
Theta:
Abstraction Based Techniques for Verifying
Concurrency (Competition Contribution)

Levente Bajczi ⋆(B) , Csanád Telbisz , Márk Somorjai , Zsófia Adám´ ,
Mihály Dobos-Kovács , Dániel Szekeres , Milán Mondok , and

Vince Molnár

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

bajczi@mit.bme.hu

Abstract. Theta is a model checking framework, with a strong empha-
sis on effectively handling concurrency in software using abstraction re-
finement algorithms. In SV-COMP 2024, we use 1) an abstraction-aware
partial order reduction; 2) a dynamic statement reduction technique;
and 3) enhanced support for call stacks to handle recursive programs.
We integrate these techniques in an improved architecture with inherent
support for portfolio-based verification using dynamic algorithm selec-
tion, with a diverse selection of supported SMT solvers as well. In this
paper we detail the advances of Theta regarding concurrent and recur-
sive software support.

Funding. This research was partially funded by the ÚNKP-23-{2,3}-I New National

Excellence Program; Project no. 2019-1.3.1-KK-2019-00004 (implemented with the

support provided from the NRDI Fund of Hungary under the 2019-1.3.1-KK fund-

ing scheme); and the Doctoral Excellence Fellowship Programme (funded by the NRDI

Fund of Hungary and the BME University).

1 Verification Approach

Theta [15,8] first competed at SV-COMP as a standalone tool in 2022, with
initial support for some multi-threaded tasks using a crude version of a partial
order reduction (POR) algorithm [2], and no practical support for recursion.

This year, we implemented a novel abstraction-based partial order reduction
algorithm [13] that enables Theta to solve significantly more tasks compared
to previous SV-COMPs, especially in the ReachSafety category. Our algorithm
considers two program statements independent even if they use the same shared
variable when the current abstraction has no information about this variable. For
example, the statements y = x and x = 1 are classically considered dependent

⋆ Jury member representing Theta at SV-COMP 2024.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 412–417, 2024.
https://doi.org/10.1007/978-3-031-57256-2_30

https://orcid.org/0000-0002-6551-5860
https://orcid.org/0000-0002-6260-5908
https://orcid.org/0000-0001-7537-0469
https://orcid.org/0000-0003-2354-1750
https://orcid.org/0000-0002-0064-2965
https://orcid.org/0000-0002-2912-028X
https://orcid.org/0000-0001-5396-2172
https://orcid.org/0000-0002-8204-7595
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_30&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


due to x. However, if the current abstraction has no information about x (e.g.,
we only track the predicates y > 0 and z = y), we consider these statements
independent as they are commutative in the abstract state space. We extend a
static source-set based POR algorithm [1] with our abstraction-based technique.

A novel statement reduction algorithm has also been developed for the ver-
ification of concurrent programs [14]. Our algorithm is similar to program slic-
ing and cone-of-influence techniques in the sense that it detects and removes
statements that do not affect the verified property [5,9]. However, our approach
analyzes the current local states of concurrent threads and data-flow between
threads to dynamically detect irrelevant statements that do not affect the verified
property in the current thread interleaving. The evaluation of such statements is
skipped which considerably reduces the time cost of successor state calculation
during state space exploration. Our technique is especially useful for concurrent
tasks where the reducing capability of existing slicing and cone-of-influence tech-
niques is limited due to the many possible interleavings of threads: our algorithm
can skip (sub-)statements in certain contexts even if these statements cannot be
removed generally (that is, statements that may be important in other thread
interleavings). Our algorithm is different from dynamic program slicing [9] since
those techniques do not consider the current interleaving of threads for slicing.

Theta has been extended with enhanced interprocedural analysis [12]. Pre-
viously, all procedures have been inlined at all of their calls before verification.
Procedure support was implemented last year, which handles procedures dynam-
ically during verification, using a stack to keep track of calling locations. This
year, procedure support is further improved by applying abstraction to location
stacks. If an abstract state overapproximates another with the bottom of their
stacks abstracted away, then all abstract paths going out from the covered state
are present at the covering state until the current procedure returns. Therefore,
the top location of the covered state is popped and exploration continues from
the outer procedure, eliding unnecessary exploration [12].

The main advantage of handling procedures dynamically is that it allows
Theta to verify recursive programs, which was not possible with inlining. Ap-
plying abstraction to stacks also enables the verification of some infinitely recur-
sive programs. Additionally, it reduces the size of the abstract state-space and
improves Theta’s verification performance with predicate abstraction.

2 Software Architecture

Since last year, we opted to keep our initial portfolio-based approach [2], but
used a separate process for each configuration, which can easily be killed using
signals, as opposed to the thread-based approach of Theta at SV-COMP’22.
Furthermore, we created a generic interface that allows easy co-development of
portfolios without having to recompile Theta. The architecture of Theta can
be seen in Figure 1: Theta parses and transforms the input program into an
eXtended CFA, then, based on the configuration in the portfolio, spawns one or
more worker Theta processes that perform the verification. The portfolio en-

Theta 413



ANTLR
frontend

XCFA
passes

Main
Theta

Portfolio

Worker
Theta
Worker
Theta
Worker
Theta

SMT-SolverSMT-SolverSMT-Solver

Í/?/ë
Verdict

Main Theta Process

.c
Unoptimized

XCFA
Optimized

XCFA

.xcfa

.prp
.arg

Metadata

Fig. 1: The architecture of Theta for software verification

gine has been re-written this year to better support pre-compiled configurations
written in kotlin instead of kotlin scripts, due to uncovering the dire performance
implications of using the script execution engine, which often takes multiple tens
of seconds to initialize and start. Dynamic algorithm selection is used to select
a suitable configuration for each input task, with several ways of recovering,
should the first algorithm take too long or encounter an exception.

Theta uses Z3 [10] versions 4.12.2 and 4.5.0 (the latter is integrated natively
via the Java API, while the former is used via SMT-LIB), MathSAT [7] version
5.6.10, CVC5 [4] version 1.0.8 and Princess [11] version 2023-06-19 as SMT
solvers under the hood. Compared to previous years, Theta utilizes the new
interpolation API of Z3 to support interpolation-dependent refinement strategies
with the new solver (removed previously in 4.8.0).

Theta has seen several major updates in its C-frontend for the new tasks
introduced to the benchmark repository since SV-COMP’23. The most notable
improvements were made around its Antlr-based grammar for lexing and pars-
ing C files, and some further tweaks in the transformation step from the AST to
CFA to avoid some wrong verdicts that plagued Theta in earlier SV-COMPs.

3 Strengths and Weaknesses of the Approach

In ReachSafety, Theta achieved a score of 2119 [6]. Although Theta still has
known limitations regarding some C elements (e.g., structs), recent technical
improvements of the frontend resulted in Theta not giving any wrong results
in any categories, except for 3 wrong results in ConcurrencySafety-NoOverflows.
Furthermore, Theta achieved a score of 2354 in ConcurrencySafety. To show the
negative influence of frontend limitations, we recalculated the score for the par-
ticipating tools on those ConcurrencySafety tasks that did not end in a frontend
failure for Theta. In this alternative scoring Theta would move from the 7th
to the 3rd place, highlighting the serious need for further frontend development.

It is worth looking at Theta’s performance in the reachability category over
the years. As seen in Figure 2, Theta has dipped in performance for last year’s
installment of SV-COMP (the figure shows only those tasks that have been the
same for the last 3 years) from that of SV-COMP’22 [2]. This year we managed
to bring the performance back to even outperform Theta’22, especially in the
ConcurrencySafety, Sequentialized and Combinations subcategory. However, we
did lose a significant number of tasks in some other subcategories, such as Loops.

414 L. Bajczi et al.



Ar
ray

s

Bi
tV

ec
to
rs

Co
mbin

at
ion

s

Co
nt
ro
lF
low EC

A
Fl
oa
ts

He
ap

Lo
op

s

Pr
od

uc
tL
ine

s

Re
cu
rsi

ve

Se
qu

en
tia

liz
ed

XC
SP

Co
nc
ur
ren

cy
0

100
200
300

8 2
4

8
1

8

3
2
1

3
2

1

3
2
1

0 0 1
8 4
0 5
2

8 2
1 4
1

6

6
9

4
1

1

3
1
0

0 1
1

1
3

1
8

8
0

1
0 2
3

1
3
8

8

3
0
7

5
2

1

9
2

0 1
0 4
0

4
0

2
8
8

T
a
sk
s
so
lv
ed

Theta’22 Theta’23 Theta’24

Fig. 2: Overview of successful tasks for Theta per year on common tasks

This can either be a result of a suboptimal portfolio for such tasks, or the result
of some tweaks we had to make in order to achieve this year’s outstanding 0
incorrect tasks, a feat performed only by 3 other tools. We plan to prioritize the
analysis of these cases for future development. We also plan to support categories
such as ProductLines and Heap, where we have almost no successful results. This
entails supporting structs, function pointers, and heap manipulation.

The novel algorithms implemented in Theta especially helped recursive and
multithreaded programs. Theta gained support for recursive programs by imple-
menting the aforementioned stack-based approach, and support for reachability
queries in multithreaded programs grew more than 3.5-fold since last year, as
seen in Figure 2. In particular, our internal evaluation shows that the size of the
state space reduced by the abstraction-based partial order reduction algorithm
is 15% smaller on average compared to the case when we use traditional partial
order reduction. Our dynamic statement reduction technique can eliminate 22%
of statements reducing the time of successor state calculation by up to 60% and
the overall verification time by 15% on average depending on the configuration.

4 Tool Setup and Configuration

Theta is vastly configurable [8], and successfully choosing a performance config-
uration for a verification task at hand can be complicated. For software verifica-
tion, we recommend using the portfolio (complex) in the competition archive [3]:
./theta-start.sh <input> --portfolio COMPLEX. To minimize the output
verbosity and produce a witness, --loglevel RESULT and --witness-only can
be added to the arguments. We also used these options at SV-COMP 2024.

5 Software Project and Data Availability

Theta is a verification framework maintained by the Critical Systems Research
Group of the Budapest University of Technology and Economics. The project
is available open-source on GitHub1 under an Apache 2.0 license. The version
(5.0.0) used in the competition is available at [3].

1 https://github.com/ftsrg/theta/releases/tag/svcomp24

Theta 415

https://github.com/ftsrg/theta/releases/tag/svcomp24


References

1. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Comparing source sets and
persistent sets for partial order reduction. Lecture Notes in Computer Science,
vol. 10460, pp. 516–536. Springer (2017). https://doi.org/10.1007/978-3-319-63121-
9 26

2. Ádám, Z., Bajczi, L., Dobos-Kovács, M., Hajdu, Á., Molnár, V.: Theta: portfolio
of CEGAR-based analyses with dynamic algorithm selection (Competition Contri-
bution). In: Fisman, D., Rosu, G. (eds.) TACAS 2021. Lecture Notes in Computer
Science, vol. 13244, pp. 474–478. Springer (2022). https://doi.org/10.1007/978-3-
030-99527-0 34

3. Bajczi, L., Telbisz, C., Somorjai, M., Ádám, Z., Dobos-Kovács, M., Szek-
eres, D., Molnár, V.: Theta - SV-COMP’24 Verifier Archive (Nov 2023).
https://doi.org/10.5281/zenodo.10202679

4. Barbosa, H., et al.: cvc5: A Versatile and Industrial-Strength SMT Solver. In:
Fisman, D., Rosu, G. (eds.) TACAS 2022. pp. 415–442. Springer International
Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 24

5. Berezin, S., Campos, S.V.A., Clarke, E.M.: Compositional Reasoning in Model
Checking. Lecture Notes in Computer Science, vol. 1536, pp. 81–102. Springer
(1997). https://doi.org/10.1007/3-540-49213-5 4

6. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

7. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
Solver. In: TACAS 2013, LNCS, vol. 7795, pp. 93–107. Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7 7

8. Hajdu, Á., Micskei, Z.: Efficient Strategies for CEGAR-based Model
Checking. Journal of Automated Reasoning 64(6), 1051–1091 (2020).
https://doi.org/10.1007/s10817-019-09535-x

9. Harman, M., Hierons, R.M.: An overview of program slicing. Softw. Focus 2(3),
85–92 (2001). https://doi.org/10.1002/swf.41

10. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS 2008, LNCS,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

11. Rümmer, P.: A constraint sequent calculus for first-order logic with lin-
ear integer arithmetic. LNCS, vol. 5330, pp. 274–289. Springer (2008).
https://doi.org/10.1007/978-3-540-89439-1 20

12. Somorjai, M.: Abstraction-Based Interprocedural Software Verification. Stu-
dents’ scientific association (tdk) submission, Budapest University of Tech-
nology and Economics (2023), https://tdk.bme.hu/VIK/DownloadPaper/
Absztrakcioalapu-interproceduralis

13. Telbisz, C.: Partial Order Reduction for Abstraction-Based Verification of Con-
current Software in the Theta Framework. Bachelor’s thesis, Budapest University
of Technology and Economics (2022), https://tdk.bme.hu/VIK/DownloadPaper/
Reszleges-rendezes-redukcio-tobbszalu

14. Telbisz, C.: Abstract Data-Flow-Based Statement Reduction for Model Check-
ing Concurrent Software. Students’ scientific association (tdk) submission, Bu-
dapest University of Technology and Economics (2023), https://tdk.bme.hu/VIK/
DownloadPaper/Absztrakt-adatfolyamalapu-utasitasredukcio

15. Tóth, T., Hajdu, Á., Vörös, A., Micskei, Z., Majzik, I.: Theta: a Framework for
Abstraction Refinement-Based Model Checking. In: FMCAD 2017. pp. 176–179
(2017). https://doi.org/10.23919/FMCAD.2017.8102257

416 L. Bajczi et al.

https://doi.org/10.1007/978-3-319-63121-9_26
https://doi.org/10.1007/978-3-319-63121-9_26
https://doi.org/10.1007/978-3-030-99527-0_34
https://doi.org/10.1007/978-3-030-99527-0_34
https://doi.org/10.5281/zenodo.10202679
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/3-540-49213-5_4
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1002/swf.41
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-89439-1_20
https://tdk.bme.hu/VIK/DownloadPaper/Absztrakcioalapu-interproceduralis
https://tdk.bme.hu/VIK/DownloadPaper/Absztrakcioalapu-interproceduralis
https://tdk.bme.hu/VIK/DownloadPaper/Reszleges-rendezes-redukcio-tobbszalu
https://tdk.bme.hu/VIK/DownloadPaper/Reszleges-rendezes-redukcio-tobbszalu
https://tdk.bme.hu/VIK/DownloadPaper/Absztrakt-adatfolyamalapu-utasitasredukcio
https://tdk.bme.hu/VIK/DownloadPaper/Absztrakt-adatfolyamalapu-utasitasredukcio
https://doi.org/10.23919/FMCAD.2017.8102257


Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Theta 417

http://creativecommons.org/licenses/by/4.0/

	Theta: Abstraction Based Techniques for Verifying Concurrency (Competition Contribution)



