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Abstract. We submit to SV-COMP 2024 CPV, a circuit-based software
verifier for C programs. CPV utilizes sequential circuits as its intermedi-
ate representation and invokes hardware model checkers to analyze the
reachability safety of C programs. As the frontend, it uses Kratos2, a re-
cently proposed verification tool, to translate a C program to a sequential
circuit. As the backend, state-of-the-art hardware model checkers ABC

and AVR are employed to verify the translated circuits. We configure the
hardware model checkers to run various analyses, including IC3/PDR,
interpolation-based model checking, and k -induction. Information discov-
ered by hardware model checkers is represented as verification witnesses.
In the competition, CPV achieved comparable performance against partici-
pants whose intermediate representations are based on control-flow graphs.
In the category ReachSafety, it outperformed several mature software veri-
fiers as a first-year participant. CPV manifests the feasibility of sequential
circuits as an alternative intermediate representation for program analysis
and enables head-to-head algorithmic comparison between hardware and
software verification.
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1 Introduction

Software verification is challenging. Numerous intermediate representations have
been proposed to capture diverse software features and facilitate the development
of program verifiers. Among various encodings of a state-transition system, sequen-
tial circuits, consisting of memory elements to represent states and combinational
logic to capture state transitions, are commonly used in the hardware-verification
domain, and abundant techniques have been invented for hardware model checking.
Using sequential circuits as its intermediate representation, our tool CPV aims to
answer the following question: Are sequential circuits feasible as an alternative
foundation to build software verifiers? While previous studies on translating and
cross-applying verification techniques for hardware and software exist [1, 2, 3, 4],
to our knowledge, no participants in SV-COMP had used sequential circuits as
their intermediate representations. This competition report outlines the software
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Fig. 1: Software architecture of CPV

architecture and verification approach of CPV and discusses its results against
other mature program analyzers in SV-COMP 2024 [5].

2 Software Architecture

The software architecture of CPV is depicted in Fig. 1. Its verification workflow
is divided into two stages: (1) In the frontend (the upper half of Fig. 1), an
input C program with a reachability-safety property is first instrumented to
allow for witness translation (details in Sect. 3) and then translated into a word-
level Btor2 [7] circuit by Kratos2 [6]. The Btor2 language [7] is used in the
Hardware Model Checking Competitions [14, 15], and many powerful hardware
model checkers support this format. A bit-level Aiger [9] circuit is also generated
by the tool Btor2Aiger [8]; (2) In the backend (the lower half of Fig. 1), CPV
invokes hardware model checkers AVR [10] and ABC [11] to verify the translated
circuits. Btor2 verification witnesses produced for the circuits are translated to
software witnesses in the GraphML format [13] for the original program. CPV
configures and executes the backend model checkers (either solely or as portfolios)
via CoVeriTeam [12], a library for cooperative verification [16]. Thanks to the
versatility of CoVeriTeam, it is convenient to choose the verification algorithms
used by AVR and ABC, and the pool of the backend verifiers in CPV can be
expanded with little effort.

3 Verification Approach

The approach of CPV is to translate a program into a circuit and applies hardware
model checking to the translated verification task. To generate software-verification
witnesses, CPV instruments an input program before translating it to a circuit,
such that the information contained in a witness for the translated circuit can
be mapped back to the original program.

Program-to-Circuit Translation. CPV utilizes Kratos2 [6] as its frontend to
translate a verification task of a C program into a word-level sequential circuit in
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the Btor2 format [7]. Kratos2 applies large-block encoding [17] and introduces a
symbolic program counter to fold the summarized program into a state-transition
system. Executing a maximal loop-free block of the program is a one-step transition
in the system. A call to an external function that models nondeterministic input
values to the program, e.g., the functions __VERIFIER_nondet_X() in SV-COMP,
is represented as an external input to the state-transition system. We configure
Kratos2 to export the system as a sequential circuit in the Btor2 format because
Btor2 is the prevailing format for hardware model checking. In order to leverage
bit-level hardware model checkers, CPV additionally invokes Btor2Aiger [8] to
translate the word-level Btor2 circuit into the Aiger format [9]. Currently, CPV
supports the property of reachability safety. Violation to the reachability-safety
property of the input program is captured by a circuit output asserting the
equivalence between the symbolic program counter and the error location.

Hardware Model Checking. CPV employs AVR [10] and ABC [11], two
state-of-the-art hardware model checkers for word-level Btor2 and bit-level
Aiger circuits, respectively, to analyze the translated circuits. A hardware model
checker decides whether the translated circuit has a computation trace to assert
its circuit output, which indicates the error location in the original program is
reachable. In this case, the verification verdict is false, and the original program
is unsafe. If there is no trace to assert the circuit output, the verdict is true,
and the original program is safe.

To achieve synergy, we combine the strengths of various hardware-verification
algorithms, including property-directed reachability (PDR) [18, 19], interpolation-
based model checking (IMC) [20], k -induction (KI) [21], and bounded model
checking (BMC) [22]. For the tasks that can be translated into Aiger circuits,1
a sequential portfolio of AVR-KI, AVR-PDR, ABC-IMC, ABC-PDR, and AVR-
BMC is applied. A pre-determined time limit is imposed on each component in
the portfolio by CoVeriTeam. AVR is executed first in the portfolio because it
can produce a Btor2 witness [7] for the translated circuit if a property violation
was found, whereas ABC does not export witnesses in a standardized format.
CPV can then translate a Btor2 witness back to a software violation witness.
Currently, CPV outputs a dummy violation witness if a bug is reported by
ABC. Since both the Btor2 and Aiger languages do not define a format for
correctness witnesses, CPV also outputs a dummy correctness witness in this
case. For the remaining tasks that cannot be translated into Aiger circuits, CPV
uses a sequential portfolio of AVR’s KI, PDR, and BMC.

Program Instrumentation for Witness Translation. To map the information
in a Btor2 witness back to the original program, CPV instruments the input
program prior to the program-to-circuit translation. A Btor2 violation witness
encodes a computation trace that asserts the output of the translated circuit. The
trace consists of a sequence of values given to the circuit’s external inputs, each
corresponding to a call to a function __VERIFIER_nondet_X() in the program.

1 The Btor2-to-Aiger translation may fail if a Btor2 circuit uses data sorts or oper-
ations unsupported by Aiger, such as arrays or non-constant register initialization.



Table 1: Summary of CPV’s correct results in SV-COMP 2024
ReachSafety #solved #tasks solved by respective approach

verdict #tasks AVR-KI AVR-PDR AVR-BMC ABC-IMC

true 8 323 3 860 3 405 323 0 132
false 2 899 1 092 867 172 2 51

To assume these values at the control-flow locations where they are relevant for
triggering the property violation, CPV’s instrumentor assigns a fresh counter
to each of these calls. A counter is incremented after each call, so its value can
be inferred from the Btor2 witness. An input value is relevant if accompanied
by a change in its counter. The witness translator of CPV traverses the Btor2
witness, extracts the relevant input values by tracking the changes in the counters,
and exports the software violation witness in the GraphML format [13].

4 Results in SV-COMP 2024

CPV participated in the category ReachSafety of SV-COMP 2024 [5]. As a first-
year participant, it surprisingly outperformed several mature software verifiers
in terms of the number of correctly solved tasks. CPV is especially effective in
the subcategory ReachSafety-Hardware and ReachSafety-ECA, solving the second
and third most tasks among all participants, respectively. Its impressive results
manifest the feasibility of using sequential circuits as an alternative intermediate
representation to construct program verifiers.

The overall results of CPV is summarized in Table 1. Among the 11 222 veri-
fication tasks in the category ReachSafety, 8 439 were successfully translated to
Btor2 circuits by Kratos2, and 7 773 could be further translated to Aiger
circuits by Btor2Aiger. In total, CPV produced 4 952 correct and confirmed
results. The k -induction implementation in AVR contributed the most correctly
solved and confirmed tasks, followed by PDR of AVR and IMC of ABC.2

We will improve CPV in the following directions: First, we will generate
non-trivial software correctness witnesses through extracting and translating
the fixed points computed by hardware model checkers. We aim to enhance the
witness-confirmation rate of CPV, currently about 90%, to the level of other
mature participants (more than 95%). Second, we will investigate the 27 false
alarms in the subcategory ReachSafety-Hardness.

5 Setup and Configuration

We submitted CPV at version 0.4 [23] to SV-COMP 2024 [5]. A Linux-based oper-
ating system is required to execute the tool, as the used library CoVeriTeam [12]
relies on Linux-specific features, such as control groups, name spaces, and over-
lay file systems. Additional Python package requirement and the instructions
to set up the execution environment can be found in the README file of the
submitted tool archive.
2 The observations are specific to the order of algorithms in CPV’s sequential portfolios.
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Data-Availability Statement. CPV is an open-source project, developed and
maintained by the Software and Computational Systems Lab at LMU Munich.
Its source code and executables are archived on Zenodo [23], and the project is
maintained on GitLab at https://gitlab.com/sosy-lab/software/cpv.
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