
Formal Specification of Trusted Execution
Environment APIs

1 Pohang University of Science and Technology, Pohang, South Korea
kmbae@postech.ac.kr

2 Samsung Electronics, Hwasung, South Korea

Abstract. Trusted execution environments (TEEs) have emerged as a
key technology in the cybersecurity domain. A TEE provides an isolated
environment in which sensitive computations can be executed securely.
Trusted applications running in TEEs are developed using standardized
APIs that many hardware platforms for TEE adhere to. However, formal
models tailored to standard TEE APIs are not well developed. In this
paper, we present a formal specification of TEE APIs using Maude. We
focus on Trusted Storage API and Cryptographic Operations API, which
are foundational to mobile and IoT applications. The effectiveness of
our approach is demonstrated through formal analysis of MQT-TZ, an
open-source TEE application for IoT. Our formal analysis has revealed
security vulnerabilities in the implementation of MQT-TZ, and we patch
and confirm its integrity using model checking.

Keywords: Trusted execution environments · formal specification ·
formal methods · model checking · rewriting logic · Maude

1 Introduction

Trusted execution environments (TEEs) have emerged as a key technology in
the cybersecurity of a wide range of software [17]. They provide an isolated
program execution environment where sensitive computations can be executed
securely, shielding data from both software and hardware attacks. It guarantees
the integrity, authenticity, and confidentiality of executed programs and their
data. TEE is widely used in security-critical systems such as industrial control
systems [5,7], servers [10], mobile security [11], IoT [1,15], etc.

However, the effectiveness of TEEs depends on their proper implementation
and use. Inaccuracies or vulnerabilities can compromise the very integrity they
seek to maintain; for example, user applications can access an unauthorized
region of memory [12], or a kernel can be compromised using a stack-overflow
attack [2]. This emphasizes the importance of the formal verification of TEEs.
Through rigorous examination and validation, we can ensure the robustness of
TEEs, ensuring they operate as intended and providing an additional layer of
confidence in their ability to protect critical data.
c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 101–121, 2024.
https://doi.org/10.1007/978-3-031-57259-3_5

Geunyeol Yu1 , Seunghyun Chae1 , Kyungmin Bae1(B) ,
and Sungkun Moon2

https://orcid.org/0000-0002-6171-9911
https://orcid.org/0009-0008-1199-7172
https://orcid.org/0000-0002-6430-5175
https://orcid.org/0009-0003-3153-4662
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_5&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

The standardization of TEE is overseen by Global Platform [8]. Many systems
that implement TEE, such as Samsung TEEgris, Trustonic Kinibi, Qualcomm
QTEE, etc., adhere to this standard. The standard defines the API for trusted
applications (TAs) to handle secure resources, such as memory and storage.
These APIs are essential because they provide TEE services to applications
running in a TEE. The uniformity of this API specification ensures compatibility
across a wide range of applications, even when running on different CPUs.

However, there is an evident deficiency in formal models tailored for TEE
specification and its associated APIs. This gap is concerning because without
rigorous verification and modeling, the integrity of TEEs could be compromised,
potentially exposing vulnerabilities. In this paper, we address this concern by
providing a comprehensive formal model of TEE APIs that is explicitly designed
for the formal analysis of TEE applications. In this approach, we aim to provide
a foundational tool that can serve the diverse spectrum of TEE applications and
improve the overall security landscape of software.

The architecture and behavior of Trusted Storage API, precisely defined in
the standard [8], is quite complicated. Primarily, it arises from the stringent
security requirement that each TA is assigned a dedicated storage, isolated and
shielded from other TAs. For example, the function responsible for creating a file
in TEE involves multifaceted processes, which is briefly illustrated in Section 3.
Such intricacies amplify the difficulty in developing a faithful formal model for
TEEs, because of a huge representation gap between the informal (standard)
specification [8] and a formal model to be developed.

In this paper, we address challenge of the representation gap by leveraging
a very expressive modeling language, called Maude [4], which supports powerful
object-oriented specification. Since TEE API is mainly specified using objects
and their interactions [8], it is appropriate to use such object-oriented modeling
approaches to formally specify TEE APIs, making it much easier to develop
a comprehensive formal model. We formalize important parts of TEE APIs,
namely, Trusted Storage API and Cryptographic Operations API, which are
central for trusted applications in mobile and IoT domains.

We demonstrate the effectiveness of our approach for formally analyzing
MQT-TZ [20,21], an open-source TEE application that secures the IoT protocol
MQTT. We have analyzed several security requirements of the implementation
of MQT-TZ and found security vulnerabilities using model checking. We are able
to fix a code-level bug and verify through model checking that the fixed program
satisfies the previously violated requirements.

This paper is organized as follows. Section 2 provides necessary background
on trusted execution environments and Maude. Section 3 presents the formal
object-oriented specification of Trusted Storage API in Maude. Section 4 presents
the Maude specification of Cryptographic Operations API. Section 5 explains
how TEE infrastructures, including trusted applications, can be specified in
Maude. Section 6 presents a case study on analyzing various requirements of
MQT-TZ and improving the implementation of MQT-TZ using our framework.
Section 7 discusses related work. Section 8 presents some concluding remarks.

102 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

Formal Specification of Trusted Execution Environment APIs 103

Secure Monitor

Rich Execution Environment (REE) Trusted Execution Environment (TEE)

Rich Application (RA)

Rich OS (Linux, etc.)

Application

Operating System

Hardware

Trusted OS
TEE API

Trusted Application (TA)

Fig. 1: Overview of the TEE Architecture.

2 Preliminary

Trusted Execution Environments. A trusted execution environment (TEE) uses a
physically isolated storage and memory space to protect the security of program
codes, executions, sensitive data, and so on. TEE is standardized by Global
Platform [8], and many operating systems for TEE (e.g., Samsung TEEgris,
Trustonic Kinibi, and Qualcomm QTEE) follow the standard. In particular, the
standard defines the API for trusted applications to manage secure resources
including memory and trusted storage.

Figure 1 shows the overall architecture of TEE. Trusted applications (TAs)
are secure applications running in TEE. In contrast, rich applications (RAs) are
normal applications in REE. A trusted OS provides a collection of API functions,
specified in the standard document [8], for TAs to perform secure operations.
RAs perform secure services by invoking TAs, and the results of such requests
are returned to RAs, through a dedicated hardware called a secure monitor.

Maude. Maude [4] is a language and tool for formally specifying and analyzing
concurrent systems. A Maude specification consists of: (i) an equational theory
(Σ, E) specifying system states as algebraic data types, where Σ is a signature
(i.e., declaring sorts, subsorts, and function symbols) and E is a set of equations;
and (ii) a set of rewrite rules R of the form l : t → t′ if condition, specifying the
system behavior, where l is a label, and t and t′ are terms [14].

In Maude, operators are declared with the syntax op f : s1 . . . sn -> s,
where s1, ..., sn denote domain sorts and s denotes a range sort. Rewrite rules
are declared with the syntax crl [l]: t => t′ if cond (or, for unconditional
rules, rl [l]: t => t′), where cond is a conjunction of equations. Similarly,
equations are declared with the syntax ceq t = t′ if cond (or eq t = t′).

A class declaration class C | att1 : s1, ..., attn : sn declares a class
C with attributes att1 to attn of sorts s1 to sn. An instance of a class C is
represented as a term < O : C | att1 : v1, ..., attn : vn > of sort Object,
where O is the object’s identifier, and vi is the value of each attribute atti. A
subclass inherits the attributes and rewrite rules of its superclasses. A message
is represented as a term of sort Msg. A global system state is a term of sort
Configuration that has the structure of a multiset composed of objects and
messages, where multiset union is denoted by juxtaposition (empty syntax).

Maude provides a number of formal analysis methods, including LTL model
checking. Maude’s LTL model checker checks whether each behavior from an
initial state satisfies a linear temporal logic (LTL) formula. A temporal logic
formula is constructed by state propositions and temporal logic operators such
as ˜ (negation), /\, \/, [] (“always”), <> (“eventually”), and U (“until”).

K Framework. K [16] is a rewriting-based framework for defining the semantics of
programming languages, in which many languages, including C [6], Java [3], and
EVM [9], have been successfully formalized. In K, program states are specified
as multisets of cells, called K configurations. Each cell represents a component
of a program state, such as computations, environments, and stores. Transitions
between K configurations are defined by rewrite rules.

A computation in K is defined as a ↷-separated sequence of computational
tasks. For example, t1 ↷ t2 ↷ . . . ↷ tn represents the computation consisting of
t1 followed by t2 followed by t3, and so on. A task can be decomposed into simpler
tasks, and the result of a task is forwarded to the subsequent tasks. E.g., (5+x)∗2
is decomposed into x ↷ 5 + □ ↷ □ ∗ 2, where □ is a placeholder for the result
of a previous task. If x evaluates to some value, say 4, then 4 ↷ 5 + □ ↷ □ ∗ 2
becomes 5 + 4 ↷ □ ∗ 2, which eventually becomes 18.

The following shows a typical example of K rules for variable lookup, where
the k cell contains a computation, env contains a map from variables to locations,
and store contains a map from locations to values:

lookup : ⟨x↷ ...⟩k ⟨...x 7→ l ...⟩env ⟨...l 7→ v ...⟩store
v

A horizontal line represents a state change, and “...” indicates irrelevant parts.
A cell without horizontal lines is not changed by the rule. By the lookup rule, if
the first task in k is x, then x is replaced by the value v of x in its location l.

K rules can be translated into ordinary rewrite rules [16]. For example, the
lookup rule can be written in Maude as follows, where environments and stores
are declared as semicolon-separated multisets of assignments, and and K, ENV,
and STORE are Maude variables that match the irrelevant parts:

rl [lookup]: k(X ~> K) env(X |-> L ; ENV) store(L |-> V ; STORE)
=> k(V ~> K) env(X |-> L ; ENV) store(L |-> V ; STORE) .

3 Formal Specification of Trusted Storage API

Trusted Storage API manages files and cryptographic keys in trusted storage.
The architecture and behavior of Trusted Storage API [8] is summarized in
Section 3.1. Trusted Storage API is complex due to the security requirement
that each TA’s storage is isolated and inaccessible to other TAs. We use Maude’s
object-oriented specification to naturally specify the architecture as a collection
of objects (Section 3.2) and the behavior as rewrite rules (Section 3.3).

104 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

1: create

4: recreate

TA Trusted
Storage

Persistent

2: delete

Transient

Persistent

5: return handle

2: fail 3: transform

Fig. 2: The flow of TEE_CreatePersistentObject for the case of transformation.

3.1 Overview of Trusted Storage API

In the TEE API standard [8], resources such as files and keys are expressed
as objects in an abstract way. A cryptographic object contains attributes, which
are data used to store key material in a structured way. A persistent object
represents a file associated with a data stream in its storage, and may also be
a cryptographic object with attributes. A transient object represents an object
with attributes in memory, but no data streams. Object handles are references
that identify a particular object and contain access rights information.

There are a total of 26 functions in Trusted Storage API. The persistent
API functions can create, rename, and delete persistent objects and their data
streams. The data stream API functions can read, write, truncate, or seek data
from persistent objects. The transient API functions can allocate and deallocate
transient objects, set, reset, or copy cryptographic keys to the objects, or generate
random keys. In addition, these functions can open object handles for persistent
and transient objects, respectively.

To illustrate the complexity of Trusted Storage API, consider the function
TEE_CreatePersistentObject, which creates a persistent object and returns the
object handle. It first checks if a persistent object with the same name exists.
Then, depending on the overwrite access flag, the operation either fails, or the
object is deleted and recreated. A new persistent object can be created either as a
cryptographic object or as a pure data object (without attributes). In the former
case, attributes can be taken from another cryptographic object, or a transient
object can be transformed to the persistent object. We describe the execution
flow of transformation when a persistent object already exists, in Figure 2. The
dashed box denotes deletion, and the dotted box represents creation.

3.2 Representing Trusted Storage Objects in Maude

Trusted Storage API can naturally be formalized in an object-oriented style. A
cryptographic object is modeled as an instance of the class CryptoObj, where
the attributes type, max-size, and usages denote the type, maximum size, and
usages of a cryptographic key to be created, respectively; and attributes denotes
cryptographic attributes.

class CryptoObj | type : Type, max-size : Nat, usages : Set{Usage},
attributes : Set{CryptoAttribute} .

Formal Specification of Trusted Execution Environment APIs 105

A persistent object is modeled as an instance of the class PersistObj, where
the attribute file-name denotes the name of its file, and data-stream denotes the
associated data stream. Similarly, a transient object is modeled as an instance of
the class TransObj, where initialized indicates whether the object is initialized.
Both classes are declared as subclasses of CryptoObj, because they are both
cryptographic objects according to the standard [8].

class PersistObj | file-name : FileName, data-stream : List{Data} .
class TransObj | initialized : Bool .
subclass TransObj PersistObj < CryptoObj .

A handle is represented as an instance of a subclass of the class Handle, where
oid is the object that it points to. In particular, an object handle is represented
as instances of the subclass ObjHandle, where flags contains data access flags.

class Handle | oid : Oid . class ObjHandle | flags : Set{DataAccessFlag} .
subclass ObjHandle < Handle .

The storage of each TA is modeled as an instance of the class Storage,
where status denotes its status, files denotes the file names in the storage,
and counter denotes a counter for creating a new identifier.

class Storage | status : StorageStatus, files : Set{FileName}, counter : Nat .

The kernel of each TA is modeled as an instance of the class TAKernel, where
status denotes its status, storage denotes its storage, counter denotes a counter
for creating a new identifier, and api-call denotes the status of an API call.
The status of a TA can be normal, outOfMemory, or panic.

class TAKernel | status : AppStatus, storage : Oid,
counter : Nat, api-call : CallStatus .

We represent an API function call as f(vl) # n of sort CallStatus, where
f is a function identifier, vl is the call parameters, and (optional) n denotes the
step of the call. The return of the call is represented as return(f,rl), where rl
denotes the return values. We use return(f) if there are no return values.

The interactions between the objects are represented as the messages of the
form msg r[vl] from Sender to Receiver, where r is the name of a request
and vl is a list of arguments for the request. We use msg r from Sender to
Receiver for the request with no arguments. For example, msg getStatus from
TK to SI represents a request message from the TA kernel TK to its associated
storage SI for returning the status with no arguments.

The following example shows a TA and its associated storage, a transient
object and its object handle, and a persistent object named file1.

< tk : TAKernel | status : normal, id-counter : 1, storage : so, ... >
< oh : ObjHandle | oid : to, flags : empty >
< so : Storage | status : normal, files : fileName(’file1), counter : 1 >
< to: TransObj | type : rsaKeyPair, max-size : 15, usages : decrypt >
< po : PersistObj | file-name : fileName(’file1), type : rsaKeyPair, ... >

106 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

3.3 Specifying Trusted Storage API Behaviors

Specification of TEE_ReadObjectData. This function takes a single parameter,
a handle to a persistent object for data reading. A TA first checks the storage
status by sending a message getStatus to an associated storage. When the
storage receives getStatus, it returns its status using a message retStatus.

rl [read-object-data-get-storage-status]:
< TK : TAKernel | api-call : readObjData(HI), storage : SI >

=> < TK : TAKernel | api-call : readObjData(HI) # 1 > (msg getStatus from TK to SI)
.
rl [return-storage-status]:

< SI : Storage | status : STATUS > (msg getStatus from TK to SI)
=> < SI : Storage | > (msg retStatus[STATUS] from SI to TK) .

If the storage status is normal, the TA sends a message read to the handle
to request data reading. Otherwise, it returns the storage status.

rl [read-object-data-storage-status-check]:
(msg retStatus[STATUS] from SI to TK)
< TK : TAKernel | api-call : readObjData(HI) # 1 >

=> if STATUS == normal then
< TK : TAKernel | api-call : readObjData(HI) # 2 > (msg read from TK to HI)

else < TK : TAKernel | api-call : return(readObjData, STATUS) > fi .

When the handle receives read and has the flag accessRead, it reads the first
data from the data stream of the persistent object. The data is returned to the
TA using a message retData and the TA returns the received data.

rl [read-object-data-from-persist]:
< HI : ObjHandle | oid : PI, flags : (accessRead, FLAGS) >
< PI : PersistObj | data-stream : DATA :: STREAM > (msg read from TK to HI)

=> < PI : PersistObj | data-stream : STREAM > (msg retData[DATA] from HI to TK)
< HI : ObjHandle | > .

rl [read-object-data-success]:
(msg retData[DATA] from HI to TK)
< TK : TAKernel | api-call : readObjData(HI) # 2 >

=> < TK : TAKernel | api-call : return(readObjData, DATA) > .

Specification of TEE_CreatePersistentObject. Due to the page limit, we explain
the rules used to specify the behavior in Figure 2. This function takes five param-
eters: file name, access flags, a handle to another transient or persistent object,
initial data, and an optional handle. A TA determines the method for creating
a persistent object and sends a creation request to an associated storage.

rl [create-persistent-determine-case]:
< TK : TAKernel | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT),

storage : SI >
=> < TK : TAKernel | api-call : createPersistent(FILE, FLAGS, HI, DATA, OPT) # 1 >

mkCreationMsg(FILE, FLAGS, HI, DATA, OPT, SI, TK) .

Formal Specification of Trusted Execution Environment APIs 107

The mkCreationMsg function determines the creation method and constructs
a create message, where the first argument denotes the method id. If the handle
is null, the message is for creating a pure persistent object. If both the handle
and optional handle are not null, the message is for creating a persistent object.
Otherwise, it’s for transforming a transient object into a new persistent object.

op mkCreationMsg : FileName Set{DataAccessFlag} HandleId Data HandleId
Oid Oid -> Configuration .

eq mkCreationMsg(FILE, FLAGS, null, DATA, OPT, SI, TK)
= (msg create[pure FILE FLAGS null DATA] from TK to SI) .

ceq mkCreationMsg(FILE, FLAGS, HI, DATA, OPT, SI, TK)
= if OPT == null

then (msg create[transform FILE FLAGS HI DATA] from TK to SI)
else (msg create[persist FILE FLAGS HI DATA] from TK to SI) fi if HI =/= null .

When the storage receives the create message, it checks the existence of a
persistent object with the same name from the storage. If the object exists and
the access flags contain the overwrite flag, it proceeds by sending the create
message to the persistent object. Otherwise, it informs TA with createFail.

crl [create-persist-overwrite-check]:
(msg create[METHOD FILE FLAGS HI DATA] from TK to SI)
< PI : PersistObj | file-name : FILE >
< SI : Storage | status : normal, files : FILES, counter : N >

=> < PI : PersistObj | >
if overwrite in FLAGS
then < SI : Storage | counter : N + 2 >

(msg create[METHOD FILE FLAGS HI DATA N TK] from SI to PI)
else (msg createFail from SI to TK) < SI : Storage | > fi if FILE in FILES .

When the persistent object receives the create message with the transform
method, it transforms the transient object into a persistent object, opens a new
object handle, and deletes itself. Then, the handle is sent to the TA through the
message createSuccess. The function newOid is used to create a fresh identifier.

crl [create-persist-transform]:
(msg create[transform FILE FLAGS HI DATA N TK] from SI to PI)
< HI : ObjHandle | oid : OI >
< OI : TransObj | type : TYPE, usages : USAGES, max-size : M,

attributes : ATTRS >
< PI : PersistObj | file-name : FILE >

=> < NEW-HI : ObjHandle | oid : NEW-PI, flags : FLAGS >
< NEW-PI : PersistObj | type : TYPE, usages : USAGES, max-size : M,

attributes : ATTRS, data-stream : DATA,
file-name : FILE >

(msg createSuccess[NEW-HI] from NEW-PI to TK)
if NEW-HI := newOid(N, SI) /\ NEW-PI := newOid(N + 1, SI) .

When the TA receives a createSuccess message with an object handle, it
returns the handle. If receiving createFail or detecting insufficient memory, it
returns a corresponding error.

108 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

rl [create-persist-success]: (msg createSuccess[HI] from PI to TK)
< TK : TAKernel | status : normal, api-call : createPersistent(VL) >

=> < TK : TAKernel | api-call : return(createPersistent, HI) > .

rl [create-persist-fail]: (msg createFail from SI to TK)
< TK : TAKernel | status : normal, api-call : createPersistent(VL) >

=> < TK : TAKernel | api-call : return(createPersistent, errorAccessConflict) > .

rl [create-persist-mem-err]:
< TK : TAKernel | app-status : outOfMemory, api-call : createPersistent(VL) >

=> < TK : TAKernel | api-call : return(createPersistent, errorOutOfMemory) > .

4 Formal Specification of Cryptographic Operations API

Cryptographic Operations API handles cryptographic algorithms by managing
operation states. Cryptographic Operations API is also quite complex due to
the internal operation states. This section shows that these difficulties can be
effectively dealt with using Maude’s object-oriented specification.

4.1 Overview of Cryptographic Operations API

A cryptographic operation abstracts a cryptographic process. It has an operation
state such as initial, active, or extract. An operation handle is a reference to a
cryptographic operation. Each handle has a handle state, which is defined by
whether a key is set, an operation is initialized, and data can be extracted.

The API provides a total of 30 functions for various types of cryptographic
primitives and schemes, including symmetric ciphers, authenticated encryptions,
and key derivations. In addition, the generic operation API functions support
the operations common to all types. These functions can allocate, free, reset
cryptographic operations, and set cryptographic key.

To illustrate the complexity of Cryptographic Operations API, consider the
state diagram of symmetric ciphers, described in Figure 3. The operation can be
started either with or without key (KEY_SET or not KEY_SET). If it has no key,
TEE_SetOperationKey is used to set a key. Otherwise, it is initialized (INIT) by
TEE_CipherInit. The operation can run the algorithm with TEE_CipherUpdate.
After performing the operation, TEE_FreeOperation can be used to deallocate

4.2 Representing Cryptographic Operations in Maude

Cryptographic operations can naturally be modeled in an object-oriented style.
We model cryptographic operations as instances of class CryptoOp. The attribute
attributes denotes a set of CryptoAttribute, max-size is the maximum size
of a key to use, and algorithm is the identifier of an algorithm to operate. The
attributes mode, state, and opclass denote the mode, state, and class of the
operation, respectively, and acc-data is a list of Data it holds.

Formal Specification of Trusted Execution Environment APIs 109

the operation or TEE_CipherDoFinal is used to finish and reset the operation.
Figure 4 shows the state diagram of message digest, which is also complex.

not KEY_SET
not INIT

KEY_SET
not INIT

KEY_SET
INIT

Start

TEE_AllocateOperation

TEE_SetOperationKey

TEE_ResetOperation

TEE_CipherInit

TEE_CipherInit

TEE_FreeOperation

TEE_CopyOperation

End

Start TEE_CopyOperation

TEE_ResetOperation
TEE_CipherDoFinal
TEE_SetOperationKey

TEE_CipherUpdate

TEE_SetOperationKey

Fig. 3: Symmetric cipher operation.

not KEY_SET
not INIT

not EXTRACT

KEY_SET
INIT

EXTRACT
Start End

TEE_AllocateOperation

TEE_DigestExtract

TEE_FreeOperation
TEE_CopyOperation

TEE_ResetOperation
TEE_DigestUpdate
TEE_DigestDoFinal

TEE_DigestExtract

TEE_ResetOperation
TEE_DigestDoFinal

Start

TEE_CopyOperation

End

TEE_FreeOperation

Fig. 4: Message digest operation.

class CryptoOp | attributes : Set{CryptoAttribute}, max-size : Nat,
algorithm : Algorithm, mode : Mode, state : State,
opclass : OpClass, acc-data : List{Data} .

Operation handles are represented as instances of the class OpHandle, which
extends Handle. The attribute state is a handle state and key-material-set
denotes whether cryptographic key materials are set to the operation.
class OpHandle | state : HandleState, key-material-set : Bool .
subclass OpHandle < Handle .

Specification of TEE_AllocateOperation. This function takes three parameters:
an algorithm identifier, a mode, and the maximum key size. A TA first checks
whether the algorithm and mode are compatible using the compatible function.
If valid, it creates a new cryptographic operation, and opens and returns an
operation handle. The function getClass is used to retrieve the algorithm class.
crl [allocate-operation-success]:

< TK : TAKernel | api-call : allocOperation(ALGO, MODE, MAXSIZE),
status : normal, id-counter : N >

=> < TK : TAKernel | api-call : return(allocOperation, HI), id-counter : N + 2 >
< HI : OpHandle | oid : OI, state : noKeyNotInit, key-material-set : false >
< OI : CryptoOp | attributes : empty, max-size : MAXSIZE, handle : HI,

algorithm : ALGO, mode : MODE, opclass : getClass(ALGO),
acc-data : nil, state : initial >

if compatible(ALGO, MODE) /\ OI := newOid(N, TK) /\ HI := newOid(N + 1, TK) .

If the algorithm and mode are not compatible or insufficient memory is de-
tected, the TA returns a corresponding error, specified by the following rules:
crl [allocate-operation-params-err]:

< TK : TAKernel | api-call : allocOperation(ALGO, MODE, MAXSIZE) >
=> < TK : TAKernel | api-call : return(allocOperation, errorNotSupported) >
if not compatible(ALGO, MODE) .

rl [allocate-operation-memory-err]:
< TK : TAKernel | status : outOfMemory, api-call : allocOperation(VL) >

=> < TK : TAKernel | api-call : return(allocOperation, errorOutOfMemory) > .

110 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

Specification of TEE_ResetOperation. A TA creates a resetOp message to reset
a cryptographic operation. If the cryptographic operation receives a request and
its key materials are set, it resets the operation state using the resetState
function, clears the data, and notifies the TA using a message finishResetOp.
The function resetState updates the state to initial if the state is active.
rl [reset-operation-request-reset]:

< TK : TAKernel | api-call : resetOperation(HI) > < HI : OpHandle | oid : CI >
=> < TK : TAKernel | > < HI : OpHandle | > (msg resetOp[HI] from TK to CI) .

rl [reset-operation-finish-reset]:
< CI : CryptoOp | state : STATE > (msg resetOp[HI] from TK to CI)
< HI : OpHandle | oid : CI, key-material-set : true >

=> < CI : CryptoOp | acc-data : nil, state : resetState(STATE) >
< HI : OpHandle | > (msg finishResetOp from CI to TK) .

rl [reset-operation-success]: (msg finishResetOp from CI to TK)
< TK : TAKernel | api-call : resetOperation(VL) >

=> < TK : TAKernel | api-call : return(resetOperation) > .

Specification of TEE_CipherUpdate. This function takes two parameters: an
operation handle and input data. A TA creates a message reqCipher to request
data encryption or decryption. When a cryptographic operation receives the
message and key materials are set, it checks whether the operation can succeed
using the cipherSuccess function. If successful, the operation runs the algorithm
with runAlgo and returns a result to the TA using the finishCipher message.
Otherwise, it reports failure using the failCipher message.
rl [cipher-update-request-cipher]: < HI : OpHandle | oid : CI >

< TK : TAKernel | api-call : cipherUpdate(HI, DATA) >
=> < TK : TAKernel | > < HI : OpHandle | > (msg reqCipher[HI DATA] from TK to CI) .

rl [cipher-update-try-cipher]:
(msg reqCipher[HI DATA] from TK to CI)
< HI : OpHandle | key-material-set : true >
< CI : CryptoOp | attributes : ATTRS, algorithm : ALGO, mode : MODE,

opclass : CLASS, state : STATE >
=> < CI : CryptoOp | > < HI : OpHandle | >

if cipherSuccess(ALGO, MODE, ATTRS, CLASS, STATE, DATA) then
(msg finishCipher[runOp(ALGO, MODE, ATTRS, DATA)] from CI to TK)

else (msg failCipher from CI to TK) fi .

When the TA receives the encrypted or decrypted data from cipherSuccess,
it returns the data. If receiving failCipher, it goes to panic.
rl [cipher-update-success]: (msg cipherSuccess[VALUE] from CI to TK)

< TK : TAKernel | api-call : cipherUpdate(VL) >
=> < TK : TAKernel | api-call : return(cipherUpdate, VALUE) > .

rl [cipher-update-panic]:
< TK : TAKernel | api-call : cipherUpdate(VL) > (msg failCipher from CI to TK)

=> < TK : TAKernel | status : panic > .

Formal Specification of Trusted Execution Environment APIs 111

5 Formal Specification of a TEE Infrastructure

5.1 Representing Rich and Trusted Applications in Maude

Thanks to the K semantics, we can model RA and TA to run programs, written
in any programming language. Applications are represented as instances of the
following class App, where prog denotes a program and proc is a K configuration
for the program execution. RAs and TAs are modeled as instances of the classes
RA and TA, respectively. Both classes inherit App but TA also inherits TAKernel.

class App | prog : Program, proc : KConfig .

class RA . class TA .
subclass RA < App . subclass TA < App TAKernel .

In this paper, we define K rewrite rules for a subset of the C language, in-
cluding function calls, variables, assignments, loops, and conditional statements.
As mentioned in Section 2, the K semantics can be written in Maude.

For TEE API function calls, we use TAKernel to handle them. When a TEE
API function FUNC is called with parameters VL, a TA pushes the call to api-call
and adds a task $wait(f), representing the task waiting for the function f . Then,
a TAKernel handles the call as explained in Sections 3 and 4. The isTeeApi
function is used to check whether a function is a TEE API.

crl [tee-api-call]:
< TI : TA | proc : (k(FUNC(VL) ~> K) KS) >

=> < TI : TA | proc : (k($wait(FUNC) ~> K) KS), api-call : FUNC(VL) >
if isTeeApi(FUNC) .

After the TAKernel handles the call, the TA assigns the return values to the
function’s output variables. We use $out(xl) to denote output variables xl. The
makeRetStmt function is used to create statements for assigning variables.

crl [tee-api-call-return]:
< TI : TA | proc : (k($wait(FUNC) ~> $out(XL) ~> K) KS),

api-call : return(FUNC, VL) >
=> < TI : TA | proc : (k(STMT ~> K) KS), api-call : noCall >
if isTeeApi(FUNC) /\ STMT := makeRetStmt(VL, XL) .

5.2 Representing Execution Environments

We represent the two separated execution environments as a pair {SR} | [ST],
where SR contains RAs and ST contains TAs, together with objects and messages
introduced in Sections 3 and 4. Trusted OS is represented as an instance of
the class TrustedOS, where sess is a map from SessionId to Oid. Sessions are
communication channels between RA and TA.

class TrustedOS | sess : Map{SessionId,Oid} .

112 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

We specify the communications between an RA and a TA using Maude rules.
The RA calls the TA using a secure monitor call (SMC). We define its semantic
using the following rule. A message smcReq represents an SMC and the function
makeSmcArgs makes SMC arguments.
crl [invoke-ta]:

< RI : RA | proc : (k(FUNC(VL) ~> K) KS) >
=> < RI : RA | proc : (k($wait(FUNC) ~> K) KS) > smcReq(ARGS)

if isInvokeFunc(FUNC) /\ ARGS := makeSmcArgs(RI, FUNC, VL) .

The secure monitor accepts the SMC request by transferring the message
smcReq from REE to TEE. Later, it gets a result from TEE through a message
smcRet and finishes the request by transferring the message to REE.
rl [accept-smc-request]: {REE smcReq(ARGS)} | {TEE} => {REE} | {TEE smcReq(ARGS)} .
rl [return-smc-request]: {REE} | {TEE smcRet(ARGS)} => {REE smcRet(ARGS)} | {TEE} .

We define the behavior of a trusted OS when receiving smcReq. The OS
invokes a target TA using an invkTa message. The function getTargetTa is used
to extract the target TA from SMC arguments and getRequestor is used to get
the RA’s identifier.
crl [accept-smc-request]:

< OS : TrustedOS | sess : SM > smcReq(ARGS)
=> < OS : TrustedOS | > invkTa(TI, RI, ARGS)
if RI := getRequestor(ARGS) /\ TI := getTargetTa(ARGS, SM) .

When the target TA receives invkTa and is not running, it executes a program
using the function run. For example, run(p,f,vl) executes the function f of a
program p with arguments vl. The functions getFunc and getParams are used
to get a function identifier and call parameters from SMC arguments.
crl [handle-invoke-ta]:

< TI : TA | proc : none, prog : P > invkTa(TI, RI, ARGS)
=> < TI : TA | proc : run(P, F, VL) > invkTa(TI, RI, ARGS)
if F := getFunc(ARGS) /\ VL := getParams(ARGS) .

After the execution, the TA gets a result from proc using the function getRes
and creates an invkTaRet message. Then, the trusted OS creates an smcRet
message for sending the result to the secure monitor, which is transferred to
REE. The function finished checks whether the process is finished.
crl [handle-invoke-ta-finish]:

< TI : TA | proc : KS > invkTa(TI, RI, ARGS)
=> < TI : TA | proc : none > invkTaRet(RI, RV)
if finished(KS) /\ RV := getRes(KS) /\ RI := getRequestor(ARGS) .

crl [return-smc-request]:
< OS : TrustedOS | > invkTaRet(RI, RES) => < OS : TrustedOS | > smcRet(ARGS)

if ARGS := makeSmcArgs(RI, RES) .

When the RA receives the message smcReq with the result, it finishes the
secure monitor call using the function makeRetStmt. The function retVal is used
to get return values from smcRet.

Formal Specification of Trusted Execution Environment APIs 113

crl [invoke-ta-finish]:
< RI : RA | proc : (k($wait(F) ~> $out(XL) ~> K) KS) > smcRet(ARGS)

=> < RI : RA | proc : (k(STMT ~> K) KS) >
if RI == getRequestor(ARGS) /\ VL := retVal(ARGS) /\ STMT := makeRetStmt(VL, XL) .

6 A Case study on Formal Analysis of MQT-TZ

This section shows the effectiveness and feasibility of our formal model using
MQT-TZ [21], a TEE-based implementation of the message transport protocol.
We defined LTL properties for MQT-TZ (Section 6.1), formally analyzed them
with threat models, and proposed a patch (Sections 6.2 and 6.3). Our formal
specification, case study model, and experimental results are available in [25].

6.1 Overview of MQT-TZ

MQT-TZ [21] is a secure topic-based publish-subscribe protocol utilizing TEE.
Figure 5 illustrates the overall architecture, presenting three entities: publisher,
subscriber, and broker. Publishers collect, encrypt, and send data as messages
to a broker’s topic. A subscriber can receive these messages by subscribing to
a topic. Brokers manage topics, subscriptions, and message delivery from pub-
lishers to subscribers. Each broker is implemented using TEE, consisting of a
single RA and TA. The RA retrieves publisher messages and calls the TA for
re-encryption or forward re-encrypted messages to subscribers.

The re-encryption is a key mechanism for protecting messages from potential
threats. It ensures that messages cannot be exploited, allowing only the intended
subscribers to read. This can be accomplished as follows: (i) Clients (publishers
and subscribers) generate symmetric keys and securely share them with brokers
using TLS, (ii) The publishers encrypt messages with their keys, and (iii) The
brokers decrypt the messages using the publisher’s keys and re-encrypt them
with the subscriber’s keys in TEE.

To analyze MQT-TZ, we define various requirements and express them as
LTL properties. These properties are summarized in Table 1. The properties P1
to P5 represent requirements for correctness of message reception (P1, P2, and
P3), system integrity (P4), and robustness of message sending (P5). P6 is for
checking whether the MQT-TZ scenarios satisfy the basic invariant.

RA TA

Broker
Publisher

Subscriber

TransObj CryptoOp

PersistObjData StreamTrusted
OS

TEEREE

…

Publisher

Subscriber

Fig. 5: Overview of MQT-TZ.

114 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

Table 1: The LTL properties for MQT-TZ.
Prop. Description LTL Formula

P1
If no memory error occurs in the broker,
subscribers eventually receive messages.

□¬memErr.B →
□ (send.P → ♢recv.S)

P2
If the TA panics, subscribers should not receive
any messages. □ (panic.T A → □ ¬recv.S)

P3
If any memory error occurs in the broker,
subscribers should not receive any messages. □ (memErr.B → □ ¬recv.S)

P4
When the TA starts running, it should
eventually terminate. □ (start.T A → term.T A)

P5
If subscribers receive messages from publishers,
messages sent from each publisher are in order.

□ (inQueue.P (a :: b :: c) →
♢inQueue.S(a :: b :: c))

P6
The number of tasks handled by the TA cannot
exceed five. □ (¬numT askExceed(5))

For formal analysis, we represent MQT-TZ’s entities (brokers, publishers,
and subscribers) as Maude objects. We model brokers as instances of the Broker
class, which is a nested object with the execution environments of Section 5 for
running RA and TA, along with a buffer for storing publisher messages and a
subscriber list. Publishers are modeled as instances of the Publisher class, which
has a list of collected data to be sent to brokers. Subscribers are represented as
instances of Subscriber, which has a list of received messages from brokers.

We specify the behavior of clients and brokers, depicted in Figure 5. For
publishers, we define their behavior with two rules: collecting data, and sending
it to brokers with encryption. The behavior of subscribers is represented by
a single rule for message reception. We specify the behavior of a broker RA
using the following rules: (1) capturing publisher messages and storing them
in a message buffer, (2) running the MQT-TZ RA program, which calls a TA
(explained in Section 5), and (3) receiving re-encrypted messages from the TA
and sending them to subscribers.

For a broker RA and TA, we obtained their C programs from the MQT-TZ
Github repository. To run them in our model, we translated a total of 1200 lines
of C codes to our C-subset language using a simple translation script. Figure 6
shows the TA’s re-encryption function before the conversion.

6.2 LTL Model Checking

We have performed LTL model checking for the properties in Table 1, considering
two threat models. We use the following scenario for the analysis:

– Two subscribers (sub1, sub2), two publishers (pub1, pub2), and one broker
participate, where the broker has two topics.

– sub1 subscribes to a single topic, while sub2 subscribes to all topics.
– pub1 sends a single message, while pub2 sends two.

Formal Specification of Trusted Execution Environment APIs 115

static TEE_Result
payload_reencryption(void *session,

uint32_t param_types,
TEE_Param params[4]){

TEE_Result res;
uint32_t exp_param_types =
TEE_PARAM_TYPES(
TEE_PARAM_TYPE_MEMREF_INPUT,
TEE_PARAM_TYPE_MEMREF_INOUT,
TEE_PARAM_TYPE_MEMREF_INOUT,
TEE_PARAM_TYPE_VALUE_INPUT);

if (param_types != exp_param_types)
return TEE_ERROR_BAD_PARAMETERS;

...

if (alloc_resources(session,
TA_AES_MODE_DECODE)

!= TEE_SUCCESS){
res = TEE_ERROR_GENERIC;
goto exit;

}

if (set_aes_key(session, ori_cli_key)
!= TEE_SUCCESS){

res = TEE_ERROR_GENERIC;
TEE_Free((void *) ori_cli_key);
goto exit;

}
...

if (cipher_buffer(session,
(char *) params[0].memref.buffer
+ TA_MQTTZ_CLI_ID_SZ + TA_AES_IV_SIZE,
data_size, dec_data, &dec_data_size)
!= TEE_SUCCESS){
res = TEE_ERROR_GENERIC;
goto exit;

}
...

TEE_Free((void *) dec_data);
exit:
return res;

}

Fig. 6: The C code of the TA’s re-encryption function.

Threat models. We consider two threat models: an out-of-memory threat and
a message modification threat. The out-of-memory threat nondeterministically
changes the status of a TA to outOfMemory. The message modification threat
represents a compromised broker [21] that calls a TA with incorrect arguments.
We specify the threats using Maude. For the out-of-memory threat, we model
the threat as a single rewrite rule as follows.

rl [out-of-memory-threat]: < TK : TAKernel | status : normal >
=> < TK : TAKernel | status : outOfMemory > .

For the message modification threat, we model an intruder as an instance
of the Intruder class with a single attribute subs-list, denoting a broker’s
subscription list. Prior to the attack, the intruder learns the subscription list
of a target broker from the messages in the broker’s REE and records this in
subs-list. After learning, the intruder uses this information and modifies any
incoming messages of the broker by replacing the sender with any one of its
subscribers. We can model this attack behavior as follows. The modify function
replaces the SENDER in a publisher message mqttzMsg to another subscriber using
the learned subscription list SUBS-LIST.

rl [message-modification-threat]: (mqttzMsg [DATA|TOPIC] from SENDER)
< INT : Intruder | subs-list : SUBS-LIST >

=> < INT : Intruder | > modify(DATA, TOPIC, SENDER, SUBS-LIST) .

Model checking experiment. We consider the following threat scenarios: without
any threats (NON), with the message modification threat (MSG), and with the
out-of-memory threat (OOM). We measure the size of the state space (|S|) in

116 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

Table 2: The results of LTL model checking.
Prop. Type Safe? |S| Time

P1
NON ⊤ 62 35.7
MSG ⊤ 148 90.1
OOM ⊤ 202 144.2

P2
NON ⊤ 62 34.9
MSG ⊥ 17 9.1
OOM ⊤ 532 547.9

Prop. Type Safe? |S| Time

P3
NON ⊤ 62 35
MSG ⊤ 148 88.8
OOM ⊥ 0.1 0.1

P4
NON ⊤ 62 34.9
MSG ⊤ 148 88.6
OOM ⊤ 532 539.3

Prop. Type Safe? |S| Time

P5
NON ⊤ 62 33.8
MSG ⊤ 148 86.9
OOM ⊤ 532 546.7

P6
NON ⊤ 62 34.3
MSG ⊤ 148 87.9
OOM ⊤ 532 542.4

thousands, the model checking result (Safe?), and time in seconds. The ⊤ and
⊥ denote the property is safe and violated, respectively. We use the Maude
model checking command for the analysis, which provides counterexamples for
violations. We run the experiment on Intel Xeon 2.8GHz with 256 GB memory.

As summarized in Table 2, the two properties P2 and P3 are violated under the
threats, indicating the possible vulnerabilities. By analyzing the counterexample
of the P2 violation, we have discovered that the TA can panic during the message
re-encryption. This occurs because the sender of a message can be modified,
leading the TA to decrypt the message with an incorrect sender’s key. For the
P3 violation, we have found that when insufficient memory is detected, the TA
finalizes the re-encryption with an error and returns a re-encrypted message
containing (dummy) data. In this case, the RA does not verify whether the TA
returns a correct re-encrypted message and continues to transmit the message
to subscribers, which results in obtaining the message containing dummy data.

6.3 Patching the MQT-TZ Vulnerabilities

To fix the identified vulnerabilities, we have implemented code-level patches
for both the MQT-TZ RA and TA, as illustrated in Figure 7. Newly added
patches are highlighted in red, while the original codes are depicted in black.
The left side shows the patch for RA, and the right side is for TA. For the TA,
we modify it to inform the RA of a memory error or panic. In the case of the

TEEC_Result
void main(struct test_ctx *ctx,
mqttz_client *origin, mqttz_client *dest,
mqttz_times *times) { ...
res = TEEC_InvokeCommand(&ctx->sess,

TA_REENCRYPT,
&op, &ori);

if (res == TEE_ERROR_OUT_OF_MEMORY ||
res == TEE_ERROR_TA_DEAD) {

discardMsg(ctx, origin, dest);
}
... }

static TEE_Result
payload_reencryption(void *session,

uint32_t param_types,
TEE_Param params[4]){

...
if (alloc_resources(session,

TA_AES_MODE_DECODE)
!= TEE_SUCCESS){

res = TEE_ERROR_OUT_OF_MEMORY;
goto exit;

}
... }

Fig. 7: The patch codes for the MQT-TZ RA (left) and TA (right).

Formal Specification of Trusted Execution Environment APIs 117

Table 3: The results of LTL model checking after applying the patches.
Prop. Type Safe? |S| Time

P1
NON ⊤ 62 35.3
MSG ⊤ 149 89.9
OOM ⊤ 203 146.2

P2
NON ⊤ 62 35.1
MSG ⊤ 149 89.9
OOM ⊤ 347 294.8

Prop. Type Safe? |S| Time

P3
NON ⊤ 62 34.8
MSG ⊤ 149 89.7
OOM ⊤ 347 285.2

P4
NON ⊤ 62 34.7
MSG ⊤ 149 89.4
OOM ⊤ 347 278.5

Prop. Type Safe? |S| Time

P5
NON ⊤ 62 34.1
MSG ⊤ 149 87.4
OOM ⊤ 347 288.6

P6
NON ⊤ 62 34.4
MSG ⊤ 149 87.9
OOM ⊤ 347 286.1

RA, modifications are made to ignore the re-encrypted message when a memory
error or panic notification is received. Additionally, we have implemented the
discardMsg function to handle the cleanup of the re-encrypted message.

To validate the patches, we have performed the LTL model checking from
the previous section again. As shown in Table 3, P2 and P3 become safe (marked
as red), while all other results remain the same. In addition, we observe that the
state space is reduced up to approximately 185 thousand states compared to the
original experiment. This is because the patches discarded the states related to
memory error or panic.

In addition, we have identified redundant functions in the TA program using
formal analysis. For example, TEE_ResetOperation is called right after allocating
a cryptographic operation. Since the operation has not started, it remains in its
initial state and thus the reset operation has no effect. These redundancies can
be safely removed. To show this, we have collected all final states of the program
with and without redundancies and compared them. We confirm the reachable
states of the programs (with and without redundancies) are the same.

7 Related Work

Many studies have investigated the formal analysis of protocols leveraging TEE.
The work [13] introduces a protocol for Wasm applications, and verifies the cor-
rectness of its authentication, such as aliveness and non-injective agreement.
Another work [22] presents a protocol for secure remote credential management
using TEE, which is verified against the Dolev-Yao model. Both papers have
proven the correctness of their protocols by model checking. On the other hand,
the paper [24] formally analyzes direct anonymous attestation schemes running
on secure hardware through theorem proving. The papers [18,19] employ a simi-
lar approach, but aim at verifying remote attestation services of TEEs provided
by Intel. However, unlike our work, they focus on specific protocols and do not
propose a formal analysis framework for general TEE-based applications.

A formal analysis technique for an IoT framework using TEE is presented
in [23]. It provides a hierarchical colored Petri net for Trusted IoT Architec-
ture (TIoTA), which aims to protect data in IoT networks. This approach has
been used to verify security properties in CTL by model checking. However, it
is specifically tailored to TIoTA and cannot be applied to general TEE-based

118 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

applications. In contrast, our work aims to provide a formal analysis framework
for general TEE-based applications, written in any programming language whose
operational semantics is specified in K.

8 Concluding Remarks

We have presented a formal specification for TEE APIs using Maude. We have
specified two important TEE APIs (Trusted Storage API and Cryptographic
Operations API) that are fundamental to mobile and IoT applications. We have
leveraged Maude’s object-oriented specification to reduce a representation gap
between the standard document and the formal model, allowing us to effectively
specify the complex architectures and behaviors of the TEE APIs.

The effectiveness and feasibility of our approach have been demonstrated
through formal analysis of MQT-TZ [21,20], an open-source TEE application
for IoT. We have analyzed security requirements of MQT-TZ under given threat
models. Our formal analysis has revealed security vulnerabilities in the MQT-TZ
implementation. We have patched a code-level bug and verified the previously
violated requirements.

The future work includes providing comprehensive formal specifications for
TEE APIs, covering the time API, TEE arithmetical API, and peripheral and
event APIs. Additionally, we should verify the TEE API itself or generate test
cases for real-world validations using our formal specification. Another important
direction involves developing state space reduction techniques to enhance the
efficiency of TEE application analysis.

References

https://doi.org/10.1109/IRI.2018.00011

2. Beniamini, G.: Trust issues: Exploiting TrustZone TEEs. Accessed: Aug
03, 2022 (online) (2017), https://googleprojectzero.blogspot.com/2017/07/
trust-issues-exploiting-trustzone-tees.html

Formal Specification of Trusted Execution Environment APIs 119

Acknowledgments. This work was partially supported by SAMSUNG Electron-
ics Co., Ltd., and the National Research Foundation of Korea (NRF) grant (No.
2021R1A5A1021944) and Institute of Information & communications Technology Plan-
ning & Evaluation (IITP) grant (No. 2022-0-00103), both funded by the Korea gov-
ernment (MSIT).

Data Availability Statement. The TEE formal specification, the MQT-TZ case
study, and experimental results are available in [25,26].

1. Ayoade, G., Karande, V., Khan, L., Hamlen, K.: Decentralized IoT data manage-
ment using blockchain and trusted execution environment. In: IEEE International
Conference on Information Reuse and Integration (IRI). pp. 15–22. IEEE (2018).

https://doi.org/10.1109/IRI.2018.00011
https://doi.org/10.1109/IRI.2018.00011
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html

3. Bogdanas, D., Roşu, G.: K-Java: A complete semantics of Java. In: ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages

https://doi.org/10.1145/2676726.2676982

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.: All about Maude -

https://doi.org/10.1007/978-3-

5. Coppolino, L., D’Antonio, S., Formicola, V., Mazzeo, G., Romano, L.: VISE:
Combining Intel SGX and homomorphic encryption for cloud industrial con-
trol systems. IEEE Transactions on Computers 70(5), 711–724 (2021). https:

6. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

https://doi.org/10.1145/2103656.2103719

7. Fitzek, A., Achleitner, F., Winter, J., Hein, D.: The ANDIX research OS —
ARM TrustZone meets industrial control systems security. In: IEEE Interna-
tional Conference on Industrial Informatics (INDIN).

8. GlobalPlatform: TEE Internal Core API Specification v1.3.1 (2021), https://
globalplatform.org/specs-library/tee-internal-core-api-specification/

9. Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore,
B., Park, D., Zhang, Y., Stefanescu, A., Rosu, G.: KEVM: A complete formal
semantics of the Ethereum virtual machine. In: IEEE Computer Security Founda-

https://doi.org/10.1109/CSF.

10. Hua, Z., Gu, J., Xia, Y., Chen, H., Zang, B., Guan, H.: vTZ: virtualizing ARM
TrustZone. In: USENIX Conference on Security Symposium (SEC). pp. 541–556.

https://dl.acm.org/doi/10.5555/3241189.3241232

11. Li, W., Xia, Y., Lu, L., Chen, H., Zang, B.: TEEv: Virtualizing trusted execu-
tion environments on mobile platforms. In: ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (VEE). pp. 2–

https://doi.org/10.1145/3313808.3313810

12. Machiry, A., Gustafson, E., Spensky, C., Salls, C., Stephens, N., Wang, R., Bianchi,
A., Choe, Y.R., Kruegel, C., Vigna, G.: BOOMERANG: Exploiting the semantic
gap in trusted execution environments. In: Network and Distributed System Secu-
rity Symposium (NDSS) (2017).

13. Ménétrey, J., Pasin, M., Felber, P., Schiavoni, V.: WaTZ: A trusted WebAssembly
runtime environment with remote attestation for TrustZone. In: IEEE International
Conference on Distributed Computing Systems (ICDCS). pp. 1177–1189. IEEE
(2022), https://doi.ieeecomputersociety.org/10.1109/ICDCS54860.2022.00116

14. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science 96(1), 73–155 (1992). https://doi.org/10.1016/
0304-3975(92)90182-F

15. Nguyen, H., Ivanov, R., Phan, L.T., Sokolsky, O., Weimer, J., Lee, I.: LogSafe: Se-
cure and scalable data logger for IoT devices. In: IEEE/ACM International Con-
ference on Internet-of-Things Design and Implementation (IoTDI). pp. 141–152.

https://doi.org/10.1109/IoTDI.2018.00023

16. Roşu, G., Şerbănută, T.F.: An overview of the K semantic framework. The Journal
of Logic and Algebraic Programming 79(6), 397–434 (2010). https://doi.org/10.
1016/j.jlap.2010.03.012

120 Geunyeol Yu, Seunghyun Chae, Kyungmin Bae, and Sungkun Moon

(POPL). pp. 445–456. ACM (2015).

A high-performance logical framework, Lecture Notes in
Computer Science, vol. 4350. Springer (2007).
540-71999-1

(POPL). pp. 533–544. ACM (2012).

//doi.org/10.1109/TC.2020.2995638

https://doi.org/10.1109/INDIN.2015.7281715
pp. 88–93. IEEE (2015).

tions Symposium (CSF). pp. 204–217. IEEE (2018).
2018.00022

USENIX Association (2017),

16. ACM
(2019).

https://dx.doi.org/10.14722/ndss.2017.23227

IEEE (2018).

https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1109/TC.2020.2995638
https://doi.org/10.1109/TC.2020.2995638
https://doi.org/10.1109/TC.2020.2995638
https://doi.org/10.1109/TC.2020.2995638
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1109/INDIN.2015.7281715
https://doi.org/10.1109/INDIN.2015.7281715
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1109/CSF.2018.00022
https://dl.acm.org/doi/10.5555/3241189.3241232
https://doi.org/10.1145/3313808.3313810
https://doi.ieeecomputersociety.org/10.1109/ICDCS54860.2022.00116
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1109/IoTDI.2018.00023
https://doi.org/10.1109/IoTDI.2018.00023
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://dx.doi.org/10.14722/ndss.2017.23227

17. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execution environment: what
it is, and what it is not. In: IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). pp. 57–64. IEEE (2015).
https://doi.org/10.1109/Trustcom.2015.357

18. Sardar, M.U., Faqeh, R., Fetzer, C.: Formal foundations for Intel SGX data cen-
ter attestation primitives. In: International Conference on Formal Engineering
Methods (ICFEM). Lecture Notes in Computer Science, vol. 12531, pp. 268–283.
Springer (2020). https://doi.org/10.1007/978-3-030-63406-3_16

19. Sardar, M.U., Musaev, S., Fetzer, C.: Demystifying attestation in Intel Trust
Domain Extensions via formal verification. IEEE Access 9, 83067–83079 (2021).
https://doi.org/10.1109/ACCESS.2021.3087421

20. Segarra, C., Delgado-Gonzalo, R., Schiavoni, V.: MQT-TZ fork of the open source
Mosquitto MQTT broker leveraging ARM TrustZone, https://github.com/mqttz/
mqttz

21. Segarra, C., Delgado-Gonzalo, R., Schiavoni, V.: MQT-TZ: hardening IoT bro-
kers using ARM TrustZone. In: International Symposium on Reliable Distributed
Systems (SRDS). pp. 256–265. IEEE (2020). https://doi.org/10.1109/SRDS51746.

22. Shepherd, C., Akram, R.N., Markantonakis, K.: Remote credential management
with mutual attestation for trusted execution environments. In: IFIP International
Conference on Information Security Theory and Practice (WISTP). Lecture Notes
in Computer Science, vol. 11469, pp. 157–173. Springer (2019). https://doi.org/
10.1007/978-3-030-20074-9_12

23. Valadares, D.C.G., Sobrinho, Á.A.d.C.C., Perkusich, A., Gorgonio, K.C.: Formal
verification of a trusted execution environment-based architecture for IoT ap-
plications. IEEE Internet of Things Journal 8(23), 17199–17210 (2021). https:
//doi.org/10.1109/JIOT.2021.3077850

24. Wesemeyer, S., Newton, C.J., Treharne, H., Chen, L., Sasse, R., Whitefield, J.: For-
mal analysis and implementation of a TPM 2.0-based direct anonymous attestation
scheme. In: ACM Asia Conference on Computer and Communications Security
(ASIACCS). pp.784–798. ACM (2020).https://doi.org/10.1145/3320269.3372197

25. Yu, G., Chae, S., Bae, K., Moon, S.: The artifact of TEE formal specification
(2023). https://doi.org/10.5281/zenodo.10462106

26. Yu, G., Chae, S., Bae, K., Moon, S.: Supplementary material. (2023), https://
github.com/postechsv/tee-formal-spec

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Formal Specification of Trusted Execution Environment APIs 121

2020.00033

https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1007/978-3-030-63406-3_16
https://doi.org/10.1007/978-3-030-63406-3_16
https://doi.org/10.1109/ACCESS.2021.3087421
https://doi.org/10.1109/ACCESS.2021.3087421
https://github.com/mqttz/mqttz
https://github.com/mqttz/mqttz
https://doi.org/10.1109/SRDS51746.2020.00033
https://doi.org/10.1109/SRDS51746.2020.00033
https://doi.org/10.1109/SRDS51746.2020.00033
https://doi.org/10.1109/SRDS51746.2020.00033
https://doi.org/10.1007/978-3-030-20074-9_12
https://doi.org/10.1007/978-3-030-20074-9_12
https://doi.org/10.1007/978-3-030-20074-9_12
https://doi.org/10.1007/978-3-030-20074-9_12
https://doi.org/10.1109/JIOT.2021.3077850
https://doi.org/10.1109/JIOT.2021.3077850
https://doi.org/10.1109/JIOT.2021.3077850
https://doi.org/10.1109/JIOT.2021.3077850
https://doi.org/10.1145/3320269.3372197
https://doi.org/10.5281/zenodo.10462106
https://doi.org/10.5281/zenodo.10462106
https://github.com/postechsv/tee-formal-spec
https://github.com/postechsv/tee-formal-spec
http://creativecommons.org/licenses/by/4.0/

	Formal Specification of Trusted Execution Environment APIs

