
CPAchecker 2.3 with Strategy Selection
(Competition Contribution)

Abstract. CPAchecker is a versatile framework for software verification,
rooted in the established concept of configurable program analysis. Com-
pared to the last published system description at SV-COMP 2015, the
CPAchecker submission to SV-COMP 2024 incorporates new analyses for
reachability safety, memory safety, termination, overflows, and data races.
To combine forces of the available analyses in CPAchecker and cover the
full spectrum of the diverse program characteristics and specifications in
the competition, we use strategy selection to predict a sequential portfolio
of analyses that is suitable for a given verification task. The prediction
is guided by a set of carefully picked program features. The sequential
portfolios are composed based on expert knowledge and consist of bit-
precise analyses using k -induction, data-flow analysis, SMT solving, Craig
interpolation, lazy abstraction, and block-abstraction memoization. The
synergy of various algorithms in CPAchecker enables support for all prop-
erties and categories of C programs in SV-COMP 2024 and contributes
to its success in many categories. CPAchecker also generates verification
witnesses in the new YAML format.

1 Software Architecture
CPAchecker [10] is a flexible framework for automatic software verification based
on the concept of Configurable Program Analysis (CPA) [9]. Abstract domains
needed by a verification approach are represented as CPAs, and multiple CPAs can
be combined in a modular fashion to achieve synergy. CPAchecker provides basic
functionalities for program analysis, such as tracking the control flow or callstack,
as standalone CPAs, which facilitate the implementation of new analyses. Through
its modular architecture, a rich collection of verification algorithms [7, 12, 14, 24]
has been implemented in CPAchecker, and its flexibility and extensibility have
been evidenced by many research projects.
Operating Platform. CPAchecker is platform-independent as it is written in
Java. However, its default SMT solver MathSAT5 [17] is bundled only for Linux.
Thanks to the versatility of the used library JavaSMT [23], a different SMT solver
can be chosen on other platforms.
⋆ Jury member

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 359–364, 2024.
https://doi.org/10.1007/978-3-031-57256-2_21

Daniel Baier⋆ , Dirk Beyer , Po-Chun Chien ,
Marek Jankola , Matthias Kettl , Nian-Ze Lee ,
Thomas Lemberger , Marian Lingsch-Rosenfeld ,

Martin Spiessl , Henrik Wachowitz , and Philipp Wendler
http://cpachecker.sosy-lab.org

LMU Munich, Munich, Germany

https://orcid.org/0000-0001-9116-1974
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-5139-5178
https://orcid.org/0009-0008-7961-190X
https://orcid.org/0000-0001-7365-5030
https://orcid.org/0000-0002-8096-5595
https://orcid.org/0000-0003-0291-815X
https://orcid.org/0000-0002-8172-3184
https://orcid.org/0000-0002-9169-9130
https://orcid.org/0000-0002-4768-4054
https://orcid.org/0000-0002-5139-341X
http://cpachecker.sosy-lab.org
https://doi.org/10.1007/978-3-662-46681-0_34
https://mathsat.fbk.eu
https://github.com/sosy-lab/java-smt
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_21&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/


Reach. Safety

Termination

NoOverflow

No Data Race

Mem. Safety

Recursion

Concurrency

Loop-free

Single loop

Non-int. data

Other

PredAbs + Val with BAM [21]

BDD-based analysis [8]

BMC [16]; PredAbs

Symbolic exec. [13]; Val; PredAbs; DF [2]; IMC [12]

Val; k-induction [6]

Symbolic exec.; Val; PredAbs; DF; k-induction

Liveness-as-safety [26]; lasso-based analysis [18]

Reduction to reach. safety + PredAbs [22]

Val [14] + memory-access-based POR [25]

Symbolic exec. [13] + SMG-based analysis [20]
P

ro
pe

rt
y?

P
ro

gr
am

S
tr

u
ct

u
re

?

Fig. 1: Strategy selection based on the property to verify and program structure
(New components since the last published system description [19] are marked in boldface.
‘+’ and ‘;’ denote component composition and sequential execution, respectively.)

Witnesses. CPAchecker produces correctness and violation witnesses for all
properties where the corresponding witness type is already defined by the com-
munity. These are exported in the established GraphML format [4, 5] as well as
in the new YAML format that is introduced with SV-COMP 2024.

2 Verification Approaches

To effectively solve the verification tasks from the heterogeneous benchmark
set used in the competition, we need different verification strategies. Given a
verification task, we select a suitable strategy with a two-level approach according
to the property of the task and the structure of the program. A strategy could be a
sequential portfolio of different verification techniques, each of which is assigned a
time limit that is determined with expert knowledge. Figure 1 shows the selection
procedure. The first-level selection is based on the property of the verification
task. If the property is among memory safety, no-dataraces, no-overflows, or
termination, a dedicated strategy is immediately assigned to solve the task. If the
property is reachability safety, we further distinguish the program structure of a
task into six classes by a set of carefully picked features, and a tailored strategy
is invoked for each class. The details for each property and program structure are
given below.
Memory Safety. Memory safety is checked by an unbounded analysis based
on symbolic memory graphs (SMGs) [20]. It utilizes symbolic execution [13] to
reason over non-concrete values, enabling us to verify the safety of low-level
memory operations. The graph-based approach allows us to not only represent
heap memory efficiently, but also to abstract linked memory structures (e.g.,
linked lists) that are created with low-level memory operations.
No Data Race. Data races are checked with a combination of value analysis
(Val) [14], the thread handling from our concurrency analysis [8], and a CPA that

Baier, Beyer, Chien, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Spiessl, Wachowitz, Wendler360



tracks read and write accesses to memory locations. We perform partial order
reduction (POR) [25] over thread-local memory accesses to improve performance.
No Overflow. Overflows are checked with a CPA that adds additional constraints
for overflow detection and a bit-accurate predicate abstraction (PredAbs) [7].
For recursive tasks we add block-abstraction memoization (BAM) [21, 27], which
summarizes the input-output behavior of recursive functions.
Termination. Our termination strategy consists of two techniques. The first
technique transforms liveness to a safety property [26]. With a combination of
predicate and value analyses we check whether there exists some program state at
a loop head that can be visited twice. If the program is recursive or the analysis
reaches a time limit of 300 s, we switch to the second techniques, which uses ideas
first implemented in Terminator [18]: We apply CPAchecker’s predicate-based
reachability analysis to detect potentially non-terminating program executions,
called candidate lassos. A lasso consists of a stem (a finite program path) that is
followed by a loop (a finite program path that describes a syntactic cycle in the
program). Found candidate lassos are analyzed with the library LassoRanker [24]
to synthesize termination and non-termination arguments. If a non-termination
argument is found for at least one candidate lasso, violation of the termination
property is reported. Otherwise, the analysis claims the program as terminating.
Reachability Safety. For the reachability of an error location, we tailor our
verification strategy based on the structure of the program. If the program
contains a recursive function, we apply block-abstraction memoization [21, 27] in
combination with value analysis (Val) and predicate abstraction (PredAbs). If the
program is multi-threaded, a concurrency analysis [8] that relies on binary decision
diagrams (BDD) is applied. We set an upper limit of five threads for the analysis,
and if this threshold is surpassed, the analysis is aborted. For non-recursive and
single-threaded programs, we assign one of the four verification strategies in Fig. 1
according to the following structural features: the number of loops and whether the
program contains non-integer data types, such as floating-point variables, arrays,
or composite data structures [3]. The four strategies are all based on sequential
combinations [19] of various bit-precise analyses with different time limits. For
loop-free programs, we apply bounded model checking (BMC) [16] with a fallback
to PredAbs [22]. For programs with a single loop, we apply a sequence of symbolic
execution [13], Val [14], PredAbs [11], interval-based data-flow analysis (DF) [2],
and interpolation-based model checking (IMC) [12]. For programs with multiple
loops and non-integer data types, we apply Val and k -induction [6]. For all other
programs, i.e., those with multiple loops but without non-integer data types,
we apply a sequential portfolio of symbolic execution, Val, PredAbs, DF, and
k -induction.

3 Strengths and Weaknesses

CPAchecker with strategy selection performed well in SV-COMP 2024 [1],
winning the second place in category Overall and the first place in category
FalsificationOverall. Notably, it produced 17 968 correct and confirmed results,
more than any other participant, and outperformed the winner in category Overall

CPAchecker 2.3 with Strategy Selection 361

https://www.ultimate-pa.org/?ui=tool&tool=lasso_ranker


by 32%. CPAchecker is also robust: More than 96% of its correct results were
confirmed by witness validators, and it produced only 17 wrong results (0.06% of
all tasks).

CPAchecker won the third place in category ReachSafety by using various
analyses orchestrated by strategy selection. For programs with non-integer data
types, k -induction was the most effective analysis. In programs with loops, most
alarms were found by symbolic execution, and most proofs were delivered by value
analysis and predicate abstraction.1

The only categories without a medal for CPAchecker were Termination, Con-
currencySafety, and MemSafety. In particular, all wrong results in the category
MemSafety are due to imprecise abstractions of nested lists. To alleviate them, we
intend to improve the precision of our list abstraction and incorporate SMT-based
array abstraction, which would make CPAchecker more effective in this category.
To improve the termination analysis, we plan to make the analyses more cooper-
ative and carry over partial proofs in the sequential combination. Additionally,
CPAchecker needs improvements for finding invariants with quantifiers, which
mainly affects verification tasks with large arrays.

4 Setup and Configuration

SV-COMP 2024 ran CPAchecker version 2.3 [15] on all categories with C pro-
grams. It runs on a standard GNU/Linux system with a Java 17 compatible
runtime environment. To start CPAchecker, execute the following command:

scripts/cpa.sh -svcomp24 -benchmark -heap 10000M -timelimit 900s
-spec property.prp program.i

For programs assuming a 64-bit memory model, append the argument -64 to the
command line. At the end of the execution, the verification result is printed to
the console output and the witnesses are written to the files witness.graphml
and witness.yml in the directory output/.

Note that the configuration -svcomp24 is optimized specifically for the resource
limits used in SV-COMP (15GB of RAM and 15min CPU time per task). For
other use cases (e.g., with less RAM or a different time limit), please apply a
different configuration (e.g., -default) and adjust the memory consumption with
the command-line option -heap as described in the documentation.

5 Project and Contributors

More than 100 developers have contributed to CPAchecker, mainly from LMU
Munich, TU Darmstadt, U Paderborn, U Passau, TU Prague, U Oldenburg, TU
Vienna, ISP RAS, and several other universities and institutes. We would like to
thank all contributors for their investment in CPAchecker. A complete list and
more information about the project is available at https://cpachecker.sosy-lab.
org. A list of bugs that CPAchecker found in the Linux kernel is also available.
1 Note that the observations are specific to our sequential portfolios and influenced by

the orders of analyses in the combination.

Baier, Beyer, Chien, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Spiessl, Wachowitz, Wendler362

https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
https://gitlab.com/sosy-lab/software/cpachecker/-/blob/trunk/doc/Achievements.md#bugs-found-with-cpachecker


Data-Availability Statement. The tool is available at https://cpachecker.
sosy-lab.org and the version used in SV-COMP 2024 is archived at Zenodo [15].

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) – 378803395 (ConVeY) and 496588242 (IDEFIX), and the
LMU Postdoc Support Fund.

References
1. Beyer, D.: State of the art in software verification and witness validation: SV-COMP

2024. In: Proc. TACAS. LNCS , Springer (2024)
2. Beyer, D., Chien, P.C., Lee, N.Z.: CPA-DF: A tool for configurable interval analysis

to boost program verification. In: Proc. ASE. pp. 2050–2053. IEEE (2023). https:
//doi.org/10.1109/ASE56229.2023.00213

3. Beyer, D., Dangl, M.: Strategy selection for software verification based on boolean
features: A simple but effective approach. In: Proc. ISoLA. pp. 144–159. LNCS 11245,
Springer (2018). https://doi.org/10.1007/978-3-030-03421-4_11

4. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

5. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

6. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015). https://doi.
org/10.1007/978-3-319-21690-4_42

7. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software veri-
fication. J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/
s10817-017-9432-6

8. Beyer, D., Friedberger, K.: A light-weight approach for verifying multi-threaded
programs with CPAchecker. In: Proc. MEMICS. vol. 233, pp. 61–71. EPTCS
(2016). https://doi.org/10.4204/EPTCS.233.6

9. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification:
Concretizing the convergence of model checking and program analysis. In: Proc.
CAV. pp. 504–518. LNCS 4590, Springer (2007). https://doi.org/10.1007/
978-3-540-73368-3_51

10. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

11. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD. pp. 189–197. FMCAD (2010). https://dl.acm.
org/doi/10.5555/1998496.1998532

12. Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking
revisited: Adoption to software verification. arXiv/CoRR 2208(05046) (July 2022).
https://doi.org/10.48550/arXiv.2208.05046

13. Beyer, D., Lemberger, T.: CPA-SymExec: Efficient symbolic execution in CPAchecker.
In: Proc. ASE. pp. 900–903. ACM (2018). https://doi.org/10.1145/3238147.
3240478

14. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793, Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1_11

CPAchecker 2.3 with Strategy Selection 363

https://cpachecker.sosy-lab.org
https://cpachecker.sosy-lab.org
http://gepris.dfg.de/gepris/projekt/378803395
https://convey.ifi.lmu.de/
http://gepris.dfg.de/gepris/projekt/496588242
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1109/ASE56229.2023.00213
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://dl.acm.org/doi/10.5555/1998496.1998532
https://dl.acm.org/doi/10.5555/1998496.1998532
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1145/3238147.3240478
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11


15. Beyer, D., Wendler, P.: CPAchecker release 2.3 (unix) (2023). https://doi.org/
10.5281/zenodo.10203297

16. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS. pp. 193–207. LNCS 1579, Springer (1999). https://doi.
org/10.1007/3-540-49059-0_14

17. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Proc. TACAS. pp. 93–107. LNCS 7795, Springer (2013). https://doi.
org/10.1007/978-3-642-36742-7_7

18. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In: Proc. CAV.
pp. 415–418. LNCS 4144, Springer (2006). https://doi.org/10.1007/11817963_37

19. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive programs
and floating-point arithmetic (competition contribution). In: Proc. TACAS. pp. 423–
425. LNCS 9035, Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_
34

20. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list
manipulation. In: Proc. SAS. pp. 215–237. LNCS 7935, Springer (2013). https:
//doi.org/10.1007/978-3-642-38856-9_13

21. Friedberger, K.: CPA-BAM: Block-abstraction memoization with value analysis
and predicate analysis (competition contribution). In: Proc. TACAS. pp. 912–915.
LNCS 9636, Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_58

22. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL. pp. 232–244. ACM (2004). https://doi.org/10.1145/
964001.964021

23. Karpenkov, E.G., Friedberger, K., Beyer, D.: JavaSMT: A unified interface for
SMT solvers in Java. In: Proc. VSTTE. pp. 139–148. LNCS 9971, Springer (2016).
https://doi.org/10.1007/978-3-319-48869-1_11

24. Leike, J., Heizmann, M.: Ranking templates for linear loops. Logical Methods in
Computer Science 11(1) (2015). https://doi.org/10.2168/LMCS-11(1:16)2015

25. Peled, D.: Ten years of partial order reduction. In: Proc. CAV. pp. 17–28. Springer
(1998). https://doi.org/10.1007/BFb0028727

26. Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state
spaces. Electr. Notes Theor. Comput. Sci. 149(1), 79–96 (2006). https://doi.org/
10.1016/j.entcs.2005.11.018

27. Wonisch, D., Wehrheim, H.: Predicate analysis with block-abstraction memoization.
In: Proc. ICFEM. pp. 332–347. LNCS 7635, Springer (2012). https://doi.org/10.
1007/978-3-642-34281-3_24

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits use, sharing, adaptation, distribution, and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Baier, Beyer, Chien, Jankola, Kettl, Lee, Lemberger, Lingsch-Rosenfeld, Spiessl, Wachowitz, Wendler364

https://doi.org/10.5281/zenodo.10203297
https://doi.org/10.5281/zenodo.10203297
https://doi.org/10.5281/zenodo.10203297
https://doi.org/10.5281/zenodo.10203297
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/11817963_37
https://doi.org/10.1007/11817963_37
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-662-49674-9_58
https://doi.org/10.1007/978-3-662-49674-9_58
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1007/978-3-319-48869-1_11
https://doi.org/10.1007/978-3-319-48869-1_11
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.1007/BFb0028727
https://doi.org/10.1007/BFb0028727
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1016/j.entcs.2005.11.018
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24
https://doi.org/10.1007/978-3-642-34281-3_24
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	CPAchecker 2.3 with Strategy Selection (Competition Contribution)



