to f and f−1.

Proof. f -PRG follows the sponge construction, with state size lgN , rate k, and
capacity c = lgN − k. As Bertoni, Daemen, Peeters, and Van Assche show in
Eq. 6 of [12], the Random Oracle (RO) differentiating advantage against the
sponge construction when used with a random permutation is upper bounded
by ((1 − 2−k)m2 + (1 + 2−k)m)2−(c+1), where m is the number of calls to the
underlying transformation.6 The RO-differentiation game models an adversary
with query access to f and f−1. Thus no poly(lgN − k)-time adversary can
distinguish f -PRG from a random oracle with more than negligible probability,
even with query access to f and f−1.

We remark that SHAKE-128 (from the SHA-3 standard [4]) is an XOF (and
thus also a PRG) constructed as a sponge with state size 1600, outputting 5/6
of the state (1344 bits) per iteration, and the function f it uses to transform its
state is a fixed, public, efficiently invertible permutation. This is a smaller state
size than ISO MS DRBG uses (lgN = 3072 for 128-bit security), and a larger
fraction of bits that are output (5/6, compared to 1/3 for ISO using the default
exponent e = 3).

5 Algebraic Attacks

Here we present several attacks against RSA PRG and variants of MS PRG.
These results are not as compelling as the attack against Dual EC, but they
illustrate different properties of the algebraic structure of RSA-based PRGs that
may ultimately lead to either the development or ruling out of such a backdoor
in the MS PRG.

5.1 Notions of Cryptographic Subversion

A growing body of work considers algorithm substitution attacks (ASAs) against
cryptographic implementations. In this setting, a known cryptographic algorithm
is replaced with a subverted algorithm designed by an attacker, who retains secret
knowledge that allows for exploitation [8,10,19,31,56,60,66,67]. This effectively
models our assumptions for a subversion attack on MS DRBG. We do not present
formal definitions here, and refer the reader to e.g., [8,60] for details.

The MALICIOUS Framework. Peyrin and Wang [56] describe the MALICIOUS
framework that includes several informal properties required by a subverted sym-
metric construction such as an RNG. Inspired by their definitions, we provide the
following shorthand characterization for our asymmetric backdoor constructions.
6 [12] requires m � 2c, as is the case here.
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Undiscoverability: An outside observer should be unable to find the hidden
backdoor, even if the general form of the backdoor is known [56].

Practical Construction: The backdoor designer should be able to efficiently
construct parameters that allow for backdoor exploitation.

Practical Exploitation: An attacker should be able to efficiently violate the
security properties of the scheme if they know the secret information required
to exploit the backdoor.

Plausible Deniability: To an external observer, the public parameters, keys,
and structure of the cryptosystem should appear to be “properly” generated.

Relationship to Formal Definitions of ASAs. Bellare, Paterson and Rogaway
formalized a framework for algorithm substitution attacks (ASAs) [8]. Informally,
the framework captures the properties described above using two independent
security games.7 In the first game, a detection adversary (D) represents the
defender, and is used to define the undiscoverability of a cryptographic backdoor.
In this framework, the detection adversary is asked to distinguish between the
correct algorithm (e.g., an implementation of MS DRBG in which the modulus
N is generated honestly at random and no secret factorization is retained) and
a second subverted algorithm (such as the ISO standard with attacker-known or
chosen factorization). The subverted algorithm passes this test if ∀ probabilistic
polynomial time (PPT) algorithms D, D distinguishes the input/output behavior
of the subverted implementation from the correct implementation with at most
negligible advantage.8

In the second game a subversion adversary (S) is given access to secret knowl-
edge about the subverted algorithm (for example, knowledge of the secret factor-
ization of the modulus N .) The minimal criteria for a subversion attack is that
there must exist some PPT S that distinguishes the input/output behavior of the
subverted and non-subverted implementations with non-negligible advantage. If
the non-subverted implementation is itself a secure PRG, then the ability to dis-
tinguish between subverted and unsubverted implementations naturally implies
an attack that distinguishes the output of the subverted algorithm from ran-
dom bits. In practice, subversion attackers may also be able to carry out more
powerful attacks, such as state recovery and future output prediction.

5.2 Algorithmic Background: Multivariate Coppersmith’s Method

Several of our attacks make use of the following version of multivariate Copper-
smith’s method. For a basic review of lattices and terminology, see [49].

7 The “Practical Construction” requirement is captured formally by requiring that
both honest and subverted algorithm have a polynomial-time setup algorithm that
(in the subverted case) produces the subverted implementation and secret trapdoors.

8 Subsequent definitions by Russell et al. extend this notion to one in which the detec-
tion adversary (in this work called an “online watchdog”) is also allowed to observe
interactions between the implementation and an attacker. We do not consider this
scenario in our work, since we primarily focus on passive eavesdropping attacks.
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Review of Coppersmith’s Method. Coppersmith’s method uses lattice
reduction (typically LLL [49]9) to find small solutions to polynomials modulo
integers. For univariate polynomials, this method is fully rigorous, and has a
clean bound: for a degree-d polynomial f(x) ∈ Z[x] and N ∈ Z, all roots r ∈ Z

satisfying f(r) ≡ 0 mod N can be found for |r| < N1/d in polynomial time in d
and lgN [21].

The multivariate generalization of this method that we need for our attacks
does not have a clean theorem statement, and in fact a fully rigorous general-
ization cannot exist [22]. Nevertheless, a heuristic generalization of this method
often works in practice ([47], see also [44]), and it is this heuristic version that
we will use. We will derive the relevant bounds using ad hoc, problem-specific
constructions.

The following lemma tells us the condition under which we expect to succeed.

Lemma 1. Let {fi(x)}w
i=1 be integer polynomials in m variables x = (x1, . . . ,

xm) and let N ∈ Z. We wish to find one or more solutions r = (r1, . . . , rm)
simultaneously satisfying {fi(r) ≡ 0 mod N}w

i=1.
If we can find m auxiliary polynomials Q1, . . . , Qm such that

Qj(r1, . . . , rm) ≡ 0 mod N t and |Qj(r1, . . . , rm)| < N t

for some integer t ≥ 1 then each Qj satisfies Qj(r1, . . . , rm) = 0 over the inte-
gers. If in addition the Qj are algebraically independent, then we can solve for
a bounded number of possible solutions.

We sketch a general method to solve this problem in Algorithm 3 below.
The details of Step 3 are application dependent; we elaborate on this in the full
version [24].

The value t and choice of polynomial shifts xa1
1 . . . xam

m in Step 1 of Algo-
rithm 3 are chosen as part of the optimization process. We will refer to t as the
multiplicity of the roots. The lattice dimension is determined by the number of
distinct monomials in the set of polynomials {g} used to generate the lattice. In
general, the dimension is exponential in the number of variables.

To apply Lemma 1 we bound |g(r)| < |σ(g)|1, so we want to find m vectors in
the lattice whose �1 norms are less than N t. For a random lattice L, the successive
minima λi(L) often have close to the same length, and in practice LLL [49]
typically finds vectors of length 1.02dimL(detL)1/ dimL or 1.02dimLλ [53].

These vectors are guaranteed to be linearly independent as coefficient vec-
tors, but the corresponding polynomials are not guaranteed to be algebraically
independent. Nevertheless, the polynomials found by this algorithm for random
problem instances with optimal parameters are often algebraically independent.

We expect the algorithm to succeed when Condition 1 is satisfied.

9 Given a lattice, the LLL algorithm computes in polynomial time a basis whose
vectors satisfy heuristic and provable length bounds.
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Algorithm 3: Multivariate Coppersmith Method (Sketch)
Input : {fi(x)}w

i=1 ∈ Z[x1, . . . , xm]w, N ∈ Z, {Rj}m
j=1

Output: {rj}m
j=1 satisfying |rj | < Rj and fi(r) ≡ 0 mod N

1 Generate a basis of auxiliary polynomials of the form

ga ,b (x) =
(∏

j x
aj

j

) (∏
i fbi

i

)
N t−∑

i bi .

2 Map each polynomial to a scaled coefficient vector embedding:
σ : g(x) =

∑
i gix

ci,1
1 x

ci,2
2 . . . x

ci,m
m �→ (g1R

c1,1
1 . . . R

c1,m
m , . . . )

3 Construct a lattice basis B of coefficient vector embeddings σ(g) for a carefully
chosen subset of the gs generated in step 1.

4 LLL-reduce the lattice basis.
5 Construct a Gröbner basis of the polynomials σ−1(v) of all vectors v in the

reduced basis whose �1 norms |v|1 are shorter than N t.
6 Enumerate the candidate solutions given by the Gröbner basis and verify

whether each is a valid solution for the ri.

Condition 1 (Heuristic Multivariate Coppersmith) Algorithm 3 will
heuristically find all suitable roots if the basis for lattice L constructed in Step 3
of Algorithm 3 satisfies

1.02dimL(detL)1/ dimL < N t.

Applying Coppersmith’s Method to MS and RSA PRG. It is tempting
to try to apply a multivariate Coppersmith approach directly to MS or RSA
PRG to carry out a state recovery attack. In particular, such an attack involves
finding a small solution of a degree-e polynomial modulo N , which is precisely
the problem that Coppersmith-type methods solve.

In this section, we will sketch this attack and observe that it is ruled out by
the parameter choices made by ISO for MS.

MS PRG. An attempted state recovery attack from two outputs would start
from the polynomial relations between the unknown states si:

se
0 − 2ks1 − b1 ≡ 0 mod N

se
1 − 2ks2 − b2 ≡ 0 mod N

Let |si| < R. Construct the lattice basis

B =

⎡
⎢⎢⎢⎢⎣

Re 0 −2kR 0 −b1
0 Re 0 −2kR −b2
0 0 NR 0 0
0 0 0 NR 0
0 0 0 0 N

⎤
⎥⎥⎥⎥⎦

We have detL(B) = R2e+2N3 and dimL(B) = 5. Omitting approximation
factors in such small dimension, and setting t = 1, Condition 1 tells us we
expect to succeed if
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(detL(B))1/ dimL(b) = (R2e+2N3)1/5 < N

which applies when R < N1/(e+1). In other words, the bit length of the state size
r = n − k should satisfy r < n/(e + 1). Attempted improvements from higher
degree polynomials and root multiplicities seem to give the same bound, even if
more than two outputs are available.

This attack is ruled out by the choice of ISO parameters r = 2n/e. This
makes sense because this attack does not even require the factorization of N .

RSA PRG. Steinfeld, Pieprzyk, and Wang [63] do a similar analysis of RSA
PRG and obtain a heuristic bound of r < n/(e + 1) for the unknown portion of
the state. Herrmann and May [39] improve this to n/e when the PRG outputs
the most significant bits of the state.

Simpler attacks when r < n/e. A state size bound of r < n/e is a degenerate
case for both RSA and MS PRGs, since there is no modular reduction performed
when computing se

i mod N . Fouque, Vergnaud, and Zapalowicz point out that
one can recover the state via Hensel lifting [34].

5.3 Attacks on RSA PRG

In this section, we show how to construct backdoor parameters for the RSA PRG.
The states (and thus the output) generated by the RSA PRG have an iterative
structure that cycles modulo a divisor of ϕ(ϕ(N)). This means that an attacker
who can control the generation of N and e can embed a chosen relationship
among outputs that enables efficient distinguishing and state recovery attacks.

e has Short Period (eSP) attack mod ϕ(ϕ(N)) In our first backdoor
construction, we show that it is possible to efficiently construct RSA parameters
for which the output of RSA PRG produces extremely short cycles. This violates
indistinguishability, but would be observable by any attacker. We then show
that it is possible to somewhat obscure the most obvious cyclic behavior in the
output, which leads to an efficiently generatable and exploitable backdoor. While
this behavior alone doesn’t lead to a fully undiscoverable backdoor, it provides
intuition for a more sophisticated backdoor we construct later in the section.

Recall that the multiplicative order of an integer modulo N is a divisor of
ϕ(N). In the RSA-PRG generator with modulus N and exponent e, we have
state si satisfying si = sei

0 mod N . Micali and Schnorr (as well as Blum, Blum,
and Shub [13]) note that the period of the sequence of outputs generated by
s0 will thus be a divisor of ϕ(ϕ(N)) [51]. They say that “in general” the period
“will be a large factor of ϕ(ϕ(N)) and will be much larger than

√
N which is the

average period of a random recursion in ZN . It is conceivable that the number
ϕ(ϕ(N)) somewhat affects the output distribution of the generator and not only
its period.” They do not appear to have considered the possibility of malicious
parameter generation.

In particular, the period can be made a small factor of ϕ(ϕ(N)). Suppose
e generates a small subgroup of Z∗

ϕ(N). That is, suppose ej ≡ 1 mod ϕ(N) for

some small j. Then sj = s
ej mod ϕ(N)
0 = s0, and PRG cycles with period j. A
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similar technique is possible when e shares a factor with ϕ(N), we describe it
in the full version [24]. One algorithm, given a specific e, to find primes p such
that e has small order modulo ϕ(p) is shown in Algorithm 4.

Algorithm 4: Constructing prime p s.t. e has small order mod ϕ(p).
Input : An integer e
Output: A prime p such that e has small order modulo ϕ(p).

1 Choose a cycle length �.
2 Compute small prime factors pi of e� − 1 using the elliptic curve method or

other factoring methods that are efficient for small factors.
3 Choose a subset of the pi (and optionally also the composite cofactor)

computed in the previous step, and check if 1 +
∏

i pi is prime. (In order to
generate odd primes, we will need one of the pi to be 2.)

This algorithm is reasonably efficient in practice for parameters of interest.
For example, for e = 5 and � = 504, it took 10 s on a laptop with a dual-core
Intel i7-6500 CPU to find an 880-bit prime with these properties using Sage with
ECM for factorization, aborting factorization when it started to get slow. We
tried a few candidates for e and � within this range. To generate a hard-to-factor
modulus N , one could generate two primes using this algorithm.

Partially Hidden Cycling Behavior. Cycles in the output would be easy to notice
for any user who generates enough outputs, so the previous construction would
be easily discoverable. But if e generates cycles of length � mod p, but not mod
q, the outputs would not have as obvious cycling behavior to the end user. By
choosing q such that e� ≡ cq mod ϕ(q) for some cq small enough that finding
roots mod q of degree cq polynomials is feasible, an adversary who knows the
factorization and observes the sequence of outputs can efficiently recover the full
state, as we will show in Theorem 5. Such a q can be generated similarly to
Algorithm 4, but factoring e� − cq instead of e� − 1.

With such parameters, an attacker can recover the full state using only the
first and (� + 1)th PRG outputs, assuming each output has length k ≥ n/2. (If
RSA PRG parameters were set following the ISO parameters for MS DRBG,
this will be the case for all e ≥ 5.) The attack is given in Algorithm 5.

As a proof of concept, we generate (for public exponent e = 5) a 2048-bit
backdoored N = pq such that 5504 ≡ 1 (mod p−1) and 5504 ≡ 187 (mod q−1).
We include it in the full version [24]. The state recovery attack (implemented in
Sage) using this modulus took 31 s.

However, while practical to construct and practical to exploit, this “backdoor”
is not undiscoverable (regardless of how q is generated) because a user could
exploit the relationships modulo p to efficiently factor N as follows. They choose
an initial state s0, and compute the sequence of states si = se

i−1 mod N . If they
discover a state s� where gcd(s� − s0, N) is nontrivial, then they can use this to
factor N . (Note that this algorithm is similar to the Pollard rho algorithm but
with a different “pseudorandom” walk.)
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Algorithm 5: eSP attack in the “partially hidden cycle” case.
1 Let b1 and b�+1 be two outputs. Without loss of generality assume s�+1 ≥ s1.
2 Observe that b�+1 − b1 ≡ (s�+1 − s1) mod 2k. Observe further that

s�+1 − s1 ≡ 0 mod p, and 0 ≤ (s�+1 − s1)/p < q < 2k.
3 Let m = (b�+1 − b1)p

−1 mod 2k, reduced such that 0 ≤ m < 2k. Now
m = (s�+1 − s1)/p as integers.

4 Solve the polynomial congruence ycq − y − pm ≡ 0 mod q. (Recall
cq ≡ e� mod ϕ(q).) (The degree cq is small and q is prime, so this is feasible.)

5 One of the roots will be s1 mod q, because mod q we have
s

cq

1 ≡ se�

1 ≡ s�+1 ≡ pm + s1.
6 For each root α, use CRT to recover s̃1 ∈ [0, 2kq) such that s̃1 ≡ b1 (mod 2k)

and s̃1 ≡ α (mod q), and check whether s̃1 would produce correct outputs bi.
7 Since s1 < pq < 2kq, when α = s1 mod q, we will get s̃1 = s1 over the integers.

We summarize these results in the following informal theorem:

Theorem 5. An attacker can efficiently generate RSA parameters (N = pq, e)
such that e has a chosen (small) order � > loge ϕ(p) modulo ϕ(p). This attacker
can then carry out an efficient state recovery attack after observing at least �+1
RSA PRG outputs of length k ≥ n/2 bits generated using these parameters. This
backdoor has efficient parameter generation and exploitation but is discoverable.

These constructions can be extended in a straightforward manner in the case
where N is a multi-prime or unbalanced RSA modulus.

While these ideas do not generate a fully satisfactory backdoor, they provide
intuition for the construction in the next section, where we will replace the
relationship e� ≡ 1 mod ϕ(N) (or mod ϕ(p)) with a more complex polynomial.

The SUS Backdoor for RSA-PRG. In order to conceal the discoverable
cyclic behavior of the eSP backdoor, we augment this idea to generate moduli
that embed a small, sparse polynomial relationship satisfied by the exponent e
modulo ϕ(N) or ϕ(p). We will call this “Small Unknown Solution” or SUS.

Parameter Generation. Let f(x) =
∑

i∈S cix
i be a sparse polynomial that will

remain secret, where the ci are all ±1 and are roughly balanced. A correspond-
ingly backdoored prime p will satisfy the relation f(e) ≡ 0 mod p − 1. This
implies a relation between PRG states

∏
i∈S sci

i ≡ 1 (mod p), where si = sei

0 .
To backdoor an RSA modulus N , we either ensure f(e) ≡ 0 mod ϕ(N), or (like
the “partially hidden cycle” eSP variant) f(e) ≡ 0 mod ϕ(p) but not mod ϕ(q).

Theorem 6. SUS prime and RSA modulus generation is polynomial time in the
length of the modulus.

Proof. We apply Algorithm 4 except that we replace the desired relation e� −
1 mod p − 1 with a sparse polynomial f(e) =

∑
i cie

i. To generate an RSA



374 H. Davis et al.

modulus, we can either generate two primes from different subsets of the factors
in Step 3 (so that f(e) ≡ 0 mod ϕ(N)), or we can backdoor p and choose q
normally (so that f(e) ≡ 0 mod ϕ(p)). The latter allows arbitrarily large N with
fixed-size p, because the backdoor does not depend on the choice of q.

SUS State Recovery Attack. The state recovery algorithm uses multivariate Cop-
persmith. We write sei

0 = si = bi +2kri, using the outputs bi and unknown state
MSBs ri, with 0 ≤ ri < R = N/2k. For ease of exposition let us assume for now
that f(e) ≡ 0 mod ϕ(N); applying our backdoor polynomial f we obtain

∏
i∈S

(
2kri + bi

)ci ≡ 1 mod N

This is a low-degree multivariate polynomial modulo N whose roots are the
unknown portions of each state. Recall all ci are ±1, with roughly balanced sets
S+ of positive ci and S− of negative ci. This gives

∏
i∈S+

(2kri + bi) −
∏

i∈S−
(2kri + bi) ≡ 0 mod N

Our polynomial degree is max(|S+|, |S−|), which is independent of e. We can
then recover the ri using multivariate Coppersmith.

If instead we had f(e) ≡ 0 mod ϕ(p) but not mod ϕ(q), we would instead
recover the ri mod p. But as long as p > R this is the same as recovering ri over
the integers.

Example. Suppose f(e) = e200 + e20 − e180 − e0 ≡ 0 (mod ϕ(N)); we have
|S+| = |S−| = 2. The Coppersmith polynomial in unknowns r200, r20, r180, r0 is

f(s) = (r200 + 2−kb200)(r20 + 2−kb20) − (r180 + 2−kb180)(r0 + 2−kb0).

We apply Algorithm 3 with t = 1 and no extra shifts to generate a lattice
with dimL = 7 and detL = R8N6 (where R is our bound on the ri). Applying
Condition 1 (and omitting the approximation factor in dimension 7), we expect
to succeed when (R8N6)1/7 < N , or when R < N1/8. Had we instead had
f(e) ≡ 0 mod ϕ(p), our success condition would instead be that R < p1/8. In
either case, this bound is independent of e.

As a demonstration, we generated a 1024-bit RSA modulus N satisfying
e200 − e180 + e20 − 1 ≡ 0 mod ϕ(N) for e = 17. We include it in the full ver-
sion [24]. Parameter generation took 19 s using Sage on a single core of an Intel
E5-2699 processor. Using these parameters with k = 896-bit outputs, our attack
successfully recovered the state in 213 milliseconds from 200 PRG outputs. For
these parameters, the fraction of bits output is below the (1 − 1/e) fraction
required by Herrmann and May [39]; that is, our attack requires less output to
succeed than theirs. In fact, the fraction of bits output is smaller than (1−2/e),
the maximum fraction of output bits recommended in the ISO parameters for
Micali-Schnorr — although when N is 1024 bits (at the 80-bit security level)
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the ISO standard recommends only 864 bit outputs, to ensure at least 160 bits
remain unknown. In practice, however, LLL reduction of this Coppersmith lat-
tice yields shorter vectors than predicted, and our attack empirically succeeds
for these example parameters with ISO-sized k = 864 outputs, and even with
outputs as small as k = 856 bits.

Using a higher multiplicity (and thus a larger-dimension lattice) allows the
attack to succeed with even smaller outputs:

Theorem 7. A SUS-backdoored modulus N of length n with backdoor polyno-
mial f of degree � and |S| nonzero coefficients allows an efficient state recovery
attack after observing � outputs of length k > n(1− 1/cS) for a constant cS that
depends only on |S|, and not on the exponent e.

When f has |S| = 2 terms, cS = 2, when f has |S| = 4 terms, cS < 6.55,
and when |S| = 6 terms, cS < 16.96.

The attack requires only |S| outputs within this range at specified positions.

Proof. The recovery algorithm works as follows. Let f(x) =
∑

i cix
i. Let S+ =

{i | ci > 0} and S− = {i | ci < 0}. Apply multivariate Coppersmith’s method to
solve for the unknown ri in

∏
i∈S+(2kri + bi)ci −∏

i∈S−(2kri + bi)|ci| ≡ 0 mod p.
For |S| = 2, we can construct a full-rank 3-dimensional lattice with multiplic-

ity t = 1 to obtain the above bound. This case is degenerate: a polynomial with
coefficients +1,−1 will generate output that cycles. We obtain the stated bound
for |S| = 4 from a full-rank 1365-dimensional lattice with t = 8; for |S| = 6, a
1443-dimensional lattice with t = 4. For details see the full version [24].

We have chosen these values so that running LLL for these lattices is within
feasible range today; one can get improved bounds for the cS by choosing larger
multiplicities and generating larger (but still polynomially sized) lattices.

Optimized lattice construction methods, like Herrmann and May’s technique
of unravelled linearization [39], seem to not apply here. We give more analysis
in the full version [24].

Undiscoverability vs. Practical Exploitation. We hypothesize that SUS-
backdoored parameters could be undiscoverable, if the sparse backdoor poly-
nomial f is properly chosen. However, making the backdoor harder to discover
seems to make it harder to exploit.

The backdoor polynomial f in the SUS attack is a sparse polynomial with
the property that f(e) ≡ 0 mod ϕ(N) or modϕ(p). More terms in f make it
harder to guess, but it also significantly increases the required fraction of output
bits or the dimension of the lattice reduced using Coppersmith’s method.

If f has too few terms, it becomes possible to guess f by brute force, and then
verify a guess by checking (for some arbitrary a) whether af(e) ≡ 1 mod N (if
f(e) = 0 mod ϕ(N)) or if gcd(af(e) − 1, N) is nontrivial (if f(e) = 0 mod ϕ(p)).

As an example, suppose we want f to have eight nonzero terms. The
multivariate polynomial to be solved using Coppersmith will have degree 4
(|S+| = |S−| = 4). If we assume the RSA PRG is reseeded every 50000 out-
puts (as the ISO standard recommends for MS DRBG), the degree of f must be
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less than 50000, since any outputs after the first 50000 will not be related. The
size of the search space for f would be roughly

(
50000

7

) ≈ 297. (It is 7 and not 8
because f(e) ≡ 0 ⇒ ejf(e) ≡ 0 implies the existence of a backdoor polynomial
with degree exactly 49999).

A meet-in-the-middle attack does better than brute force. If f(e) ≡ 0 mod
ϕ(N), split f = f0 + f1 into the first 3 and last 4 unknown terms. Since
af0(e)+f1(e) ≡ 1 mod N , precompute possible af0(e) terms and check for colli-
sions with a−f1(e). This takes

(
50000

4

) ≈ 258 time and
(
50000

3

) ≈ 244 space. A
similar meet-in-the-middle is possible when the backdoor relation is mod ϕ(p)
but not mod ϕ(N), using fast multipoint evaluation; see the full version [24] for
details. We conjecture that no faster attack is possible; we leave this question
open.

To illustrate the tradeoffs, in addition to the earlier example, we generated
two backdoored parameter sets: one requires as high as the 3500th output, took 4
core-hours to exploit, and we conjecture is 225-undiscoverable; the other requires
only as high as the 150th output, took 3 core-minutes to exploit, but is conjec-
tured only 29-undiscoverable.10 We give these (and other) parameters and discuss
the tradeoffs further in the full version [24].

Both the construction and the discoverability analysis extend to unbalanced
or multi-prime RSA. Exploitation of the backdoor is most efficient if the output
is as large as possible, so the attacker would want to work modulo ϕ(N) or
modulo ϕ(p) for a large prime factor p.

Extending this Idea to Micali-Schnorr. Our attempts to extend this idea from
RSA PRG to Micali-Schnorr have encountered some barriers.

First, the output of MS PRG does not follow the clean iterative structure of
the RSA PRG. For RSA PRG, we can write the ith block of output bi as a value
that is close to a power of the initial state si ≡ se

i−1 ≡ s
(ei)
0 mod N , or a single

monomial like xei

in a polynomial equation. For MS PRG, writing the ith block
of output in terms of the initial state by iteratively expanding the expression

si ≡ 2−k(se
i−1 − bi) mod N,

yields a polynomial with exponentially many terms involving previous outputs.
The minimum degree of our backdoor polynomial

∑
i∈S ±ei ≡ 0 mod p − 1

needs to be loge ϕ(p) to embed information mod p, so our polynomial expression
will have exponentially many terms in lg p. Using larger coefficients in the poly-
nomial to generate terms like cei increases the degree of the lattice polynomial.

Another way of viewing this obstacle is that the high-degree non-sparse rela-
tion between states is due to the simultaneous presence of addition, multipli-
cation, and exponentiation modulo N (or p) in the state update function. If
only exponentiation were involved, as is the case of RSA-PRG, we can simplify
the expression as above. If only multiplication by a constant and addition were
involved, all si are affine functions of s0. When all three operations are involved,
however, the resulting expression is a polynomial with exponentially many terms.
10 Example code is available at https://github.com/ucsd-hacc/msdrbg_code.

https://github.com/ucsd-hacc/msdrbg_code
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One path forward would be to generate some algebraic structure that permits
simplification or elimination of enough cross-terms that the polynomial no longer
has exponentially many terms. (We give an example of such a structure in the
next section.) Alternatively, we observe that these polynomials will have linear
depth if evaluated as a circuit. Exploiting this idea would require new algorithmic
ideas, since a lattice attack requires writing down the polynomial to be solved.

5.4 Attacks on MS PRG

Finite Field MS-PRG Is Insecure. In this section we define a variant of
Micali-Schnorr over finite fields of small characteristic, and detail a straightfor-
ward state-recovery attack on this variant that involves no backdoors.

This attack does not imply anything about the existence of an attack (or a
feasible backdoor) on standard MS DRBG, but it demonstrates that the pseu-
dorandomness of modular exponentiation depends on the choice of field and
illustrates algebraic structure that eliminates the exponential blow-up in terms
that kept us from extending the ideas in the SUS backdoor to MS-PRG. This
attack works for any choice of output length k, unlike the other attacks we detail.

Finite Field Micali-Schnorr. Our finite field variant of the Micali-Schnorr PRG
is presented in Algorithm 6. Our eventual backdoor will rely on the characteristic
of the field matching the exponent e, which we will take to be a small prime.

Let Fen be the finite field of size en. We can represent elements of Fen as
polynomials in the quotient ring Fe[x]/N(x) (with N monic, irreducible, and
deg(N) = n) or as coefficient vectors in (Fe)n. Addition, multiplication, and
exponentiation are defined in the standard ways.

Theorem 8 (Informal). Finite-field Micali-Schnorr with state size n and out-
put size k allows an efficient probabilistic state recovery attack when �(n−k)/k�
outputs are observed.

Attacking FF-MS-PRG. Our attack relies on the linearity of the Frobenius endo-
morphism x 
→ xe to limit the complexity introduced by exponentiation. This
means the entire update step si ← x−k(se

i−1 − bi) is affine in terms of previous,
and therefore also the initial, state. The bound deg(si) < n − k means sev-
eral elements are 0 when interpreted as a coefficient vector, and this constraint
allows the attacker to formulate a linear system of equations involving the known
0-elements of si, the unknown initial state s0, and the known outputs bi.
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Algorithm 6: Finite-Field Micali-Schnorr
Input : Parameters e ∈ Z, N ∈ Fe[x], a number of iterations h
Output: hk output values in [0, e − 1]

1 Sample initial state s0 ∈ Fe[x]/N of degree < n − k using truly random coins.
2 for i ← 1 to h do
3 zi ← se

i−1 mod N(x)

4 Write zi = xksi + bi for deg(si) < n − k and deg bi < k.
5 end
6 Output b1||b2|| . . . ||bh.

The attacker observes output until this linear system is overdetermined, and
then solves it. A solution giving s0 is guaranteed to exist. Although the solution
is not always unique, in practice this method appears to recover a solution close
to the initial state after �(n − k)/k� outputs.

This attack is efficient. With n = 1024 and k = 341, recovering the FF-MS-
PRG state from 9 outputs took 7min implemented in Sage; the unoptimized
construction of the linear system was the bottleneck. Further details of this
attack are included in the full version [24].

The Bad-e (Be) Attack. In this section, we describe choices for the exponent e
that lead to efficient state-recovery attacks for the Micali-Schnorr generator. The
particular choices of e we make are unusual, but allowed by the ISO standard,
and are efficient to exploit with the output sizes recommended by ISO.

As observed in Sect. 5.2, a straightforward application of multivariate Cop-
persmith’s method for a state recovery attack against MS PRG is ruled out
by the parameters specified by ISO. We can circumvent these restrictions by
choosing a large e such that e−1 mod ϕ(N) is small.

Flexible Choice of e. ISO specifies that “The implementation should allow the
application to request any odd integer e in the range 1 < e < 2lg(N)−1−2·2lg N/2.”

Our attack instantiates the public exponent e with a value other than the
default exponent e = 3. Using larger e results in a larger output length k under
the recommended parameters. Interestingly, while MS DRBG can be instanti-
ated with almost any non-default e, there are more requirements on the public
modulus : N may either be one of the default moduli or randomly generated.

Theorem 9 (e = d−1 for Small d Is Insecure). Instantiating Micali-Schnorr
with RSA using exponent e = d−1 mod ϕ(N) for d small allows an efficient state
recovery attack from a single output when the state has length r < n/(

(
d
2

)
+ 1),

in time polynomial in d and lgN .

Proof. One output b1 yields a degree-d polynomial relating states s0 and s1.

se
0 = (2ks1 + b1) mod N

s0 − (2ks1 + b1)d = 0 mod N
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A straightforward application of multivariate Coppersmith results in a lattice
of dimension d + 2 and determinant R(d

2)+1Nd+1 for R the bound on the size
of the state. Applying Condition 1 and omitting the approximation factor if we
expect d to be a small constant, we expect to succeed when r(

(
d
2

)
+ 1) < n.

We can verify that this attack is allowed by the ISO parameters. When e is
large, which is what we expect for d−1 mod ϕ(N) for d small, the ISO parameters
set r = 2γ where γ is the security parameter. Thus we expect this attack to work
when γ(d2 − d+ 2) < n. To be concrete, for the ISO security parameters (listed
in Sect. 2), this inequality is satisfied for d = 3 for all parameter sizes, for d = 5
at γ = 128 and above, and d = 7 for γ = 256.

This exponent can be efficiently computed from knowledge of the factoriza-
tion of N , and we expect it to be large since ϕ(N) | de − 1. This choice of e is
arguably not a plausibly deniable “backdoor” since in practice e is almost always
chosen to be small. In addition, it is efficiently discoverable for any small d via
the Boneh and Durfee attack on small private RSA exponents [15]. However, in
cryptographic protocols in which parameters are negotiated by machines making
basic validity checks rather than actively looking for suspicious parameters, even
such a discoverable backdoor could easily go undiscovered.

The attack can be generalized to e = e0e
−1
1 for small e0, e1, which enables

efficient attacks on ISO security levels γ = 112 through 256, although the gen-
eralized attack is still detectable. We refer to the full version [24] for details.

6 Impact on Cryptographic Protocols

Deployed cryptographic systems typically use random numbers as input to a
cryptographic protocol. The precise interaction between protocol, implementa-
tion and a subverted RNG impact the exploitability of a system. We now briefly
consider how our attacks on MS and RSA PRG may affect common protocols.

Case Study: Using MS DRBG State Recovery to Subvert IPsec. IPsec [29] is
an encryption protocol often used for VPNs. We focus on the key agreement
protocol, typically IKE. During the period of standardization (approximately
2004–2007), the current version of the protocol was IKEv1 [38].

As noted in previous analyses [17,18,20] many IKE implementations use
a single PRG to generate both unencrypted nonces, encryption padding and
ephemeral secret keys for Diffie-Hellman key agreement. An attacker wishing
to passively exploit the “Bad-e” state recovery attack in Sect. 5.4 would observe
protocol handshakes, use the nonces to recover the state, and then iterate the
state forward to recover the secret Diffie-Hellman exponent, recover the shared
secret, and derive the symmetric session keys to decrypt the session data.

For the simplest attack described in Theorem 9, state recovery is feasible for
all security parameters with exponent e = 3−1 mod ϕ(N) and requires observing
at least 3n/4 bits of output. For n = 1024 this is 96 bytes and for n = 2048 it is
192 bytes, both within the 256-byte upper limit on a variable-length nonce.
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Extracting Generator Output from Public Nonces. The most likely source for
public output is the random nonces in each key agreement: these range from
8–256 bytes in IKE. Thus in IKE a single nonce is conceptually sufficient to
recover a single generator output block using a 1024-bit or 2048-bit modulus.

Extracting Generator Output from RSA Padding. Some configurations of the
IKEv1 protocol employ RSA-PKCS#1v1.5 encryption to authenticate end-
points. In this configuration, one party encrypts a nonce to the other party’s
encryption key. Assuming an attacker can interact with the server once, it may
therefore obtain raw PRG output in the padding of the RSA ciphertext.

With an RSA public key of length n̄ bytes and a nonce of length m bytes,
each ciphertext contains n̄ − 3 − m bytes of non-zero RSA padding bytes, in
addition to the m-byte nonce.11 Assuming a 32-byte nonce, this provides 93
bytes of padding (or 125 bytes for padding and nonce combined) for a 1024-
bit RSA encryption key and 221 bytes (or 253 bytes for both) for a 2048-bit
encryption key. The 93-byte padding is less than the 96 output bytes required
for a 1024-bit key, but the remaining bytes could be recovered via brute force.

Case Study: TLS. SSL/TLS [6,36] are the most common secure communications
protocols used on the Internet. SSL and TLS each combine the use of long-term
keys or secrets, as well as a key agreement protocol and symmetric encryption
scheme for transmission of secure data into a single protocol. Common versions
between 2004–2007 included SSL version 3 [36] and TLS 1.0–1.2 [6,26,57].

The random portion of an SSL/TLS nonce is 28 bytes long.12 For SSL/TLS
or IKE implementations with smaller nonces, an attacker would need to obtain
several nonces over multiple key exchanges (≈ 4 at the 28 bytes length) in order
to recover sufficient state to obtain one 108-byte MS DRBG output at the 1024-
bit security level. Even this approach poses a challenge: for our basic attacks,
the recovered output bytes must be consecutive. In a naive implementation of
either protocol, the generation of nonces may be interspersed with other uses of
the PRG: as a result, only fragments of each output block would be available.
There are two potential engineering solutions that could mitigate this result:

1. During the standardization period, the NSA proposed and co-authored
numerous IETF draft extensions to SSL/TLS [40–42,58,59] that cause servers
and clients to output much longer nonces on request. At least one extension
was ultimately deployed in the BSAFE commercial cryptography library [9].
The occasional use of such extensions by any client would provide eavesdrop-
pers with an arbitrary amount of generator output that could be used to
recover secret keys until the generator was reseeded.

2. Some commercial implementations of IKE pre-generate nonces in advance
of a handshake, storing the results in a queue for later use [17]. Such imple-
mentations have been discovered in devices implementing the Dual EC DRBG

11 The PKCS#1v1.5 standard requires that all padding bytes be non-zero, since the 0
byte is used as a delimiter. Recovering the raw byte stream would thus require some
additional steps depending on how this string is generated.

12 Each nonce is 28 bytes of random data concatenated with a 4-byte timestamp.
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generator, a design choice that maximizes the practical impact of a subversion
attack. A similar implementation decision could allow the exfiltration of mul-
tiple consecutive bytes of generator output over several handshakes.

There are also some algorithmic exploitation possibilities:

1. Multivariate Coppersmith methods can be used to solve for multiple noncon-
secutive chunks of output; the exact bounds would depend on the details of
the implementation.

2. Our SUS backdoor for RSA PRG exploits sequences of non-consecutive blocks
of output, albeit selected to satisfy the linear backdoor recurrence embedded
in the modulus. A more moderate improvement in the bounds might allow a
recovery attack of this form.

7 Conclusion

In this paper, we studied the question of whether an adversary who controls the
generation of the parameters used for the Micali-Schnorr PRG can break the
security of the algorithm. To that end, we identified vulnerable parameters per-
mitted by the ISO standard for Micali-Schnorr, and developed a novel backdoor
algorithm for the closely-related RSA PRG that permits efficient state recovery
attacks beyond previously known bounds. However, we encountered barriers in
adapting our backdoor technique to MS PRG for realistic parameters, and thus
the main question we set out to solve remains open.

A solution to this problem may involve the development of new ideas in the
cryptanalysis of RSA. For example, the small characteristic finite field case has
exploitable structure. Taking advantage of this structure leads to improvements
in algorithms like the function field sieve for discrete logarithms over small-
characteristic finite fields. An analogous improvement for the integers that allows
simplifications of the recurrences might open doors (or be related to existing
advances) in the study of factorization or RSA cryptanalysis algorithms.
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