
Goblint: Abstract Interpretation for
Memory Safety and Termination

(Competition Contribution)

Simmo Saan1(B) ⋆, Julian Erhard2,3 , Michael Schwarz2 ,
Stanimir Bozhilov2 , Karoliine Holter1 , Sarah Tilscher2,3 ,

Vesal Vojdani1 , and Helmut Seidl2

1 University of Tartu, Tartu, Estonia
{simmo.saan,karoliine.holter,vesal.vojdani}@ut.ee
2 Technische Universität München, Garching, Germany

{julian.erhard,m.schwarz,stanimir.bozhilov,
sarah.tilscher,helmut.seidl}@tum.de

3 Ludwig-Maximilians-Universität München, Munich, Germany

Abstract. Goblint is an abstract interpreter of C programs, focusing
on the analysis of multi-threaded code. It is equipped with a variety of
abstract domains, as well as analyses which allow it to reason about an
array of program properties in a highly configurable manner. Goblint
has been extended with support for the detection of memory safety bugs
and non-termination.

1 Verification Approach

Goblint is an abstract-interpretation–based static analyzer of C code, with
an emphasis on the sound analysis of multi-threaded programs [14, 15]. It uses
side-effecting constraint systems [2] to combine context-sensitive analysis of local
states with flow-insensitive analysis of data possibly shared between threads.
Goblint is equipped with a range of different analyses that, in turn, build on
multiple abstract domains for expressing candidate program invariants.

1.1 Memory Safety

Techniques for detecting memory-related bugs have been extensively studied [6,
9, 10, 20]. While Goblint did not target such bugs in the past, new analyses
for the sound analysis of memory safety have been added for SV-COMP 2024.
The analyzer already tracks abstract address sets for pointer variables. A single
abstract address consists of a variable and an abstract offset. The analyzer distin-
guishes between regular program variables and allocated memory blocks, which
are identified by their respective allocation sites together with the allocating
thread and possibly an allocation counter.
⋆ Jury member
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 381–386, 2024.
https://doi.org/10.1007/978-3-031-57256-2_25

https://orcid.org/0000-0003-4553-1350
https://orcid.org/0000-0002-1729-3925
https://orcid.org/0000-0002-9828-0308
https://orcid.org/0009-0002-1361-942X
https://orcid.org/0009-0008-3725-4131
https://orcid.org/0009-0009-9644-7475
https://orcid.org/0000-0003-4336-7980
https://orcid.org/0000-0002-2135-1593
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_25&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


The new analyses are concerned with the detection of the following memory-
safety bugs: invalid memory deallocations, invalid pointer dereferences, as well
as memory leaks. Beyond null-pointer dereferences, two further kinds of invalid
dereferences are now considered: memory out-of-bounds accesses and use-after-
free (UAF) bugs. Memory out-of-bounds accesses can be uncovered by obtaining
the size, as well as the offset from the base address of the memory being accessed.
To determine whether an access via some offset may be out of bounds, the anal-
ysis relies on an expressive combination of integer domains including intervals.

Invalid dereferences due to use-after-frees can be detected in the single-
and multi-threaded case. For the single-threaded setting, the analysis uses the
allocation-site abstractions in order to keep track of potentially already deal-
located memory, and warns on accesses to such memory. Regarding the multi-
threaded case, it additionally leverages Goblint’s side-effecting functionality
by maintaining a global invariant that, for each piece of deallocated memory,
collects the set of all threads that may free it. Goblint tracks abstract thread
IDs which allow reasoning about which threads may run in parallel [17]. The
may-happen-in-parallel (MHP) information from the abstract thread ID domain
(and a dedicated analysis of thread joins) is used to infer whether an access to
a piece of memory may happen in parallel with (or after) the deallocation of
the same piece of memory by another thread. In addition, invalid frees due to
possibly occurring double frees are flagged by this analysis as well.

Potential memory leaks can be detected thanks to a dedicated analysis. To
this end, all allocated memory blocks are tracked path- and context-sensitively.
Furthermore, the allocation counter is relied on to potentially exclude memory
leaks for a particular allocation site. Calls to deallocating functions, such as free,
have the effect of removing pieces of tracked (and now deallocated memory) from
the state, whenever the analysis determines that the passed pointer must point to
an abstract block of memory which describes a single concrete memory location.
At all exit points of the program, it is then checked whether the set of possibly
still allocated memory is empty. In case any such set is non-empty, a memory
leak is reported. In the multi-threaded case, the analysis checks the following
stronger property and warns whenever that property may be violated:

1. all threads have terminated at the end point of main, and
2. exit and similar functions, causing early termination, are not called, and
3. at its return, each thread has freed all the memory it allocated.

This property allows for a thread-modular analysis, where sets of allocated and
freed memory are maintained in a flow- and context-sensitive manner.

We remark that the analysis for memory leaks tracks which heap-allocated
memory may not be freed yet, while the analysis to detect UAF issues tracks
which memory may potentially already be freed. One direction of improvement
would be to consider tracking relational pointer information along the lines
of Seidl et al. [18] and, additionally, consider relational information about the
lengths of arrays and memory blocks. This may be useful in the case of vari-
able length arrays and dynamically allocated memory for which the size is not
statically known.

382 S. Saan et al.



1.2 Termination

A termination analysis has been added, largely leveraging existing features of
the framework. This highlights the versatility of the framework. To account for
non-termination due to loops, a counter variable is inserted into each loop and
incremented in every loop iteration. A relational polyhedra analysis based on
Apron [8] is then used to determine whether the counter variable is bounded.
To detect potential non-termination due to recursion, the notion of a call graph is
enhanced by considering functions together with their respective abstract calling
contexts and taking dynamic calls via pointers into account. This graph is a
posteriori extracted out of the analysis result and then checked for cycles in
a post-processing phase. In case no cycles (including self-loops) exist in the
abstract call graph, there can be no cycles in the concrete call graph.

The currently implemented termination analysis is just a first step in the real-
ization of related techniques. Future work may, e.g., be the tuning of the abstract
contexts for this use-case, or the incorporation of more involved techniques for
termination analysis by abstract interpretation [4, 5]. Extending the presented
approaches to the non-termination of concurrent programs while remaining as
thread-modular as possible seems particularly challenging.

2 Software Architecture

Goblint is implemented in ∼54,000 lines of OCaml and uses an updated fork
of CIL [12] as its parser frontend for the C language. It depends on Apron [8]
for relational analyses. No other major libraries or external tools are required.

The modular architecture of Goblint [1] allows a combination of analyses
to be selected and automatically configured at runtime [15]. Analyses are defined
through their abstract domains and transfer functions, which can communicate
with other analyses using predefined queries and events. The combined analyses
together with the control-flow graphs of the functions yield a side-effecting con-
straint system [2], which is solved using a local generic solver [19]. The solution
is post-processed to determine the verdict and construct a witness.

3 Strengths and Weaknesses

Goblint once again demonstrated its soundness in this year’s competition, i.e.,
it did not produce any false negatives. The only other tools that did not produce
any false negatives are Aise [21] (competing only in ReachSafety-Loops), Brick
(competing in three sub-categories of ReachSafety), and Mopsa [11] (competing
in all categories except ConcurrencySafety and Termination). Goblint is thus
the only sound tool in SV-COMP 2024 to support all properties, and the only
sound tool represented in the overall ranking. Among the tools participating in
the overall ranking, Goblint, despite targeting only proofs – which are tradi-
tionally considered to be more time-consuming than finding counter-examples –
leads the pack in terms of points achieved in ≤ 9 s. This is most pronounced when

Goblint: Abstract Interpretation for Memory Safety and Termination 383



considering runtimes ≤ 1 s. This highlights the efficiency of Goblint. Beyond
these observations, we briefly discuss the newly added analyses here. Support for
soundly detecting memory safety bugs greatly broadens the applicability of the
analyzer, evidencing the flexibility of the underlying framework. Of particular
note is the support for verifying the memory-safety of multi-threaded programs
in a thread-modular way, yielding the second-best score in ConcurrencySafety-
MemSafety, after Deagle [7]. Turning to termination analysis, the added anal-
ysis demonstrates that a considerable chunk of the SV-COMP benchmarks in
this category can be handled by using our extended dynamic call graph to deal
with recursion and ghost counters together with numerical relational domains to
deal with loops. Finally, Goblint now comes with dedicated support for ana-
lyzing programs using setjmp/longjmp and flagging their misuse [16]. We have
contributed programs using this language feature to the benchmark suite.

A general weakness of Goblint currently is that, while it supports expensive
but expressive relational domains such as polyhedra, it lacks a heuristic when
to activate them, and thus only uses them for termination analysis. Activating
these domains based on some program properties, or attempting analysis with
such expensive domains after an analysis without them was inconclusive, may
help to improve the precision of the analyzer without compromising its efficiency.

4 Tool Setup and Configuration

Goblint version svcomp24-0-gc2e9465a7 participated in SV-COMP 2024 [3,
13]. It is available in both binary (Ubuntu 22.04) and source code form at our
GitHub repository.4 Instructions for building from source can be found in the
README. Both the tool-info module and the benchmark definition for SV-COMP
are named goblint. They correspond to running the tool as follows:

./goblint --conf conf/svcomp24.json \
--set ana.specification property.prp input.c

Goblint participated in all the categories, while opting-out from Falsifica-
tionOverall.

5 Software Project and Contributors

Goblint development takes place on GitHub, while related publications are
listed on its website.5 It is an MIT-licensed project initiated by Technische Uni-
versität München and the University of Tartu.

Acknowledgments. This work was supported by Deutsche Forschungsgemeinschaft
(DFG) – 378803395/2428 ConVeY 2. We would like to thank everyone who has con-
tributed to Goblint over the years, especially the students who contributed the termi-
nation analysis, namely: Thomas Lagemann, Johanna Franziska Schinabeck, Alexander
Schlenga, and Isidor Zweckstetter.
4 https://github.com/goblint/analyzer/releases/tag/svcomp24
5 https://github.com/goblint/analyzer and https://goblint.in.tum.de

384 S. Saan et al.

https://github.com/goblint/analyzer/releases/tag/svcomp24
https://github.com/goblint/analyzer
https://goblint.in.tum.de


Data Availability Statement. All data of SV-COMP 2024 are archived as described
in the competition report [3] and available on the competition website. This includes
the verification tasks, results, witnesses, scripts, and instructions for reproduction. The
version of Goblint as used in the competition is archived on Zenodo [13].

Bibliography

[1] Apinis, K.: Frameworks for analyzing multi-threaded C. Ph.D. thesis, Tech-
nische Universität München (2014)

[2] Apinis, K., Seidl, H., Vojdani, V.: Side-Effecting Constraint Systems: A
Swiss Army Knife for Program Analysis. In: APLAS ’12, pp. 157–172,
Springer (2012), doi: 10.1007/978-3-642-35182-2_12

[3] Beyer, D.: State of the art in software verification and witness validation:
SV-COMP 2024. In: TACAS ’24, Springer (2024)

[4] Cousot, P., Cousot, R.: An abstract interpretation framework for termi-
nation. In: POPL ’12, pp. 245–258, ACM (2012), doi: 10.1145/2103656.
2103687

[5] Dimovski, A.S.: Lifted termination analysis by abstract interpretation and
its applications. In: GPCE ’21, pp. 96–109, ACM (2021), doi: 10.1145/
3486609.3487202

[6] Gui, B., Song, W., Xiong, H., Huang, J.: Automated use-after-free detection
and exploit mitigation: How far have we gone? IEEE Trans. Software Eng.
48(11), 4569–4589 (2022), doi: 10.1109/TSE.2021.3121994

[7] He, F., Sun, Z., Fan, H.: Deagle: An SMT-based verifier for multi-threaded
programs. In: TACAS ’22, vol. 2, pp. 424–428, Springer (2022), doi: 10.
1007/978-3-030-99527-0_25

[8] Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for
static analysis. In: CAV ’09, pp. 661–667, Springer (2009), doi: 10.1007/
978-3-642-02658-4_52

[9] Jones, J., Wasson, J., Brown, S., Poulsen, S., Aldous, P., Mercer, E.: Mem-
ory safety in C by abstract interpretation. SIGSOFT Softw. Eng. Notes
43(4), 56 (2019), doi: 10.1145/3282517.3282530

[10] Loginov, A., Yahav, E., Chandra, S., Fink, S., Rinetzky, N., Nanda, M.:
Verifying dereference safety via expanding-scope analysis. In: ISSTA ’08,
pp. 213–224, ACM (2008), doi: 10.1145/1390630.1390657

[11] Monat, R., Milanese, M., Parolini, F., Boillot, J., Ouadjaout, A., Miné,
A.: Mopsa-C: Improved verification for C programs, simple validation of
correctness witnesses. In: TACAS ’24, Springer (2024)

[12] Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate lan-
guage and tools for analysis and transformation of C programs. In: CC ’02,
pp. 213–228, Springer (2002), doi: 10.1007/3-540-45937-5_16

[13] Saan, S., Erhard, J., Schwarz, M., Bozhilov, S., Holter, K., Tilscher, S.,
Vojdani, V., Seidl, H.: Goblint at SV-COMP 2024 (Nov 2023), doi: 10.
5281/zenodo.10202867, tool artifact

[14] Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler, R., Vojdani,
V.: Goblint: Thread-modular abstract interpretation using side-effecting

Goblint: Abstract Interpretation for Memory Safety and Termination 385

https://sv-comp.sosy-lab.org/2024/
http://dx.doi.org/10.1007/978-3-642-35182-2_12
http://dx.doi.org/10.1145/2103656.2103687
http://dx.doi.org/10.1145/2103656.2103687
http://dx.doi.org/10.1145/3486609.3487202
http://dx.doi.org/10.1145/3486609.3487202
http://dx.doi.org/10.1109/TSE.2021.3121994
http://dx.doi.org/10.1007/978-3-030-99527-0_25
http://dx.doi.org/10.1007/978-3-030-99527-0_25
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1145/3282517.3282530
http://dx.doi.org/10.1145/1390630.1390657
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.5281/zenodo.10202867
http://dx.doi.org/10.5281/zenodo.10202867


constraints. In: TACAS ’21, pp. 438–442, Springer (2021), doi: 10.1007/
978-3-030-72013-1_28

[15] Saan, S., Schwarz, M., Erhard, J., Pietsch, M., Seidl, H., Tilscher, S.,
Vojdani, V.: Goblint: Autotuning thread-modular abstract interpreta-
tion. In: TACAS ’23, vol. 2, pp. 547–552, Springer (2023), doi: 10.1007/
978-3-031-30820-8_34

[16] Schwarz, M., Erhard, J., Vojdani, V., Saan, S., Seidl, H.: When long jumps
fall short: Control-flow tracking and misuse detection for non-local jumps
in C. In: SOAP ’23, pp. 20–26, ACM (2023), doi: 10.1145/3589250.3596140

[17] Schwarz, M., Saan, S., Seidl, H., Erhard, J., Vojdani, V.: Clustered relational
thread-modular abstract interpretation with local traces. In: ESOP ’23, pp.
28–58, Springer (2023), doi: 10.1007/978-3-031-30044-8_2

[18] Seidl, H., Erhard, J., Schwarz, M., Tilscher, S.: 2-pointer logic. In: Javier
Esparza’s 60th Birthday, pp. 254–264, Springer (2024)

[19] Seidl, H., Vogler, R.: Three improvements to the top-down solver.
Math. Struct. Comput. Sci. 31(9), 1090–1134 (2021), doi: 10.1017/
S0960129521000499

[20] Sui, Y., Ye, D., Xue, J.: Static memory leak detection using full-sparse
value-flow analysis. In: ISSTA ’12, pp. 254–264, ACM (2012), doi: 10.1145/
2338965.2336784

[21] Wang, Z., Chen, Z.: AISE: A symbolic verifier by synergizing abstract in-
terpretation and symbolic execution. In: TACAS ’24, Springer (2024)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

386 S. Saan et al.

http://dx.doi.org/10.1007/978-3-030-72013-1_28
http://dx.doi.org/10.1007/978-3-030-72013-1_28
http://dx.doi.org/10.1007/978-3-031-30820-8_34
http://dx.doi.org/10.1007/978-3-031-30820-8_34
http://dx.doi.org/10.1145/3589250.3596140
http://dx.doi.org/10.1007/978-3-031-30044-8_2
http://dx.doi.org/10.1017/S0960129521000499
http://dx.doi.org/10.1017/S0960129521000499
http://dx.doi.org/10.1145/2338965.2336784
http://dx.doi.org/10.1145/2338965.2336784
http://creativecommons.org/licenses/by/4.0/

	Goblint: Abstract Interpretation forMemory Safety and Termination (Competition Contribution)



