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Abstract. Fizzer is a new gray-box fuzzer. In contrast to common
gray-box fuzzers that aim to cover both true and false branches of
branching instructions, Fizzer primarily aims to cover both possible
values true and false of Boolean expressions in the program. When a
generated test evaluates a so-called atomic Boolean expression to one of
these values, our fuzzer computes the distance to the other value, detects
bytes that influence this distance, and applies gradient descent on these
bytes to flip the value. In Test-Comp 2024, Fizzer placed third in the
category Cover-Branches after FuSeBMC and FuSeBMC-AI.
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1 Test-Generation Approach

Fuzzing [5] is an automatic technique that generates test inputs for a given
program. Gray-box fuzzers first instrument the given program with a code that
tracks selected information about a program execution. The instrumented pro-
gram is then repeatedly executed on various inputs and the tracked information
is used to generate new inputs that should execute parts of the program not
executed in previous runs.

Successful gray-box fuzzers like AFL [6] collect only very limited information
about each program execution and try to quickly perform as many executions as
possible. In Fizzer, we use an approach that gathers slightly more information
about program executions and uses it to select uncovered parts of the code and
make more targeted attempts to cover it.

While typical gray-box fuzzers track only the information about the basic
blocks visited during a program execution, our approach tracks also evaluation of
each atomic Boolean expression (abe). A Boolean expression is atomic if it is not
a variable, not a call of a function whose definition is a part of the program, and
not a result of applying a logical operator. Many LLVM instructions yielding i1
type (i.e., Boolean) from other types are abes. An important example is the icmp
instruction used in translations of C expressions like (x > 42) or (string[i]
== ’A’). Each time an abe is evaluated to true or false, the instrumented
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code saves the calling context (i.e., the sequence of currently evaluated function
calls, which loosely corresponds to the call stack), the value of the abe, and the
distance to the opposite value. For example, if abe (x > 42) is evaluated to
true, the distance to false is computed as x - 42.

Our fuzzer aims to generate tests that evaluate each abe in each reached
calling context to both true and false. Assume that some input leads to the
evaluation of an abe to true and we want to evaluate it to false in the same
calling context. We first repeatedly execute the program on various mutations
of the input to detect the bytes of this input that have some influence on the
distance of the abe evaluation. This process is called a sensitivity analysis and
the detected bytes are called sensitive. Then we apply the following two analyses
that use the sensitive bytes. One analysis performs a gradient descent on the
sensitive bytes with the aim to minimize the absolute value of the distance and
to evaluate the abe in the considered calling context to false. Alternatively, if
we already know another input evaluating the abe to false in a different calling
context, we can try to use the value of its sensitive bytes instead of the sensitive
bytes of the current input. This analysis is called byteshare analysis.

The fuzzer maintains the information about abes evaluated in all program
executions, their calling contexts, values, and distances in a binary tree called
atomic Boolean execution tree. The tree is used to select the abe and its value
to be covered.

For a more detailed and formal description of our approach, we refer to the
corresponding research paper [4].

2 Software Architecture

Fizzer is implemented in C++, consists of around 11,000 lines of code in 125
files and uses the LLVM infrastructure. The compiled tool is dependent only on
the clang compiler. Fizzer consists of two 64-bit executables, namely Server
and Instrumenter, and a collection of static Libraries provided in both 32-
bit and 64-bit versions. Finally, there is a Python script offering a user friendly
interface to the tool.

The input program is first translated to LLVM by clang. The Instru-
menter then instruments the LLVM program with the code for tracking and
collecting data during program execution, as explained in the previous section.
The inserted code calls functions from the static Libraries. The instrumented
program linked with the corresponding static Libraries is called Target.

The Server controls the actual test generation process. In particular, Server
generates inputs using the sensitivity analysis, gradient descent, and byteshare
analysis mentioned above and runs the Target on these inputs. It also receives
and processes the information tracked by the Target during its executions and
builds the atomic Boolean execution tree. The tree is used to select an abe value
to be covered.

The Server is one process and each execution of Target runs in another
process. The exchange of information between the Server’s process and the
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Target’s process is done via shared memory. This ensures that the Server can
receive the information about Target’s execution even if the execution crashes.

3 Strengths and Weaknesses

On the positive side, Fizzer is a relatively simple and very compact tool with
minimal external dependencies. As it is a pure fuzzer, it can be applied to pro-
grams of an arbitrary size and it can also handle programs that use external
functions available only in compiled form. And covering (in)equality constraints,
which is often difficult for fuzzers, is boosted by the gradient descent.

Fuzzers in general limit each execution of the program as they need to per-
form many of these executions. Fizzer sets upper bounds (passed to the tool via
command line options) on the number of evaluated abes, the size of the input
bytes read, the size of the calling context, and other properties. If an execution
of the Target exceeds some of the bounds, it is terminated. Fizzer thus ob-
tains information about prefixes of real executions and thus it can effectively
generate tests only for parts of the program close to the program entry point.
This weakness correlates with the well known practical experience with fuzzers
in general: they are effective in covering code close to the entry point, but have
troubles to get deeper. In Fizzer, we do not attempt to properly deal with this
phenomenon. We only use so-called optimizer after fuzzing stops (usually due to
reaching its timeout). The optimizer simply sets up the upper bounds to large
numbers and executes the program on those generated inputs that exceeded
some upper bound during fuzzing.

Some weaknesses of Fizzer also come from the fact that it is only a prototype
implementation taking advantage of some specific features of the Test-Comp
benchmarks. In particular, the only way of reading an input currently supported
by Fizzer are the functions __VERIFIER_nondet_*().

Another weakness is related to the use of gradient descent as one of the
main techniques to cover a selected abe. The technique is efficient when flipping
Boolean values depending on functions with only few extremes (e.g., quadratic
functions), but it can struggle on functions with a complex behavior (e.g., func-
tions used for hashing). To mitigate this issue, we implemented a second version
of the gradient descent adjusted for functions with many local extremes and we
apply it e.g. on function XOR.

In Test-Comp 2024, Fizzer won the bronze medal in the category Cover-
Branches where 18 tools were competing. Moreover, it obtained the highest score
in 3 out of 23 sub-categories of Cover-Branches, namely in ReachSafety-Floats,
SoftwareSystems-AWS-C-Common-ReachSafety, and SoftwareSystems-BusyBox-
MemSafety. Fizzer also participated in the Cover-Error category. It is impor-
tant to stress that Fizzer cannot currently be instructed to focus on covering
one particular location, like the target reach_error() of this category. Fizzer
thus attempted to cover all abes in the program, just like in the other category.
Despite of that Fizzer placed seventh out of 19 participants in this category.
More details can be found on competition’s website [1] and report [2].
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4 Tool Setup and Configuration

Fizzer can be downloaded either as a binary or as a source code (links are
in Section 6). For the source code, checkout the commit tagged TESTCOMP24 in
order to build the version participating in the competition. The README.md file
in the root of the repository contains detailed instructions for building the tool.
Once the tool is built, all binaries are under ./dist directory. The content of
the directory can be copied “as-is” to a target computer, i.e., no installation is
necessary. The tool should be used via sbt-fizzer.py script:

sbt-fizzer.py [options] --input_file <my-c-program>
--output_dir <my-output-dir>

All results for the given C program <my-c-program> will be stored under the
directory <my-output-dir> (including generated tests). The list of all available
options can be obtained by command sbt-fizzer.py --help. Here are the
options we used in the competition:

• max_seconds 865 The timeout for the fuzzing.
• optimizer_max_seconds 30 The timeout for the optimizer.
• max_exec_milliseconds 500 The timeout for each Target’s execution.
• max_stdin_bytes 65536 The upper bound for the number of input bytes.
• stdin_model stdin_replay_bytes_then_repeat_zero An input model:

Read generated input bytes and then read zeros.
• test_type testcomp The format for the generated tests.

Please note that Fizzer currently does not execute the given program in an
isolated environment. It is thus not advised to run Fizzer directly (outside a
container) on any C program accessing disk or other external resources.

5 Software Project and Contributors

Fizzer has been developed at the Faculty of Informatics of Masaryk University
by Marek Trtík and Lukáš Urban. Martin Jonáš and Jan Strejček participated in
discussions and contributed to the project by some ideas. The tool is open-source
and it is available under the zlib license.

6 Data-Availability statement

Fizzer is available in a binary form at Zenodo [3] and the source code is available
at GitHub:

https://github.com/staticafi/sbt-fizzer

312 M. Jonáš et al.

https://github.com/staticafi/sbt-fizzer


References

1. Test-Comp 2024, table with results, https://test-comp.sosy-lab.org/2024/
results/results-verified/

2. Beyer, D.: Automatic Testing of C Programs: Test-Comp 2024. Springer (2024)
3. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Fizzer: binary (Nov 2023). https:

//doi.org/10.5281/zenodo.10183158

5. Liang, H., Pei, X., Jia, X., Shen, W., Zhang, J.: Fuzzing: State of the art. IEEE
Transactions on Reliability 67(3), 1199–1218 (2018). https://doi.org/10.1109/
TR.2018.2834476

6. Zalewski, M.: American fuzzy lop (2013), http://lcamtuf.coredump.cx/afl/.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

: New Gray-Box Fuzzer 313Fizzer

4. Jonáš, M., Strejček, J., Trtík, M., Urban, L.: Gray-box fuzzing via gradient descent
and Boolean expression coverage. In: Finkbeiner, B., Kovács, L. (eds.) TACAS 2024.
LNCS, vol. 14572, pp. 90–109 (2024). https://doi.org/10.1007/978-3-031-57256-
2 5_

https://test-comp.sosy-lab.org/2024/results/results-verified/
https://test-comp.sosy-lab.org/2024/results/results-verified/
https://doi.org/10.5281/zenodo.10183158
https://doi.org/10.5281/zenodo.10183158
https://doi.org/10.5281/zenodo.10183158
https://doi.org/10.5281/zenodo.10183158
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
http://lcamtuf.coredump.cx/afl/.
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-57256-2_5
https://doi.org/10.1007/978-3-031-57256-2_5

	Fizzer: New Gray-Box Fuzzer



