
KLEEF: Symbolic Execution Engine
(Competition Contribution)

1RnD Toolchain Labs, Huawei, Shenzhen, China

Abstract. KLEEF is a complete overhaul of the KLEE symbolic ex-
ecution engine for LLVM, fine-tuned for a robust analysis of industrial
C/C++ code. KLEEF natively handles complex data structures, such
as trees, linked lists, and dynamically allocated arrays, via lazy initializa-
tion and symcrete values. KLEEF has fine-tuned modes for both maxi-
mal test coverage generation and reproducing error traces, in particular
reaching a specific point in the program. In the paper, we describe the
above features and a competition configuration of KLEEF.

Keywords: Symbolic Execution · Lazy Initialization · KLEE Fork.

1 Test-Generation Approach

KLEEF is a complete overhaul of the KLEE [11,4] symbolic execution engine.
We first describe how KLEE works, then we describe our enhancements over it.

1.1 Symbolic Execution in KLEE

As a symbolic interpreter [1], KLEE runs a program on a symbolic memory,
which maps program locations to symbolic values, representing sets of concrete
values. When it meets a branching instruction, it adds target instructions to a
queue and after each executed instruction it decides which instruction execute
next. Symbolic interpreter collects all conditions from branching instructions in
a path constraint. It is a formula, which may be either unsatisfiable (if the path
is infeasible) or satisfiable, and have multiple solutions. Each solution gives a
concrete test, which would visit the corresponding path. A symbolic interpreter
usually relies on an SMT solver (like Z3 [8]) to get solutions of path constraints.

The KLEE engine is split into two logical parts. The first part is a symbolic
interpreter, which takes a symbolic state, executes one instruction, and produces
new states. The second part is a searcher, which chooses the next symbolic state
to execute according to a strategy, specified by input options, e.g., BFS or DFS.

⋆

c© The Author(s) 2024
D. Beyer and A. Cavalcanti (Eds.): FASE 2024, LNCS 14573, pp. 314–319, 2024.
https://doi.org/10.1007/978-3-031-57259-3_18

Aleksandr Misonizhnik , Sergey Morozov , Yurii Kostyukov(B) ,
Vladislav Kalugin , Aleksei Babushkin , Dmitry Mordvinov ,

and Dmitry Ivanov

kostyukov.yurii@gmail.com

Y. Kostyukov—Jury member.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57259-3_18&domain=pdf
http://orcid.org/0000-0002-5907-0324
http://orcid.org/0000-0003-1160-5614
http://orcid.org/0000-0003-4607-039X
http://orcid.org/0009-0005-4024-088X
http://orcid.org/0000-0002-5661-5800
http://orcid.org/0000-0002-6437-3020
http://orcid.org/0000-0002-0420-9077
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


1.2 Our Enhancements over KLEE

We enhanced KLEE with support for arbitrary data structures such as trees
and linked lists by implementing lazy initialization [7]. If KLEE dereferences
a symbolic pointer, it forks the symbolic state into many: each one assumes that
the pointer refers to one of the existing locations in the memory. In KLEEF
we also fork one extra state, where the pointer refers to a fresh, lazy initialized
symbolic object, which is distinct from all other object of the current symbolic
memory. If there are not enough objects in the memory, KLEEF will create a
new one and continue execution while KLEE will not. In the configuration used
at the competition we only create lazy initialized symbolic objects for symbolic
pointers without forking the state into existing locations beforehand.

We improve KLEE with symcretes [10], which help to support dynamically
allocated arrays (with symbolic sizes) and external calls. KLEEF thus supports
detecting buffer overflows. A symcrete is a pair of symbolic value and its concrete
instance valid in the current context. The concrete part of symcrete values is
derived from the model of a path constraint. It stays the same if the solver can
find a model for concretized constraints. Having failed, the concretization will
be updated by values from the model for the original constraints. When a logical
solver receives a query with a symcrete, an equality between the symbolic and
concrete parts of the symcrete are added to the query. This helps the solver
to solve the query, as a part of the model is already specified in the symcrete.
KLEEF thus handles dynamically allocated arrays by making array size and
address symcretes. KLEEF uses the solver to minimize possible array size and
sparse storage for arrays, so that the entire process does not blow up.

We have implemented searchers optimized specifically for maximizing cov-
erage and reaching the error target. That is, KLEEF has targeted searcher and
guided searcher which maximize coverage and error reachability, similar to [3].
The targeted searcher uses the shortest path based algorithm to choose the near-
est execution state to the target location. Each execution state carries a set of
targets. A guided searcher manages a bunch of targeted searchers with different
targets and chooses states from every targeted searcher in interleaved manner.

KLEEF improves over KLEE in constraint solving by caching unsatisfia-
bility cores, interning symbolic expressions, tracking constraints during simplifi-
cation to detect conflicts and using an SMT solver incrementally. In KLEEF we
added support for Bitwuzla [9] SMT solver, which performs significantly bet-
ter on Test-Comp benchmarks. For example, KLEEF with Z3 achieves 2430
points running for 30 seconds on Test-Comp 2023 benchmarks, while KLEEF
with Bitwuzla achieves 2560 points within the same time limit.

2 Architecture

KLEEF has the same architecture as KLEE [4]. KLEEF is implemented in
C/C++ and relies on the LLVM infrastructure. KLEEF supports STP [5],
Z3 [8] and Bitwuzla [9] SMT solvers for checking constraint satisfiability.

KLEEF: Symbolic Execution Engine (Competition Contribution) 315



3 Strengths and Weaknesses of the Approach

KLEEF took 3rd place in Test-Comp 2024 (Overall) [2], which is impressive
as it is a pure symbolic execution engine. That is, it could get even better results
if paired with fuzzing or other techniques.

The main reasons for our advancement in coverage category are as fol-
lows. First, it is a smart searcher which guides the symbolic execution towards
uncovered branches. Second, it is fast constraint solving, incorporating a num-
ber of caching techniques and solver incrementality. Third, the engine handles
allocations with a symbolic size without concretization by using symcrete values.

The main reasons for our advancement in error reaching category in-
clude a smart searcher guiding the execution towards an error and elimination
of syntactically unreachable paths in CFG.

Note that KLEEF took less points than KLEE in error reaching cate-
gory. KLEEF has more solved benchmarks, yet this number is normalized
across subcategories. As KLEEF solves less benchmarks on SoftwareSystems-
BusyBox-MemSafety and SoftwareSystems-OpenBSD-MemSafety subcategories
than KLEE, we got less points in the error reaching category in total. Poor
performance on these two subcategories is due to bugs in KLEEF: it generated
a few tests which were not reproduced by the validation system.

4 Tool Setup and Configuration

4.1 How to Use KLEEF

In order to run the competition version from the command line, one should
get the archive with binaries from Zenodo1 and follow the README inside.

In order to generate a test coverage for a project without configur-
ing KLEEF manually, one should use a user-friendly wrapper UnitTestBot
C/C++ [6,12]. It allows KLEEF to be run in VS Code and JetBrains CLion.

In order to build KLEEF from sources, one should install LLVM, clone
KLEEF from GitHub2 and run build.sh script in the repository root.

4.2 Competition Configuration

KLEEF participates in both Cover-Error and Cover-Branches categories.
Common Parameters. Parameters --strip-unwanted-calls, --delete-

dead-loops=false, --mock-all-externals are used to (de)activate necessary
LLVM passes to simplify bitcode for a symbolic execution. A parameter --

external-calls=all allows function calls with symbolic arguments. An option
--libc=klee makes KLEEF support an extended number of external functions.

Parameters --cex-cache-validity-cores, --use-forked-solver=false,

--solver-backend=bitwuzla-tree, --max-solvers-approx-tree-inc=16 are
used to cache unsatisfiability cores and call a Bitwuzla solver incrementally.

1 https://doi.org/10.5281/zenodo.10202734
2 https://github.com/UnitTestBot/klee

316 A. Misonizhnik et al.

https://doi.org/10.5281/zenodo.10202734
https://github.com/UnitTestBot/klee


Parameters --symbolic-allocation-threshold=8192, --skip-not-lazy-

initialized, --use-sym-size-alloc are used to tune lazy initialization and
dynamically allocated arrays.

A parameter --fp-runtime adds a floating point support. Parameters start-
ing with --allocate-determ activate X86 support. An option --x86FP-as-

x87FP80 adds emulation of X86 floating points as extended 80 bit floating points.
Finally, --max-memory and --max-time fix memory and time limit.
Parameters for Cover-Error. An option --optimize=true simplifies code

before execution, e.g., it joins some branches to multiple blocks into selection
instructions. Options --search=dfs --search=bfs make KLEEF interleave
between DFS and BFS. Options --function-call-reproduce=reach error,

--exit-on-error-type=Assert make KLEEF run towards reach error func-
tion and fail only there. An option --dump-states-on-halt=unreached permits
KLEEF to generate tests for unfinished paths.

Parameters for Cover-Branches. A parameter --track-coverage=all

makes KLEEF track coverage by both branches and instructions. Options -

-optimize=false and --optimize-aggressive=false disable optimizations
which decrease coverage. Options --use-iterative-deepening-search=max-

cycles, --max-cycles-before-stuck=15 activate an iterative-deepening mode
of execution on a number of executed loop cycles. A parameter --max-solver-
time=10s fixes a time limit for an SMT solver. An option --only-output-

states-covering-new makes KLEEF only generate tests which increase cov-
erage. Options --search=dfs, --search=random-state make KLEEF inter-
leave between DFS and taking a random state. A parameter --dump-states-

on-halt=all makes KLEEF generate tests for the symbolic states remaining in
the end. Options --cover-on-the-fly, --delay-cover-on-the-fly, --mem-

trigger-cof start on the fly test generation after approaching memory cap.

5 Software Project and Contributors

More information about KLEEF is available on its website3. KLEEF is an
open-source piece of software which you could contribute to at GitHub4.

The key developers are the authors of this paper affiliated with RnD Toolchain
Labs, Huawei, Shenzhen, China. The authors have decent experience in the im-
plementation of research and industrial symbolic execution engines.

6 Data-Availability Statement

A binary version of KLEEF participating in the competition is publicly avail-
able5. Also, its source code is available on GitHub6.

3 https://toolchain-labs.com/projects/kleef.html
4 https://github.com/UnitTestBot/klee
5 https://doi.org/10.5281/zenodo.10202734
6 https://github.com/UnitTestBot/klee/releases/tag/testcomp24

KLEEF: Symbolic Execution Engine (Competition Contribution) 317

https://toolchain-labs.com/projects/kleef.html
https://github.com/UnitTestBot/klee
https://doi.org/10.5281/zenodo.10202734
https://github.com/UnitTestBot/klee/releases/tag/testcomp24


References

1. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A Survey of
Symbolic Execution Techniques. ACM Comput. Surv. 51(3) (2018)

2. Beyer, D.: Automatic testing of C programs: Test-Comp 2024. Springer (2024)
3. Burnim, J., Sen, K.: Heuristics for Scalable Dynamic Test Generation. In: 2008

23rd IEEE/ACM International Conference on Automated Software Engineering.
pp. 443–446 (2008). https://doi.org/10.1109/ASE.2008.69

4. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and Automatic Genera-
tion of High-Coverage Tests for Complex Systems Programs. In: Draves, R., van
Renesse, R. (eds.) 8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,
Proceedings. pp. 209–224. USENIX Association (2008), http://www.usenix.org/
events/osdi08/tech/full papers/cadar/cadar.pdf

5. Ganesh, V., Dill, D.L.: A Decision Procedure for Bit-Vectors and Arrays. In:
Damm, W., Hermanns, H. (eds.) Computer Aided Verification. pp. 519–531.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

6. Ivanov, D., Babushkin, A., Grigoryev, S., Iatchenii, P., Kalugin, V., Kichin, E.,
Kulikov, E., Misonizhnik, A., Mordvinov, D., Morozov, S., Naumenko, O., Ple-
shakov, A., Ponomarev, P., Shmidt, S., Utkin, A., Volodin, V., Volynets, A.:
UnitTestBot: Automated Unit Test Generation for C Code in Integrated De-
velopment Environments. In: 2023 IEEE/ACM 45th International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). pp. 380–384
(2023). https://doi.org/10.1109/ICSE-Companion58688.2023.00107

7. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized Symbolic Execution for
Model Checking and Testing. In: Garavel, H., Hatcliff, J. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 553–568. Springer Berlin
Heidelberg, Berlin, Heidelberg (2003)

8. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

9. Niemetz, A., Preiner, M.: Bitwuzla. In: Enea, C., Lal, A. (eds.) Computer Aided
Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22,
2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13965, pp.
3–17. Springer (2023). https://doi.org/10.1007/978-3-031-37703-7 1, https://doi.
org/10.1007/978-3-031-37703-7 1

10. Pandey, A., Kotcharlakota, P.R.G., Roy, S.: Deferred Concretization in
Symbolic Execution via Fuzzing. In: Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing and Analysis. p.
228–238. ISSTA 2019, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3293882.3330554, https://doi.org/10.1145/
3293882.3330554

11. The KLEE Team: KLEE Symbolic Execution Engine (2009), http://klee.github.io/
12. The UnitTestBot C/C++ Team: UnitTestBot C/C++ (2021), https://www.utbot.

org/cpp

318 A. Misonizhnik et al.

https://doi.org/10.1109/ASE.2008.69
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1109/ICSE-Companion58688.2023.00107
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1145/3293882.3330554
https://doi.org/10.1145/3293882.3330554
https://doi.org/10.1145/3293882.3330554
http://klee.github.io/
https://www.utbot.org/cpp
https://www.utbot.org/cpp


Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

KLEEF: Symbolic Execution Engine (Competition Contribution) 319

http://creativecommons.org/licenses/by/4.0/

	KLEEF: Symbolic Execution Engine (Competition Contribution)



