
TracerX: Pruning Dynamic Symbolic Execution
with Deletion and Weakest Precondition
Interpolation (Competition Contribution)

National University of Singapore, Singapore, Singapore1,3,5

Huawei Canada Research Centre, Toronto, Canada2,

{arpita,joxan,xiaoly}@comp.nus.edu.sg1,3,5
rasool.maghareh@huawei.com2, sanghu@nitw.ac.in4

Abstract. Dynamic Symbolic Execution (DSE) is an important method
for the testing of programs. The major advantage of DSE is its path-by-
path exploration of the program execution space. However, this often
leads to the path explosion problem. To address this issue, a method of
abstraction learning has been used. The key step here is the computa-
tion of an interpolant to represent the learned abstraction. In Test-Comp
2024, we use two different approaches of interpolant generation viz., Dele-
tion Interpolation and Weakest Precondition Interpolation. The former
is our more stable and mature system and briefly discussed in [8]. In
this paper, we present the latter approach which is the heart of TracerX.
In general, the Weakest Precondition (WP) is the ideal (most general)
interpolant. However, WP is intractable to compute and is exponentially
disjunctive. A major challenge is to obtain a conjunctive approximation
of the WP. Therefore, we generate an approximation of the WP.

Keywords: Dynamic Symbolic Execution, Interpolation, Weakest Pre-
condition

1 Test-Generation Approach

DSE is an important method for program testing. The main challenge in symbolic
execution (SE) is path explosion. The method of abstraction learning [10] has
been used to address this by generating the interpolants to represent the learned
abstraction. The core feature in abstraction learning is the subsumption of paths
whose traversals are deemed to no longer be necessary due to similarity with
already-traversed paths. Despite the overhead of computing interpolants, the
pruning of the symbolic execution tree (SET) that interpolants provide often
brings significant overall benefits. An interpolant of a program point (state) is
an abstraction of it which ensures the safety of the subtree rooted at that state.
Thus, upon encountering another state of the same program point, if the context

⋆

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 320–325, 2024.
https://doi.org/10.1007/978-3-031-57259-3_19

Arpita Dutta1 , Rasool Maghareh2 , Joxan Jaffar B ,
Sangharatna Godboley , and Xiao Liang Yu

3()

4 5

3 National Institute of Technology Warangal, Hanamkonda, India

J. Jaffar—Jury Member Test-Comp 2024.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_19&domain=pdf
http://orcid.org/0000-0001-7887-3264
http://orcid.org/0000-0002-8147-6590
http://orcid.org/0000-0001-9988-6144
http://orcid.org/0000-0002-6169-6334
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

of the state implies the interpolant formula, then continuing the execution from
the new state will not lead to any error. Consequently, we can prune the subtree
rooted in the new state [6,7].

The heart of TracerX is the use of interpolation to address the path explosion
problem in DSE. The use of interpolation to address the path explosion problem
in DSE was first implemented in the TRACER system [9]. While TRACER was
able to perform bounded verification and testing on many examples, it could
not accommodate industrial programs which often dynamically manipulate heap
memory. TracerX combines the state-of-the-art DSE technology used in KLEE
[5] with the pruning technology in TRACER to address this issue. We presented
the software architecture of TracerX in [8]. The default interpolation algorithm
used by TracerX is the Deletion Interpolation and it was first developed under
TRACER [9].

Since the last Test-Comp, we have designed another interpolation algorithm
i.e., Weakest precondition (WP) interpolation. The Deletion algorithm generates
interpolant as a subset of the incoming context (which is the strongest postcon-
dition on the path to the assume condition), while the WP algorithm generates
interpolants from the weakest precondition of a path in the program. Hence, the
WP interpolation algorithm provides a more general interpolant which can have
a higher chance of subsuming more subtrees in SET.

The ideal (most general) interpolant is the WP of the target, which is the
condition that must be satisfied in order to get the target satisfied. For example,
consider the following piece of code:

assume (not (b1 ∧ ¬ b2 ∧¬ b3))

if (b1) x += 3 else x += 2

if (b2) x += 5 else x += 7

if (b3) x += 9 else x += 14

{x <= 24}

The WP before the first if-statement is:
b1 −→ (¬b2 ∧ b3 ∧ x ≤ 7) ∨ (b2 ∧ x ≤ 4)

¬b1 −→ x < 3

Here, WP is expressed as a disjunction of two conditions. This means that either
of the two conditions can be satisfied for the target to be reached.

Unfortunately, WP is intractable to compute, which means it is difficult or
impossible to find an exact solution for it. One way to approximate WP is to use a
conjunctive approximation, which involves expressing the WP as a conjunction
of simpler conditions. This can help to make the WP more tractable, but it
may also introduce some imprecision to the quality of interpolants (by under
approximation). However, this will not effect the soundness of the tool.

1.1 TracerX-WP: Approximation of Weakest Precondition

TracerX-WP implements the algorithm which approximates the ideal WP by
defining two components: path interpolants and tree interpolants. In this section,
we briefly explain how these two components are computed and used to generate
an approximation of the weakest precondition.

A path interpolant is a formula that represents the WP of a path. It starts
from the end of the path (target formula) and works backward to the beginning
of the path, using the rules of logic to compute a formula that if satisfiable then

TracerX: Pruning Dynamic Symbolic Execution with Deletion 321

target formulas will also be satisfiable. We consider a path to be a sequence of
assignments and assume statements executed in a specific order.

An assignment instruction assigns a value to a variable. Interpolant of an
assignment instruction is a logical formula that describes the effect of the as-
signment. For example, having the assignment instruction “x := z + 2”, and a
target “x ≤ 15”, the interpolant is described as WP (inst, target) : x ≤ 13.

For an assume instruction (B), consider the incoming context {C} as the
precondition and {ω} as the target. An interpolant is a formula that represents
the logical relationship between the variables in the context {C} and the condi-
tions in B. To find the interpolant, we compute the coarse partition (minimum
number of partitions) of {C} such that var(Ci) ∗ var(Cj) s.t. i ̸= j (∗ is in-
tuitively the “separating conjunction” from separation logic [12]) as shown in
Eq.1: {C1 ∗ C2 ∗ C3 ∗ ... ∗ Cn} assume(B) {ω1 ∗ ω2 ∗ ω3 ∗ ... ∗ ωm} (1)

We partition Ci into three groups. Constraints are replaced using the rules below:

– Target independent: The Ci which are separate from B and ω.
Action: Replace Ci with true, i.e. remove Ci.

– Guard independent: Consider Cgi ≡ Ci s.t. Ci ∗ B; and, ωgi ≡ ωj s.t.
B ∗ ωj .
Action: Replace Cgi by ωgi.

– Remainder of the Ci: We do not capture exact WP for this group.
e.g. {z == 5} assume(x > z − 2) {x > 0} (Here, z > 2 is the WP)
Action: No change to Ci, i.e. keep Ci.

A tree interpolant is a formula that corresponds to all the branches of a sub-
tree within the SET. It is computed as the conjunction of the path interpolants
between the root of the tree and each leaf node. Tree interpolants can be used to
prove the correctness of subtrees in the SET, by showing that a certain property
holds for all possible paths or branches in the subtree.

2 Software Architecture

KLEE

TracerX-WP Interpolant
Generation Engine

SMT Solver

C
la

ng

LLVM IR

Annotations

C
CPP
ObjC Test Cases

Statistics

Fig. 1. TracerX-WP Framework

The software archi-
tecture of TracerX-
WP is presented in
Fig. 1. The core fea-
ture of TracerX-WP
is its interpolation en-
gine which generalizes
the context of a node.
TracerX-WP works at
the level of LLVM bitcode, the intermediate language of the widely used LLVM
compiler infrastructure [11]. It provides an interpreter that can execute al-
most arbitrary code represented in LLVM IR, both concretely and symbolically.
TracerX-WP has a modular and extensible architecture. It provides a variety of
different search heuristics (e.g., Random and DFS) to explore the program state
space.

322 A. Dutta et al.

3 Strengths and Weaknesses

In Test-Comp 2024 [4], we participated with two different approaches to prune
subtrees viz., Deletion Interpolation and WP Interpolation. We represent the
former system as TracerX and the latter as TracerX-WP. TracerX secured a
score of 4020 for the 11042 tasks with a CPU time of 694.44 hours and 722.22
hours of wall time. Whereas, TracerX-WP obtained a score of 1480 for 11042
tasks with equal CPU time and wall time of 472.22 hours. The memory used by
TracerX and TracerX-WP are 19 TB and 10 TB. The total coverage obtained by
TracerX and TracerX-WP are 402000 and 148000 for 11042 tasks respectively.

The major reason for the lower score of TracerX-WP is that the imple-
mentation of TracerX-WP is experimental. It crashed due to not supporting
some expression types during interpolant computation. Also, in TracerX-WP,
test cases with ‘.ktest’ extension are converted into ‘.xml’ format after the
symbolic execution engine has finished the exploration while TracerX gener-
ates the tests during the exploration. This resulted in the unavailability of
test cases for the programs with timeout status in the coverage computation.
Moreover, the configuration we used in the ‘BenchExec’ tool-info for TracerX-
WP missed the support for 64-bit architecture. As a result, TracerX-WP was
not able to run the tests in some categories like ReachSafety-Hardware, and
SoftwareSystems-BusyBox-MemSafety. The fix for the above mentioned issues
is conceptually straight forward but it requires substantial amount of work. Since,
we need to modify the data structures used in our system. In subsequent versions,
we will come-up more stable system with all fixes and additional features.

In a comparison of TracerX with Symbiotic and Fizzer which won the bronze
for the third place in Cover-Error and Cover-Branches tracks respectively, Trac-
erX has almost equal scores in 13 out of 16 (with at most difference of 3
tasks) and 15 out of 23 categories. TracerX has better results than Fizzer in
some categories like ReachSafety-BitVectors, ReachSafety-Hardware, and
ReachSafety-Combinations. These observations show the potential of TracerX
approach and we hope to get higher scores in the future Test-Comp competitions.

4 Setup and Configuration

The steps to configure and running of TracerX are similar to KLEE [5] with some
extra command-line arguments. The argument -solver-backend=z3 should be
provided to run TracerX with Deletion Interpolation. Along with -wp-interpolant

option is required to invoke WP Interpolation. For detailed information, please
see the integrated --help option.

5 Software Project and Contributors
Information about TracerX with self-contained binary is publicly available at
https://tracer-x.github.io/. Also, the source code can be accessed from GitHub.
The authors of this paper and other colleagues have contributed to and developed
TracerX at NUS, Singapore. Authors of this paper acknowledge the direct and
indirect support of their students, former researchers, and colleagues.

TracerX: Pruning Dynamic Symbolic Execution with Deletion 323

https://tracer-x.github.io/
https://github.com/tracer-x/TracerX
https://nus.edu.sg/

6 Data-Availability Statement

The binary artifact of TracerX with Deletion Interpolation and Weakest Precon-
dition Interpolation used in Test-Comp 2024 are publicly available at Zenodo [2]
and [3] respectively. Also, Test-Comp 2024 [1] provides all the necessary scripts,
benchmarks, and tool binaries to reproduce the competition’s results.

7 Funding Statement

This research project is partially supported by grant MOE-T2EP20220-0012.

References

1. Test-comp 2024, https://test-comp.sosy-lab.org/2024/
2. TracerX with Deletion Interpolation, https://doi.org/10.5281/zenodo.10200610
3. TracerX with WP Interpolation, https://doi.org/10.5281/zenodo.10202605
4. Beyer, D.: Automatic testing of C programs: Test-Comp 2024. Springer (2024)
5. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: unassisted and automatic

generation of high-coverage tests for complex systems programs. In: 8th USENIX
Symposium on Operating Systems Design and Implementation, OSDI. pp. 209–224
(2008)

6. Godboley, S., Jaffar, J., Maghareh, R., Dutta, A.: Toward optimal MC/DC test
case generation. In: Proceedings of the 30th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. pp. 505–516 (2021)

7. Jaffar, J., Godboley, S., Maghareh, R.: Optimal MC/DC test case generation. In:
2019 IEEE/ACM 41st International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion). pp. 288–289. IEEE (2019)

8. Jaffar, J., Maghareh, R., Godboley, S., Ha, X.L.: TracerX: Dynamic symbolic exe-
cution with interpolation (competition contribution). In: Fundamental Approaches
to Software Engineering (FASE). vol. 12076, p. 530. Springer (2020)

9. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: TRACER: a symbolic execu-
tion tool for verification. In: 24th International Conference on Computer Aided
Verification (CAV). pp. 758–766. Springer (2012)

10. Jaffar, J., Santosa, A.E., Voicu, R.: An interpolation method for CLP traversal. In:
15th International Conference on Principles and Practice of Constraint Program-
ming (CP). pp. 454–469. Springer (2009)

11. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: International symposium on code generation and opti-
mization, 2004. CGO 2004. pp. 75–86. IEEE (2004)

12. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Computer Science Logic: 15th International Workshop, CSL
2001 10th Annual Conference of the EACSL Paris. pp. 1–19. Springer (2001)

324 A. Dutta et al.

https://test-comp.sosy-lab.org/2024/
https://doi.org/10.5281/zenodo.10200610
https://doi.org/10.5281/zenodo.10202605

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

TracerX: Pruning Dynamic Symbolic Execution with Deletion 325

http://creativecommons.org/licenses/by/4.0/

	TracerX: Pruning Dynamic Symbolic Execution with Deletion and Weakest Precondition Interpolation (Competition Contribution)

