
On Proving Equivalence Class Signatures
Secure from Non-interactive Assumptions

Balthazar Bauer1(B), Georg Fuchsbauer2, and Fabian Regen2

1 UVSQ, Versailles, France
balthazar.bauer@ens.fr

2 TU Wien, Vienna, Austria
{georg.fuchsbauer,fabian.regen}@tuwien.ac.at

Abstract. Equivalence class signatures (EQS), introduced by Hanser
and Slamanig (AC’14, J. Crypto’19), sign vectors of elements from a
bilinear group. Their main feature is “adaptivity”: given a signature on a
vector, anyone can transform it to a (uniformly random) signature on any
multiple of the vector. A signature thus authenticates equivalence classes
and unforgeability is defined accordingly. EQS have been used to improve
the efficiency of many cryptographic applications, notably (delegatable)
anonymous credentials, (round-optimal) blind signatures, group signa-
tures and anonymous tokens. EQS security implies strong anonymity (or
blindness) guarantees for these schemes which holds against malicious
signers without trust assumptions.

Unforgeability of the original EQS construction is proven directly in
the generic group model. While there are constructions from standard
assumptions, these either achieve prohibitively weak security notions
(PKC’18) or they require a common reference string (AC’19, PKC’22),
which reintroduces trust assumptions avoided by EQS.

In this work we ask whether EQS schemes that satisfy the origi-
nal security model can be proved secure under standard (or even non-
interactive) assumptions with standard techniques. Our answer is nega-
tive: assuming a reduction that, after running once an adversary break-
ing unforgeability, breaks a non-interactive computational assumption,
we construct efficient meta-reductions that either break the assumption
or break class-hiding, another security requirement for EQS.

1 Introduction

Structure-preserving signatures (SPS) [AFG+10] are defined over groups of
prime order p equipped with a bilinear map (pairing), and their messages
are group elements. SPS on equivalence classes, or equivalence class signatures
(EQS) for short, introduced by Hanser and Slamanig [HS14] and later refined
[FHS19], sign vectors of (non-zero) group elements, that is, messages are from
M = (G∗)� for a group G (where � = 2 suffices for most applications). Compared
to standard signature schemes, EQS provide an additional functionality Adapt:
given the public key, a signature σ on m ∈ M and μ ∈ Z

∗
p, Adapt returns, without

requiring the signing key, a signature on the message μ ·m. Signing m ∈ M thus
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authenticates the equivalence class [m]∼, where m ∼ m′ :⇔ ∃μ ∈ Z
∗
p : m′ = μ·m.

Unforgeability means that after querying signatures on (polynomially many)
messages m1,m2, . . . , no adversary can compute a signature for any m∗ with
m∗ /∈ [m1] ∪ [m2] ∪ . . .

A second security notion is class-hiding, meaning that it is hard to distinguish
a random message pair (m,m′) from the same class (i.e., m ∼ m′) from a random
pair (m,m′) ←$M × M . Note that this is equivalent to the hardness of the
decisional Diffie-Hellman (DDH) problem in G. The third property is signature
adaptation (under malicious keys): it states that, even if a public key pk was set
up maliciously, when running σ′ ←Adapt(pk,m, σ, μ) for a σ valid on m, then σ′

is uniformly random in the set of all valid signatures on μ · m.
Together with class-hiding, this yields the following guarantee against mali-

cious signers, which lies at the core of applications of EQS: after issuing a signa-
ture σ on a message m, when later given μ · m and σ′ ← Adapt(pk ,m, σ, μ) for
μ ←$Z

∗
p, the signer cannot distinguish (σ′, μ · m) from a random signature on a

random message m′ ←$M valid under pk.
The original work [FHS19] gives a very efficient construction of EQS with

signatures consisting of 2 elements from G and 1 from Ĝ (the other source group
of the asymmetric pairing). Unforgeability is proved directly in the generic group
model [Nec94,Sho97,Mau05].

Applications of EQS. Since their introduction, equivalence class signatures
have been used to instantiate numerous cryptographic concepts.

Anonymous Credentials. The first application of EQS were attribute-based cre-
dentials (ABC) [CL03]. In an ABC scheme, users are issued credentials for a set
of attributes they possess. Users can then selectively disclose attributes, that is,
show that they possess any subset of their attributes. Anonymity requires that
no one can tell whether two showings were done by the same user and that they
reveal nothing about the non-disclosed attributes.

To showcase the power of EQS, the authors [FHS19] use it to construct the
first ABC scheme for which the communication complexity of showing a creden-
tial is independent of the number of (possessed or showed) attributes. In their
scheme, a credential is an EQS signature σ on a (randomizable) commitment
c ∈ M to the user’s attributes; when a user wants to prove she owns certain
attributes, she adapts σ for μ · c for μ ←$Z

∗
p and opens the commitment μ · c to

the disclosed attributes. Anonymity (even against malicious credential issuers)
follows from the adaptivity properties of EQS. Note that this construction avoids
using zero-knowledge proofs to hide signatures, which are a source of inefficiency
in many prior constructions. (Interactive proofs could still be required to prevent
replay attacks.1) Slamanig and others added the possibility of revoking users to

1 Note that the following simple pseudonym system from EQS would not use any
ZK proofs during showing. A user creates pk = sk · g, with party i she establishes
pseudonym (ri · g, ri · pk) for random ri, and she transforms (via Adapt) signatures
(credentials) on one pseudonym to another. ZK proofs (of DL-knowledge) would only
be needed when establishing a new pseudonym.
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the credential scheme [DHS15] and construct credentials that allow outsourcing
of sensitive computation to a restricted device [HS21].

EQS were generalized by considering adaptivity within equivalence classes
not only for messages but also for keys, termed “signatures with flexible pub-
lic key” [BHKS18] or “mercurial signatures” [CL19,CL21,CLPK22]. Mercurial
signatures were used to construct delegatable anonymous credentials [BCC+09]
with non-interactive delegation [Fuc11]. New credentials constructions from EQS
are still being proposed [MSBM23,MBG+23].

Group Signatures. EQS were used to construct efficient group signatures
[DS16,CS20], in particular supporting dynamic adding of members [DS18].
Group signatures, as well as ring signatures, have also been constructed from
the generalization of EQS to adaptable public keys [BHKS18].

Blind Signatures. Another line of research uses EQS to construct blind signa-
tures, which let a user obtain a signature on a message that remains hidden
from the signer. This builds on earlier work [BFPV13], which use randomizable
zero-knowledge proofs [FP09] and thus require a trusted common reference string
(CRS). In contrast, the EQS-based schemes [FHS15,FHKS16] do not assume com-
mon reference strings or random oracles and achieve blindness against malicious
signers, leveraging the adaptivity property of EQS. Moreover, the schemes are
round-optimal [Fis06], meaning the signing protocol consists of one message from
the user to the signer and one message back; such schemes are thus concurrently
secure [HKKL07] by default. Hanzlik [Han23] went further and uses the FHS EQS
scheme to construct non-interactive blind signatures on random messages.

Other Cryptographic Primitives. EQS also yield [HRS15] verifiably encrypted
signatures. Access-control encryption [DHO16] was efficiently instantiated using
EQS [FGKO17], as well as [BLL+19] sanitizable signatures [ACdMT05] and
privacy-preserving incentive systems from EQS [BEK+20]. The FHS scheme
[FHS19] was used [HPP20] to instantiate highly scalable mix nets and [ST21]
the anonymous authentication protocol EPID. It was also used for the most
efficient instantiation of anonymous counting tokens [BRS23].

Constructions from Standard Assumptions. Despite applications of EQS
requiring neither CRS nor random oracles, the first instantiation of EQS [FHS19]
only has a proof in the generic group model (GGM). Therefore, calling construc-
tions using that scheme “standard-model” has attracted some criticism [KM19].
This motivated the search for constructions from falsifiable [Nao03] assumptions,
that is, assumptions where the challenger that sets up the problem instance can
efficiently decide whether an adversary has broken the assumption. The assump-
tion that a given EQS satisfies unforgeability is for example not falsifiable, since,
by the class-hiding property, deciding whether the adversary’s message lies in
one of the queried classes is hard.

The first EQS from falsifiable assumptions was proposed by Fuchsbauer and
Gay [FG18], based on Matrix-Diffie-Hellman assumptions [EHK+13]. However,
its signatures can only be adapted once (after which they change format) and
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the scheme only satisfies a weakened security notion: when querying a signature,
the unforgeability adversary must provide the discrete logarithms of the queried
messages. Note that this unforgeability notion is efficiently decidable.2

Unfortunately, the notion of signature adaption that the scheme achieves
assumes honest keys and honest signatures, which excludes all applications
except to access control encryption, as later argued [KSD19].

Motivated by this, Khalili, Slamanig and Dakhilalian [KSD19] propose an
EQS construction from the SXDH assumption (i.e., DDH is hard in G and Ĝ)
with signatures in G

8 × Ĝ
9. Building on this work, Connolly, Lafourcade and

Perez-Kempner [CLPK22] propose a more efficient scheme (with signatures in
G

9 × Ĝ
4), which requires an additional assumption (extKerMDH). A drawback

of both schemes is that they assume a trusted CRS to achieve signature adaption
under malicious keys. Sadly, this foils the main security benefit of EQS-based
constructions: anonymity guarantees (against blind signers or credential issuers,
etc.) without any trust assumptions in the standard model. We note that for
schemes with a uniform CRS (of group elements) the CRS could be generated
“transparently” by hashing (into the group). Formally, one would then need to
prove adaptation security in the ROM.

A recent work [BFR24] points out a flaw in the security proofs of the CRS-
based schemes [KSD19,CLPK22] and thus their security is currently unclear.
(A game hop in the unforgeability proofs modifies the adversary’s view and the
change in its advantage is then bounded by the advantage of a reduction in
solving a computational problem. But since EQS-unforgeability is not efficiently
decidable, the reduction would not be efficient.3)

The current state of affairs remains thus that the only scheme enabling trust-
less applications is FHS [FHS19], and it is only proven secure in the GGM. This
poses two independent questions: can we prove stronger security guarantees for
FHS; and do there exist more efficient schemes? Since any EQS scheme can be
transformed into a structure-preserving signature (SPS) scheme without chang-
ing the signature format [FHS15], known impossibility results for SPS imply the
following: First, the signature size of FHS is optimal, since 3 group elements per
signature are necessary [AGHO11]. Second, FHS cannot be proven secure from
a non-interactive assumption via an algebraic reduction, since this is the case for
all 3-element schemes [AGO11].
2 Consider � = 2. For all i, let (xi,1, xi,2) ∈ (Z∗

p)
2 be the logarithms of the components

of the queried message mi (i.e., mi,j = xi,j · g, where G = 〈g〉). When the adversary
returns a signature on m∗ = (m∗

1, m
∗
2), it wins if xi,2 · m∗

1 �= xi,1 · m∗
2 for all i.

3 In the hop from Game 2 to Game 3 [KSD19, Theorem 2], the distribution of
the signatures output by the signing oracle is modified and thus A’s advantage
of breaking unforgeability could also change, without being efficiently detectable.
However, the constructed reduction B1 (to the “core lemma”, which relies on
the computational hardness of Matrix-DDH [EHK+17]) only checks an (efficiently
testable) property of A’s forgery but not whether A was successful. The implication
Adv2 − Adv3 ≤ Advcore

B1 derived by the authors is thus not justified. As the proof
of the second work [CLPK22, eprint, Appendix D] is virtually identical, the above
applies as well.
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Since the second result only applies to 3-element schemes, the question that
has been open for a decade remains: do there exist (less efficient) instantiations
of EQS with a security proof from a non-interactive assumption at all? We
answer this in the negative for black-box reductions that run the unforgeability
adversary once.

Impossibility Results. To prove our result, we use the meta-reduction tech-
nique: one assumes that a reduction R (with certain properties, such as being
algebraic or being tight) exists; that is, when given access to an adversary that
breaks the scheme, R can efficiently solve a (conjectured-to-be-hard) compu-
tational problem. One then derives a contradiction by showing how to use R
to break a computational assumption. Building on earlier work [BV98], Coron
[Cor02] first used this technique to show that there is no tight security proof for
the RSA full-domain hash signature scheme. (A reduction has tightness φ if it
can use an adversary breaking the scheme with probability ε to break the under-
lying assumption with probability at least φ · ε). His result was later revisited by
Kakvi and Kiltz [KK12].

Hofheinz, Jager and Knapp [HJK12] extended Coron’s ideas to Waters signa-
tures [Wat05] and, more generally, any re-randomizable signature scheme. These
schemes let anyone transform a signature on a message into a random signa-
ture on that message. They show that a reduction can have tightness at most
φ = 1/Ω(q), where q is the number of signing queries, as follows. Assume there
exists a reduction R, which must thus break the computational assumption using
the following (inefficient) adversary: A makes queries on random messages and
then returns a random signature on a random message m∗. The authors con-
struct a(n efficient) meta-reduction M that simulates A: to obtain the signature
on m∗, M rewinds R, that is, it runs R again on the same randomness; M then
queries a signature on m∗, randomizes it and returns it as the forgery in the first
run (re-randomizability is thus crucial for the simulation of the adversary).

If the hardness assumption holds, then it must be the case that either R
cannot provide a signature on m∗, or R cannot use the randomized signature
to break the assumption. Intuitively, every message m is thus “signable” (i.e.,
the reduction can provide a signature), or “exploitable” (i.e., the reduction can
use a forgery on m to break the assumption). The probability that all messages
queried by A are signable and A’s forgery is exploitable is thus bounded by
the inverse of the number of signing queries, which yields the upper-bound on
tightness. Since EQS are randomizable (by running Adapt with μ = 1), this
readily implies that EQS cannot be proven tightly secure.4

Meta-reductions have also been used to prove impossibility or optimality
results about Schnorr signatures [PV05,Seu12,GBL08,FJS14], and more general
statements [FF13]. Bader et al. [BJLS16] consider the multi-user setting and
extend Coron’s technique to other cryptographic primitives.

4 Note that this does not extend to CRS-based EQS, since these are only guaranteed
to be randomizable under a trusted CRS [KSD19]. As in the proof of impossibility
of tightness [HJK12] the CRS is set up by the reduction, it might detect the meta-
reduction’s simulation.
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Fischlin and Schröder [FS10] show that no three-move blind signature scheme
can be proved secure from non-interactive assumptions if it satisfies certain con-
ditions. One might wonder whether, together with the fact that EQS were used
by FHS [FHS15] to construct round-optimal (i.e., two-move) blind signatures,
this already implies the impossibility of EQS from non-interactive assumptions.

This is not the case. The blind-signature construction [FHS15] only satisfies
computational blindness, a case Fischlin and Schröder deal with in their full
version.5 For their impossibility to hold, they must assume that blindness of the
scheme holds relative to two oracles (Definition A.3 in the full version), of which
“Σc

sk”, given a public key, returns a matching secret key. For FHS this means
solving discrete logarithms, which can be used to break blindness.6

Our Result

Statement. Our result can be (simplified and) summarized as follows (as done
in Corollary 1):

Let Σ be an EQS scheme with signature-adaptivity under malicious keys.
Let Π be a (non-interactive) computational problem and R be a reduction
from Π that runs an adversary A against unforgeability of Σ once, so that
if A wins with probability ε, then R breaks Π with probability at least φ · ε.
Then there exist an adversary B against unforgeability of Σ running in
constant time, as well as the following, which run in time linear in that of
R: meta-reductions M, attacking Π, and D, attacking class-hiding (CH)
of Σ, such that

AdvΠ
RB + AdvΠ

MR + AdvCH
Σ,DR ≥ φ5/384 . (1)

(By AdvX[Σ,]Y we denote Y’s advantage in breaking the notion X [for scheme
Σ] and YZ denotes that Y has oracle access to Z.)

This implies that if the reduction for unforgeability is successful (i.e., φ is not
“small”) then either Σ does not satisfy CH, or the problem Π is not hard. Con-
sidering asymptotic security would yield that if the three advantages in Eq. (1)
are negligible then so will be the success probability of the reduction.

Implications for Extensions of EQS. Since mercurial signatures and “signatures
with flexible public key” are EQS with additional functionality, one would expect
our result to carry over. However, all existing constructions [CL19,BHKS18,
CL21,CLPK22] only consider adaptation under honest keys (arguably, because

5 https://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/publications
1/fischlinthree-moves2010.pdf.

6 Using their notation [FHS15], after receiving the user’s protocol message M =
(sC, sP ) the signer can use Σc

sk to compute s and thus C, and when later given
a challenge message/blind-signature pair (m, (σ, R, T )), it checks if C = mP + T .

https://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/publications_1/fischlinthree-moves2010.pdf
https://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/publications_1/fischlinthree-moves2010.pdf
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anonymity of the resulting delegatable credential schemes is only weak anyway),
whereas our result requires adaptation under malicious keys.

Proof Ideas. The central idea for our impossibility result is to leverage the
following discrepancy: for falsifiable assumptions the challenger can efficiently
determine whether the adversary has won, whereas this cannot be efficiently done
for unforgeability of an EQS scheme Σ. In particular, consider an unforgeability
adversary A that queries a signature on a single message m and then returns
a signature on some m∗. According to the definition of EQS-unforgeability, if
m ∼ m∗, that is, they are from the same class, then the adversary has not won; if
m 	∼ m∗ then it has won. Now consider a reduction R to a falsifiable assumption
Π, which runs such an adversary. In case (	∼) the reduction must break Π with
good probability. However, whereas in case (∼) it cannot: this is because a case-
(∼) adversary A∼ can be efficiently implemented using signature adaptation: it
queries a signature on m and adapts it to one on m∗. The reduction combined
with the adversary (RA∼) would thus be an efficient algorithm for solving Π.

Distinguishing case (∼) from (	∼) corresponds to breaking class-hiding (CH),
where CH is equivalent to DDH being hard in the underlying group. It seems thus
that we can use reduction R to break CH, i.e., DDH: Construct the following
meta-reduction M1 that is given (m,m∗) and has to decide if m ∼ m∗: M1

queries a signature σ∗ on m∗, rewinds the reduction, queries m and returns
(m∗, σ∗). The meta-reduction concludes that m ∼ m∗ iff R fails to solve Π.

A problem ignored so far is that a reduction will typically not be able to
exploit a signature σ∗ it created itself; otherwise, it could just solve Π on its
own.7 We thus define the adversaries A∼ and A �∼ simulated to R as follows:
given the public key, they sample m ←$M (where M is the message space) and
query a signature on m; next they sample m∗: A∼ samples m∗ ←$ [m] and A �∼
samples m∗ ←$M ; they then sample a random signature σ∗ from the set of all
valid signatures on m∗ and return σ∗. (This is analogous to the proof of the
impossibility of tight reductions for re-randomizable signatures [HJK12].)

Define meta-reduction M2 as follows: given a class-hiding instance (m,m∗),
it simulates A∼ or A �∼ (not knowing which) by obtaining a signature σ′ on m∗

via rewinding and using Adapt (with μ = 1) to transform σ′ to a uniform σ∗;
decide according to whether R breaks Π.

This proof strategy only works for perfect reductions, which break Π when-
ever an adversary returns a forgery. Using the ideas for re-randomizable signa-
tures [HJK12], this could be used to show that there are no tight reductions.
However, we have not yet excluded the existence of non-tight reductions, such as
partitioning reductions [Cor00,BLS01,Wat05]: given the problem instance, such

7 The problem is that the definition of the adversary A simulated by M1 depends on
R (as it uses a signature produced by R). But a reduction only guarantees that when
given any efficient adversary (defined independently of the reduction), it can use it
to solve the problem. We must therefore start with defining A (who is not necessarily
efficient, but whose behavior is precisely defined). Really we specify two adversaries,
one simulated in the DDH case (not breaking the scheme) and one breaking the
scheme.
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reductions set up the public key (or program the random oracle in a way) so that
they can answer signing queries for a subset S of messages, whereas for messages
from another subset E, they can “exploit” forgeries to solve the problem.

Reductions that Partition Along Classes. To see how M2, defined above, fails
for a non-tight reduction, assume Rp partitions the message space M “along
classes”, that is, if some m is in S (the set of “signable” messages) then all the
messages of its class [m] are, and if m ∈ E (the set of “exploitable” messages)
then [m] ⊆ E. We first observe that S and E must be (almost) disjoint, as
otherwise Rp can solve the problem Π on its own (by producing a signature
and then exploiting it). This case is reflected in the first term in Eq. (1) via an
adversary B that simply aborts if it receives an invalid signature.

Applying M2 to Rp yields the following: if the signatures on m and m∗

returned by Rp are valid, they both come from S, either in the same class or not;
in both cases, since S and E are (almost) disjoint, σ∗ will (almost certainly) not
be exploitable by Rp. Thus, M2 cannot exploit Rp: either one of the signatures
is invalid, or Rp will not solve the problem (no matter whether m ∼ m∗ or not).

While this shows that the strategy M2 does not work for a reduction Rp that
partitions along classes, a different meta-reduction D (which is the one used in
our proof and appearing in Eq. (1)) can actually exploit Rp to distinguish classes:
given an instance (m,m∗), D queries a signature on m, and (after rewinding) it
queries a signature on m∗; if (a) one of them is valid and the other one isn’t, it
deduces that m 	∼ m∗, whereas if (b) they are both valid or both invalid, it guesses
m ∼ m∗. Since Rp partitions along classes, if (∼) then (b) must occur, whereas if
(	∼) then (a) occurs with good probability. For the last argument, we show, again
via B, that the sets S and E must both be “big” for a “good” reduction.

Other Reductions. So far, we have discussed that no reduction that partitions
entire classes (into “simulatable” and “exploitable”) can exist. The first question
this raises is what to do about non-partitioning reductions. It turns out that we
can view any reduction R as partitioning: let r be R’s randomness given to it
as explicit input and let st be R’s internal state (which incorporates r) after
returning the public key pk. For a fixed st, R’s next step, R.sign which takes
input st and a query m and returns σ, is then a deterministic function.

For any (st, pk) we now define Sst,pk as the set of messages m for which
R.sign(st,m) returns a signature valid under pk. Similarly, R.fin taking a state
and a forgery (m,σ) and returning a solution for Π is deterministic. We define
Est,pk as the set of messages m∗ for which, if R is given st and a uniform valid sig-
nature on m∗, it solves the Π-instance with a probability greater than a threshold
we set.

It remains to show that a reduction R′ that does not partition along classes
cannot exist either. For such R′, there are (many) classes which contain (many)
messages in S as well as (many) messages in E. Now we can use signature-
adaptation to directly attack the underlying problem Π (and thus, if the prob-
lem is hard to begin with, then no such reduction can exist). We construct a
meta-reduction M (appearing in Eq. (1)) against Π, analogous to RA∼ from the
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beginning of the proof intuition. Given an instance of Π, M runs R′ to receive
pk and queries a signature σ on a message m ←$M ; it then runs σ∗ ←
Adapt(pk,m, σ, μ) for μ ←$Z

∗
p and returns (μ·m,σ∗).8 The forgery returned by M

is thus a uniform signature on a random message m∗ in [m]. Thus, since there are
many classes with many elements in S and many elements in E, there is a “good”
probability that m ∈ S and m∗ ∈ E, meaning R′ solves the problem instance.

Challenges. Turning the above intuition (with all its “many”, “big”, “almost
certainly”, etc.) into a rigorous proof turns out quite tricky. We need to argue
that our meta-reductions really cover all possible reduction strategies. That is,
show that if both B (the trivial adversary) and M (the meta-reduction that
returns a forgery on a multiple of the queried message) fail then the correlation
between classes and the partitioning by S and E must be high enough so D can
decide whether two messages m and m∗ are from the same class. What com-
plicates the computation of probabilities are dependencies of random variables.
Moreover, the above sets S and E depend on the intermediate values generated
by the reduction (and these sets are of the form Sst,pk and Est,pk), whereas the
success of the reduction is guaranteed for random st and pk.

Proof Overview. The first meta-reduction M1 (simulating A∼ or A �∼) with
which we started discussing proof ideas is not used in our proof. M1 only works
for reductions that have both signable and exploitable signature in many classes,
but for these, M (from two paragraphs above) can directly break Π: it runs the
reduction on a problem instance, queries a signature on a random message m,
adapts it to a random multiple μ · m, and returns it to the reduction. The latter
solves the instance if m is signable (m ∈ S) and μ · m is exploitable (μ · m ∈ E).

Using M, our proof first establishes that for an exploitable message there
cannot be many signable messages in the same class (Lemmas 1 and 2). This
shows that (roughly) classes contain either signable or exploitable messages but
not both. We also show that there must be many signable messages, as otherwise
the reduction does not correctly simulate the game to the adversary (Lemma 3,
which constructs a “trivial” adversary B); moreover, there cannot be too few
exploitable messages either, as otherwise the reduction is not successful (Lem-
mas 5 and 6).

Together, this yields that while overall there are many signable messages,
there are also many classes that contain (almost) none (since the exploitable
messages must also be somewhere). This can be leveraged by the meta-reduction
D (also previously discussed) against class-hiding: given an instance (m,m∗),
D asks the reduction for signatures on both. If exactly one of the messages is
signable, then they are likely to be in different classes. This suffices to obtain
an advantage solving class-hiding. (Note that D need not “fully” simulate an
adversary outputting a forgery.)

8 Really, M first rewinds R′ and returns (μ ·m, σ∗) in an execution in which it did not
query a signature (M thus differs from A∼ defined earlier). The reason is that the
signing query could modify the set E, which could foil our analysis. (This is also why
D, defined above, rewinds the reduction).
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To make this argument formal, we port the above properties to the level of
state/public-key pairs (st, pk), which corresponds to the point when the reduction
starts running the adversary on pk. This is done to then leverage the conditional
independence of uniformly sampled messages falling into S or E respectively in
the proof. Let I(S) be the set of pairs (st, pk) for which there are “sufficiently
many” signable messages and let I(∩) be the set of pairs (st, pk) which have very
few classes that have many signable and exploitable messages. We show that I(S)

is large (Lemma 4), that I(∩) is large (Lemmas 7 and 8) and their intersection is
large (Lemma 9).

These lemmas yield that (for many state/public-key pairs) there is a corre-
lation between whether two messages are in the same class and whether these
two messages are signable, which is what the success of the meta-reduction D
against class-hiding relies on. This is made formal in Theorem 1.

2 Preliminaries

2.1 Notation

For a prime p, by Z
∗
p we denote the non-zero elements of the finite field Zp :=

Z/pZ. In this paper we will consider a fixed group (G,+) of prime order p. Define
its non-zero elements G

∗ := G \ {0G}. We will denote by k · g :=
∑k

1 g. Note
that G having prime order implies that for g 	= 0G and k 	= 0 we have k · g 	= 0G.
We will naturally extend this operation to vectors by applying the operation
“·” defined above component-wise: for m = (g1, g2) ∈ (G∗)2 and k ∈ Z

∗
p define

k · m := (k · g1, k · g2). Let g denote a fixed generator of G, which exists due to
p being prime. For a set A denote by Ā the complement of A.

Assigning a value b to a variable a is denoted by a := b. When a denotes
the output of a probabilistic algorithm B write a ← B, while drawing a value a
uniformly from a finite set A is denoted by a ←$A.

2.2 DDH

In this work we consider concrete security treatment, that is, we do not consider
“negligible” advantages, but concretely relate the security of a scheme to the
hardness of an underlying computational problem. The decisional Diffie-Hellamn
(DDH) problem will be of central importance.

Definition 1. Define for a group G of prime order p with g generating G the
DDH-Game, played by an adversary A for b ∈ {0, 1} as:

DDHb
G,A

1 : x, y, t ←$Z
∗
p

2 : b′ ← A(G, x · g, y · g, (bxy + (1 − b)t) · g)

3 : return b′

Define the advantage of an adversary A as

AdvDDH
G,A :=

∣
∣Pr

[
DDH1

G,A = 1
] − Pr

[
DDH0

G,A = 1
]∣
∣ .
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2.3 EQS Signature Schemes

For concreteness, we consider Equivalence Class Signature schemes for the mes-
sage space M := (G∗)2. (All our results easily generalize to (G∗)� for � > 2). This
message space is partitioned into equivalence classes by the following relation for
m,m′ ∈ M :

m ∼ m′ :⇔ ∃μ ∈ Z
∗
p : m′ = μ · m.

Define the set of classes of M as C := M/∼. An EQS Scheme for message space
M consists of the following algorithms:

– Keygen(): a probabilistic algorithm that outputs a key pair (sk, pk) with pk ∈
PK , the public key space.

– Sign(sk,m): a probabilistic algorithm that takes a secret key sk and a message
m ∈ M and outputs a signature σ ∈ S, where S is the (finite) signature space.

– Verify(pk,m, σ): a deterministic algorithm taking a public key pk, a message
m ∈ M and a signature σ and outputting 1 if the triple is valid and 0
otherwise.

– Adapt(pk,m, σ, μ): a probabilistic algorithm taking a public key pk, a message
m ∈ M , a signature σ on m and a scalar μ ∈ Z

∗
p as inputs and outputting a

signature σ′ ∈ S on the message μ · m.

By [Keygen] we will denote the set of pairs (sk, pk) that have non-zero prob-
ability of being output by Keygen. The next definition ensures that Sign and
Adapt generate valid signatures.

Definition 2. An EQS scheme is correct if for all m ∈ M and for all (sk, pk) ∈
[Keygen] and for all μ ∈ Z

∗
p it holds that

Pr[Verify(pk,m,Sign(sk,m)) = 1] = 1 and
Pr[Verify(pk, μ · m,Adapt(pk,m,Sign(sk,m), μ)) = 1] = 1.

The following definition [FHS19, Definition 20] guarantees that signatures
returned by Adapt are distributed uniformly.

Definition 3. An EQS scheme perfectly adapts signatures under malicious keys
if for all tuples (pk,m, σ, μ) ∈ PK × M × S × Z

∗
p for which

Verify(pk,m, σ) = 1

the output of σ′ ← Adapt(pk,m, σ, μ) is a uniformly random element of S con-
ditioned on Verify(pk, μ · m,σ′) = 1.

Unforgeability is defined via a game. It starts by generating a key pair and
initializing the set Q of messages for whose class a query has been issued. It then
hands over the public key to A, giving it access to an oracle O. The oracle, when
queried with a message m, adds the class of m to Q. In the end A outputs a
message/signature pair (m∗, σ∗), which is considered a forgery if it is valid and
no oracle query has been asked on the equivalence class of m∗.
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Definition 4. For an EQS scheme Σ and for a forger A that has access to a
signing oracle O, which can modify the set Q and has access to sk, we define the
UNF game as follows:

UNFΣ,A
1 : (sk, pk) ← Keygen()

2 : Q := ∅
3 : (m∗, σ∗) ← AO(·)(pk)

4 : return (Verify(pk, m∗, σ∗) ∧ m∗ /∈ Q)

O(m)

1 : Q := Q ∪ [m]

2 : return Sign(sk, m)

where [m] := {m′ ∈ M | m ∼ m′} is the equivalence class of m. Define the
advantage of an adversary A as

AdvUNF
Σ,A := Pr[UNFΣ,A = 1].

The next definition requires it to be hard to distinguish message pairs from
the same class from random pairs.

Definition 5. Let Σ be an EQS scheme with message space M . Define the
Class-hiding game played by an adversary D for b ∈ {0, 1}:

CHb
Σ,D

1 : m ←$M

2 : m0 ←$M

3 : m1 ←$ [m]

4 : b′ ← D(m, mb)

5 : return b′

The advantage of D is defined as

AdvCH
Σ,D :=

∣
∣Pr

[
CH1

Σ,D = 1
] − Pr

[
CH0

Σ,D = 1
]∣
∣ .

The proof of the following is straightforward and given in [FHS19].

Proposition 1 ([FHS19, Proposition 1]). Let G be a group of prime order p
and Σ an EQS scheme with M = (G∗)2. Then Σ is class-hiding if and only if
DDH is hard in G, in particular, we have AdvCH

Σ,A = AdvDDH
G,A for all A.

2.4 Computational Problems

The following definition is due to [HJK12].

Definition 6. A computational problem Π := (CΠ , SΠ) consists of a set of
challenges CΠ and a family of sets of solutions SΠ for each challenge c, i.e.
SΠ := (Sc)c∈CΠ

. Additionally, we require the existence of two deterministic
(polynomial-time) algorithms.
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– Sample(ρ) takes randomness ρ and outputs c ∈ CΠ .
– Check(ρ, s) takes randomness ρ and an element s and checks whether s ∈ Sc

for c := Sample(ρ).

We will denote the randomness space of Sample by P. For an algorithm A define
the game Π played by A below.

ΠA
1 : ρ ←$P

2 : c := Sample(ρ)

3 : s ← A(c)

4 : return Check(ρ, s)

3 Our Impossibility Result

We strengthen our impossibility result in that we only consider adversaries that
make one single signing query. That is, we show that even reductions that only
work for single-query adversaries do not exist.

We will first establish some definitions and notations used throughout this
section. Let R denote the randomness space of R, then fixing its randomness
r ←$R lets us think of R as deterministic. When talking about a reduction R
from Π to UNF that is being run by a meta-reduction D, which simulates an
adversary A for UNF that uses at most one signing query, we can think of R as
split into three deterministic algorithms:

– R.init(c, r): is the initialization routine of R, which takes a challenge c of Π
and some randomness r ←$R and returns the state st of R and the public
key pk of the UNF game;

– R.sign(st,m): implements the signing oracle of R. Given a state st which is
output by R.init and a message m it outputs a new state st′ and a signature σ;

– R.fin(st,m∗, σ∗): takes a state st returned by either R.init or R.sign (in the
former case the adversary made no signing queries); it also takes a message m∗

and a purported forgery σ∗ for m∗. The algorithm then outputs its solution
s to the problem c received in R.init.

Definition 7. We say R reducing Π to UNF communicating with an adversary
A for UNF has a (multiplicative) reduction tightness φ ∈ (0, 1] if the following
holds:

φ · AdvUNF
A ≤ AdvΠ

RA .

To condense notation and make calculations more readable, we introduce the
following shorthand.

Definition 8. Define Init as the code fragment given below.
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Init

r ←$R

ρ ←$P

c := Sample(ρ)

(st, pk) := R.init(c, r)

return (st, pk)

Definition 9. Let Π be a computational problem. Let R be a reduction from Π
to UNF with tightness φ. Given (st, pk) ∈ [Init] we define for a message m the
set of valid signatures Vm,pk := {σ ∈ S | Verify(pk,m, σ) = 1}. We then define
subsets of M :

Sst,pk := {m ∈ M | R.sign(st,m) ∈ Vm,pk} ,

Est,pk :=
{

m ∈ M | Pr
σ ←$Vm,pk

[Check(ρ,R.fin(st, (m,σ))) = 1] >
φ

2

}

,

where Sst,pk (signable messages) corresponds to the set of messages for which R
is able to provide a valid signature, and Est,pk (exploitable messages) corresponds
to the set of messages for which R is “likely” to win game Π when given a uniform
forgery on that message. Note that ρ is implicitly defined in the execution of Init.

The following result will show that whenever there is a message m that is
“exploitable”, then the probability of finding a multiple of m to be “signable” is
bounded by the advantage of an efficient adversary winning Π. Intuitively this
means that whenever we can find a message that R can sign, which can then be
adapted into a message which R can exploit, then Π can be solved efficiently.

Lemma 1. Let Σ be an EQS scheme that adapts perfectly under malicious keys
(Definition 3). Let R be a reduction from Π to UNF running in time τ with
reduction tightness φ. Then there exists a meta-reduction M running in time
≈τ such that

Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: μ · m ∈ Sst,pk ∧ m ∈ Est,pk

]

≤ 2
φ
AdvΠ

MR .

Proof. Consider the meta-reduction MR playing Π that rewinds R given in
Fig. 1. Then it holds that

AdvΠ
MR = Pr[ΠMR = 1]

≥ Pr [ΠMR = 1 | m ∈ Sst,pk ∧ ζ · m ∈ Est,pk]

· Pr
[
(st, pk) ← Init,
m ←$M, ζ ←$Z

∗
p

: m ∈ Sst,pk ∧ ζ · m ∈ Est,pk

]

by the definition of Est,pk we have that R wins with probability ≥ φ
2 when

ζ · m ∈ Est,pk. Therefore
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MR(c)

1 r ← R

2 (st, pk) := R.init(c, r)

3 m ← M

4 (st′, σ) ← R.sign(st, m)

5 if Verify(pk, m, σ) = 0

6 abort

7 μ ← Z
∗
p

8 σ′ := Adapt(pk, m, σ, μ)

9 return R.fin(st, μ · m, σ′)

Recall:

ΠMR

1 ρ ← P

2 c := Sample(ρ)

3 s ← MR(c)

4 return Check(ρ, s)

Fig. 1. The meta-reduction M

AdvΠ
MR ≥ φ

2
Pr

[
(st, pk) ← Init,
m ←$M, ζ ←$Z

∗
p

: m ∈ Sst,pk ∧ ζ · m ∈ Est,pk

]

=
φ

2
Pr

[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: μ · m ∈ Sst,pk ∧ m ∈ Est,pk

]

.

��
The following result will be analogous to Lemma 1. It intuitively shows that

if the problem Π is computationally hard then when sampling two random mes-
sages from an equivalence class, it is unlikely that the reduction can sign one of
them while exploiting the other one to solve Π. In particular, we bound the prob-
ability that a random message is “signable” and there are many “exploitable”
messages in its class, where “signable” and “exploitable” are as described in
Definition 9. This is the case because when R is able to provide signatures on
messages which can be adapted to exploitable ones, it could solve Π on its own.

Lemma 2. Let Σ be an EQS scheme that adapts perfectly under malicious keys
(Definition 3). Let R be a reduction from Π to UNF running in time τ with
reduction tightness φ. Let δ ∈ [0, 1]. Then there exists a meta-reduction M aim-
ing to solve Π and running in time ≈τ such that

Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk ∧ |Est,pk ∩ [m]|
|[m]| ≥ δ

]

≤ 2
δφ

AdvΠ
MR .

Proof. Consider the meta-reduction MR playing Π that rewinds R which is
given in Fig. 1 (note that M runs R.fin on st and not st′). The reason for M’s
need to rewind R is that this allows us to view the sets Sst,pk and Est,pk as fixed
for each execution, as opposed to them changing after each call of the signing
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oracle. Then we can show the following.

AdvΠ
MR = Pr[ΠMR = 1]

≥ Pr
[

ΠMR = 1
∣
∣
∣
∣ m ∈ Sst,pk ∧ |Est,pk ∩ [m]|

|[m]| ≥ δ

]

· Pr
[

ΠMR : m ∈ Sst,pk ∧ |Est,pk ∩ [m]|
|[m]| ≥ δ

]

≥ Pr
[

ΠMR = 1
∣
∣
∣
∣ m ∈ Sst,pk ∧ |Est,pk ∩ [m]|

|[m]| ≥ δ ∧ μ · m ∈ Est,pk

]

(a)

· Pr
[

ΠMR : μ · m ∈ Est,pk

∣
∣
∣
∣ m ∈ Sst,pk ∧ |Est,pk ∩ [m]|

|[m]| ≥ δ

]

(b)

· Pr
[

ΠMR : m ∈ Sst,pk ∧ |Est,pk ∩ [m]|
|[m]| ≥ δ

]

where (b) ≥ δ, while (a) ≥ φ
2 since R wins with probability φ

2 if μ · m ∈ Est,pk

and a uniformly random valid signature is given to R, which is the case due to
Σ fulfilling Definition 3. Therefore

AdvΠ
MR ≥ φ

2
δ Pr

[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk ∧ |Est,pk ∩ [m]|
|[m]| ≥ δ

]

,

which concludes the lemma. ��
Having established how Est,pk is distributed with respect to Sst,pk, we will

now shift our attention to Sst,pk, the set of all messages which R can sign. The
first result will establish a lower bound on the expected size of Sst,pk. Intuitively,
this bound exists since in order to simulate UNF R has to provide signatures on
“many” messages.

Lemma 3. Let Σ be an EQS scheme. Let R have a reduction tightness φ. Then
there exists an adversary B running in constant time such that the probability
of a uniformly sampled m falling into Sst,pk, as defined in Definition 9, is lower-
bounded as follows:

Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk

]

≥ φ − AdvΠ
RB

Proof. Consider the unbounded adversary US (showing a bound on “S”) playing
UNF which is defined in Fig. 2. US wins with probability 1, since in the game
UNF the signature returned by the oracle is always valid, and therefore US never
aborts. Now define the efficient adversary B (Fig. 3), which queries a signature σ
and then aborts. Conditioned on σ being invalid, B perfectly simulates US . We
obtain

φ ≤ φ · AdvUNF
Σ,US

≤ AdvΠ
RUS

= Pr
[
(st, pk) ← Init,

(m′, σ′) ← UR.sign(st,.)
S (pk)

: Check(ρ,R.fin(m′, σ′)) = 1
]

,
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U sign(·)
S (pk)

1 m ← M

2 σ ← sign(m)

3 if Verify(pk, m, σ) = 0

4 abort

5 m′ ← M \ [m]

6 σ′ ← Vm′,pk

7 return (m′, σ′)

Fig. 2. The unbounded adversary US

B sign(·)(pk)

1 m ← M

2 σ ← sign(m)

3 abort

Fig. 3. The aBorting adversary B

where ρ is implicitly defined in Init,

= Pr[ΠRUS = 1 | m ∈ S̄st,pk] Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ S̄st,pk

]

+ Pr[ΠRUS = 1 | m ∈ Sst,pk] Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk

]

where the m in the two left-handed factors refers to the one chosen in line 1 of
US , and due to B simulating US in the case where σ is invalid we get

= Pr[ΠRB = 1 | m ∈ S̄st,pk] Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ S̄st,pk

]

+ Pr[ΠRUS = 1 | m ∈ Sst,pk] Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk

]

≤ AdvΠ
RB + Pr

[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk

]

,

where the last inequality is due to

Pr[ΠRB = 1 | m ∈ S̄st,pk] ≤ AdvΠ
RB

Pr[m ∈ S̄st,pk]
.

��
The next statement will translate the previous lemma to a setting where we

will fix (st, pk). Fixing (st, pk) will enable us to remove dependencies of events at
the expense of an additional condition, namely that of the fixed state/public-key
pair. This tradeoff is well worth it due to the following lemma allowing us to
reason with a similar bound about a reduced but still “large” set of state/public-
key pairs. The intuition is that if for a random state/public-key pair generated
by the experiment there is a bound, then the set of state/public-key pairs for
which a similar bound holds must be large. Since Sst,pk is “big”, there must also
be “many” state/public-key pairs for which a slightly worse bound holds. We will
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denote subsets of [Init] with I(x), where x will identify the subset in question.
For example the next lemma will define the subset for which the set Sst,pk is
“big”.

Lemma 4. Let Σ be an EQS scheme that adapts perfectly under malicious keys.
Let R have a reduction tightness φ. Let B be as defined in Fig. 3. Define a subset
of [Init] for which it is “likely” to sample a message in Sst,pk conditioned on the
given state and public key:

I(S) :=

{

(st, pk)

∣
∣
∣
∣
∣
Pr [m ← M : m ∈ Sst,pk] ≥ φ − AdvΠ

RB

2

}

.

Then Pr[(st, pk) ← Init : (st, pk) ∈ I(S)] ≥ φ−AdvΠ

RB
2 .

Proof. From Lemma 3 we have

φ − AdvΠ
RB ≤ Pr

[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk

]

=
∑

(st,pk)

Pr[(st, pk)] Pr [m ←$M : m ∈ Sst,pk]

=
∑

(st,pk)∈I(S)

Pr[(st, pk)] Pr [m ←$M : m ∈ Sst,pk]

+
∑

(st,pk)/∈I(S)

Pr[(st, pk)] Pr [m ←$M : m ∈ Sst,pk]

≤ Pr[(st, pk) ← Init : (st, pk) ∈ I(S)]

+
φ − AdvΠ

RB

2
(1 − Pr[(st, pk) ← Init : (st, pk) ∈ I(S)]).

And therefore

Pr[(st, pk) ← Init : (st, pk) ∈ I(S)] ≥ φ − AdvΠ
RB

2
.

��
Similar to Lemma 3 we can obtain a bound on the size of Est,pk. An obvious

observation is that in order for R to be successful, there must be many messages
such that when given a forgery on said message it wins Π. This follows because
R must keep its tightness guarantees even for very successful UNF-adversaries.
This idea, captured rigorously, yields the next lemma.

Lemma 5. Let Σ be an EQS scheme that adapts perfectly under malicious keys.
Let R have a reduction tightness φ. Then the probability of sampling m ∈ M and
it falling into Est,pk, as defined in Definition 9, is lower-bounded as follows:

Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ Est,pk

]

≥ φ

2



On Proving Equivalence Class Signatures Secure 21

Proof. Consider the unbounded adversary UE (showing a bound on “E”) playing
the UNF game and not making any signing queries defined as follows:

UE(pk)

1 : m ←$M

2 : σ ←$Vm,pk

3 : return (m, σ)

Then UE wins with probability 1. Note that UE is inefficient because (for a
secure scheme) one cannot efficiently sample from Vm,pk. We get

φ = φ · AdvUNF
Σ,UE

≤ AdvΠ
RUE

= Pr
[
(st, pk) ← Init,
(m,σ) ← UE(pk) : Check(ρ,R.fin(m,σ)) = 1

]

≤ Pr [ΠRUE = 1 | m ∈ Est,pk] · Pr [ΠRUE : m ∈ Est,pk]

+ Pr
[
ΠRUE = 1

∣
∣ m ∈ Ēst,pk

] · Pr
[
ΠRUE : m ∈ Ēst,pk

]
. (2)

Now by the definition of Est,pk, if R is given a uniform forgery on a message m

which is not in Est,pk, then its winning probability is less than φ
2 , therefore

(2) ≤ Pr [ΠRUE : m ∈ Est,pk] +
φ

2
.

Rearranging yields the result. ��
We just showed that if R is “tight” then Est,pk is “big”. We will lift this

result onto a level of classes by showing that there also must be “many” classes
C, which we will call “heavy”, for which the proportion of Est,pk-elements is
“big”. This partioning of the message space will be denoted by the superscript
(C), indicating that we are operating on the level of classes. This will essentially
be done by a variation of a technical lemma known as either the Splitting Lemma
or Heavy Row Lemma, for which a version can be found in [PS00, Lemma 7]. Note
that our “rows” much rather resemble the classes into which M is partitioned
as opposed to “rows” in a two dimensional representation of (G∗)2 with a basis
(g, g), which would correspond to the setting common in the literature.

Additionally we will show, in the spirit of Lemma2, that finding messages in
a “heavy” class for which R can provide a signature can be used to solve Π.

Lemma 6. Let Σ be an EQS scheme that adapts perfectly under malicious keys.
Let R have a reduction tightness φ. Define for (st, pk) ∈ [Init] the set of Est,pk-
“heavy” classes

E
(C)
st,pk :=

{

m ∈ M

∣
∣
∣
∣
|Est,pk ∩ [m]|

|[m]| ≥ φ

4

}

.
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Then

1. Pr[(st, pk) ← Init,m ←$M : m ∈ E
(C)
st,pk] ≥ φ

4 , and

2. Pr
[
(st, pk) ← Init,m ←$E

(C)
st,pk : m ∈ Sst,pk

]
≤ 32

φ3Adv
Π
MR .

Proof. To show that E
(C)
st,pk is “big” assume towards a contradiction that

Pr[(st, pk) ← Init,m ←$M : m ∈ E
(C)
st,pk] < φ

4 . From Lemma 5 we get Pr[(st, pk) ←
Init,m ←$M : m ∈ Est,pk] ≥ φ/2. Then since for m and μ uniformly chosen,
μ · m ∈ Est,pk has the same probability as m ∈ Est,pk we get

φ

2
≤ Pr

[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: μ · m ∈ Est,pk

]

= Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: μ · m ∈ Est,pk

∣
∣
∣m ∈ E

(C)
st,pk

]

· Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: m ∈ E
(C)
st,pk

]

+ Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: μ · m ∈ Est,pk

∣
∣
∣m /∈ E

(C)
st,pk

]

· Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: m /∈ E
(C)
st,pk

]

. (3)

By the premise and since m /∈ E
(C)
st,pk implies that Prμ∈Z∗

p
[μ · m ∈ Est,pk] < φ/4

we get

(3) <
φ

4
+

φ

4
=

φ

2
,

a contradiction. This proves the first part.
To prove the second part, we apply Lemma 2 for δ := φ

4 to get

8
φ2

AdvΠ
MR ≥ Pr

[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk ∧ |Est,pk ∩ [m]|
|[m]| ≥ φ

4

]

= Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk ∧ m ∈ E
(C)
st,pk

]

= Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk

∣
∣
∣m ∈ E

(C)
st,pk

]

· Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ E
(C)
st,pk

]

= Pr
[
(st, pk) ← Init,m ←$E

(C)
st,pk : m ∈ Sst,pk

]

· Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ E
(C)
st,pk

]

. (4)

Using the first part of this lemma,

(4) ≥Pr
[
(st, pk) ← Init,m ←$E

(C)
st,pk : m ∈ Sst,pk

]
· φ

4
.
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Rearranging yields

Pr
[
(st, pk) ← Init,m ←$E

(C)
st,pk : m ∈ Sst,pk

]
≤ 32

φ3
AdvΠ

MR ,

which concludes the proof of the lemma. ��
Similar to Lemma 4 we will transform the statement we just obtained into

a setting where we fix the state and public-key, and then show that many such
pairs exist for which a weaker bound holds. Since we are concerned with the
state/public-key pairs for which the intersection of Est,pk-heavy classes and Sst,pk

is “small”, we will denote this subset of [Init] with “∩”.

Lemma 7. Let Σ be an EQS scheme that adapts perfectly under malicious keys.
Let R have a reduction tightness φ. Let M be the meta-reduction defined in
Fig. 1. For δ ∈ [0, 1] define a subset of [Init] for which the size of the intersection
of E

(C)
st,pk and Sst,pk obeys a weaker bound than the one in Lemma 6 once we

condition the probability on that fixed state/public-key pair:

I
(∩)
δ :=

{

(st, pk)
∣
∣
∣
∣Pr

[
m ←$E

(C)
st,pk : m ∈ Sst,pk

]
≤ 32

δφ3
AdvΠ

MR

}

.

Then the probability of (st, pk) ← Init falling into I
(∩)
δ has the following lower

bound
Pr[(st, pk) ← Init : (st, pk) ∈ I

(∩)
δ ] ≥ 1 − δ.

Proof. From Lemma 6 we get

32
φ3

AdvΠ
MR ≥ Pr

[
(st, pk) ← Init,m ←$E

(C)
st,pk : m ∈ Sst,pk

]

=
∑

(st,pk)

Pr[(st, pk)] Pr
[
m ←$E

(C)
st,pk : m ∈ Sst,pk

]

≥
∑

(st,pk)/∈I
(∩)
δ

Pr[(st, pk)] Pr
[
m ←$E

(C)
st,pk : m ∈ Sst,pk

]

≥
∑

(st,pk)/∈I
(∩)
δ

Pr[(st, pk)] · 32
δφ3

AdvΠ
MR

= (1 − Pr[(st, pk) ← Init : (st, pk) ∈ I
(∩)
δ ]) · 32

δφ3
AdvΠ

MR .

Rearranging yields Pr[(st, pk) ← Init : (st, pk) ∈ I
(∩)
δ ] ≥ 1 − δ. ��

In the same manner we can reason that if the bound from Lemma7 holds
for a random class, then a similar bound will hold for a “large” subset of classes
when we fix the class.
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Lemma 8. Let Σ be an EQS scheme that adapts perfectly under malicious keys.
Let R have a reduction tightness φ. Let M be the meta-reduction defined in
Fig. 1. For δ ∈ [0, 1], (st, pk) ∈ I

(∩)
δ define the following subset of C: all classes

for which the intersection of E
(C)
st,pk and Sst,pk is bounded by a multiple of M’s

advantage

C(∩)
st,pk,δ :=

{

C ∈ C
∣
∣
∣
∣
∣
Pr

[

m ←$E
(C)
st,pk : m ∈ Sst,pk

∣
∣
∣
∣
∣
m ∈ C

]

≤ 64
δφ3

AdvΠ
MR

}

.

Then Pr
[
(st, pk) ← Init,m ←$M : [m] ∈ C(∩)

st,pk,δ

]
≥ φ

8 .

Proof. Let (st, pk) ∈ I
(∩)
δ then by definition of I

(∩)
δ in Lemma 7 we have

32
δφ3

AdvΠ
MR ≥ Pr

[
m ←$E

(C)
st,pk : m ∈ Sst,pk

]

≥
∑

C /∈C(∩)
st,pk,δ

Pr[m ←$E
(C)
st,pk : m ∈ C]

· Pr
[
m ←$E

(C)
st,pk : m ∈ Sst,pk |m ∈ C]

≥
∑

C /∈C(∩)
st,pk,δ

Pr[m ←$E
(C)
st,pk : m ∈ C]

64
δφ3

AdvΠ
MR

= (1 − Pr[m ←$E
(C)
st,pk : [m] ∈ C(∩)

st,pk,δ])
64
δφ3

AdvΠ
MR

And therefore

Pr[(st, pk) ← Init,m ←$E
(C)
st,pk : [m] ∈ C(∩)

st,pk,δ] ≥ 1
2

Now using this and Lemma 6 we get

Pr
[
(st, pk) ← Init,m ←$M : [m] ∈ C(∩)

st,pk,δ

]

≥ Pr

[
(st, pk) ← Init,

m ←$E
(C)
st,pk

: [m] ∈ C(∩)
st,pk,δ

]

Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ E
(C)
st,pk

]

≥ 1
2

· φ

4
=

φ

8

concluding the proof. ��
Having established lower bounds on the sizes of both I(S) and I

(∩)
δ , we will

reason that for an appropriate value for δ their intersection must be “large” as
well. This intersection contains state/public-key pairs for which both Sst,pk is big
and Sst,pk and Est,pk have a small intersection. This is of interest because the
separation along classes will enable us to construct a reduction which leverages
R’s implicit separation of classes to break DDH.



On Proving Equivalence Class Signatures Secure 25

Lemma 9. Let Σ be an EQS scheme that adapts perfectly under malicious keys.
Let R have a reduction tightness φ. Let I(S) be as defined in Lemma 4, I

(∩)
δ be

as defined in Lemma 7 and B be the aborting adversary defined in Fig. 3. Then
for δ := φ − AdvΠ

RB we get that I(S) ∩ I
(∩)

φ−AdvΠ

RB
is “big”, namely

|I(S) ∩ I
(∩)

φ−AdvΠ

RB
| ≥ φ − AdvΠ

RB

2
.

Proof. Fix δ := φ − AdvΠ
RB ; then Lemma 7 and Lemma 4 yield

|I(S) ∩ I
(∩)
δ | = |I(S) ∪ I

(∩)
δ | ≤ |I(S)| + |I(∩)

δ |

≤ φ − AdvΠ
RB

2
+ 1 − φ + AdvΠ

RB = 1 − φ − AdvΠ
RB

2
.

And therefore |I(S) ∩ I
(∩)

φ−AdvΠ

RB
| ≥ (φ − AdvΠ

RB)/2. ��
With many lemmas in the bag we can now tackle the main result of this

work. The intuitive statement is that if R is “tight” then we can construct
meta-reductions such that either one such meta-reduction will use R to win
DDH, or a different meta-reduction will use R to win Π, or R is able to win Π
itself (formally, with the help of an efficient but trivial adversary).

Theorem 1. For all groups G and all EQS schemes Σ over G that adapt per-
fectly under malicious keys (as defined in Sect. 2.3), for all computational prob-
lems Π and all reductions R that reduce Π to UNF, running the adversary once,
with a reduction tightness of φ and running in time τ , there exist meta-reductions
D attacking DDH running in time ≈2τ and M attacking Π running in time ≈τ
as well as an adversary B attacking UNF of Σ running in constant time such
that

AdvDDH
G,DR +

3φ3

32
AdvΠ

RB +
12
φ
AdvΠ

MR ≥ φ4

32
.

Proof Idea. Let’s start by first giving an idea of the proof. For a reduction R
having defined the sets Sst,pk and Est,pk we have established that both these
sets must be reasonably “large” if R is to be “successful”. Now if it is the case
that both of these sets are spread evenly across the message space, then there
exist (many) classes with both elements of Sst,pk and Est,pk. This can be used
to solve Π, as can be seen in the analysis of M defined in Fig. 1. On the other
hand, if the sets are separated into different classes, then we can construct a
meta-reduction D which extracts this information from R in order to reason
about DDH. The main effort will be in establishing an appropriate lower bound
on this latter process being successful.

The proof will use the following technical lemma.

Lemma 10. Let I be a finite set of indices. Let λi ≥ 0 for i ∈ I with
∑

i λi = 1,
xi ∈ [0, 1] for i ∈ I, and y :=

∑
i λixi. Then

∑

i∈I

λix
2
i − y2 =

∑

i∈I

λi(xi − y)2.
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Proof.
∑

i

λi(xi − y)2 =
∑

i

λi(x2
i − 2xiy + y2) =

∑

i

λix
2
i − 2y

∑

i

λixi + y2

=
∑

i

λix
2
i − 2y2 + y2 =

∑

i

λix
2
i − y2.

��

DR(g, x · g, y · g, z · g)

1 r ← R // where z = bxy + (1-b)t

2 ρ ← P

3 c := Sample(ρ)

4 (st, pk) := R.init(c, r)

5 ζ ← Z
∗
p

6 m := ζ · (g, x · g)

7 m′ := (y · g, z · g)

8 σ ← R.sign(st, m)

9 σ′ ← R.sign(st, m′)

10 if Verify(pk, m, σ) = Verify(pk, m′, σ′) :

11 return 1

12 return 0

Fig. 4. The DDH distinguisher D

Proof of Theorem 1. Consider the efficient meta-reduction D which rewinds the
reduction R and uses it in order to win the DDH-Game defined in Fig. 4. (Note
that D runs R.sign twice on the same value st.) The first four lines correspond
to the Init experiment, in which D obtains the problem instance c for R. It
then groups its inputs into two messages m and m′ and obtains a signature
from R on both messages. If the validity of both signatures matches, then D
outputs “DDH-pair”. For a fixed (st, pk) ∈ [Init] we will write Pr[(st, pk)]instead
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of Pr[(st′, pk′) ← Init : (st′, pk′) = (st, pk)] to enhance readability. Then when D
plays the DDH game on a “random” instance, it will be right with the following
probability:

Pr[DDH0
D = 0] = Pr

[
(st, pk) ← Init,
m,m′ ←$M

:
(
m ∈ Sst,pk ∧ m′ ∈ S̄st,pk

)

∨ (
m ∈ S̄st,pk ∧ m′ ∈ Sst,pk

)
]

= 2Pr
[
(st, pk) ← Init,
m,m′ ←$M

: m ∈ Sst,pk ∧ m′ ∈ S̄st,pk

]

(5)

Fixing (st, pk) will remove the dependency between the events m ∈ Sst,pk and
m′ ∈ S̄st,pk, since m and m′ are independent

(5) = 2
∑

(st,pk)

Pr[(st, pk)] · Pr
[
m,m′ ←$M : m ∈ Sst,pk ∧ m′ ∈ S̄st,pk

]

= 2
∑

(st,pk)

Pr[(st, pk)] · Pr [m ←$M : m ∈ Sst,pk]

· Pr
[
m′ ←$M : m′ ∈ S̄st,pk

]

= 2
∑

(st,pk)

Pr[(st, pk)] · Pr [m ←$M : m ∈ Sst,pk]

· (1 − Pr [m ←$M : m ∈ Sst,pk])

= 2Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk

]

− 2
∑

(st,pk)

Pr[(st, pk)] · Pr [m ←$M : m ∈ Sst,pk]
2 (6)

On the other hand, when D plays the DDH game on a “DDH” instance, its
guess will be wrong with the following probability:

Pr[DDH1
D = 0] =

= Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

:
(
m ∈ Sst,pk ∧ μ · m ∈ S̄st,pk

)

∨ (
m ∈ S̄st,pk ∧ μ · m ∈ Sst,pk

)
]

= 2Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: m ∈ S̄st,pk ∧ μ · m ∈ Sst,pk

]

= 2

(

Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: m ∈ S̄st,pk ∧ μ · m ∈ Sst,pk ∧ m ∈ Est,pk

]

+ Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: m ∈ S̄st,pk ∧ μ · m ∈ Sst,pk ∧ m ∈ Ēst,pk

])

(7)
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For the second term in parenthesis we obtain the following upper bound.

Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: m ∈ S̄st,pk ∧ μ · m ∈ Sst,pk ∧ m ∈ Ēst,pk

]

=
∑

C∈C

1
|C| Pr

⎡

⎣
(st, pk) ← Init,
m ←$M,
μ ←$Z

∗
p

: m ∈ S̄st,pk ∧ m ∈ Ēst,pk ∧ μ · m ∈ Sst,pk

∣
∣
∣
∣
∣
m ∈ C

⎤

⎦

=
∑

C∈C

1
|C|

∑

(st,pk)

Pr[(st, pk)] Pr[m ←$M,μ ←$Z
∗
p : m ∈ S̄st,pk

∧ m ∈ Ēst,pk ∧ μ · m ∈ Sst,pk | m ∈ C]

=
∑

C∈C

1
|C|

∑

(st,pk)

Pr[(st, pk)] Pr[m ←$M : m ∈ S̄st,pk

∧ m ∈ Ēst,pk | m ∈ C]
· Pr

[
m ←$M,μ ←$Z

∗
p : μ · m ∈ Sst,pk |m ∈ C]

From S̄st,pk ∩ Ēst,pk ⊆ S̄st,pk and both m and μ · m being a uniform element of
a class C, we get

≤
∑

C∈C

1
|C|

∑

(st,pk)

Pr[(st, pk)] · Pr
[
m ←$M : m ∈ S̄st,pk |m ∈ C]

· Pr [m ←$M : m ∈ Sst,pk |m ∈ C]

=
∑

C∈C

1
|C|

∑

(st,pk)

Pr[(st, pk)] · (1 − Pr [m ←$M : m ∈ Sst,pk |m ∈ C] )

· Pr [m ←$M : m ∈ Sst,pk |m ∈ C]

=
∑

(st,pk)

Pr[(st, pk)]
∑

C∈C

1
|C| (1 − Pr [m ←$M : m ∈ Sst,pk |m ∈ C] )

· Pr [m ←$M : m ∈ Sst,pk |m ∈ C]

=
∑

(st,pk)

Pr[(st, pk)]
∑

C∈C

1
|C|

(
Pr [m ←$M : m ∈ Sst,pk |m ∈ C]

−Pr [m ←$M : m ∈ Sst,pk |m ∈ C] 2
)

= Pr [(st, pk) ← Init,m ←$M : m ∈ Sst,pk]

−
∑

(st,pk)

Pr[(st, pk)]
∑

C∈C

1
|C| Pr [m ←$M : m ∈ Sst,pk |m ∈ C] 2 .
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Plugging this result together with

Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: m ∈ S̄st,pk ∧ μ · m ∈ Sst,pk ∧ m ∈ Est,pk

]

≤ Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: μ · m ∈ Sst,pk ∧ m ∈ Est,pk

]

into Eq. (7), we obtain

Pr[DDH1
D = 0]

≤ 2Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: μ · m ∈ Sst,pk ∧ m ∈ Est,pk

]

+ 2Pr [(st, pk) ← Init,m ←$M : m ∈ Sst,pk]

− 2
∑

(st,pk)

Pr[(st, pk)]
∑

C∈C

1
|C| Pr [m ←$M : m ∈ Sst,pk |m ∈ C] 2 . (8)

Putting Eqs. (6) and (8) together yields

AdvDDH
G,DR = Pr[DDH1

D = 1] − Pr[DDH0
D = 1]

= Pr[DDH0
D = 0] − Pr[DDH1

D = 0]

≥ 2Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk

]

− 2
∑

(st,pk)

Pr[(st, pk)] · Pr [m ←$M : m ∈ Sst,pk]
2

− 2Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: μ · m ∈ Sst,pk ∧ m ∈ Est,pk

]

− 2Pr
[
(st, pk) ← Init,
m ←$M

: m ∈ Sst,pk

]

+ 2
∑

(st,pk)

Pr[(st, pk)]
∑

C∈C

1
|C| Pr [m ←$M : m ∈ Sst,pk |m ∈ C] 2 (9)

Lemma 1 yields Pr
[
(st, pk) ← Init,
m ←$M,μ ←$Z

∗
p

: μ · m ∈ Sst,pk ∧ m ∈ Est,pk

]

≤ 2
φAdv

Π
MR

with M as defined in Fig. 1, and therefore

(9) ≥ 2
∑

(st,pk)

Pr[(st, pk)]

(
∑

C∈C

1
|C| Pr [m ←$M : m ∈ Sst,pk |m ∈ C] 2

− Pr [m ←$M : m ∈ Sst,pk]
2

)

− 4
φ
AdvΠ

MR . (10)
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Applying Lemma 10 for I := C, xC := Pr [m ←$M : m ∈ Sst,pk |m ∈ C] , and
λC := 1

|C| yields

(10) = 2
∑

(st,pk)

Pr[(st, pk)]
∑

C∈C

1
|C|

(
Pr [m ←$M : m ∈ Sst,pk |m ∈ C]

− Pr [m ←$M : m ∈ Sst,pk]
)2

− 4
φ
AdvΠ

MR

= 2
∑

(st,pk)

Pr[(st, pk)]
∑

C∈C

1
|C|

(
Pr [m ←$M : m ∈ Sst,pk]

− Pr [m ←$M : m ∈ Sst,pk |m ∈ C]
)2

− 4
φ
AdvΠ

MR .

Let B be the aborting adversary defined in Fig. 3. Let δ := φ − AdvΠ
RB . Then

since I := I(S) ∩ I
(∩)

φ−AdvΠ
RB

⊆ [Init] and C(∩)
st,pk := C(∩)

st,pk,φ−AdvΠ
RA

⊆ C we get

≥ 2
∑

(st,pk)∈I

Pr[(st, pk)]
∑

C∈C(∩)
st,pk

1
|C|

(

Pr [m ←$M : m ∈ Sst,pk]

− Pr [m ←$M : m ∈ Sst,pk |m ∈ C]
)2

− 4
φ
AdvΠ

MR

by the definition of I(S) in Lemma 4 and by the definition of C(∩)
st,pk in Lemma 8

we get

≥ 2
∑

(st,pk)∈I

Pr[(st, pk)]
∑

C∈C(∩)
st,pk

1
|C|

(
φ − AdvΠ

RB

2
− 64

(φ − AdvΠ
RB)φ3

AdvΠ
MR

)2

︸ ︷︷ ︸
(∗)

− 4
φ
AdvΠ

MR . (11)

For the term (∗) we obtain the following bound by expanding the square and
ignoring the squared terms:

(∗) =
φ2

4
− φAdvΠ

RB

2
+

(
AdvΠ

RB

2

)2

− 64AdvΠ
MR

φ3
+

(
64AdvΠ

MR

(φ − AdvΠ
RB)φ3

)2

≥ φ2

4
− φAdvΠ

RB

2
− 64AdvΠ

MR

φ3

and therefore

(11) ≥ 2
∑

(st,pk)∈I

Pr[(st, pk)]
∑

C∈C(∩)
st,pk

1
|C|

(
φ2

4
− φ

2
AdvΠ

RB − 64
φ3

AdvΠ
MR

)

− 4
φ
AdvΠ

MR
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Lemma 9 yields a bound on the size of I = I(S) ∩ I
(∩)

φ−AdvΠ

RB
while Lemma 8 gives

a bound on the size of C(∩)
st,pk. These facts combine to

≥ 2 · φ − AdvΠ
RB

2
· φ

8
·
(

φ2

4
− φ

2
AdvΠ

RB − 64
φ3

AdvΠ
MR

)

− 4
φ
AdvΠ

MR

≥ φ4

32
−

(
3φ3

32
AdvΠ

RB +
12
φ
AdvΠ

MR

)

,

where the last inequality comes from discarding terms that contain products of
advantages. Rearranging yields the result. ��
Expanding denominators, upper-bounding φ ≤ 1, and using Proposition 1 stating
equivalence of class-hiding and DDH, Theorem1 implies the following:

Corollary 1. For all EQS schemes Σ as defined in Sect. 2.3, for all compu-
tational problems Π and all reductions R that reduce Π to UNF, running the
adversary once, with a reduction tightness of φ and running in time τ , there
exist meta-reductions D attacking class-hiding of Σ running in time ≈ 2τ and
M attacking Π running in time ≈ τ as well as an adversary B attacking UNF
of Σ running in constant time such that

AdvCH
Σ,DR + AdvΠ

RB + AdvΠ
MR ≥ φ5

384
.

Therefore in an asymptotic setting where Σ is class-hiding (CH) and adapts
perfectly under malicious keys, and R is an efficient reduction reducing a “hard”
problem Π to UNF, Corollary 1 states that R’s tightness φ is bound by the sum
of the advantages of efficient reductions. Because of the hardness of CH and Π,
we get that these advantages are negligible. Therefore also φ must be negligible,
which yields that R is not a “useful” reduction.
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Thyagarajan, S.A.K.: Efficient invisible and unlinkable sanitizable sig-
natures. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442,
pp. 159–189. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17253-4 6

[BLS01] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 30

[BRS23] Benhamouda, F., Raykova, M., Seth, K.: Anonymous counting tokens.
IACR Cryptology ePrint Archive, p. 320 (2023, to appear at Asiacrypt
2023)

[BV98] Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to fac-
toring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
59–71. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054117

[CL03] Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient proto-
cols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol.
2576, pp. 268–289. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-36413-7 20

https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-25385-0_34
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-03356-8_7
https://eprint.iacr.org/2024/183
https://doi.org/10.1007/978-3-030-03329-3_14
https://doi.org/10.1007/978-3-030-03329-3_14
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-030-17253-4_6
https://doi.org/10.1007/978-3-030-17253-4_6
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20


On Proving Equivalence Class Signatures Secure 33

[CL19] Crites, E.C., Lysyanskaya, A.: Delegatable anonymous credentials from
mercurial signatures. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol.
11405, pp. 535–555. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-12612-4 27

[CL21] Crites, E.C., Lysyanskaya, A.: Mercurial signatures for variable-length
messages. In: PoPETs, vol. 2021, no. 4, pp. 441–463 (2021)

[CLPK22] Connolly, A., Lafourcade, P., Perez-Kempner, O.: Improved constructions
of anonymous credentials from structure-preserving signatures on equiva-
lence classes. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key
Cryptography, PKC 2022, Part I. LNCS vol. 13177, pp. 409–438. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-030-97121-2 15

[Cor00] Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44598-6 14

[Cor02] Coron, J.-S.: Optimal security proofs for PSS and other signature schemes.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–
287. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 18

[CS20] Clarisse, R., Sanders, O.: Group signature without random oracles from
randomizable signatures. In: Nguyen, K., Wu, W., Lam, K.Y., Wang, H.
(eds.) ProvSec 2020. LNCS, vol. 12505, pp. 3–23. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-62576-4 1

[DHO16] Damg̊ard, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing
information flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 547–576. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 21

[DHS15] Derler, D., Hanser, C., Slamanig, D.: A new approach to efficient revocable
attribute-based anonymous credentials. In: Groth, J. (ed.) IMACC 2015.
LNCS, vol. 9496, pp. 57–74. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-27239-9 4

[DS16] Derler, D., Slamanig, D.: Fully-anonymous short dynamic group signa-
tures without encryption. Cryptology ePrint Archive, Report 2016/154
(2016). https://eprint.iacr.org/2016/154

[DS18] Derler, D., Slamanig, D.: Highly-efficient fully-anonymous dynamic group
signatures. In: Kim, J., Ahn, G.-J., Kim, S., Kim, Y., López, J., Kim, T.
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