
CPV: A Circuit-Based Program Verifier
(Competition Contribution)

Po-Chun Chien ⋆

Abstract. We submit to SV-COMP 2024 CPV, a circuit-based software
verifier for C programs. CPV utilizes sequential circuits as its intermedi-
ate representation and invokes hardware model checkers to analyze the
reachability safety of C programs. As the frontend, it uses Kratos2, a re-
cently proposed verification tool, to translate a C program to a sequential
circuit. As the backend, state-of-the-art hardware model checkers ABC

and AVR are employed to verify the translated circuits. We configure the
hardware model checkers to run various analyses, including IC3/PDR,
interpolation-based model checking, and k -induction. Information discov-
ered by hardware model checkers is represented as verification witnesses.
In the competition, CPV achieved comparable performance against partici-
pants whose intermediate representations are based on control-flow graphs.
In the category ReachSafety, it outperformed several mature software veri-
fiers as a first-year participant. CPV manifests the feasibility of sequential
circuits as an alternative intermediate representation for program analysis
and enables head-to-head algorithmic comparison between hardware and
software verification.

Keywords: Software verification · Hardware verification · C programs ·
Sequential circuits · Btor2 · Aiger · Tool combination · Portfolio

1 Introduction

Software verification is challenging. Numerous intermediate representations have
been proposed to capture diverse software features and facilitate the development
of program verifiers. Among various encodings of a state-transition system, sequen-
tial circuits, consisting of memory elements to represent states and combinational
logic to capture state transitions, are commonly used in the hardware-verification
domain, and abundant techniques have been invented for hardware model checking.
Using sequential circuits as its intermediate representation, our tool CPV aims to
answer the following question: Are sequential circuits feasible as an alternative
foundation to build software verifiers? While previous studies on translating and
cross-applying verification techniques for hardware and software exist [1, 2, 3, 4],
to our knowledge, no participants in SV-COMP had used sequential circuits as
their intermediate representations. This competition report outlines the software
⋆ Jury member

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 365–370, 2024.
https://doi.org/10.1007/978-3-031-57256-2_22

and Nian-Ze Lee(B)

LMU Munich, Munich, Germany 
{po-chun.chien,nian-ze.lee}@sosy.ifi.lmu.de

(B)

https://orcid.org/0000-0001-5139-5178
https://orcid.org/0000-0002-8096-5595
https://kratos.fbk.eu/
https://github.com/berkeley-abc/abc
https://github.com/aman-goel/avr
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_22&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


C prog. Instrumentor Instrumented C prog.

Kratos2 [6]ReachSafety property Btor2 [7] Btor2Aiger [8]

Aiger [9]

AVR [10]

ABC [11]

By CoVeriTeam [12]

Btor2
witness [7]

Witness
translator

Software
witness [13]

Verdict

Fig. 1: Software architecture of CPV

architecture and verification approach of CPV and discusses its results against
other mature program analyzers in SV-COMP 2024 [5].

2 Software Architecture

The software architecture of CPV is depicted in Fig. 1. Its verification workflow
is divided into two stages: (1) In the frontend (the upper half of Fig. 1), an
input C program with a reachability-safety property is first instrumented to
allow for witness translation (details in Sect. 3) and then translated into a word-
level Btor2 [7] circuit by Kratos2 [6]. The Btor2 language [7] is used in the
Hardware Model Checking Competitions [14, 15], and many powerful hardware
model checkers support this format. A bit-level Aiger [9] circuit is also generated
by the tool Btor2Aiger [8]; (2) In the backend (the lower half of Fig. 1), CPV
invokes hardware model checkers AVR [10] and ABC [11] to verify the translated
circuits. Btor2 verification witnesses produced for the circuits are translated to
software witnesses in the GraphML format [13] for the original program. CPV
configures and executes the backend model checkers (either solely or as portfolios)
via CoVeriTeam [12], a library for cooperative verification [16]. Thanks to the
versatility of CoVeriTeam, it is convenient to choose the verification algorithms
used by AVR and ABC, and the pool of the backend verifiers in CPV can be
expanded with little effort.

3 Verification Approach

The approach of CPV is to translate a program into a circuit and applies hardware
model checking to the translated verification task. To generate software-verification
witnesses, CPV instruments an input program before translating it to a circuit,
such that the information contained in a witness for the translated circuit can
be mapped back to the original program.

Program-to-Circuit Translation. CPV utilizes Kratos2 [6] as its frontend to
translate a verification task of a C program into a word-level sequential circuit in

366 P.-C. Chien and N.-Z. Lee



CPV: A Circuit-Based Program Verifier 367

the Btor2 format [7]. Kratos2 applies large-block encoding [17] and introduces a
symbolic program counter to fold the summarized program into a state-transition
system. Executing a maximal loop-free block of the program is a one-step transition
in the system. A call to an external function that models nondeterministic input
values to the program, e.g., the functions __VERIFIER_nondet_X() in SV-COMP,
is represented as an external input to the state-transition system. We configure
Kratos2 to export the system as a sequential circuit in the Btor2 format because
Btor2 is the prevailing format for hardware model checking. In order to leverage
bit-level hardware model checkers, CPV additionally invokes Btor2Aiger [8] to
translate the word-level Btor2 circuit into the Aiger format [9]. Currently, CPV
supports the property of reachability safety. Violation to the reachability-safety
property of the input program is captured by a circuit output asserting the
equivalence between the symbolic program counter and the error location.

Hardware Model Checking. CPV employs AVR [10] and ABC [11], two
state-of-the-art hardware model checkers for word-level Btor2 and bit-level
Aiger circuits, respectively, to analyze the translated circuits. A hardware model
checker decides whether the translated circuit has a computation trace to assert
its circuit output, which indicates the error location in the original program is
reachable. In this case, the verification verdict is false, and the original program
is unsafe. If there is no trace to assert the circuit output, the verdict is true,
and the original program is safe.

To achieve synergy, we combine the strengths of various hardware-verification
algorithms, including property-directed reachability (PDR) [18, 19], interpolation-
based model checking (IMC) [20], k -induction (KI) [21], and bounded model
checking (BMC) [22]. For the tasks that can be translated into Aiger circuits,1
a sequential portfolio of AVR-KI, AVR-PDR, ABC-IMC, ABC-PDR, and AVR-
BMC is applied. A pre-determined time limit is imposed on each component in
the portfolio by CoVeriTeam. AVR is executed first in the portfolio because it
can produce a Btor2 witness [7] for the translated circuit if a property violation
was found, whereas ABC does not export witnesses in a standardized format.
CPV can then translate a Btor2 witness back to a software violation witness.
Currently, CPV outputs a dummy violation witness if a bug is reported by
ABC. Since both the Btor2 and Aiger languages do not define a format for
correctness witnesses, CPV also outputs a dummy correctness witness in this
case. For the remaining tasks that cannot be translated into Aiger circuits, CPV
uses a sequential portfolio of AVR’s KI, PDR, and BMC.

Program Instrumentation for Witness Translation. To map the information
in a Btor2 witness back to the original program, CPV instruments the input
program prior to the program-to-circuit translation. A Btor2 violation witness
encodes a computation trace that asserts the output of the translated circuit. The
trace consists of a sequence of values given to the circuit’s external inputs, each
corresponding to a call to a function __VERIFIER_nondet_X() in the program.

1 The Btor2-to-Aiger translation may fail if a Btor2 circuit uses data sorts or oper-
ations unsupported by Aiger, such as arrays or non-constant register initialization.



Table 1: Summary of CPV’s correct results in SV-COMP 2024
ReachSafety #solved #tasks solved by respective approach

verdict #tasks AVR-KI AVR-PDR AVR-BMC ABC-IMC

true 8 323 3 860 3 405 323 0 132
false 2 899 1 092 867 172 2 51

To assume these values at the control-flow locations where they are relevant for
triggering the property violation, CPV’s instrumentor assigns a fresh counter
to each of these calls. A counter is incremented after each call, so its value can
be inferred from the Btor2 witness. An input value is relevant if accompanied
by a change in its counter. The witness translator of CPV traverses the Btor2
witness, extracts the relevant input values by tracking the changes in the counters,
and exports the software violation witness in the GraphML format [13].

4 Results in SV-COMP 2024

CPV participated in the category ReachSafety of SV-COMP 2024 [5]. As a first-
year participant, it surprisingly outperformed several mature software verifiers
in terms of the number of correctly solved tasks. CPV is especially effective in
the subcategory ReachSafety-Hardware and ReachSafety-ECA, solving the second
and third most tasks among all participants, respectively. Its impressive results
manifest the feasibility of using sequential circuits as an alternative intermediate
representation to construct program verifiers.

The overall results of CPV is summarized in Table 1. Among the 11 222 veri-
fication tasks in the category ReachSafety, 8 439 were successfully translated to
Btor2 circuits by Kratos2, and 7 773 could be further translated to Aiger
circuits by Btor2Aiger. In total, CPV produced 4 952 correct and confirmed
results. The k -induction implementation in AVR contributed the most correctly
solved and confirmed tasks, followed by PDR of AVR and IMC of ABC.2

We will improve CPV in the following directions: First, we will generate
non-trivial software correctness witnesses through extracting and translating
the fixed points computed by hardware model checkers. We aim to enhance the
witness-confirmation rate of CPV, currently about 90%, to the level of other
mature participants (more than 95%). Second, we will investigate the 27 false
alarms in the subcategory ReachSafety-Hardness.

5 Setup and Configuration

We submitted CPV at version 0.4 [23] to SV-COMP 2024 [5]. A Linux-based oper-
ating system is required to execute the tool, as the used library CoVeriTeam [12]
relies on Linux-specific features, such as control groups, name spaces, and over-
lay file systems. Additional Python package requirement and the instructions
to set up the execution environment can be found in the README file of the
submitted tool archive.
2 The observations are specific to the order of algorithms in CPV’s sequential portfolios.

368 P.-C. Chien and N.-Z. Lee



Data-Availability Statement. CPV is an open-source project, developed and
maintained by the Software and Computational Systems Lab at LMU Munich.
Its source code and executables are archived on Zenodo [23], and the project is
maintained on GitLab at https://gitlab.com/sosy-lab/software/cpv.

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) – 378803395 (ConVeY) and the LMU Postdoc Support Fund.

References
1. Mukherjee, R., Tautschnig, M., Kroening, D.: v2c: A Verilog to C translator. In:

Proc. TACAS. pp. 580–586. LNCS 9636, Springer (2016). https://doi.org/10.
1007/978-3-662-49674-9_38

2. Beyer, D., Chien, P.C., Lee, N.Z.: Bridging hardware and software analysis
with Btor2C: A word-level-circuit-to-C translator. In: Proc. TACAS. pp. 1–21.
LNCS 13994, Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_12

3. Noureddine, M.A., Zaraket, F.A.: Model checking software with first order logic
specifications using AIG solvers. IEEE Trans. Softw. Eng. 42(8), 741–763 (2016).
https://doi.org/10.1109/TSE.2016.2520468

4. Long, J.: Reasoning about High-Level Constructs in Hardware/Software Formal
Verification. Ph.D. thesis, University of California, Berkeley (2017). http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-150.html

5. Beyer, D.: State of the art in software verification and witness validation: SV-COMP
2024. In: Proc. TACAS. LNCS , Springer (2024)

6. Griggio, A., Jonáš, M.: Kratos2: An SMT-based model checker for imperative
programs. In: Proc. CAV. pp. 423–436. Springer (2023). https://doi.org/10.1007/
978-3-031-37709-9_20

7. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and Boolector
3.0. In: Proc. CAV. pp. 587–595. LNCS 10981, Springer (2018). https://doi.org/
10.1007/978-3-319-96145-3_32

8. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Source-code repository of Btor2,
BtorMC, and Boolector 3.0. https://github.com/Boolector/btor2tools, ac-
cessed: 2023-01-29

9. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.
Rep. 07/1, Institute for Formal Models and Verification, Johannes Kepler University
(2007). https://doi.org/10.35011/fmvtr.2007-1

10. Goel, A., Sakallah, K.: AVR: Abstractly verifying reachability. In: Proc.
TACAS. pp. 413–422. LNCS 12078, Springer (2020). https://doi.org/10.1007/
978-3-030-45190-5_23

11. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Proc. CAV. pp. 24–40. LNCS 6174, Springer (2010). https://doi.org/10.
1007/978-3-642-14295-6_5

12. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative ver-
ification systems. In: Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

13. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022).
https://doi.org/10.1145/3477579

14. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: Proc. FMCAD. p. 9. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.
8102233

CPV: A Circuit-Based Program Verifier 369

https://gitlab.com/sosy-lab/software/cpv
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1109/TSE.2016.2520468
https://doi.org/10.1109/TSE.2016.2520468
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-150.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-150.html
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://github.com/Boolector/btor2tools
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1145/3477579
https://doi.org/10.1145/3477579
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233


15. Biere, A., Froleyks, N., Preiner, M.: 11th Hardware Model Checking Competition
(HWMCC 2020). http://fmv.jku.at/hwmcc20/, accessed: 2023-01-29

16. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. In: Proc. ISoLA (1). pp. 143–167. LNCS 12476,
Springer (2020). https://doi.org/10.1007/978-3-030-61362-4_8

17. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: Proc. FMCAD. pp. 25–32. IEEE (2009).
https://doi.org/10.1109/FMCAD.2009.5351147

18. Bradley, A.R.: SAT-based model checking without unrolling. In: Proc. VM-
CAI. pp. 70–87. LNCS 6538, Springer (2011). https://doi.org/10.1007/
978-3-642-18275-4_7

19. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Proc. FMCAD. pp. 125–134. FMCAD Inc. (2011). https:
//dl.acm.org/doi/10.5555/2157654.2157675

20. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp. 1–
13. LNCS 2725, Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1

21. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction
and a SAT-solver. In: Proc. FMCAD, pp. 127–144. LNCS 1954, Springer (2000).
https://doi.org/10.1007/3-540-40922-X_8

22. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999). https://doi.
org/10.1007/3-540-49059-0_14

23. Chien, P.C., Lee, N.Z.: CPV: A circuit-based program verifier. Zenodo (2023).
https://doi.org/10.5281/zenodo.10203472, version 0.4

370 P.-C. Chien and N.-Z. Lee

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits use, sharing, adaptation, distribution, and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://fmv.jku.at/hwmcc20/
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://dl.acm.org/doi/10.5555/2157654.2157675
https://dl.acm.org/doi/10.5555/2157654.2157675
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.5281/zenodo.10203472
https://doi.org/10.5281/zenodo.10203472

	CPV: A Circuit-Based Program Verifier (Competition Contribution)



