
EmergenTheta:
Verification Beyond Abstraction Refinement

(Competition Contribution)

Levente Bajczi ⋆(B) , Dániel Szekeres , Milán Mondok , Zsófia Ádám ,
Márk Somorjai , Csanád Telbisz , Mihály Dobos-Kovács , and

Vince Molnár

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

bajczi@mit.bme.hu

Abstract. Theta is a model checking framework conventionally based
on abstraction refinement techniques. While abstraction is useful for a
large number of verification problems, the over-reliance on the technique
led to Theta being unable to meaningfully adapt. Identifying this prob-
lem in previous years of SV-COMP has led us to create EmergenTheta,
a sandbox for the new approaches we want Theta to support. By differ-
entiating between mature and emerging techniques, we can experiment
more freely without hurting the reliability of the overall framework. In
this paper we detail the development route to EmergenTheta, and its
first debut on SV-COMP’24 in the ReachSafety category.

Funding. This research was partially funded by the ÚNKP-23-{2,3}-I New National

Excellence Program; Project no. 2019-1.3.1-KK-2019-00004 (implemented with the

support provided from the NRDI Fund of Hungary under the 2019-1.3.1-KK fund-

ing scheme); and the Doctoral Excellence Fellowship Programme (funded by the NRDI

Fund of Hungary and the BME University).

1 Software Architecture

Theta is a modular and configurable verification framework in the sense that
multiple frontend subprojects are served by a vastly configurable, CEGAR-based
backend ([10,6]). Frontends include Petri-nets, AIGER models, timed automata,
and C programs among others (hence the modularity), and the CEGAR backend
provides fine-grained access to its internal settings such as refinement and search
strategy, abstract domains, and solver selection (hence the configurability). It is,
however, not conventionally capable of using non-CEGAR based analyses. This
behavior is engrained in the implementation in multiple ways, such as coun-
terexamples and safety proofs requiring a partial or full abstract reachability

⋆ Jury member representing EmergenTheta at SV-COMP 2024.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 371–375, 2024.
https://doi.org/10.1007/978-3-031-57256-2_23

https://orcid.org/0000-0002-6551-5860
https://orcid.org/0000-0002-2912-028X
https://orcid.org/0000-0001-5396-2172
https://orcid.org/0000-0003-2354-1750
https://orcid.org/0000-0001-7537-0469
https://orcid.org/0000-0002-6260-5908
https://orcid.org/0000-0002-0064-2965
https://orcid.org/0000-0002-8204-7595
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_23&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


graph, and the interface of the backend containing references to precision [6].
Our main contribution as part of SV-COMP’24 is the removal of such dependen-
cies on abstraction-specific classes. This enables the rapid prototyping and de-
velopment of diverse verification algorithms such as this year’s BMC, IMC, and
k-induction algorithms [5,7,9], building the low-level core of Theta including
the representation and manipulation of expressions and interfacing with several
SMT-solvers.

To facilitate the implementation of these algorithms, we introduced a new
MonolithicTransitionFunction interface to Theta, which returns a single non-
deterministic action representing the whole transition system (i.e., it represents
the structural information as additional variables and related guards). This is
a counterpart to the previously existing TransitionFunction interface, which di-
rectly relies on the structural information for the enabledness of actions. This
interface has been implemented for most of the formalisms supported by Theta.

Besides the changes detailed above, EmergenTheta still relies on Theta’s
Antlr-based C frontend and integrated support for SMT-solvers, as well as its
existing counterexample-to-witness projection [1].

2 Verification Approach

In bounded model checking (BMC) [5], the transition system and the safety prop-
erty are encoded as SMT [3] formulas. In each iteration of the algorithm, a path
constraint is created from the formulas characterizing all execution paths of a
given length k that start in an initial state and end in an error state. The satis-
fiability of the path constraint is checked using an SMT solver [8]. If a satisfying
assignment is found, it is returned as a counterexample, else the bound k is
increased until the available resources allow.

BMC is incomplete as it can only prove the absence of counterexamples
up to a finite depth. K-induction [9] and interpolation-based model checking
(IMC) [7] address this by adding checks that attempt to prove that the property
holds for unbounded depth based on the unsatisfiability of the BMC query. K-
induction does so by trying to prove the k-inductivity of the property with k
being the current BMC length, while IMC derives Craig interpolants to compute
an overapproximation of the set of reachable states.

Based on preliminary testing, we used a simple sequential portfolio (without
algorithm selection) that executed an IMC-only verification phase first (for at
most 90 seconds), then fell back to a combined BMC and k-induction-based
verification phase for the rest of the time limit. EmergenTheta did not employ
any of the CEGAR-based analysis methods already present it Theta, as we
wanted to evaluate the newly implemented ones separately.

372 L. Bajczi et al.



All False True
Tool EmergenTheta Theta EmergenTheta Theta EmergenTheta Theta
Category

Arrays 13 (7) 13 (7) 0 (0) 5 (5) 13 (7) 8 (2)
BitVectors 16 (1) 23 (8) 7 (0) 10 (3) 9 (1) 13 (5)
Combinations 1 (0) 138 (137) 1 (0) 121 (120) 0 (0) 17 (17)
ControlFlow 7 (4) 9 (6) 1 (0) 2 (1) 6 (4) 7 (5)
ECA 1 (1) 307 (307) 0 (0) 133 (133) 1 (1) 174 (174)
Floats 25 (6) 54 (35) 2 (0) 23 (21) 23 (6) 31 (14)
Hardness 378 (269) 116 (7) 0 (0) 0 (0) 378 (269) 116 (7)
Hardware 134 (15) 194 (75) 60 (10) 89 (39) 74 (5) 105 (36)
Heap 2 (0) 2 (0) 0 (0) 0 (0) 2 (0) 2 (0)
Loops 232 (117) 161 (46) 34 (11) 40 (17) 198 (106) 121 (29)
Sequentialized 1 (0) 47 (46) 1 (0) 34 (33) 0 (0) 13 (13)
XCSP 2 (0) 45 (43) 2 (0) 44 (42) 0 (0) 1 (1)

Overall 812 (420) 1153 (761) 108 (21) 530 (443) 704 (399) 623 (318)

Table 1: Comparison of Theta and EmergenTheta for each subcategory

3 Discussion of Strengths and Weaknesses of the
Approach

As our secondary goal (besides adapting Theta’s architecture to a more flexible
one) was to find out how the new algorithms implemented in EmergenTheta
performed, we mainly compare and contrast the results of EmergenTheta
(which used only the newly implemented algorithms) and Theta (which used
only CEGAR). In the future, we aim to integrate the new algorithms into our
mainline Theta tool, for which this evaluation is invaluable.

Table 1 compares the number of tasks correctly solved by Theta and Emer-
genTheta for each subcategory inReachSafety (using official results) [4], dis-
tinguishing between true and false outputs. The numbers in parentheses show
the number of correctly solved tasks that the other tool was unable to solve in
time.

Looking at the overall results, we can see that Theta and EmergenTheta
are suitable for different tasks: although Theta solved more tasks, Emergen-
Theta solved 420 tasks that Theta could not solve, which is 36% of the 1153
tasks solved by Theta. With an ideal portfolio, incorporating these algorithms
could significantly increase the number of tasks solved by Theta.

Theta was much better at finding counterexamples (108 vs 530 false out-
puts), while EmergenTheta was slightly better at proving correctness (704
vs 623 true outputs). This goes against our intuition, as abstraction refinement
is more tailored to proving correctness. This phenomenon warrants further in-
vestigation; our current hypothesis is that performing enough refinements to
eliminate all spurious counterexamples had too large an overhead. More than

EmergenTheta 373



half of the true results for each tool were for tasks that the other one could not
solve, highlighting their complementary nature.

EmergenTheta was significantly better in the Loops and the Hardness
categories, while it was worse in Combinations, ECA, Sequentialized and XCSP.
As for Combinations and Sequentialized, this could be attributed to Theta being
generally better at finding counterexamples, as false tasks are overrepresented
in these categories; but for ECA and XCSP, tasks of both types are represented
nearly equally.

These relatively positive results were achieved in spite of a misconfiguration:
although our preliminary measurements had shown that CVC5 and Math-
SAT performed best with K-IND and IMC respectively, we accidentally en-
rolled EmergenTheta with its default solver Z3. We consider this a failure in
the design of the portfolio engine of Theta, which allowed us to submit a faulty
configuration without this being evident in the logs (that no runs were using
solvers other than Z3). We will prioritize improving on this aspect of Theta for
next year.

4 Tool Setup and Configuration

EmergenTheta remains vastly configurable, and successfully choosing a per-
formant configuration for a verification task at hand can be complicated. If using
the competition archive [2] for software verification, we recommend using the pre-
assembled portfolio: theta-start.sh <input> --backend IMC THEN KIND. To
minimize the output verbosity and produce a witness in the working directory,
the flags --loglevel RESULT and --witness-only can be added to the argu-
ments. We also used these options at SV-COMP 2024.

5 Software Project and Contributors

EmergenTheta is integrated into the Theta verification framework main-
tained by the Critical Systems Research Group1 of the Budapest University of
Technology and Economics. The project is available open-source on GitHub2

under an Apache 2.0 license. The version (5.0.0) used in the competition is
available at [2].

References

1. Ádám, Z., Bajczi, L., Dobos-Kovács, M., Hajdu, Á., Molnár, V.: Theta: portfolio
of CEGAR-based analyses with dynamic algorithm selection (Competition Contri-
bution). In: Fisman, D., Rosu, G. (eds.) TACAS 2021. Lecture Notes in Computer
Science, vol. 13244, pp. 474–478. Springer (2022). https://doi.org/10.1007/978-3-
030-99527-0 34

1 https://ftsrg.mit.bme.hu/en/
2 https://github.com/ftsrg/theta/releases/tag/svcomp24

374 L. Bajczi et al.

https://doi.org/10.1007/978-3-030-99527-0_34
https://doi.org/10.1007/978-3-030-99527-0_34
https://ftsrg.mit.bme.hu/en/
https://github.com/ftsrg/theta/releases/tag/svcomp24


2. Bajczi, L., Szekeres, D., Mondok, M., Molnár, V.: EmergenTheta - SV-COMP’24
Verifier Archive (Nov 2023). https://doi.org/10.5281/zenodo.10198872

3. Barrett, C., Tinelli, C.: Satisfiability Modulo Theories.
https://doi.org/10.1007/978-3-319-10575-8 11

4. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: TACAS (1999). https://doi.org/10.1007/3-540-49059-0 14

6. Hajdu, Á., Micskei, Z.: Efficient Strategies for CEGAR-based Model
Checking. Journal of Automated Reasoning 64(6), 1051–1091 (2020).
https://doi.org/10.1007/s10817-019-09535-x

7. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In:
Hunt, W.A., Somenzi, F. (eds.) Computer Aided Verification (2003).
https://doi.org/10.1007/978-3-540-45069-6 1

8. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS 2008, LNCS,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

9. Sheeran, M., Singh, S., St̊almarck, G.: Checking Safety Properties Using Induc-
tion and a SAT-Solver. In: Formal Methods in Computer-Aided Design (2000).
https://doi.org/10.1007/3-540-40922-X 8

10. Tóth’, T.: Abstraction Refinement-Based Verification of Timed Automata. Ph.D.
thesis, Budapest University of Technology and Economics (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

EmergenTheta 375

https://doi.org/10.5281/zenodo.10198872
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-40922-X_8
http://creativecommons.org/licenses/by/4.0/

	EmergenTheta: Verification Beyond Abstraction Refinement (Competition Contribution)



