
Ultimate Automizer and the Abstraction of
Bitwise Operations

(Competition Contribution)

Frank Schüssele� , Manuel Bentele , Daniel Dietsch ,
Matthias Heizmann⋆ , Xinyu Jiang , Dominik Klumpp , and

Andreas Podelski

University of Freiburg, Freiburg im Breisgau, Germany
schuessf@informatik.uni-freiburg.de

Abstract. The verification of Ultimate Automizer works on an SMT-
LIB-based model of a C program. If we choose an SMT-LIB theory of
(mathematical) integers, the translation is not precise, because we over-
approximate bitwise operations. In this paper we present a translation for
bitwise operations that improves the precision of this overapproximation.

1 Verification Approach

Ultimate Automizer (in the following abbreviated as UAutomizer) is a
software verifier that implements the trace abstraction approach [6,9]. In trace
abstraction, a verification problem is considered as a formal language and decom-
posed via automata-theoretic methods into smaller verification problems. While
verifying a C program, UAutomizer applies trace abstraction to a model of
the program that consists of a control-flow graph (CFG) and SMT-LIB formulas
that express how the program’s data is modified while moving along an edge
of the CFG. We obtain this model by first translating the C program into a
Boogie [10] program and afterwards translating the Boogie program into the
CFG and SMT-LIB formulas. We have two variants of these translations, we
call them the integer-based translation and the bitvector-based translation. The
integer-based translation results in a Boogie program over mathematical inte-
gers that is later translated to SMT-LIB formulas from the integer theory. The
bitvector-based translation results in a Boogie program over bitvectors that is
later translated to SMT-LIB formulas from the bitvector theory. The integer-
based translation uses modulo operations to make sure that the result of arith-
metic operation is in the correct range. It also overapproximates the result of
bitwise operations and is hence not very precise. If the trace abstraction-based
verification algorithm returns a counterexample that contains an overapprox-
imated operation, UAutomizer does not return the counterexample but un-
known instead. The bitvector-based translation returns a result that is precise
but whose verification is costly. In order to mitigate the shortcomings of both
translations, UAutomizer first runs the verification on the integer-based model.
If the result is unknown, the tool is run again on the bitvector-based model.

⋆ Jury Member: Matthias Heizmann

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 418–423, 2024.
https://doi.org/10.1007/978-3-031-57256-2_31

http://orcid.org/0000-0002-5656-306X
http://orcid.org/0009-0003-4794-958X
http://orcid.org/0000-0002-8947-5373
http://orcid.org/0000-0003-4252-3558
http://orcid.org/0009-0000-6539-6227
http://orcid.org/0000-0003-4885-0728
http://orcid.org/0000-0003-2540-9489
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_31&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

2 Abstraction of Bitwise Operations

In the past our integer translation overapproximated the bitwise operators, i.e. &,
|, ^, ~, <<, >> returned some non-deterministic value. In this paper we show how
to translate bitwise operators more precisely. Our translation is a generalization
of the work of Liu et al. [11]. First we describe the translation of the operators
&, |, ^. The remaining operators will be explained at the end of this section. For
the operators &, |, ^ we distinguish three different cases:

– If both operands are literals, we replace the operation by its result.
– If one operand is a literal with a specific bit-pattern, we rewrite the expres-

sion directly.
– Otherwise we overapproximate with additional constraints for the return

value.

Rewrite rules. If one of the operands is a literal, we try to replace the bitwise
operation by an arithmetic operation based on the bit-pattern of the literal.
These rewrite rules are shown in Table 1 (omitting symmetric cases). The first
two cases are simple. In the first row every bit is zero (i.e. the operand is 0). Zero
is the absorbing element for & and the neutral element for | and ^. In the second
row every bit is one (i.e. the operand is -1 for signed integers or the maximum
value for unsigned integers). This is the neutral element for & and the absorbing
element for |. The last two cases are motivated by typical bitmasks and are a
generalization of the first two cases. In a C program, bitmasks are used to set
bits to zero or to one. For example the expression x & 255 can be used to replace
every bit of x by zero except for the last 8 bits. The third row is motivated by
Liu et al. [11]. They rewrote x & 1 (i.e. only the last bit is one) to x % 2, whereas
we generalize this case for any pattern that only ends with ones. With the rule
on the third row the expression x & 255 is rewritten to x % 256. In the last row
only the starting bits are one. This case works analogously to the third row,
it is rewritten using a combination of modulo and other arithmetic operators.
We implemented these rules in our translation from C to Boogie. Boogie has
mathematical integer semantics, so the evaluation of the expressions in the table
can never lead to an overflow. The rules for the operators | and ^ are based on
the equalities a | b = a+ b− (a & b) and aˆb = a+ b− 2 · (a & b).

Constrained Overapproximation. If none of the operands are literals with a
bit-pattern from above, we translate the bitwise operations to calls to functions
as implemented in Fig. 1 in Boogie as follows: x & y is translated to and(x, y),
x | y is translated to or(x, y) and x ^ y is translated to xor(x, y). We omitted

Table 1: Rewrite rules based on the bit-pattern of c

bits(c) x & c x | c x ^ c

0...0 c x x

1...1 x c c - x

0...01...1 x % (c + 1) x + c - x % (c+1) x + c - 2 *(x % (c + 1))

1...10...0 x - x % (c + 1) c + x % (c + 1) c - x - 2 * (x % (c + 1))

Ultimate Automizer and the Abstraction of Bitwise Operations 419

procedure and(a: int , b: int) {
if (a == 0 || b == 0) return 0;
if (a == b) return a;

var r: int;
assume (a>=0 || b<0) ==> r<=a;
assume (a<0 || b>=0) ==> r<=b;
assume (a>=0 || b>=0) ==> r>=0;
assume (a<0 || b<0) ==> r>a+b;
return r;

}

procedure xor(a: int , b: int) {
if (a == 0) return b;
if (b == 0) return a;
if (a == b) return 0;

var r: int;
assume (a>=0 <==> b>=0) ==> r>0;
assume !(a>=0 <==> b>=0) ==> r<0;
assume (a>=0 || b>=0) ==> r<=a+b;
return r;

}

Fig. 1: Procedures to overapproximate the operators & and ^

the definition for the function or(a, b) here, because a possible implementation
could simply use the relation between & and | to return a + b - and(a, b). The
first lines of and and xor cover the cases that are handled precisely, i.e. where
one of the operands is zero or both are equal. For all other cases return a non-
deterministic value to overapproximate the behavior of the bitwise operators.
We constrain this value via the assumptions that often provide lower and upper
bounds. For example, if a and b are both non-negative, and(a, b) returns also
a non-negative value that is also smaller or equal to both a and b. Similarly
xor(a, b) returns a positive value that is smaller or equal to the sum a + b in
that case.

Negation and Shifts. We rewrite the negation ∼x to the equivalent expression
-1 - x. We rewrite shift operators if the second operand is a literal. The left shift
x << y is rewritten to x * c and the right shift x >> y is rewritten to x / c, where c
is the literal that is obtained by evaluating pow(2, y). The rewritten expression
x * c has an overflow if and only if the original expression x << y has an overflow.

3 Strengths and Weaknesses

UAutomizer won the overall category and the category NoOverflows in SV-
COMP 2024 [2]. UAutomizer reported 10 incorrect results, which were due to
incorrect modelling of C features.

We evaluated the abstraction of bitwise operations on selected benchmarks
from SV-COMP 2024. The evaluation was performed on a AMD Ryzen Thread-
ripper 3970X using 2 cores at 3.7GHz with a time limit of 900 s and a memory
limit of 8GB. In Table 2 you can see the results of the evaluation on the cat-
egory ReachSafety. We choose this category, because it contains a wide range
of benchmarks, including several that make use of bitwise operators. There we
compared three settings: the bitvector-based translation, the old integer-based
translation where every bitwise operation is allowed to return any value and the
integer-based translation with the optimizations described in Section 2. The re-
sults show that the new integer-based translation can verify 25 more benchmarks
than the old integer-based translation (from various folders, e.g. hardness-nfm22

420 F. Schüssele et al.

Table 2: Comparison on ReachSafety

Bitvector Integer (optimized) Integer (old)
time mem time mem time mem

(h) (GB) # (h) (GB) # (h) (GB)

total (10 205) 1 958 65 1 862 2 076 37 2 600 2 051 36 2 550
safe (7 557) 1 183 41 1 030 1 350 22 1 510 1 324 21 1 440
unsafe (2 648) 775 24 832 726 15 1 090 727 15 1 110

Table 3: Comparison on Termination-BitVectors

Integer (optimized) Integer (old)
time mem time mem

(s) (GB) # (s) (GB)

total (37) 31 410 12.1 12 122 4.2
safe (23) 23 325 9.2 7 73 2.5
unsafe (14) 8 85 2.9 5 49 1.7

and hardware-verification) and 118 more than the bitvector-based translation.
The bitvector-based translation is precise in contrast to the integer-based trans-
lation. Overall this precision does not pay off, as the result of the bitvector-based
translation is often too costly to verify. However, the precision can also be help-
ful, as the bitvector-based translation can find 48 (resp. 49) more bugs than the
integer-based translations.

We also evaluated our approach on the subcategory Termination-BitVectors,
where most of the benchmarks contain bitwise operations. For termination we
do not support bitvectors, therefore we compared only our approach with the
old integer-based translation. The results in Table 3 show that the our optimized
approach is sufficient to prove the (non-)termination of 31 of the total 37 tasks,
whereas the trivial overapproximation is only sufficient for 12.

4 Architecture, Setup, Configuration, and Project

UAutomizer is part of Ultimate [15,16], a program analysis framework writ-
ten in Java and licensed under LGPLv3. UAutomizer is an automaton-based
model checker using a CEGAR-loop approach [8]. The submitted version 0.2.4-
0e0057cc requires Java 11 and Python 3.6. Its Linux version, binaries of the
required SMT solvers Z3 [12,13], CVC4 [1,14], MathSAT [4,7], and a Python
wrapper script were submitted as a .zip archive. UAutomizer is invoked with

./Ultimate.py --spec <p> --file <f> --architecture <a> --full-output

where <p> is an SV-COMP property file, <f> is an input C file, <a> is the archi-
tecture (32bit or 64bit), and --full-output enables verbose output to stdout. A
witness is written to the files witness.graphml and witness.yml. The benchmark-
ing tool BenchExec [3] supports UAutomizer through the tool-info module
ultimateautomizer.py. UAutomizer participates in all categories, as declared
in its benchmark definition file uautomizer.xml.

Ultimate Automizer and the Abstraction of Bitwise Operations 421

Data Availability. The competition contribution for UAutomizer is available
as an archive on Zenodo [5].

References

1. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806,
pp. 171–177. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1 14

2. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

3. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements
and solutions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

4. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 19th International Conference, TACAS
2013, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7795, pp. 93–107. Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7 7

5. Dietsch, D., Bentele, M., Heizmann, M., Klumpp, D., Schüssele, F., Podelski,
A.: Ultimate Automizer SV-COMP 2024 Competition Contribution (Nov 2023).
https://doi.org/10.5281/zenodo.10203545

6. Dietsch, D., Heizmann, M., Klumpp, D., Naouar, M., Podelski, A., Schätzle, C.:
Verification of concurrent programs using Petri net unfoldings. In: Henglein, F.,
Shoham, S., Vizel, Y. (eds.) Verification, Model Checking, and Abstract Inter-
pretation - 22nd International Conference, VMCAI 2021, Copenhagen, Denmark,
January 17-19, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12597,
pp. 174–195. Springer (2021). https://doi.org/10.1007/978-3-030-67067-2 9

7. Fondazione Bruno Kessler, D.: MathSAT, https://mathsat.fbk.eu, (retrieved
2024-02-12)

8. Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz,
A., Musa, B., Schilling, C., Schindler, T., Podelski, A.: Ultimate Automizer and
the search for perfect interpolants. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems - 24th International Conference, TACAS 2018.
Lecture Notes in Computer Science, vol. 10806, pp. 447–451. Springer (2018).
https://doi.org/10.1007/978-3-319-89963-3 30

9. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In:
SAS. Lecture Notes in Computer Science, vol. 5673, pp. 69–85. Springer (2009).
https://doi.org/10.1007/978-3-642-03237-0 7

10. Leino, K.R.M.: This is Boogie 2 (June 2008), https://www.microsoft.com/en-us/
research/publication/this-is-boogie-2-2/

11. Liu, Y.C., Pang, C., Dietsch, D., Koskinen, E., Le, T., Portokalidis, G., Xu, J.:
Proving LTL properties of bitvector programs and decompiled binaries. In: Oh, H.
(ed.) Programming Languages and Systems - 19th Asian Symposium, APLAS 2021,
Chicago, IL, USA, October 17-18, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 13008, pp. 285–304. Springer (2021). https://doi.org/10.1007/978-3-
030-89051-3 16

422 F. Schüssele et al.

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.5281/zenodo.10203545
https://doi.org/10.1007/978-3-030-67067-2_9
https://mathsat.fbk.eu
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-642-03237-0_7
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://doi.org/10.1007/978-3-030-89051-3_16
https://doi.org/10.1007/978-3-030-89051-3_16

12. Microsoft Corporation: Z3, https://github.com/Z3Prover/z3, (retrieved 2024-02-
12)

13. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

14. Stanford University, U.: CVC4, https://cvc4.github.io, (retrieved 2024-02-12)
15. University of Freiburg: Ultimate source code repository, https://github.com/

ultimate-pa/ultimate, (retrieved 2024-02-12)
16. University of Freiburg: Ultimate website, https://ultimate-pa.org, (retrieved

2024-02-12)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Ultimate Automizer and the Abstraction of Bitwise Operations 423

https://github.com/Z3Prover/z3
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://cvc4.github.io
https://github.com/ultimate-pa/ultimate
https://github.com/ultimate-pa/ultimate
https://ultimate-pa.org
http://creativecommons.org/licenses/by/4.0/

	Ultimate Automizer and the Abstraction of Bitwise Operations

