
SWAT: Modular Dynamic Symbolic Execution for
Java Applications using Dynamic Instrumentation

(Competition Contribution)

⋆, Felix Mächtle, Florian Sieck, and Thomas Eisenbarth

{n.loose,f.maechtle,florian.sieck,thomas.eisenbarth}@uni-luebeck.de

Abstract. SWAT is a novel dynamic symbolic execution engine for Java
applications utilizing dynamic instrumentation. SWAT’s unique modular
design facilitates flexible communication between its symbolic explorer
and executor using HTTP endpoints, thus enhancing adaptability to di-
verse application scenarios. The symbolic executor’s ability to attach to
Java applications enables efficient constraint generation and path explo-
ration. SWAT employs JavaSMT for constraint generation and ASM for
bytecode instrumentation, ensuring robust performance. SWAT’s efficacy
is evaluated in the Java Track of SV-COMP 2024, achieving fourth place.

Keywords: Dynamic Symbolic Execution · Java · Dynamic Instrumen-
tation

1 Verification Approach

The symbolic execution of a System-under-Test (SuT) is a well-known verifica-
tion technique where the state space is systematically explored by using con-
straint modeling to compute new valid inputs for the SuT. Dynamic Symbolic
Execution (DSE), in particular, has shown recent successes with JDart [15] win-
ning the Java track of SV-COMP 2022 [4] as the first DSE tool and GDart [16]
achieving second place in 2023 [5]. Generally, DSE utilizes a symbolic executor
to evaluate a SuT by observing the concrete execution for a given assignment
of the symbolic variables. Constraints are recorded during execution, reflecting
all operations involving symbolic variables. In particular, each branching point
that depends on a symbolic variable is modeled as a path constraint. After the
execution terminates, the symbolic explorer can select a previously unexplored
branch. Given the recorded constraints, an SMT solver is used to determine
whether a model for the symbolic variables under the given constraints exists. If
so, a concrete instantiation for each value can be obtained to drive execution to
previously unexplored regions of the state space. By repeating this process, the
state space of the SuT can be systematically explored.

JDart, the winning candidate from 2022, relies on Java Pathfinder (JPF)
[9] and its implementation of the Java Virtual Machine (JVM) for symbolic
⋆ Jury member
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 399–405, 2024.
https://doi.org/10.1007/978-3-031-57256-2_28

Nils Loose(B)

Institute for IT Security, University of Lübeck, Lübeck, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_28&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


execution [15]. While the JPF-JVM offers robust analysis tools, it limits JDart’s
applicability and causes a significant overhead. Coastal [8], on the other hand,
relies on a standard JVM. The symbolic execution is realized using dynamic
instrumentation. While Coastal provides a loosely coupled design between the
symbolic execution engine and the symbolic explorer, both components are still
located in the same Java program used as the driver to start and execute the
SuT symbolically. GDart extends the notion of modularity introduced by Coastal
with a fully decoupled explorer and executor that communicate using a custom
protocol [16]. SWAT offers a fully modular design comparable to GDart while
relying on HTTP endpoints for communication between the symbolic explorer
and executor. In addition, GDart relies on the GraalVM [20] for driving symbolic
execution while SWAT attaches to the SuT, thus enabling symbolic execution
inside native JVM implementations.

2 System Architecture

SWAT’s decoupled design allows for a persistent symbolic explorer that receives
relevant information from instances of the symbolic executor. The executor ob-
serves the SuT by attaching to the JVM and adding symbolic capabilities using
dynamic instrumentation. An overview of the design and interaction between the
different components is shown in Figure 1 and described in more detail below.

Symbolic executor The executor attaches to the JVM running the SuT via
the Java agent interface and dynamically instruments each class at load time with
additional (non-interfering) instructions that dynamically build and manage a
symbolic shadow state responsible for maintaining the symbolic constraints. This
leads to a symbolic executor that does not actively drive symbolic execution and
instead records relevant information during normal execution. SWAT utilizes the
ASM framework [6] for bytecode manipulation via the Java.lang.instrument
API [17]. Historically, this part builds on CATG [19] as a basis for dynamic
symbolic execution. Significant parts of CATG are reworked, and the language
support is lifted to Java 17, including most of its features. The symbolic shadow
state and the symbolic constraint handling are extended and wholly rewritten to
utilize the API offered by JavaSMT [1] as an abstraction layer between constraint
generation and the solver. The symbolic scope and variables, as well as the
entry and exit points for symbolic tracking, are fully configurable, allowing for
broad applicability of the system. The instrumentation logic is also modularized,
allowing us to easily extend SWAT to various use cases, such as the SV-COMP.

When the execution of the SuT reaches a symbolic entry point, the symbolic
executor records control-flow information as well as the constraints, and after the
exit point has been reached, both the trace and the corresponding constraints are
sent to the symbolic explorer using HTTP requests. Constraints are serialized
using the SMT-LIB v2 [3] format.

Symbolic explorer The explorer, written in Python using the FastAPI [18]
web framework, receives the language agnostic trace and constraint information.
These are stored in a binary execution tree. The tree can be searched using a

400 N. Loose et al.



SWAT: Modular Dynamic Symbolic Execution for Java 401

JVM

Symbolic Executor

ASM [6]

JavaSMT [1]

Java Agent

MemoryClass Loader

Instrumentation
void doPost(String);

...
4: invokestatic #13
...
8: aload_1
9: dup
10: invokestatic #20
11:invokevirtual #15
...

Instrumented Class

Symbolic Execution Support Library

Trace

Constraints

Shadow
State

void INIT(...);

void ...

void INVOKEVIRTUAL(...);

void ...

Symbolic Explorer

Strategy

HTTP API

Execution tree

Solver
Solver

SMT Solver

Z3 [14]
...

...

CVC5 [2]

SWAT
.jar

SuT
.jar

Fig. 1. Schematic overview of SWAT’s modular architecture.

configurable and modularized strategy to select unexplored branches. To obtain
new inputs, the constraints are sent to Z3 [14]. The inputs can either be made
available to external drivers, such as fuzzers, using an endpoint or, in the case of
SV-COMP, are directly used to initiate a new concrete execution. This structure
makes SWAT widely applicable and even enables straightforward testing of web
services, for example, where each controller is configured as the entry and exit
point and user-controlled values are tracked symbolically. This allows the same
JVM to keep running in between symbolic runs and even allows for multiple
(non-interfering) executions in parallel.

3 Evaluation

In the first participation on the Java category of SV-COMP 2024, SWAT reached
fourth place with 566 out of 828 total points while MLB [7], the winning can-
didate, scored 676 points. Overall, SWAT correctly classified 68% of test cases.
Figure 2a visualizes the result distribution for test cases containing violations
and those without. The number of correctly classified cases is similar for both
groups. However, due to issues during witness generation, several correctly iden-
tified violations did not produce correct witnesses. Hence, without considering
the witnesses, the number of identified violations rises significantly from 68% to
83%. Generally, DSE frameworks are expected to identify violations (one con-
crete path) better than proving their absence (full state-space exploration). This
is also reflected in the distribution of timeouts, with a five times increase between
violation and safe test cases. Roughly 10% of test cases are labeled as unknown
by SWAT. This case comprises several possibilities: Out-of-scope invocations



0 0.2 0.4 0.6 0.8 1

MinePump

Algorithms
Java Ranger Reg.

Jayhorn Rec.

JBMC Reg.
JDart Reg.

(a) SWAT results for safe and violation test cases (b) SWAT results for each subcategory

JPF Reg.No Violation

Violation

Juliet Java

Securibench

SWAT status

Correct
Unconfirmed
Unknown
Timeout
Error

0.17

0.03
0.01
0.03

0.110.15

0.12

0.69

0.68

Fig. 2. SWAT results divided based on the ground truth of each test case (a) and
results for each subcategory of the Java category (b).

without a symbolic model, inability to determine satisfiability or unsupported
behavior such as uncaught exceptions.

Further dividing the results based on the different subgroups (see Figure 2b)
highlights differences in the status distributions. SWAT generally performs well
for regression test categories, as these usually test specific functionalities, re-
sulting in small programs that do not lead to a state space explosion. With the
increasing complexity of test suites, the number of timeouts is expected to rise.
The Jayhorn recursive test cases cause many timeouts as SWAT currently does
not support advanced recursion handling. Lastly, SWAT is holistically unable to
solve the test cases provided by the Juliet test suite due to the extensive use of
socket connections, which require explicit mocking.

While the results demonstrate the impact of state space explosion on the
performance of DSE engines, generally, the results highlight the potential of
SWAT, especially when considering the overhead incurred by starting a new
JVM instance for each run of the test case. In SWAT’s current form, this causes
instrumentation at each iteration whereas test cases that can be re-initiated
without restarting the JVM would result in significantly faster executions.

4 Software Project

SWAT is developed by the Institute for IT Security at the University of Lübeck
and published on GitHub [12] under the BSD 2-Clause. Installation instructions,
documentation, and examples can be found on our GitHub Page [11]. Global
configuration options chosen for the participation include the exclusive usage
of the Z3 [14] solver, a breadth-first search strategy, and an SV-COMP specific
driver modules inside the symbolic explorer and executor.

Data-Availability Statement The version of SWAT used for the SV-
COMP 2024 Java category is available at Zenodo [13] and on GitHub [10].

5 Acknowledgments

This work has been supported by the Bundesministerium für Bildung und For-
schung (BMBF) through the PeT-HMR project.

402 N. Loose et al.



References

1. Baier, D., Beyer, D., Friedberger, K.: Javasmt 3: Interacting with SMT solvers
in java. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification -
33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12760, pp.
195–208. Springer (2021). https://doi.org/10.1007/978-3-030-81688-9_9, https:
//doi.org/10.1007/978-3-030-81688-9_9

2. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M.,
Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner,
M., Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and
industrial-strength SMT solver. In: Fisman, D., Rosu, G. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7,
2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13243, pp.
415–442. Springer (2022). https://doi.org/10.1007/978-3-030-99524-9_24, https:
//doi.org/10.1007/978-3-030-99524-9_24

3. Barrett, C., Stump, A., Tinelli, C., et al.: The smt-lib standard: Version 2.0. In:
Proceedings of the 8th international workshop on satisfiability modulo theories
(Edinburgh, UK). vol. 13, p. 14 (2010)

4. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Fisman, D.,
Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Ger-
many, April 2-7, 2022, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 13244, pp. 375–402. Springer (2022). https://doi.org/10.1007/978-3-030-99527-
0_20, https://doi.org/10.1007/978-3-030-99527-0_20

5. Beyer, D.: Competition on software verification and witness validation: Sv-
comp 2023. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems. pp. 495–522. Springer Nature
Switzerland, Cham (2023)

6. Bruneton, E., Lenglet, R., Coupaye, T.: Asm: a code manipulation tool to im-
plement adaptable systems. Adaptable and extensible component systems 30(19)
(2002)

7. Bu, L., Liang, Y., Xie, Z., Qian, H., Hu, Y., Yu, Y., Chen, X., Li, X.: Machine
learning steered symbolic execution framework for complex software code. For-
mal Aspects Comput. 33(3), 301–323 (2021). https://doi.org/10.1007/S00165-021-
00538-3, https://doi.org/10.1007/s00165-021-00538-3

8. Geldenhuys, J., Visser, W.: Coastal. https://github.com/DeepseaPlatform/
coastal, accessed 12/2023

9. Havelund, K., Pressburger, T.: Model checking JAVA programs using
JAVA pathfinder. Int. J. Softw. Tools Technol. Transf. 2(4), 366–381
(2000). https://doi.org/10.1007/S100090050043, https://doi.org/10.1007/
s100090050043

10. Loose, N., Mächtle, F., Sieck, F., Eisenbarth, T.: SWAT Competition Version.
https://github.com/SWAT-project/SWAT/tree/SV-COMP-Submission-2024, ac-
cessed 12/2023

11. Loose, N., Mächtle, F., Sieck, F., Eisenbarth, T.: SWAT Documentation. https:
//swat-project.github.io/docs/, accessed 12/2023

SWAT: Modular Dynamic Symbolic Execution for Java 403

https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/S00165-021-00538-3
https://doi.org/10.1007/S00165-021-00538-3
https://doi.org/10.1007/s00165-021-00538-3
https://github.com/DeepseaPlatform/coastal
https://github.com/DeepseaPlatform/coastal
https://doi.org/10.1007/S100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://github.com/SWAT-project/SWAT/tree/SV-COMP-Submission-2024
https://swat-project.github.io/docs/
https://swat-project.github.io/docs/


12. Loose, N., Mächtle, F., Sieck, F., Eisenbarth, T.: SWAT Repository. https://
github.com/swat-project/swat, accessed 12/2023

13. Loose, N., Mächtle, F., Sieck, F., Eisenbarth, T.: Swat (2023).
https://doi.org/10.5281/zenodo.10418643, https://doi.org/10.5281/zenodo.
10418643

14. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3_24, https://doi.org/10.1007/978-3-540-78800-3_24

15. Mues, M., Howar, F.: Jdart: Dynamic symbolic execution for java bytecode
(competition contribution). In: Biere, A., Parker, D. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 26th International Con-
ference, TACAS 2020, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,
2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12079, pp.
398–402. Springer (2020). https://doi.org/10.1007/978-3-030-45237-7_28, https:
//doi.org/10.1007/978-3-030-45237-7_28

16. Mues, M., Howar, F.: Gdart: An ensemble of tools for dynamic symbolic exe-
cution on the java virtual machine (competition contribution). In: Fisman, D.,
Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Ger-
many, April 2-7, 2022, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 13244, pp. 435–439. Springer (2022). https://doi.org/10.1007/978-3-030-99527-
0_27, https://doi.org/10.1007/978-3-030-99527-0_27

17. Oracle: Java Instrumentation. https://docs.oracle.com/en/java/javase/17/
docs/api/java.instrument/java/lang/instrument/package-summary.html, ac-
cessed 12/2023

18. Ramírez, S.: FastAPI, https://github.com/tiangolo/fastapi, accessed 12/2023
19. Tanno, H., Zhang, X., Hoshino, T., Sen, K.: Tesma and CATG: Automated test

generation tools for models of enterprise applications. In: Bertolino, A., Canfora,
G., Elbaum, S.G. (eds.) 37th IEEE/ACM International Conference on Software
Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 2. pp. 717–720.
IEEE Computer Society (2015). https://doi.org/10.1109/ICSE.2015.231, https:
//doi.org/10.1109/ICSE.2015.231

20. Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G., Humer,
C., Richards, G., Simon, D., Wolczko, M.: One VM to rule them all.
In: Hosking, A.L., Eugster, P.T., Hirschfeld, R. (eds.) ACM Symposium on
New Ideas in Programming and Reflections on Software, Onward! 2013, part
of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013. pp. 187–204.
ACM (2013). https://doi.org/10.1145/2509578.2509581, https://doi.org/10.
1145/2509578.2509581

404 N. Loose et al.

https://github.com/swat-project/swat
https://github.com/swat-project/swat
https://doi.org/10.5281/zenodo.10418643
https://doi.org/10.5281/zenodo.10418643
https://doi.org/10.5281/zenodo.10418643
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-99527-0_27
https://doi.org/10.1007/978-3-030-99527-0_27
https://doi.org/10.1007/978-3-030-99527-0_27
https://docs.oracle.com/en/java/javase/17/docs/api/java.instrument/java/lang/instrument/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.instrument/java/lang/instrument/package-summary.html
https://github.com/tiangolo/fastapi
https://doi.org/10.1109/ICSE.2015.231
https://doi.org/10.1109/ICSE.2015.231
https://doi.org/10.1109/ICSE.2015.231
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581


Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

SWAT: Modular Dynamic Symbolic Execution for Java 405

http://creativecommons.org/licenses/by/4.0/

	SWAT: Modular Dynamic Symbolic Execution for Java Applications using Dynamic Instrumentation (Competition Contribution)



