
A Formal Treatment of Bidirectional Typing

Abstract There has been much progress in designing bidirectional type
systems and associated type synthesis algorithms, but mainly on a case-
by-case basis. To remedy the situation, this paper develops a general
and formal theory of bidirectional typing for simply typed languages:
for every signature that specifies a mode-correct bidirectionally typed
language, there exists a proof-relevant type synthesiser which, given an
input abstract syntax tree, constructs a typing derivation if any, gives its
refutation if not, or reports that the input does not have enough type
annotations. Sufficient conditions for deriving a type synthesiser such as
soundness, completeness, and mode-correctness are studied universally
for all signatures. We propose a preprocessing step called mode decoration,
which helps the user to deal with missing type annotations. The entire
theory is formally implemented in Agda, so we provide a verified generator
of proof-relevant type synthesisers as a by-product of our formalism.

1 Introduction

Type inference is an important mechanism for the transition to well-typed
programs from untyped abstract syntax trees, which we call raw terms. Here
‘type inference’ refers specifically to algorithms that ascertain the type of any raw
term without type annotations. However, full parametric polymorphism entails
undecidability in type inference, as do dependent types [9, 31]. In light of these
limitations, bidirectional type synthesis emerged as a viable alternative, deciding
the types of raw terms that meet some syntactic criteria and typically contain
annotations. In their survey paper [10], Dunfield and Krishnaswami summarised
the principles of bidirectional type synthesis and its wide coverage of languages
with simple, polymorphic, dependent, and gradual types, among others.

While type inference is not decidable in general, for certain kinds of terms it
is still possible to synthesise their types. For example, the type of a variable can
be looked up in the context. Bidirectional type synthesis combines type synthesis
on this subset of terms with type checking (based on a given type) on the rest.
Formally, every judgement in a bidirectional type system is extended with a
mode: (i) Γ ⊢ t ⇒ A for synthesis and (ii) Γ ⊢ t ⇐ A for checking. The former
indicates that the type A is an output, using both the context Γ and the term t
as input, while for the latter, all three of Γ , t, and A are input. The algorithm
of a bidirectional type synthesiser can often be ‘read off’ from a well-designed
bidirectional type system: as the synthesiser traverses a raw term, it switches
between synthesis and checking, following the modes assigned to the judgements
in the typing rules.
c© The Author(s) 2024
S. Weirich (Ed.): ESOP 2024, LNCS 14576, pp. 115–142, 2024.
https://doi.org/10.1007/978-3-031-57262-3_5

Liang-Ting Chen(B) and Hsiang-Shang Ko

Institute of Information Science, Academia Sinica, Taipei, Taiwan

{ltchen,joshko}@iis.sinica.edu.tw

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57262-3_5&domain=pdf
http://orcid.org/0000-0002-3250-1331
http://orcid.org/0000-0002-2439-1048
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

Despite sharing the same basic idea, bidirectional typing has been mostly
developed on a case-by-case basis. Dunfield and Krishnaswami present informal
design principles learned from individual bidirectional type systems, but in
addition to crafting special techniques for individual systems, we should start
to consolidate concepts common to a class of bidirectional type systems into
a general and formal theory that gives mathematically precise definitions and
proves theorems for the class of systems once and for all. In this paper, we develop
such a theory of bidirectional typing with the proof assistant Agda.

Proof-relevant type synthesis Our work adopts a proof-relevant approach
to (bidirectional) type synthesis, as illustrated by Wadler et al. [30] for PCF.
The proof-relevant formulation deviates from the usual one: traditionally, a type
synthesis algorithm is presented as algorithmic rules, for example in the form
Γ ⊢ t ⇒ A 7→ t′, which denotes that t in the surface language can be transformed
to a well-typed term t′ of type A in the core language [24]. Such an algorithm
is accompanied by soundness and completeness assertions that the algorithm
correctly synthesises the type of a raw term, and every typable term can be
synthesised. By contrast, the proof-relevant approach exploits the simultaneously
computational and logical nature of Martin-Löf type theory, and formulates
algorithmic soundness, completeness, and decidability in one go.

Recall that the law of excluded middle P +¬P does not hold as an axiom for
every P constructively, and we say that P is logically decidable if the law holds
for P . Since Martin-Löf type theory is logical and computational, a decidability
proof is a proof-relevant decision procedure that computes a yes-or-no answer with
a proof of P or its refutation, so logical decidability is algorithmic decidability.
More specifically, consider the statement of the type inference problem

‘for a context Γ and a raw term t, either a typing derivation of Γ ⊢ t : A
exists for some type A or any derivation of Γ ⊢ t : A for some type A
leads to a contradiction’,

which can be rephrased more succinctly as

‘It is decidable for any Γ and t whether Γ ⊢ t : A is derivable for some A’.

A proof of this statement would also be a program that produces either a typing
derivation for the given raw term t or a negation proof that such a derivation
is impossible. The first case is algorithmic soundness, while the second case
is algorithmic completeness in contrapositive form (which implies the original
form due to the decidability). Therefore, proving the statement is the same as
constructing a verified proof-relevant type inference algorithm, which returns not
only an answer but also a proof justifying that answer. This is an economic way
to bridge the gap between theory and practice, where proofs double as verified
programs, in contrast to separately exhibiting a theory and an implementation
that are loosely related.

116 L.-T. Chen and H.-S. Ko

A Formal Treatment of Bidirectional Typing 117

Annotations in the type synthesis problem As we mentioned in the
beginning, with bidirectional typing we avoid the generally undecidable problem
of type inference, and instead solve the simpler problem about the typability of
‘sufficiently annotated’ raw terms, which we call the type synthesis problem to
distinguish it from type inference. Annotations therefore play an important role
even in the definition of the problem solved by bidirectional typing, but have not
received enough attention. In our theory, we define mode derivations to explicitly
take annotations into account, and formulate the type synthesis problem with
sufficiently annotated raw terms. Accordingly, a preprocessing step called mode
decoration is proposed to help the user to work with annotations.

The type synthesis problem is not just about deciding whether a raw term
is typable—there is a third possibility that the term does not have sufficient
annotations. Thus, before attempting to decide typability (using a bidirectional
type synthesiser), we should first decide if the raw term has sufficient annotations,
which corresponds to whether the term has a mode derivation. Our theory gives
a proof-relevant mode decorator, which either (i) construct a mode derivation
for a raw term, or (ii) provides information that refutes the existence of any
mode derivation and pinpoints missing annotations. Then a bidirectional type
synthesiser is only required to decide the typability of mode-decorated raw terms.
Soundness and completeness of bidirectional typing is reformulated as a one-to-
one correspondence between bidirectional typing derivations and pairs of a typing
derivation and a mode derivation for the same raw term. Our completeness is
simpler and more useful than annotatability, which is a typical formulation of
completeness in the literature of bidirectional typing [10, Section 3.2].

Mode-correctness and general definitions of languages The most essential
characteristics of bidirectional typing is mode-correctness, since an algorithm
can often be ‘read off’ from the definition of a bidirectionally typed language if
mode-correct. As illustrated by Dunfield and Krishnaswami [10], it seems that
the implications of mode-correctness have only been addressed informally so far,
and mode-correctness is not yet formally defined as a property of languages.

In order to make the notion of mode-correctness precise, we first give a
general definition of bidirectional simple type systems, called bidirectional binding
signature, extending the typed version of Aczel’s binding signature [1] with modes.
A general definition of typed languages allows us to define mode-correctness and
to investigate its consequences rigorously: the uniqueness of synthesised types and
the decidability of bidirectional type synthesis for mode-correct signatures. The
proof of the latter theorem amounts to a generator of proof-relevant bidirectional
type synthesisers (analogous to a parser generator working for unambiguous or
disambiguated grammars).

To make our exposition accessible, the theory in this paper focuses on simply
typed languages with a syntax-directed bidirectional type system, so that the
decidability of bidirectional type synthesis can be established without any other
technical assumptions. It should be possible to extend the theory to deal with
more expressive types and assumptions other than mode-correctness. For instance,

we briefly discuss how the theory can be extended to handle polymorphically
typed languages such as System F, System F<:, and those systems using implicit
type applications with additional assumptions in Section 7.

Contributions and plan of this paper In short, we develop a general and
formal theory of bidirectional type synthesis for simply typed languages, including

1. general definitions for bidirectional type systems and mode-correctness;
2. mode derivations for explicitly dealing with annotations in the theory, and

mode decoration for helping the user to work with annotations in practice;
3. rigorously proven consequences of mode-correctness, including the uniqueness

of synthesised types and the decidability of bidirectional type synthesis, which
amounts to

4. a fully verified generator of proof-relevant type-synthesisers.

Our theory is fully formally developed with Agda, but is translated to the
mathematical vernacular for presentation in this paper. The formal theory doubles
as a verified implementation, which is available publicly on Zenodo [8].

This paper is structured as follows. We present a concrete overview of our
theory using simply typed λ-calculus in Section 2, prior to developing a general
framework for specifying bidirectional type systems in Section 3. Following
this, we discuss mode decoration and related properties in Section 4. The main
technical contribution lies in Section 5, where we introduce mode-correctness and
bidirectional type synthesis. Some examples other than simply typed λ-calculus
are given in Section 6, and further developments are discussed in Section 7.

2 Bidirectional type synthesis for simply typed λ-calculus

We start with an overview of our theory by instantiating it to simply typed
λ-calculus. Roughly speaking, the problem of type synthesis requires us to take
a raw term as input, and produce a typing derivation for the term if possible.
To give more precise definitions: the raw terms for simply typed λ-calculus are
defined1 in Figure 1; besides the standard constructs, there is an Anno rule that
allows the user to insert type annotations to facilitate type synthesis.

V ⊢ t Given a list V of variables, t is a raw term with free variables in V

x ∈ V

V ⊢ x
Var

V ⊢ t

V ⊢ (t : A)
Anno

V, x ⊢ t

V ⊢ λx. t
Abs

V ⊢ t V ⊢ u

V ⊢ t u
App

Figure 1. Raw terms for simply typed λ-calculus

1 The usual conditions about named representations of variables are omitted.

118 L.-T. Chen and H.-S. Ko

Γ ⊢ t : A A raw term t has type A under context Γ

(x : A) ∈ Γ

Γ ⊢ x : A
Var

Γ ⊢ t : A

Γ ⊢ (t : A) : A
Anno

Γ, x : A ⊢ t : B

Γ ⊢ λx. t : A⊃B
Abs

Γ ⊢ t : A⊃B Γ ⊢ u : A

Γ ⊢ t u : B
App

Figure 2. Typing derivations for simply typed λ-calculus

Correspondingly, the definition of typing derivations2 in Figure 2 has an Anno
rule enforcing that the type of an annotated term does match the annotation.

Now we can define what it means to solve the type synthesis problem.

Definition 2.1. Parametrised by an ‘excuse’ predicate E on raw terms, a type
synthesiser takes a context Γ and a raw term |Γ | ⊢ t (where |Γ | is the list of
variables in Γ) as input, and establishes one of the following outcomes:

1. there exists a derivation of Γ ⊢ t : A for some type A,
2. there does not exist a derivation Γ ⊢ t : A for any type A, or
3. E holds for t.

It is crucial to allow the third outcome, without which we would be requiring
the type synthesis problem to be decidable, but this requirement would quickly
become impossible to meet when the theory is extended to handle more complex
types. If a type synthesiser cannot decide whether there is a typing derivation,
it is allowed to give an excuse instead of an answer. Acceptable excuses are
defined by the predicate E, which describes what is wrong with an input term,
for example, not having enough type annotations.

Γ ⊢ t ⇒ A A raw term t synthesises a type A under Γ

Γ ⊢ t ⇐ A A raw term t checks against a type A under Γ

(x : A) ∈ Γ

Γ ⊢ x ⇒ A
Var⇒ Γ ⊢ t ⇐ A

Γ ⊢ (t : A) ⇒ A
Anno⇒ Γ ⊢ t ⇒ B B = A

Γ ⊢ t ⇐ A
Sub⇐

Γ, x : A ⊢ t ⇐ B

Γ ⊢ λx. t ⇐ A⊃B
Abs⇐

Γ ⊢ t ⇒ A⊃B Γ ⊢ u ⇐ A

Γ ⊢ t u ⇒ B
App⇒

Figure 3. Bidirectional typing derivations for simply typed λ-calculus

2 We write ‘⊃’ instead of ‘→’ for the function types of simply typed λ-calculus to avoid
confusion with the function types in our type-theoretic meta-language.

A Formal Treatment of Bidirectional Typing 119

V ⊢ t⇒ A raw term t (with free variables in V) is in synthesising mode

V ⊢ t⇐ A raw term t (with free variables in V) is in checking mode

x ∈ V

V ⊢ x⇒ Var⇒ V ⊢ t⇐

V ⊢ (t : A)⇒
Anno⇒ V ⊢ t⇒

V ⊢ t⇐
Sub⇐

V, x ⊢ t⇐

V ⊢ (λx. t)⇐
Abs⇐

V ⊢ t⇒ V ⊢ u⇐

V ⊢ (t u)⇒
App⇒

Figure 4. Mode derivations for simply typed λ-calculus

Now our goal is to use Definition 2.1 as a specification and implement it using
a bidirectional type synthesiser, which attempts to produce bidirectional typing
derivations defined in Figure 3. It is often said that a type synthesis algorithm
can be ‘read off’ from well-designed bidirectional typing rules. Take the App⇒

rule as an example: to synthesise the type of an application t u, we first synthesise
the type of t, which should have the form A⊃B, from which we can extract the
expected type of u, namely A, and perform checking; then the type of the whole
application, namely B, can also be extracted from the type A⊃ B. Note that
the synthesiser is able to figure out the type A for checking u and the type B to
be synthesised for t u because they have been computed when synthesising the
type A⊃B of t. In general, there should be a flow of type information in each
rule that allows us to determine unknown types (e.g. types to be checked) from
known ones (e.g. types previously synthesised). This is called mode-correctness,
which we will formally define in Section 5.1.

While it is possible for a bidirectional type synthesiser to do its job in one
go, which can be thought of as adding both mode and typing information to
a raw term and arriving at a bidirectional typing derivation, it is beneficial to
have a preprocessing step which adds only mode information, based on which
the synthesiser then continues to add typing information. More precisely, the
preprocessing step, which we call mode decoration, attempts to produce mode
derivations as defined in Figure 4, where the rules are exactly the mode part of
the bidirectional typing rules (Figure 3).

Definition 2.2. A mode decorator decides for a raw term V ⊢ t whether V ⊢ t⇒.

One (less important) benefit of mode decoration is that it helps to simplify
the synthesiser, whose computation can be partly directed by a mode derivation.
More importantly, whether there is a mode derivation for a term is actually
very useful information to the user, because it corresponds to whether the term
has enough type annotations: observe that the Anno⇒ and Sub⇐ rules allow
us to switch between the synthesising and checking modes; the switch from
synthesising to checking is free, whereas the opposite direction requires a type
annotation. That is, any term in synthesising mode is also in checking mode, but
not necessarily vice versa. A type annotation is required wherever a term that can

120 L.-T. Chen and H.-S. Ko

only be in checking mode is required to be in synthesising mode, and a term does
not have a mode derivation if and only if type annotations are missing in such
places. (We will treat all these more rigorously in Section 4.) For example, an
abstraction is strictly in checking mode, but the left sub-term of an application
has to be synthesising, so a term of the form (λx. t) u does not have a mode
derivation unless we annotate the abstraction.

Perhaps most importantly, mode derivations enable us to give bidirectional
type synthesisers a tight definition: if we restrict the domain of a synthesiser to
terms in synthesising mode (i.e. having enough type annotations for performing
synthesis), then it is possible for the synthesiser to decide whether there is a
suitable typing derivation.

Definition 2.3. A bidirectional type synthesiser decides for any context Γ and
synthesising term |Γ | ⊢ t⇒ whether Γ ⊢ t ⇒ A for some type A.

Now we can get back to implementing a type synthesiser (Definition 2.1).

Theorem 2.4. A type synthesiser using ‘not in synthesising mode’ as its excuse
can be constructed from a mode decorator and a bidirectional type synthesiser.

The construction is straightforward: run the mode decorator on the input
term |Γ | ⊢ t. If there is no synthesising mode derivation, report that t is not
in synthesising mode (the third outcome). Otherwise |Γ | ⊢ t⇒, and we can run
the bidirectional type synthesiser. If it finds a derivation of Γ ⊢ t ⇒ A for some
type A, return a derivation of Γ ⊢ t : A (the first outcome), which is possible
because the bidirectional typing (Figure 3) is sound with respect to the original
typing (Figure 2); if there is no derivation of Γ ⊢ t ⇒ A for any type A, then
there is no derivation of Γ ⊢ t : A for any A either (the second outcome), because
the bidirectional typing is complete:

Theorem 2.5 (Soundness and Completeness). Γ ⊢ t ⇒ A if and only if
|Γ | ⊢ t⇒ and Γ ⊢ t : A.

We will construct a mode decorator (Section 4.2) and a bidirectional type
synthesiser (Section 5) and prove the above theorem for all syntax-directed
bidirectional simple type systems (Section 4.1). To quantify over all such systems,
we need their general definitions, which we formulate next.

3 Bidirectionally simply typed languages

This section provides general definitions of simple types, simply typed languages,
and bidirectional type systems, and uses the simply typed λ-calculus in Section 2
as our running example. These definitions may look dense, especially on first
reading. The reader may choose to skim through this section, in particular the
figures, and still get some rough ideas from later sections.

A Formal Treatment of Bidirectional Typing 121

The definitions are formulated in two steps: (i) first we introduce a notion of
arity and a notion of signature which includes a set3 of operation symbols and an
assignment of arities to symbols; (ii) then, given a signature, we define raw terms
and typing derivations inductively by primitive rules such as Var and a rule
schema for constructs opo indexed by an operation symbol o. As we move from
simple types to bidirectional typing, the notion of arity, initially as the number
of arguments of an operation, is enriched to incorporate an extension context for
variable binding and the mode for the direction of type information flow.

3.1 Signatures and simple types

For simple types, the only datum needed for specifying a type construct is its
number of arguments:

Definition 3.1. A signature Σ for simple types consists of a set I with a
decidable equality and an arity function ar : I → N. For a signature Σ, a type
A : TyΣ(Ξ) over a variable set Ξ is either

1. a variable in Ξ or
2. opi(A1, . . . , An) for some i : I with ar(i) = n and types A1, . . . , An.

Example 3.2. Function types A⊃B and typically a base type b are included in
simply typed λ-calculus, and can be specified by the type signature Σ⊃ consisting
of operations fun and b where ar(fun) = 2 and ar(b) = 0. Then, all types in
simply typed λ-calculus can be given as Σ⊃-types over the empty set, with A⊃B
introduced as opfun(A,B) and b as opb.

Definition 3.3. The substitution for a function ρ : Ξ → TyΣ(Ξ
′), denoted by

ρ : SubΣ(Ξ,Ξ ′), is a map which sends a type A : TyΣ(Ξ) to A⟨ρ⟩ : TyΣ(Ξ ′) and
is defined as usual.

3.2 Binding signatures and simply typed languages

A simply typed language specifies (i) a family of sets of raw terms t indexed by a
list V of variables (that are currently in scope), where each construct is allowed
to bind some variables like Abs and to take multiple arguments like App; (ii) a
family of sets of typing derivations indexed by a typing context Γ , a raw term t,
and a type A. Therefore, to specify a term construct, we enrich the notion of
arity with some set of types for typing and extension context for variable binding.

Definition 3.4 ([13, p. 322]). A binding arity with a set T of types is an
inhabitant of (T ∗ × T)

∗×T , where T ∗ is the set of lists over T . In a binding arity
(((∆1, A1), . . . , (∆n, An)), A), every ∆i and Ai refers to the extension context
and the type of the i-th argument, respectively, and A the target type. For brevity,
it is denoted by [∆1]A1, . . . , [∆n]An → A, where [∆i] is omitted if empty.
3 Even though our theory is developed in Martin-Löf type theory, the term ‘set’ is used

instead of ‘type’ to avoid the obvious confusion. Indeed, as we assume Axiom K, all
types are legitimately sets in the sense of homotopy type theory [29, Definition 3.1.1].

122 L.-T. Chen and H.-S. Ko

Example 3.5. Observe that the Abs and App rules in Figure 2 can be read as

Γ, x : A, · ⊢ t : B

Γ ⊢ λx. t : A⊃B
and

Γ, · ⊢ t : A⊃B Γ, · ⊢ u : A

Γ ⊢ t u : B

extension contexts
argument types

target types

if the empty context · is added verbosely, so they can be specified by arities
[A]B → (A⊃B) and (A⊃B), A → B, respectively, with TyΣ⊃

(A,B) as types.

Next, akin to a signature, a binding signature Ω consists of a set of operation
symbols along with their respective binding arities:

Definition 3.6. For a type signature Σ, a binding signature Ω is a set O with
a function

ar : O →
∑
Ξ:U

(TyΣ(Ξ)∗ × TyΣ(Ξ))
∗ × TyΣ(Ξ).

That is, each inhabitant o : O is associated with a set Ξ of type variables and an
arity ar(o) with TyΣ(Ξ) as types denoted by o : Ξ ▷ [∆1]A1, . . . , [∆n]An → A0.

The set Ξ of type variables for each operation, called its local context, plays an
important role. To use a rule like Abs in an actual typing derivation, we need to
substitute concrete types, i.e. types without any type variables, for variables A,B.
In our formulation of substitution (3.3), we must first identify which type variables
to substitute for. As such, this information forms part of the arity of an operation,
and typing derivations, defined subsequently, will include functions ρ from Ξ to
concrete types specifying how to instantiate typing rules by substitution.

By a simply typed language (Σ,Ω), we mean a pair of a type signature Σ and
a binding signature Ω. Now, we define raw terms for (Σ,Ω) first.

Definition 3.7. For a simply typed language (Σ,Ω), the family of sets of raw
terms indexed by a list V of variables consists of (i) (indices of) variables in V ,
(ii) annotations t : A for some raw term t in V and a type A, and (iii) a construct
opo(x⃗1. t1; . . . ; x⃗n. tn) for some o : Ξ ▷ [∆1]A1, . . . , [∆n]An → A0 in O, where
x⃗i’s are lists of variables whose length is equal to the length of ∆i, and ti’s are
raw terms in the variable list V, x⃗i. These correspond to rules Var, Anno, and
Op in Figure 5 respectively.

Before defining typing derivations, we need a definition of typing contexts.

Definition 3.8. A typing context Γ : CxtΣ is formed by · for the empty context
and Γ, x : A for an additional variable x with a concrete type A : TyΣ(∅). The
list of variables in Γ is denoted |Γ |.

The definition of typing derivations is a bit more involved. We need some
information to compare types on the object level during type synthesis and
substitute those type variables in a typing derivation of Γ ⊢ opo(x⃗1. t1; . . . ; x⃗n. tn) :
A for an operation o in Ω at some point. Here we choose to include a substitution
ρ from the local context Ξ to ∅ as part of its typing derivation explicitly:

A Formal Treatment of Bidirectional Typing 123

V ⊢Σ,Ω t t is a raw term for a language (Σ,Ω) with free variables in V

x ∈ V

V ⊢Σ,Ω x
Var

· ⊢Σ A V ⊢Σ,Ω t

V ⊢Σ,Ω t : A
Anno

V, x⃗1 ⊢Σ,Ω t1 · · · V, x⃗n ⊢Σ,Ω tn

V ⊢Σ,Ω opo(x⃗1. t1; . . . ; x⃗n. tn)
Op

for o : Ξ ▷ [∆1]A1, . . . , [∆n]An → A0 in Ω

Figure 5. Raw terms

Definition 3.9. For a simply typed language (Σ,Ω), the family of sets of typing
derivations of Γ ⊢ t : A, indexed by a typing context Γ : CxtΣ , a raw term t with
free variables in |Γ |, and a type A : TyΣ(∅), consists of

1. a derivation of Γ ⊢Σ,Ω x : A if x : A is in Γ ,
2. a derivation of Γ ⊢Σ,Ω (t : A) : A if Γ ⊢Σ,Ω t : A has a derivation, and
3. a derivation of Γ ⊢Σ,Ω opo(x⃗1. t1; . . . ; x⃗n. tn) : A0⟨ρ⟩ for some operation

o : Ξ ▷ [∆1]A1, . . . , [∆n]An → A0 if there exist ρ : Ξ → TyΣ(∅) and a
derivation of Γ, x⃗i : ∆i⟨ρ⟩ ⊢Σ,Ω ti : Ai⟨ρ⟩ for each i,

corresponding to rules Var, Anno, and Op in Figure 6 respectively.

Example 3.10. Raw terms (Figure 1) and typing derivations (Figure 2) for simply
typed λ-calculus can be specified by the type signature Σ⊃ (Example 3.2)
and the binding signature consisting of app : A,B ▷ (A ⊃ B), A → B and
abs : A,B ▷ [A]B → (A⊃ B). Rules Abs and App in simply typed λ-calculus
are subsumed by the Op rule schema, as applications t u and abstractions λx. t
can be introduced uniformly as opapp(t, u) and opabs(x.t), respectively.

3.3 Bidirectional binding signatures and bidirectional type systems

Typing judgements for a bidirectional type system appear in two forms: Γ ⊢ t ⇒ A
and Γ ⊢ t ⇐ A. These two typing judgements can be considered as a single
typing judgement Γ ⊢ t :d A indexed by a mode d : Mode, which can be either
⇒ or ⇐. Therefore, to define a bidirectional type system, we enrich the concept
of binding arity to bidirectional binding arity, which further specifies the mode
for each of its arguments and for the conclusion:

Definition 3.11. A bidirectional binding arity with a set T of types is an
inhabitant of

(T ∗ × T ×Mode)∗ × T ×Mode.

For clarity, an arity is denoted by [∆1]A
d1
1 , . . . , [∆n]A

dn
n → Ad

0.

124 L.-T. Chen and H.-S. Ko

Example 3.12. Consider the Abs⇐ rule (Figure 3) for λx. t. It has the arity
[A]B⇐ → (A⊃B)⇐, indicating additionally that both λx. t and its argument t
are checking. Likewise, the App⇒ rule has the arity (A⊃B)⇒, A⇐ → B⇒.

Definition 3.13. For a type signature Σ, a bidirectional binding signature Ω is
a set O with

ar : O →
∑
Ξ:U

(TyΣ(Ξ)∗ × TyΣ(Ξ)×Mode)∗ × TyΣ(Ξ)×Mode.

We write o : Ξ ▷ [∆1]A
d1
1 , . . . , [∆n]A

dn
n → Ad

0 for an operation o with a variable
set Ξ and its bidirectional binding arity with TyΣ(Ξ) as types. We call it checking
if d is ⇐ or synthesising if d is ⇒; similarly, its i-th argument is checking if di
is ⇐ and synthesising if di is ⇒. A bidirectional type system (Σ,Ω) refers to a
pair of a type signature Σ and a bidirectional binding signature Ω.

Definition 3.14. For a bidirectional type system (Σ,Ω),

– the set of bidirectional typing derivations of Γ ⊢Σ,Ω t :d A, indexed by a
typing context Γ , a raw term t under |Γ |, a mode d, and a type A, is defined
in Figure 7, and particularly

Γ ⊢Σ,Ω opo(x⃗1. t1; . . . ; x⃗n. tn) :
d A0⟨ρ⟩

has a derivation for o : Ξ ▷ [∆1]A
d1
1 , . . . , [∆n]A

dn
n → Ad

0 in Ω if there is
ρ : Ξ → TyΣ(∅) and a derivation of Γ, x⃗i : ∆i⟨ρ⟩ ⊢Σ,Ω ti :

di Ai⟨ρ⟩ for each i;
– the set of mode derivations of V ⊢Σ,Ω td, indexed by a list V of variables, a

raw term t under V , and a mode d, is defined in Figure 8.

The two judgements Γ ⊢Σ,Ω t ⇒ A and Γ ⊢Σ,Ω t ⇐ A stand for Γ ⊢Σ,Ω t :⇒ A

and Γ ⊢Σ,Ω t :⇐ A, respectively. A typing rule is checking if its conclusion mode
is ⇐ or synthesising otherwise.

Every bidirectional binding signature Ω gives rise to a binding signature |Ω|
if we erase modes from Ω, called the (mode) erasure of Ω. Hence a bidirectional
type system (Σ,Ω) also specifies a simply typed language (Σ, |Ω|), including raw
terms and typing derivations.

Example 3.15. Having established generic definitions, we can now specify simply
typed λ-calculus and its bidirectional type system—including raw terms, (bidirec-
tional) typing derivations, and mode derivations—using just a pair of signatures
Σ⊃ (Example 3.2) and Ω⇔

Λ which consists of

abs : A,B ▷ [A]B⇐ → (A⊃B)⇐ and app : A,B ▷ (A⊃B)⇒, A⇐ → B⇒.

More importantly, we are able to reason about constructions and properties that
hold for any simply typed language with a bidirectional type system once and
for all by quantifying over (Σ,Ω).

A Formal Treatment of Bidirectional Typing 125

Γ ⊢Σ,Ω t : A t has a concrete type A under Γ for a language (Σ,Ω)

(x : A) ∈ Γ

Γ ⊢Σ,Ω x : A
Var

Γ ⊢Σ,Ω t : A

Γ ⊢Σ,Ω (t : A) : A
Anno

ρ : SubΣ(Ξ, ∅) Γ, x⃗1 : ∆1⟨ρ⟩ ⊢Σ,Ω t1 : A1⟨ρ⟩ · · · Γ, x⃗n : ∆n⟨ρ⟩ ⊢Σ,Ω tn : An⟨ρ⟩
Γ ⊢Σ,Ω opo(x⃗1. t1; . . . ; x⃗n. tn) : A0⟨ρ⟩

Op

for o : Ξ ▷ [∆1]A1, . . . , [∆n]An → A0 in Ω

Figure 6. Typing derivations

Γ ⊢Σ,Ω t :d A t has a type A in mode d under Γ for a bidirectional system (Σ,Ω)

(x : A) ∈ Γ

Γ ⊢Σ,Ω x :⇒ A
Var⇒ Γ ⊢Σ,Ω t :⇐ A

Γ ⊢Σ,Ω (t : A) :⇒ A
Anno⇒

Γ ⊢Σ,Ω t :⇒ B B = A

Γ ⊢Σ,Ω t :⇐ A
Sub⇐

ρ : SubΣ(Ξ, ∅)
Γ, x⃗1 : ∆1⟨ρ⟩ ⊢Σ,Ω t1 :d1 A1⟨ρ⟩ · · · Γ, x⃗n : ∆n⟨ρ⟩ ⊢Σ,Ω tn :dn An⟨ρ⟩

Γ ⊢Σ,Ω opo(x⃗1. t1; . . . ; x⃗n. tn) :
d A0⟨ρ⟩

Op

for o : Ξ ▷ [∆1]A
d1
1 , . . . , [∆n]A

dn
n → Ad

0 in Ω

Figure 7. Bidirectional typing derivations

V ⊢Σ,Ω td t is in mode d with free variables in V for (Σ,Ω)

x ∈ V

V ⊢Σ,Ω x⇒ Var⇒ · ⊢Σ A V ⊢Σ,Ω t⇐

V ⊢Σ,Ω (t : A)⇒
Anno⇒ V ⊢Σ,Ω t⇒

V ⊢Σ,Ω t⇐
Sub⇐

V, x⃗1 ⊢Σ,Ω t1
d1 · · · V, x⃗n ⊢Σ,Ω tn

dn

V ⊢Σ,Ω opo(x⃗1. t1; . . . ; x⃗n. tn)
d

Op

for o : Ξ ▷ [∆1]A
d1
1 , . . . , [∆n]A

dn
n → Ad

0

Figure 8. Mode derivations

126 L.-T. Chen and H.-S. Ko

4 Mode decoration and related properties

Our first important construction is mode decoration in Section 4.2, which is in
fact generalised to pinpoint any missing type annotations in a given raw term.
We discuss some related properties: by bringing mode derivations into the picture,
we are able to give a natural formulation of soundness and completeness of a
bidirectional type system with respect to its erasure to an ordinary type system
in Section 4.1. We also reformulate annotatability [10, Section 3.2] and compare
it with our completeness and generalised mode decoration in Section 4.3.

4.1 Soundness and completeness

Erasure of a bidirectional binding signature removes modes and keeps everything
else intact; this can be straightforwardly extended by induction to remove modes
from a bidirectional typing derivation and arrive at an ordinary typing derivation,
which is soundness. Alternatively, we can remove typing and retain modes, arriving
at a mode derivation. Conversely, if we have both mode and typing derivations
for the same term, we can combine them to form a bidirectional typing derivation,
which is completeness. In short, soundness and completeness are merely the
separation and combination of mode and typing information carried by the three
kinds of derivations while keeping their basic structure, directed by the same raw
term. All these can be summarised in one theorem and proved by induction.

Theorem 4.1. Γ ⊢Σ,Ω t :d A if and only if both |Γ | ⊢Σ,Ω td and Γ ⊢Σ,|Ω| t : A.

4.2 Generalised mode decoration

The goal of this section is to construct a mode decorator, which decides for any
raw term V ⊢Σ,|Ω| t and mode d whether V ⊢Σ,Ω td or not. In fact we shall do
better: if a mode decorator returns a proof that no mode derivation exists, that
negation proof does not give useful information for the user. It will be helpful if a
decorator can produce an explanation of why no mode derivation exists, and even
how to fix the input term to have a mode derivation. We will construct such a
generalised mode decorator (Theorem 4.4), which can be weakened to an ordinary
mode decorator (Corollary 4.6) if the additional explanation is not needed.4

Intuitively, a term does not have a mode derivation exactly when there
are not enough type annotations, but such negative formulations convey little
information. Instead, we can provide more information by pointing out the
places in the term that require annotations. For a bidirectional type system, an
annotation is required wherever a term is ‘strictly’ (which we will define shortly)
in checking mode but required to be in synthesising mode, in which case there
is no rule for switching from checking to synthesising, and thus there is no way
to construct a mode derivation. We can, however, consider generalised mode
derivations (Figure 9) that allow the use of an additional Missing⇒ rule for such
4 For the sake of simplicity, we use ordinary mode decoration elsewhere in this paper.

A Formal Treatment of Bidirectional Typing 127

is in mode d,
V ⊢Σ,Ω td g s t misses some type annotation iff g = F, and

is in mode d due to an outermost mode cast iff s = F

x ∈ V

V ⊢Σ,Ω x⇒TT
Var⇒ · ⊢Σ A V ⊢Σ,Ω t⇐ g s

V ⊢Σ,Ω (t : A)⇒ gT
Anno⇒

V ⊢Σ,Ω t⇐ gT

V ⊢Σ,Ω t⇒FF
Missing⇒ V ⊢Σ,Ω t⇒ gT

V ⊢Σ,Ω t⇐ gF
Sub⇐

V, x⃗1 ⊢Σ,Ω t1
d1 g1 s1 · · · V, x⃗n ⊢Σ,Ω tn

dn gn sn

V ⊢Σ,Ω opo(x⃗1. t1; . . . ; x⃗n. tn)
d (

∧
i gi)T

Op

Figure 9. Generalised mode derivations

switching, so that a derivation can always be constructed. Given a generalised
mode derivation, if it uses Missing⇒ in some places, then those places are exactly
where annotations should be supplied; if it does not use Missing⇒, then the
derivation is genuine in the sense that it corresponds directly to an original mode
derivation. This can be succinctly formulated as Lemma 4.2 below by encoding
genuineness as a boolean g in the generalised mode judgement, which is set to F
only by the Missing⇒ rule. (Ignore the boolean s for now.)

Lemma 4.2. If V ⊢Σ,Ω tdT s, then V ⊢Σ,Ω td.

We also want a lemma that covers the case where g = F.

Lemma 4.3. If V ⊢Σ,Ω tdF s, then V ⊬Σ,Ω td.

This lemma would be wrong if the ‘strictness’ boolean s was left out of the
rules: having both Sub⇐ and Missing⇒, which we call mode casts, it would be
possible to switch between the two modes freely, which unfortunately means
that we could insert a pair of Sub⇐ and Missing⇒ anywhere, constructing a
non-genuine derivation even when there is in fact a genuine one. The ‘strictness’
boolean s can be thought of as disrupting the formation of such pairs of mode
casts: every rule other than the mode casts sets s to T, meaning that a term
is strictly in the mode assigned by the rule (i.e. not altered by a mode cast),
whereas the mode casts set s to F. Furthermore, the sub-derivation of a mode
cast has to be strict, so it is impossible to have consecutive mode casts. Another
way to understand the role of s is that it makes the Missing⇒ rule precise: an
annotation is truly missing only when a term is strictly in checking mode but is
required to be in synthesising mode. The explicit formulation of strictness makes
non-genuine derivations ‘truly non-genuine’, and Lemma 4.3 can be proved.

Now we are ready to construct a generalised mode decorator.

Theorem 4.4 (Generalised mode decoration). For any raw term V ⊢Σ,|Ω| t

and mode d, there is a derivation of V ⊢Σ,Ω td g s for some g and s.

128 L.-T. Chen and H.-S. Ko

The theorem could be proved directly, but that would mix up two case analyses
which respectively inspect the input term t and apply mode casts depending on
which mode d is required. Instead, we distill the case analysis on d that deals
with mode casts into the following Lemma 4.5, whose antecedent (1) is then
established by induction on t in the proof of Theorem 4.4.

Lemma 4.5. For any raw term V ⊢Σ,|Ω| t, if

V ⊢Σ,Ω td
′ g′ T for some mode d′ and boolean g′ (1)

then for any mode d, there is a derivation of V ⊢Σ,Ω td g s for some g and s.

With a generalised mode decorator, it is now easy to derive an ordinary one.

Corollary 4.6 (Mode decoration). It is decidable whether V ⊢Σ,Ω td.

4.3 Annotatability

Dunfield and Krishnaswami [10, Section 3.2] formulated completeness differently
from our Theorem 4.1 and proposed annotatability as a more suitable name. In
our theory, we may reformulate annotatability as follows.

Proposition 4.7 (Annotatability). If Γ ⊢Σ,|Ω| t : A, then there exists t′ such
that t′ ⊒ t and Γ ⊢Σ,Ω t′ :d A for some d.

Defined in Figure 10, the ‘annotation ordering’ t′ ⊒ t means that t′ has the same
or more annotations than t. In a sense, annotatability is a reasonable form of
completeness: if a term of a simply typed language (Σ, |Ω|) is typable in the
ordinary type system, it may not be directly typable in the bidirectional type
system (Σ,Ω) due to some missing annotations, but will be if those annotations
are added correctly. In our theory, Proposition 4.7 can be straightforwardly proved
by induction on the derivation given by generalised mode decoration (Theorem 4.4)
to construct a bidirectional typing derivation in the same mode. The interesting
case is Missing⇒, which is mapped to Anno⇒, adding to the term a type
annotation that comes from the given typing derivation.

t ⊒ u A raw term t is more annotated than u

t ⊒ u

(t : A) ⊒ u
More

x ⊒ x
Var

t ⊒ u

(t : A) ⊒ (u : A)
Anno

t1 ⊒ u1 · · · tn ⊒ un

opo(x⃗1. t1; . . . ; x⃗n. tn) ⊒ opo(x⃗1. u1; . . . ; x⃗n. un)
Op

Figure 10. Annotation ordering between raw terms

A Formal Treatment of Bidirectional Typing 129

On the other hand, when using a bidirectional type synthesiser to implement a
type synthesiser, for example in Theorem 2.4, if the bidirectional type synthesiser
concludes that there does not exist a bidirectional typing derivation, we use the
contrapositive form of completeness to establish that such an ordinary typing
derivation does not exist either. Now, annotatability is a kind of completeness
because (roughly speaking) it turns an ordinary typing derivation bidirectional.
Hence, it is conceivable that we could use annotatability in place of completeness
in the proof of Theorem 2.4. However, in the contrapositive form of annotatability,
the antecedent is ‘there does not exist t′ that is more annotated than t and has a
bidirectional typing derivation’, which is more complex than the bidirectional
type synthesiser would have to produce. Annotatability also does not help the
user to deal with missing annotations: although annotatability seems capable of
determining where annotations are missing and even filling them in correctly,
its antecedent requires a typing derivation, which is what the user is trying to
construct and does not have yet. Therefore we believe that our theory offers
simpler and more useful alternatives than the notion of annotatability.

5 Bidirectional type synthesis and checking

This section focuses on defining mode-correctness and deriving bidirectional
type synthesis for any mode-correct bidirectional type system (Σ,Ω). We start
with Section 5.1 by defining mode-correctness and showing the uniqueness of
synthesised types. This uniqueness means that any two synthesised types for the
same raw term t under the same context Γ have to be equal. It will be used
especially in Section 5.2 for the proof of the decidability of bidirectional type
synthesis and checking. Then, we conclude this section with the trichotomy on
raw terms in Section 5.3.

5.1 Mode correctness

As Dunfield and Krishnaswami [10] outlined, mode-correctness for a bidirectional
typing rule means that (i) each ‘input’ type variable in a premise must be an
‘output’ variable in ‘earlier’ premises, or provided by the conclusion if the rule is
checking; (ii) each ‘output’ type variable in the conclusion should be some ‘output’
variable in a premise if the rule is synthesising. Here ‘input’ variables refer to
variables in an extension context and in a checking premise. It is important to
note that the order of premises in a bidirectional typing rule also matters, since
synthesised type variables are instantiated incrementally during type synthesis.

Consider the rule Abs⇐ (Figure 3) as an example. This rule is mode-correct,
as the type variables A and B in its only premise are already provided by its
conclusion A⊃B. Likewise, the rule App⇒ for an application term t u is mode-
correct because: (i) the type A⊃B of the first argument t is synthesised, thereby
ensuring type variables A and B must be known if successfully synthesised; (ii) the
type of the second argument u is checked against A, which has been synthesised
earlier; (iii) as a result, the type of an application t u can be synthesised.

130 L.-T. Chen and H.-S. Ko

Now let us define mode-correctness rigorously. As we have outlined, the
condition of mode-correctness for a synthesising rule is different from that of
a checking rule, and the argument order also matters. Defining the condition
directly for a rule, and thus in our setting for an operation, can be somewhat
intricate. Instead, we choose to define the conditions for the argument list—more

specifically, triples
−−−−−→
[∆i]A

di
i of an extension context ∆i, a type Ai, and a mode

di—pertaining to an operation, for an operation, and subsequently for a signature.
We also need some auxiliary definitions for the subset of variables of a type and
of an extension context, and the set of variables that have been synthesised:

Definition 5.1. The finite subsets5 of (free) variables of a type A and of variables
in an extension context ∆ are denoted by fv(A) and fv(∆) respectively. For an
argument list [∆1]A

d1
1 , . . . , [∆n]A

dn
n , the set of type variables Adi

i with di being ⇒
is denoted by fv⇒([∆1]A

d1
1 , . . . , [∆n]A

dn
n), i.e. fv⇒ gives the set of type variables

that will be synthesised during type synthesis.

Definition 5.2. The mode-correctness MCas

(−−−−−→
[∆i]A

di
i

)
for an argument list

[∆1]A
d1
1 , . . . , [∆n]A

dn
n with respect to a subset S of Ξ is a predicate defined by

MCas(·) = ⊤

MCas

(−−−−−→
[∆i]A

di
i , [∆n]A

⇐
n

)
= fv(∆n, An) ⊆

(
S ∪ fv⇒

(−−−−−→
[∆i]A

di
i

))
∧MCas

(−−−−−→
[∆i]A

di
i

)
MCas

(−−−−−→
[∆i]A

di
i , [∆n]A

⇒
n

)
= fv(∆n) ⊆

(
S ∪ fv⇒

(−−−−−→
[∆i]A

di
i

))
∧MCas

(−−−−−→
[∆i]A

di
i

)
where MCas(·) = ⊤ means that an empty list is always mode-correct.

This definition encapsulates the idea that every ‘input’ type variable, possibly
derived from an extension context ∆n or a checking argument An, must be an

‘output’ variable from fv⇒(
−−−−−→
[∆i]A

di
i) or, if the rule is checking, belong to the

set S of ‘input’ variables in its conclusion. This condition must also be met for
every tail of the argument list to ensure that ‘output’ variables accessible at each
argument are from preceding arguments only, hence an inductive definition.

Definition 5.3. An arity [∆1]A
d1
1 , . . . , [∆n]A

dn
n → Ad

0 is mode-correct if

1. either d is ⇐, its argument list is mode-correct with respect to fv(A0), and

the union fv(A0) ∪ fv⇒(
−−−−−→
[∆i]A

di
i) contains every inhabitant of Ξ;

2. or d is ⇒, its argument list is mode-correct with respect to ∅, and fv⇒(
−−−−−→
[∆i]A

di
i)

contains every inhabitant of Ξ and, particularly, fv(A0).

A bidirectional binding signature Ω is mode-correct if every operation’s arity is
mode-correct.
5 There are various definitions for finite subsets of a set within type theory, but for our

purposes the choice among these definitions is not a matter of concern.

A Formal Treatment of Bidirectional Typing 131

For a checking operation, an ‘input’ variable of an argument could be derived
from A0, as these are known during type checking as an input. Since every
inhabitant of Ξ can be located in either A0 or synthesised variables, we can
determine a concrete type for each inhabitant of Ξ during type synthesis. On the
other hand, for a synthesising operation, we do not have any known variables at
the onset of type synthesis, so the argument list should be mode-correct with
respect to ∅. Also, the set of synthesised variables alone should include every
type variable in Ξ and particularly in An.

Remark 5.4. Mode-correctness is fundamentally a condition for bidirectional
typing rules, not for derivations. Thus, this property cannot be formulated without
treating rules as some mathematical object such as those general definitions in
Section 3. This contrasts with the properties in Section 4, which can still be
specified for individual systems in the absence of a general definition.

It is easy to check the bidirectional type system (Σ⊃, Ω⇔
Λ) for simply typed

λ-calculus is mode-correct by definition or by the following lemma:

Lemma 5.5. For any bidirectional binding arity [∆1]A
d1
1 , . . . , [∆n]A

dn
n → Ad

0, it
is decidable whether it is mode-correct.

Now, we set out to show the uniqueness of synthesised types for a mode-
correct bidirectional type system. For a specific system, its proof is typically
a straightforward induction on the typing derivations. However, since mode-
correctness is inductively defined on the argument list, our proof proceeds by
induction on both the typing derivations and the argument list:

Lemma 5.6 (Uniqueness of synthesised types). In a mode-correct bidirec-
tional type system (Σ,Ω), the synthesised types of any two derivations

Γ ⊢Σ,Ω t ⇒ A and Γ ⊢Σ,Ω t ⇒ B

for the same term t must be equal, i.e. A = B.

Proof. We prove the statement by induction on derivations d1 and d2 for Γ ⊢Σ,Ω

t ⇒ A and Γ ⊢Σ,Ω t ⇒ B. Our system is syntax-directed, so d1 and d2 must be
derived from the same rule:

– Var⇒ follows from the fact that each variable as a raw term refers to the
same variable in its context.

– Anno⇒ holds trivially, since the synthesised type A is from the term t : A
in question.

– Op: Recall that a derivation of Γ ⊢ opo(x⃗1. t1; . . . ; x⃗n. tn) ⇒ A contains a
substitution ρ from the local context Ξ to concrete types. To prove that
any two typing derivations has the same synthesised type, it suffices to
show that those substitutions ρ1 and ρ2 of d1 and d2, respectively, agree on
variables in fv⇒([∆1]A

d1
1 , . . . , [∆n]A

dn
n) so that A0⟨ρ1⟩ = A0⟨ρ2⟩. We prove

it by induction on the argument list:
1. For the empty list, the statement is vacuously true.

132 L.-T. Chen and H.-S. Ko

2. If di+1 is ⇐, then the statement holds by induction hypothesis.
3. If di+1 is ⇒, then ∆i+1⟨ρ1⟩ = ∆i+1⟨ρ2⟩ by induction hypothesis (of the

list). Therefore, under the same context Γ,∆i+1⟨ρ1⟩ = Γ,∆i+1⟨ρ2⟩ the
term ti+1 must have the same synthesised type Ai+1⟨ρ1⟩ = Ai+1⟨ρ1⟩ by
induction hypothesis (of the typing derivation), so ρ1 and ρ2 agree on
fv(Ai+1) in addition to fv⇒([∆1]A

d1
1 , . . . , [∆n]A

dn
n).

⊓⊔

5.2 Decidability of bidirectional type synthesis and checking

We have arrived at the main technical contribution of this paper.

Theorem 5.7. In a mode-correct bidirectional type system (Σ,Ω),

1. if |Γ | ⊢Σ,Ω t⇒, then it is decidable whether Γ ⊢Σ,Ω t ⇒ A for some A;
2. if |Γ | ⊢Σ,Ω t⇐, then it is decidable for any A whether Γ ⊢Σ,Ω t ⇐ A.

The interesting part of the theorem is the case for the Op rule. We shall
give its insight first instead of jumping into the details. Recall that a typing
derivation for opo(x⃗1. t1; . . . ; x⃗n. tn) contains a substitution ρ : Ξ → TyΣ(∅). The
goal of type synthesis for this case is exactly to define such a substitution ρ,
and we have to start with an ‘accumulating’ substitution: a substitution ρ0
that is partially defined on fv(A0) if d is ⇐ or otherwise nowhere. By mode-
correctness, the accumulating substitution ρi will be defined on enough synthesised
variables so that type synthesis or checking can be performed on ti with the
context Γ, x⃗i : ∆i⟨ρi⟩ based on its mode derivation |Γ | , x⃗i ⊢Σ,Ω tdi

i . If we visit a
synthesising argument [∆i+1]A

⇒
i+1, then we may extend the domain of ρi to ρi+1

with the synthesised variables fv(Ai+1), provided that type synthesis is successful
and that the synthesised type can be unified with Ai+1. If we go through every
ti successfully, then we will have a total substitution ρn by mode-correctness and
a derivation of Γ, x⃗i : ∆i ⊢Σ,Ω ti :

di A⟨ρn⟩ for each sub-term ti.

Remark 5.8. To make the argument above sound, it is necessary to compare
types and solve a unification problem. Hence, we assume that the set Ξ of type
variables has a decidable equality, thereby ensuring that the set TyΣ(Ξ) of types
also has a decidable equality.6

We need some auxiliary definitions for the notion of extension to state the
unification problem:

Definition 5.9. By an extension σ ≥ ρ of a partial substitution ρ we mean that
the domain dom(σ) of σ contains the domain of ρ and σ(x) = ρ(x) for every x
in dom(ρ). By a minimal extension ρ̄ of ρ satisfying P we mean an extension
ρ̄ ≥ ρ with P (ρ̄) such that σ ≥ ρ̄ whenever σ ≥ ρ and P (σ).
6 To simplify our choice, we may confine Ξ to any set within the family of sets Fin(n)

of naturals less than n, given that these sets have a decidable equality and the arity
of a type construct is finite. Indeed, in our formalisation, we adopt Fin(n) as the
set of type variables in the definition of TyΣ . For the sake of clarity in presentation,
though, we just use named variables and assume that Ξ has a decidable equality.

A Formal Treatment of Bidirectional Typing 133

Lemma 5.10. For any A of TyΣ(Ξ), B of TyΣ(∅), and a partial substitution
ρ : Ξ → TyΣ(∅), either

1. there is a minimal extension ρ̄ of ρ such that A⟨ρ̄⟩ = B, or
2. there is no extension σ of ρ such that A⟨σ⟩ = B

This lemma can be derived from the correctness of first-order unification [21, 22],
or be proved directly without unification. We are now ready for Theorem 5.7:

Proof (of Theorem 5.7). We prove this statement by induction on the mode
derivation |Γ | ⊢Σ,Ω td. The two cases Var⇒ and Anno⇒ are straightforward
and independent of mode-correctness. The case Sub⇐ invokes the uniqueness of
synthesised types to refute the case that Γ ⊢Σ,Ω t ⇒ B but A ̸= B for a given
type A. The first three cases follow essentially the same reasoning provided by
Wadler et al. [30], so we only detail the last case Op, which is new (but has been
discussed informally above). For brevity we omit the subscript (Σ,Ω).

For a mode derivation of |Γ | ⊢ opo(x⃗1. t1; . . . ; x⃗n. tn)
d, we first claim:

Claim. For an argument list [∆1]A
d1
1 , . . . , [∆n]A

dn
n and any partial substitution

ρ from Ξ to ∅, either

1. there is a minimal extension ρ̄ of ρ such that

dom(ρ̄) ⊇ fv⇒([∆1]A
d1
1 , . . . , [∆n]A

dn
n) and Γ, x⃗i : ∆i⟨ρ̄⟩ ⊢ ti : Ai⟨ρ̄⟩di (2)

for i = 1, . . . , n, or
2. there is no extension σ of ρ such that (2) holds.

Then, we proceed with a case analysis on d in the mode derivation:

– d is ⇒: We apply our claim with the partial substitution ρ0 defined nowhere.
1. If there is no σ ≥ ρ such that (2) holds but Γ ⊢ opo(x⃗1. t1; . . . ; x⃗n. tn) ⇒ A

for some A, then by inversion we have ρ : SubΣ(Ξ, ∅) such that

Γ, x⃗i : ∆i⟨ρ⟩ ⊢ ti : Ai⟨ρ⟩di

for every i. Obviously, ρ ≥ ρ0 and Γ, x⃗i : ∆i⟨ρ⟩ ⊢ ti : Ai⟨ρ⟩di for every i,
which contradict the assumption that no such extension exists.

2. If there exists a minimal ρ̄ ≥ ρ0 defined on fv⇒([∆1]A
d1
1 , . . . , [∆n]A

dn
n)

such that (2) holds, then by mode-correctness ρ̄ is total, and thus

Γ ⊢ opo(x⃗1. t1; . . . ; x⃗n. tn) ⇒ A0⟨ρ̄⟩ .

– d is ⇐: Let A be a type and apply Lemma 5.10 with ρ0 defined nowhere.
1. If there is no σ ≥ ρ0 s.t. A0⟨σ⟩ = A but Γ ⊢ opo(x⃗1. t1; . . . ; x⃗n. tn) ⇐ A,

then inversion gives us a substitution ρ s.t. A = A0⟨ρ⟩—a contradiction.
2. If there is a minimal ρ̄ ≥ ρ0 s.t. A0⟨ρ̄⟩ = A, then apply our claim with ρ̄:

134 L.-T. Chen and H.-S. Ko

(a) If no σ ≥ ρ̄ satisfies (2) but Γ ⊢ opo(x⃗1. t1; . . . ; x⃗n. tn) ⇐ A, then
by inversion there is γ s.t. A0⟨γ⟩ = A and Γ, x⃗i : ∆i⟨γ⟩ ⊢ ti : Ai⟨γ⟩di

for every i. Given that ρ̄ ≥ ρ is minimal s.t. A0⟨ρ̄⟩ = A, it follows
that γ is an extension of ρ̄, but by assumption no such an extension
satisfying Γ, x⃗i : ∆i⟨γ⟩ ⊢ ti : Ai⟨γ⟩di exists, thus a contradiction.

(b) If there is a minimal ¯̄ρ ≥ ρ̄ s.t. (2), then by mode-correctness ¯̄ρ is
total and

Γ ⊢ opo(x⃗1. t1; . . . ; x⃗n. tn) ⇐ A0⟨ ¯̄ρ⟩

where A0⟨ ¯̄ρ⟩ = A0⟨ρ̄⟩ = A since ¯̄ρ(x) = ρ̄ for every x in dom(ρ̄).

We have proved the decidability by induction on the derivation of |Γ | ⊢Σ,Ω td,
assuming the claim.

Proof (of Claim). We prove it by induction on the list [∆1]A
d1
1 , . . . , [∆n]A

dn
n :

1. For the empty list, ρ is the minimal extension of ρ itself satisfying (2) trivially.

2. For
−−−−−→
[∆i]A

di
i , [∆m+1]A

dm+1

m+1 , by induction hypothesis on the list, we have two
cases:
(a) If there is no σ ≥ ρ s.t. (2) holds for all 1 ≤ i ≤ m but a minimal γ ≥ ρ

such that (2) holds for all 1 ≤ i ≤ m+ 1, then we have a contradiction.
(b) There is a minimal ρ̄ ≥ ρ s.t. (2) holds for 1 ≤ i ≤ m. By case analysis

on dm+1:
– dm+1 is ⇐: By mode-correctness, ∆m+1⟨ρ̄⟩ and Am+1⟨ρ̄⟩ are defined.

By the ind. hyp. Γ, x⃗m+1 : ∆m+1⟨ρ̄⟩ ⊢ tm+1 ⇐ Am+1⟨ρ̄⟩ is decidable.
Clearly, if Γ, x⃗m+1 : ∆m+1⟨ρ̄⟩ ⊢ tm+1 ⇐ Am+1⟨ρ̄⟩ then the desired
statement is proved; otherwise we easily derive a contradiction.

– dm+1 is ⇒: By mode-correctness, ∆m+1⟨ρ̄⟩ is defined. By the ind.
hyp., ‘Γ, x⃗m+1 : ∆m+1⟨ρ̄⟩ ⊢ tm+1 ⇒ A for some A’ is decidable:
i. If Γ, x⃗m+1 : ∆m+1⟨ρ̄⟩ ⊬ tm+1 ⇒ A for any A but there is γ ≥

ρ s.t. (2) holds for 1 ≤ i ≤ m + 1, then γ ≥ ρ̄. Therefore
∆m+1⟨ρ̄⟩ = ∆m+1⟨γ⟩, and we derive a contradiction because
Γ, x⃗m+1 : ∆m+1⟨ρ̄⟩ ⊢ tm+1 ⇒ Am+1⟨γ⟩.

ii. If Γ, x⃗m+1 : ∆m+1⟨ρ̄⟩ ⊢ tm+1 ⇒ A for some A, then Lemma 5.10
gives the following two cases:
• Suppose no σ ≥ ρ̄ s.t. Am+1⟨σ⟩ = A but an extension γ ≥ ρ s.t.

(2) holds for 1 ≤ i ≤ m+ 1. Then, γ ≥ ρ̄ by the minimality of
ρ̄ and thus Γ, x⃗m+1 : ∆m+1⟨ρ̄⟩ ⊢ tm+1 ⇒ Am+1⟨γ⟩. However,
by Lemma 5.6, the synthesised type Am+1⟨γ⟩ must be unique,
so γ is an extension of ρ̄ s.t. Am+1⟨γ⟩ = A, i.e. a contradiction.

• If there is a minimal ¯̄ρ ≥ ρ̄ such that Am+1⟨ ¯̄ρ⟩ = A, then it is
not hard to show that ¯̄ρ is also the minimal extension of ρ such
that (2) holds for all 1 ≤ i ≤ m+ 1.

We have proved our claim for any argument list by induction. ■

We have completed the proof of Theorem 5.7. ⊓⊔

A Formal Treatment of Bidirectional Typing 135

The formal counterpart of the above proof in Agda functions as two top-level
programs for type checking and synthesis. These programs provide either the
typing derivation or its negation proof. Each case analysis branches depending
on the outcomes of bidirectional type synthesis and checking for each sub-term,
as well as the unification process. If a negation proof is not of interest in practice,
these programs can be simplified by discarding the cases that yield negation proofs.
Alternatively, we could consider generalising typing derivations instead, like our
generalised mode derivations (Figure 9), to reformulate negation proofs positively
to deliver more informative error messages. This would assist programmers in
resolving issues with ill-typed terms, rather than returning a blatant ‘no’.

5.3 Trichotomy on raw terms by type synthesis

Combining the bidirectional type synthesiser with the mode decorator, soundness,
and completeness from Section 4, we derive a type synthesiser parameterised
by (Σ,Ω), generalising Theorem 2.4.

Corollary 5.11 (Trichotomy on raw terms). For any mode-correct bidirec-
tional type system (Σ,Ω), exactly one of the following holds:
1. |Γ | ⊢Σ,Ω t⇒ and Γ ⊢Σ,|Ω| t : A for some type A,
2. |Γ | ⊢Σ,Ω t⇒ but Γ ⊬Σ,|Ω| t : A for any type A, or
3. |Γ | ⊬Σ,Ω t⇒.

6 Examples

To exhibit the applicability of our approach, we discuss two more examples: one
has infinitely many operations and the other includes many more constructs than
simply typed λ-calculus, exhibiting the practical side of a general treatment.

6.1 Spine application

A spine application t u1 . . . un is a form of application that consists of a
head term t and an indeterminate number of arguments u1, u2, . . . , un. This
arrangement allows direct access to the head term, making it practical in various
applications, and has been used by Agda’s core language.

At first glance, accommodating this form of application may seem impossible,
given that the number of arguments for a construct is finite and has to be fixed.
Nonetheless, the total number of operation symbols in a signature need not be
finite, allowing us to establish a corresponding construct for each number n of
arguments, i.e. viewing the following rule
Γ ⊢ t ⇒ A1 ⊃ (A2 ⊃ (· · ·⊃ (An ⊃B) . . .)) Γ ⊢ u1 ⇐ A1 · · · Γ ⊢ un ⇐ An

Γ ⊢ t u1 . . . un ⇒ B

as a rule schema parametrised by n, so the signature Ω⇔
Λ can be extended with

appn : A1, . . . , An, B ▷ A1 ⊃ (A2 ⊃ (· · ·⊃ (An ⊃B) . . .))
⇒

, A⇐
1 , . . . , A⇐

n → B

Each application t u1 . . . un can be introduced as opappn(t;u1; . . . ;un), thereby
exhibiting the necessity of having an arbitrary set for operation symbols.

136 L.-T. Chen and H.-S. Ko

6.2 Computational calculi

Implementing a stand-alone type synthesiser for a simply typed language is
typically a straightforward task. However, the code size increases proportionally
to the number of type constructs and of arguments associated with each term
construct. For example, when dealing with a fixed number n of type constructs,
for each synthesising construct there are two cases for a checking argument but
n+1 cases for each synthesising argument: the successful synthesis of the expected
type, an instance where it fails, or n− 1 cases where the expected type does not
match. Thus, having a generator is helpful and can significantly reduce the effort
for implementation.

For illustrative purposes, consider a computational calculus [23] with naturals,
sums, products, and general recursion. The extended language has ‘only’ 15
constructs, including pairing, projections, injections, and so on, and this number
of constructs is still far fewer than what a realistic programming language would
have. Even for this small calculus, there are already nearly 100 possible cases to
consider in bidirectional type synthesis.

On the other hand, similar to a parser generator, only one specification is
needed for a type-synthesiser generator from the user to produce a corresponding
type synthesiser. Such a specification can be derived by extending (Σ⊃, Ω⇔

Λ)
accordingly for additional types and constructs with mode-correctness proved by
applying Lemma 5.5, so its type synthesiser follows from Corollary 5.11 directly.

7 Discussion

We believe that our formal treatment lays a foundation for further investigation,
as the essential aspects of bidirectional typing have been studied rigorously. While
our current development is based on simply typed languages to highlight the core
ideas, it is evident that many concepts and aspects remain untouched.

Language formalisation frameworks The idea of presenting logics universally
at least date back to universal algebra and model theory, where structures are
studied for certain notions of arities and signatures. In programming language
theory, Aczel’s binding signature [1] is an example which has been used to prove a
general confluence theorem. Many general definitions and frameworks for defining
logics and type theories have been proposed and can be classified into two groups
by where signatures reside—the meta level or the object level of a meta-language:

1. Harper et al.’s logical framework LF [17] and its family of variants [5, 11, 18, 25]
are extensions of Martin-Löf type theory, where signatures are on the meta
level and naturally capable of specifying dependent type theories;

2. general dependent type theories [6, 7, 19, 28], categorical semantics [4, 12–16,
26, 27] (which includes the syntactic model as a special case), and frameworks
for substructural systems [26, 27, 32] are developed within a meta-theory
(set theory or type theory), where signatures are on the object level and their
expressiveness varies depending on their target languages.

A Formal Treatment of Bidirectional Typing 137

The LF family is expressive, but each extension is a different metalanguage
and requires a different implementation to check formal LF proofs. Formalising LF
and its variants is at least as complicated as formalising a dependent type theory,
and they are mostly implemented separately from their theory and unverified.

For the second group, theories developed in set theory can often be restated
in type theory and thus manageable for formalisation in a type-theoretic proof
assistant. Such examples include frameworks developed by Ahrens et al. [2], Allais
et al. [3], Fiore and Szamozvancev [14], although these formal implementations
are limited to simply typed theories for now.

Our work belongs to the second group, as we aim for a formalism in a type
theory to minimise the gap between theory and implementation.

Beyond simple types Bidirectional type synthesis plays a crucial role in
handling more complex types than simple types, and we sketch how our the-
ory can be extended to treat a broader class of languages. First, we need a
general definition of languages in question (Sections 3.1 and 3.2). Then, this
definition can be augmented with modes (Section 3.3) and the definition of
mode-correctness (Definition 5.3) can be adapted accordingly. Soundness and
completeness (Theorem 4.1) should still hold, as they amount to the separation
and combination of mode and typing information for a given raw term (in a
syntax-directed formulation). Mode decoration (Section 4.2), which annotates a
raw term with modes and marks missing annotations, should also work. As for
the decidability of bidirectional type synthesis, we discuss two cases involving
polymorphic types and dependent types below.

Polymorphic types In the case of languages like System F and others that permit
type-level variable binding, we can start with the notion of polymorphic signature,
as introduced by Hamana [16]—(i) each type construct in a signature is specified
by a binding arity with only one type ∗, and (ii) a term construct can employ a
pair of extension contexts for term variables and type variables.

Extending general definitions for bidirectional typing and mode derivations
from Hamana’s work is straightforward. For example, the universal type ∀α.A
and type abstraction in System F can be specified as operations all : ∗▷ [∗]∗ → ∗
and tabs : [∗]A ▷ ⟨∗⟩A⇐ → opall(α.A)

⇐. The decidability of bidirectional type
synthesis (Theorem 5.7) should also carry over, as no equations are imposed
on types and no guessing (for type application) is required. Adding subtyping
A <: B to languages can be done by replacing type equality with a subtyping
relation <: and type equality check with subtyping check, so polymorphically
typed languages with subtyping such as System F<: can be specified. The main
idea of bidirectional typing does not change, so it should be possible to extend
the formal theory without further assumptions too.

However, explicit type application in System F and System F<: is impractical
but its implicit version results in a stationary rule [20] which is not syntax-directed.
By translating the rule to subtyping, we have the instantiation problem that
requires guessing B in ∀α.A <: A[B/α]. A theory that accommodates various
solutions to the problem is left as future work.

138 L.-T. Chen and H.-S. Ko

Dependent types Logical frameworks with bidirectional typing are proposed by
Reed [25] and Felicissimo [11]. Felicissimo’s framework is more expressive than
Reed’s, due to its ability to specify rewriting rules. Both frameworks extend LF,
enabling generic bidirectional type checking for dependent type theories. They
also incorporate notions of signatures and mode-correctness (called strictness
and validity, respectively, in their contexts) but differ from ours in several ways.

First, the number of operations introduced by a signature in LF is finite,
so constructs like spine application seem impossible to define. Second, Reed
and Felicissimo deal with decorated raw terms only, while our theory bridges
the gap between ordinary and decorated raw terms by mode decoration. Lastly,
Felicissimo classifies operations a priori into introduction and elimination rules,
and follows the Pfenning recipe assigning, for example, the synthesising mode to
each elimination rule and its principal argument. As pointed out by Dunfield and
Krishnaswami that bidirectional typing is essentially about managing information
flow, and that some systems remarkably deviate from this recipe, we do not
enforce it but establish our results on any reasonable information flow.

Beyond syntax-directedness To relax the assumption of syntax-directedness,
we could start from a simple but common case where the ordinary typing part
is still syntax-directed, but each typing rule is refined to multiple bidirectional
variants, including different orders of its premises. In such cases, the mode
decorator would need to backtrack and find all mode derivations, but the type
synthesiser should still work in a syntax-directed manner on each mode derivation.
Completeness could still take the simple form presented in this paper too.

Next, we could consider systems where each construct can have multiple
typing rules, which can further have multiple bidirectional variants. In this
setting, the bidirectional type synthesiser will also need to backtrack. It is still
possible to treat soundness as the separation of mode and type information, but
completeness will pose a problem: for every raw term, a mode derivation chooses
a mode assignment while a typing derivation chooses a typing rule, but there
may not be a bidirectional typing rule for this particular combination. A solution
might be refining completeness to say that any typing derivation can be combined
with one of the possible mode derivations into a bidirectional typing derivation.

Towards a richer formal theory There are more principles and techniques
in bidirectional typing that could be formally studied in general, with one
notable example being the Pfenning recipe for bidirectionalising typing rules [10,
Section 4]. There are also concepts that may be hard to fully formalise, for
example ‘annotation character’ [10, Section 3.4], which is roughly about how easy
it is for the user to write annotated programs, but it would be interesting to
explore to what extent such concepts can be formalised.

Acknowledgements. We thank Kuen-Bang Hou (Favonia) and anonymous reviewers
for their comments and suggestions. The work was supported by the National Science
and Technology Council of Taiwan under grant NSTC 112-2221-E-001-003-MY3.

A Formal Treatment of Bidirectional Typing 139

Bibliography

[1] Aczel, P.: A general Church–Rosser theorem (1978), URL http://www.en
s-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf

[2] Ahrens, B., Matthes, R., Mörtberg, A.: Implementing a category-theoretic
framework for typed abstract syntax. In: International Conference on Cer-
tified Programs and Proofs (CPP), pp. 307–323, ACM (2022), https:
//doi.org/10.1145/3497775.3503678

[3] Allais, G., Atkey, R., Chapman, J., McBride, C., McKinna, J.: A type- and
scope-safe universe of syntaxes with binding: their semantics and proofs.
Journal of Functional Programming 31, e22:1–55 (2021), https://doi.or
g/10.1017/S0956796820000076

[4] Arkor, N., Fiore, M.: Algebraic models of simple type theories: a polynomial
approach. In: Symposium on Logic in Computer Science (LICS), pp. 88–101,
ACM (2020), https://doi.org/10.1145/3373718.3394771

[5] Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois,
C., Gilbert, F., Halmagrand, P., Hermant, O., Saillard, R.: Dedukti: a
logical framework based on the λΠ-Calculus Modulo Theory (2023), https:
//doi.org/10.48550/arXiv.2311.07185

[6] Bauer, A., Haselwarter, P.G., Lumsdaine, P.L.: A general definition of
dependent type theories (2020), https://doi.org/10.48550/arXiv.2009.
05539

[7] Bauer, A., Komel, A.P.: An extensible equality checking algorithm for
dependent type theories. Logical Methods in Computer Science 18(1), 17:1–
42 (2022), https://doi.org/10.46298/lmcs-18(1:17)2022

[8] Chen, L.T., Ko, H.S.: A formal treatment of bidirectional typing (artefact)
(2024), https://doi.org/10.5281/zenodo.10458840

[9] Dowek, G.: The undecidability of typability in the lambda-pi-calculus. In: In-
ternational Conference on Typed Lambda Calculi and Applications (TLCA),
Lecture Notes in Computer Science, vol. 664, pp. 139–145, Springer (1993),
https://doi.org/10.1007/BFb0037103

[10] Dunfield, J., Krishnaswami, N.: Bidirectional typing. ACM Computing
Surveys 54(5), 98:1–38 (2021), https://doi.org/10.1145/3450952

[11] Felicissimo, T.: Generic bidirectional typing for dependent type theories
(2023), https://doi.org/10.48550/arXiv.2307.08523

[12] Fiore, M., Hamana, M.: Multiversal polymorphic algebraic theories: syntax,
semantics, translations, and equational logic. In: Symposium on Logic in
Computer Science (LICS), pp. 520–529, IEEE (2013), https://doi.org/
10.1109/LICS.2013.59

[13] Fiore, M., Hur, C.K.: Second-order equational logic (extended abstract).
In: International Workshop on Computer Science Logic (CSL), Lecture
Notes in Computer Science, vol. 6247, pp. 320–335, Springer (2010), https:
//doi.org/10.1007/978-3-642-15205-4_26

140 L.-T. Chen and H.-S. Ko

http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf
https://doi.org/10.1145/3497775.3503678
https://doi.org/10.1145/3497775.3503678
https://doi.org/10.1145/3497775.3503678
https://doi.org/10.1145/3497775.3503678
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1145/3373718.3394771
https://doi.org/10.1145/3373718.3394771
https://doi.org/10.48550/arXiv.2311.07185
https://doi.org/10.48550/arXiv.2311.07185
https://doi.org/10.48550/arXiv.2311.07185
https://doi.org/10.48550/arXiv.2311.07185
https://doi.org/10.48550/arXiv.2009.05539
https://doi.org/10.48550/arXiv.2009.05539
https://doi.org/10.48550/arXiv.2009.05539
https://doi.org/10.48550/arXiv.2009.05539
https://doi.org/10.46298/lmcs-18(1:17)2022
https://doi.org/10.46298/lmcs-18(1:17)2022
https://doi.org/10.5281/zenodo.10458840
https://doi.org/10.5281/zenodo.10458840
https://doi.org/10.1007/BFb0037103
https://doi.org/10.1007/BFb0037103
https://doi.org/10.1145/3450952
https://doi.org/10.1145/3450952
https://doi.org/10.48550/arXiv.2307.08523
https://doi.org/10.48550/arXiv.2307.08523
https://doi.org/10.1109/LICS.2013.59
https://doi.org/10.1109/LICS.2013.59
https://doi.org/10.1109/LICS.2013.59
https://doi.org/10.1109/LICS.2013.59
https://doi.org/10.1007/978-3-642-15205-4_26
https://doi.org/10.1007/978-3-642-15205-4_26
https://doi.org/10.1007/978-3-642-15205-4_26
https://doi.org/10.1007/978-3-642-15205-4_26

[14] Fiore, M., Szamozvancev, D.: Formal metatheory of second-order abstract
syntax. Proceedings of the ACM on Programming Languages 6(POPL),
53:1–29 (2022), https://doi.org/10.1145/3498715

[15] Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding.
In: Symposium on Logic in Computer Science (LICS), pp. 193–202, IEEE
(1999), https://doi.org/10.1109/LICS.1999.782615

[16] Hamana, M.: Polymorphic abstract syntax via Grothendieck construction.
In: International Conference on Foundations of Software Science and Com-
putational Structures (FoSSaCS), Lecture Notes in Computer Science, vol.
6604, pp. 381–395, Springer (2011), https://doi.org/10.1007/978-3-6
42-19805-2_26

[17] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal
of the ACM 40(1), 143–184 (1993), https://doi.org/10.1145/138027.1
38060

[18] Harper, R., Licata, D.R.: Mechanizing metatheory in a logical framework.
Journal of Functional Programming 17(4–5), 613–673 (2007), https://doi.
org/10.1017/S0956796807006430

[19] Haselwarter, P.G., Bauer, A.: Finitary type theories with and without
contexts (2021), https://doi.org/10.48550/arXiv.2112.00539

[20] Leivant, D.: Typing and computational properties of lambda expressions.
Theoretical Computer Science 44, 51–68 (1986), https://doi.org/10.101
6/0304-3975(86)90109-X

[21] McBride, C.: First-order unification by structural recursion. Journal of
Functional Programming 13(6), 1061–1075 (2003), https://doi.org/10.1
017/S0956796803004957

[22] McBride, C.: First-order unification by structural recursion: correctness proof
(2003), URL http://www.strictlypositive.org/foubsr-website/

[23] Moggi, E.: Computational lambda-calculus and monads. In: Symposium
on Logic in Computer Science (LICS), pp. 14–23, IEEE (1989), https:
//doi.org/10.1109/LICS.1989.39155

[24] Pierce, B.C., Turner, D.N.: Local type inference. ACM Transactions on
Programming Languages and Systems 22(1), 1–44 (2000), https://doi.or
g/10.1145/345099.345100

[25] Reed, J.: Redundancy elimination for LF. In: International Workshop on
Logical Frameworks and Meta-Languages (LFM 2004), vol. 199, pp. 89–106
(2008), https://doi.org/10.1016/j.entcs.2007.11.014

[26] Tanaka, M., Power, A.J.: Pseudo-distributive laws and axiomatics for variable
binding. Higher-Order and Symbolic Computation 19(2–3), 305–337 (2006),
https://doi.org/10.1007/s10990-006-8750-x

[27] Tanaka, M., Power, J.: A unified category-theoretic semantics for binding
signatures in substructural logic. Journal of Logic and Computation 16(1),
5–25 (2006), https://doi.org/10.1093/logcom/exi070

[28] Uemura, T.: Abstract and Concrete Type Theories. Ph.D. thesis, University
of Amsterdam (2021), URL https://hdl.handle.net/11245.1/41ff0b6
0-64d4-4003-8182-c244a9afab3b

A Formal Treatment of Bidirectional Typing 141

https://doi.org/10.1145/3498715
https://doi.org/10.1145/3498715
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1007/978-3-642-19805-2_26
https://doi.org/10.1007/978-3-642-19805-2_26
https://doi.org/10.1007/978-3-642-19805-2_26
https://doi.org/10.1007/978-3-642-19805-2_26
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1017/S0956796807006430
https://doi.org/10.1017/S0956796807006430
https://doi.org/10.1017/S0956796807006430
https://doi.org/10.1017/S0956796807006430
https://doi.org/10.48550/arXiv.2112.00539
https://doi.org/10.48550/arXiv.2112.00539
https://doi.org/10.1016/0304-3975(86)90109-X
https://doi.org/10.1016/0304-3975(86)90109-X
https://doi.org/10.1016/0304-3975(86)90109-X
https://doi.org/10.1016/0304-3975(86)90109-X
https://doi.org/10.1017/S0956796803004957
https://doi.org/10.1017/S0956796803004957
https://doi.org/10.1017/S0956796803004957
https://doi.org/10.1017/S0956796803004957
http://www.strictlypositive.org/foubsr-website/
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.1016/j.entcs.2007.11.014
https://doi.org/10.1016/j.entcs.2007.11.014
https://doi.org/10.1007/s10990-006-8750-x
https://doi.org/10.1007/s10990-006-8750-x
https://doi.org/10.1093/logcom/exi070
https://doi.org/10.1093/logcom/exi070
https://hdl.handle.net/11245.1/41ff0b60-64d4-4003-8182-c244a9afab3b
https://hdl.handle.net/11245.1/41ff0b60-64d4-4003-8182-c244a9afab3b

[29] Univalent Foundations Program, T.: Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study (2013), URL
https://homotopytypetheory.org/book

[30] Wadler, P., Kokke, W., Siek, J.G.: Programming Language Foundations in
Agda (2022), URL https://plfa.inf.ed.ac.uk/22.08/

[31] Wells, J.B.: Typability and type checking in System F are equivalent and
undecidable. Annals of Pure and Applied Logic 98(1–3), 111–156 (1999),
https://doi.org/10.1016/S0168-0072(98)00047-5

[32] Wood, J., Atkey, R.: A framework for substructural type systems. In:
European Symposium on Programming (ESOP), Lecture Notes in Computer
Science, vol. 13240, pp. 376–402, Springer (2022), https://doi.org/10.1
007/978-3-030-99336-8_14

142 L.-T. Chen and H.-S. Ko

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://homotopytypetheory.org/book
https://plfa.inf.ed.ac.uk/22.08/
https://doi.org/10.1016/S0168-0072(98)00047-5
https://doi.org/10.1016/S0168-0072(98)00047-5
https://doi.org/10.1007/978-3-030-99336-8_14
https://doi.org/10.1007/978-3-030-99336-8_14
https://doi.org/10.1007/978-3-030-99336-8_14
https://doi.org/10.1007/978-3-030-99336-8_14
http://creativecommons.org/licenses/by/4.0/

	A Formal Treatment of Bidirectional Typing

