
Bubaak-SpLit: Split what you cannot verify
(Competition contribution)

⋆

1 Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
mchalupa@ist.ac.at

2 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
cedric.richter@uol.de

Abstract. Bubaak-SpLit is a tool for dynamically splitting verifica-
tion tasks into parts that can then be analyzed in parallel. It is built
on top of Bubaak, a tool designed for running combinations of veri-
fiers in parallel. In contrast to Bubaak, that directly invokes verifiers
on the inputs, Bubaak-SpLit first starts by splitting the input program
into multiple modified versions called program splits. During the split-
ting process, Bubaak-SpLit utilizes a weak verifier (in our case symbolic
execution with a short timelimit) to analyze each generated program
split. If the weak verifier fails on a program split, we split this program
split again and start the verification process again on the generated pro-
gram splits. We run the splitting process until a predefined number of
hard-to-verify program splits is generated or a splitting limit is reached.
During the main verification phase, we run a combination of Bubaak-
Lee and Slowbeast in parallel on the remaining unsolved parts of the
verification task.

1 Verification approach

Bubaak [7] is a program analysis tool that runs multiple verifiers at the same
time, and uses ideas from runtime monitoring and enforcement [5,10] to mediate
the communication of useful information between the verifiers, such as invariants
or already explored parts of the program. As of this year, the verifiers can be
executed in an arbitrary combination of sequential and parallel portfolio, fully
dynamically based on the information learned during the verification process.

With Bubaak-SpLit, we explore program splitting [12,13] as a way to im-
prove the scalability of the verification process. The main idea behind program
splitting is to split a given program P into multiple subprograms P1, . . . , Pn

which then can be analyzed in parallel. As a result, Bubaak-SpLit can verify
multiple subprograms with multiple verifier instances at the same time.

⋆ Jury member
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 353–358, 2024.
https://doi.org/10.1007/978-3-031-57256-2_20

Marek Chalupa1(B) and Cedric Richter2

http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0003-2906-6508
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_20&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

1 int main(void) {
2 int x = nondet();
3 if(x >= 1000) abort();
4

5 if(x <= 10){
6 hard_to_verify_1(x);
7 } else {
8 hard_to_verify_2(x);
9 }

10 }

x >=
100

0

x <=
10

!(x <= 10)

!(x >= 1000)

hard_..._1(x) hard_..._2(x)||

Fig. 1. Overview over the verification process of Bubaak-SpLit for the given example.
Bubaak-SpLit splits program that are too hard to be verified by a weak verifier (gray
nodes), stops for easy-to-verify nodes (crossed out nodes) and it proceeds until n hard-
to-verify splits are found (green nodes).

Control-flow Splitting. Bubaak-SpLit adopts control-flow splitting3 [13] for
splitting programs into subprograms. Control-flow splitting splits a program P
at the first branching point B creating two subprograms P+ and P−. P+ and P−

each represent the program P when assuming that the branching condition at B
is evaluated to true or false respectively. For example, Figure 2 depicts P+ and
P− when splitting the program in Figure 1 at the first branching point in Line
3. Syntactically splitting a program might result in suboptimal splits [12] where
one part of the split is easy-to-verify and the other remains hard-to-verify. To
mitigate the problem of suboptimal splits, Bubaak-SpLit implements a dynamic
splitting strategy: (1) we first check if the given program (or split) is hard-to-
verify by running a weak verifier, (2) if it is hard-to-verify we split the program
and repeat the process on the generated splits, (3) if it is not hard-to-verify
we record the result of the weak verifier and continue with the other splits (if
any). We continue this process until a fixed number of hard-to-verify splits is
generated or a splitting limit is reached. If the problem is solved during the
splitting process, we report the results of the weak verifiers.

Figure 1 provides an example of the splitting process. After splitting two
times, Bubaak-SpLit identifies two hard-to-verify splits which are then verified
by two verifiers in parallel in the main verification phase. Existing static split-
ting strategies for C programs [12] might stop after the first split, resulting in a
suboptimal split (with little to no benefits for the verification process).

Verification technology. Bubaak-SpLit in SV-COMP 2024 utilizes verifiers
based on forward and backward symbolic execution.

(Forward) symbolic execution (SE) [14] systematically explores program’s ex-
ecutions from the initial location. Backward symbolic execution (BSE) [8] ex-
plores executions that reach a given (error) location and it does so by analyzing
the program backwards from the locations. We employ a variant of BSE with

3 Our variant of control-flow splitting was mainly inspired by Mooly Sagiv’s invited
talk "Scaling Formal Verification to Realistic Code with Applications to DeFi" at
ETAPS 2023. Our implementation however splits C programs, not Solidity contracts.

354 M. Chalupa and C. Richter

1 int main(void) { // P+
2 int x = nondet();
3 assume(x >= 1000);
4 abort();
5 }

1 int main(void) { // P-
2 int x = nondet();
3 assume(!(x >= 1000));
4 if(x <= 10) ...
5 }

Fig. 2. Result of splitting the program from Figure 1 at the first branching point.

loop folding (BSELF) [8] which allows us to generate loop invariants and prove
programs correct.

SE can very quickly identify easy-to-verify problems, so we use it with a short
timeout as the weak verifier during splitting. Strong verifiers in the main verifica-
tion phase are selected based on the property. For the property unreach-call, we
use BSELF and SE (with no timeout) in parallel – BSELF to prove programs
correct and SE to (mainly) find bugs. Other properties are not supported by
BSELF. For checking termination properties, we run SE and termination with
inductive invariants with progress (TIIP) [7]. For checking memory safety, we
use only SE. Note that the splitting phase is executed for all properties.

2 Software architecture

Bubaak runs verification tools in a combination of sequential and parallel port-
folio. The verifiers are not composed into a fixed scheme, but they are invoked
dynamically based on the information gathered during the verification process.
In a bit more detail, the architecture of Bubaak is inspired by process alge-
bras [4] and is centered about tasks and their rewriting. The tool starts with
the execution of a set of initial tasks; upon finishing, each task either yields a
result, or rewrites itself into a new task or a set of new tasks. Whenever a task
rewrites itself into a set of new tasks, it also specifies how the results of the new
tasks should be aggregated into a single result. The important feature is that
generating new tasks is not fixed in a static scheme: a task can rewrite itself
into new tasks based on the context and information hitherto gathered about
the program during the verification process.

What tasks are executed and how they are being rewritten is defined by a
selected workflow. The workflow for splitting in SV-COMP 2024 is depicted in
Figure 3. It defines the task Split(P) that takes program P and splits it into
two parts as described in Section 1. This task is invoked as the initial task on
the input program. After splitting the program, Split rewrites itself into two
identical tasks CCAndCheckWeak that are invoked on those two splits. As the
name suggests, the input split is compiled (into LLVM [1]) and the weak verifier
is ran on it to check if the split is easy to solve. If a split is not easy to solve,
the task Split is invoked on the split recursively, and this process continues until
a pre-defined depth is reached, at which point instead of splitting further the
workflow invokes the strong verifier.

Bubaak-SpLit: Split what you cannot verify (Competition contribution) 355

Split(P) : P+, P− := split(P)

CCAndCheckWeak(P+)

CCAndCheckWeak(P−)

∧

CCAndCheckWeak(P) : bc := compile(P) CheckWeak(bc,P)

CheckWeak(bc,P) : bubaak-lee(bc) Split(bc,P)

time ≥ 2s ∧ depth < 2

CheckStrong(bc)
time ≥ 2s ∧ depth ≥ 2

CheckStrong(bc) : ∨
bubaak-lee(bc)

slowbeast-bself(bc)

Fig. 3. The workflow of Bubaak-SpLit for SV-COMP 2024. For brevity, the scheme
does not show errors handling and the result propagation.

Workflows are only an abstraction: internally, task execution and rewriting
is implemented using an event loop that handles events coming from tasks, task
creation and destruction, and the results aggregation.

The weak verifier is based on Bubaak-Lee and we run a combination of
Bubaak-Lee and Slowbeast during the main verification phase. Bubaak
and Slowbeast are implemented in Python, Bubaak-Lee is in C++. Both
Slowbeast and Bubaak-Lee use Z3 [9] as the SMT solver.

3 Strengths and Weaknesses

Program splitting has been shown to improve the runtime efficiency [15] and
verification effectiveness [11] of symbolic execution engines. By splitting the
program into several parts, SE and BSE can analyze different parts of the pro-
gram at the same time, which can lead to results being decided more quickly.
In SV-COMP 2024 [6], Bubaak-SpLit was able to solve 60 benchmarks that
Bubaak was not able to solve and 456 benchmarks were solved faster, often
significantly. In comparison to Bubaak, Bubaak-SpLit misses several viola-
tions on the ReachSafety benchmarks. Most of them are due to the fact that we
severely limit the execution time of SE during verification. Another problem is
the scalability of our approach in the restricted setting of the SV-COMP. By
splitting the program up to n times, we currently run up to 2n verifiers at the
same time. While in praxis this might significantly reduce the walltime, it also
significantly reduces the cputime available to each verifier. Overall, Bubaak-
SpLit inherits the strengths of the underlying analyses which allows the tool
to perform well in the categories ReachSafety and SoftwareSystems. After SV-
COMP 2024, we have found and fixed several bugs in the implementation of
Bubaak-SpLit which might have severely limited its performance.

356 M. Chalupa and C. Richter

Acknowledgements This work was partially supported by the ERC-2020-AdG
10102009 grant.

Data-Availability Statement The submitted version of our tool contribution
is archived and available at Zenodo [2]. The source code is also available on
GitLab [3].

References

1. llvm.org. https://llvm.org, accessed: 2023-12-21
2. Bubaak-SpLit artifact (2023).
3. Bubaak-SpLit repository (2023), https://gitlab.com/mchalupa/bubaak
4. Baeten, J.C., Weijland, W.P.: Process algebra. Cambridge university press (1991)
5. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime

verification. In: Lectures on Runtime Verification - Introductory and Advanced
Topics, LNCS, vol. 10457, pp. 1–33. Springer (2018). https://doi.org/10.1007/978-
3-319-75632-5_1

6. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

7. Chalupa, M., Henzinger, T.A.: Bubaak: Runtime monitoring of program verifiers
- (competition contribution). In: TACAS 2023. LNCS, vol. 13994, pp. 535–540.
Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_32

8. Chalupa, M., Strejcek, J.: Backward symbolic execution with loop folding. In: SAS
2021. LNCS, vol. 12913, pp. 49–76. Springer (2021). https://doi.org/10.1007/978-
3-030-88806-0_3

9. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: TACAS 2008. pp. 337–
340. Springer (2008)

10. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and re-
action. In: Lectures on Runtime Verification - Introductory and Advanced Topics,
LNCS, vol. 10457, pp. 103–134. Springer (2018). https://doi.org/10.1007/978-3-
319-75632-5_4

11. Haltermann, J., Jakobs, M., Richter, C., Wehrheim, H.: Parallel program analysis
via range splitting. In: FASE 2023. LNCS, vol. 13991, pp. 195–219. Springer (2023).
https://doi.org/10.1007/978-3-031-30826-0_11

12. Haltermann, J., Jakobs, M., Richter, C., Wehrheim, H.: Ranged program analysis
via instrumentation. In: SEFM 2023. LNCS, vol. 14323, pp. 145–164. Springer
(2023). https://doi.org/10.1007/978-3-031-47115-5_9

13. Handjieva, M., Tzolovski, S.: Refining static analyses by trace-based partitioning
using control flow. In: SAS 1998. LNCS, vol. 1503, pp. 200–214. Springer (1998).
https://doi.org/10.1007/3-540-49727-7_12

14. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

15. Siddiqui, J.H., Khurshid, S.: Scaling symbolic execution using
ranged analysis. In: OOPSLA 2012. pp. 523–536. ACM (2012).
https://doi.org/10.1145/2384616.2384654

Bubaak-SpLit: Split what you cannot verify (Competition contribution) 357

https://zenodo.org/records/10202207

https://zenodo.org/records/10202207
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-031-30820-8_32
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-030-88806-0_3
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-031-30826-0_11
https://doi.org/10.1007/978-3-031-47115-5_9
https://doi.org/10.1007/3-540-49727-7_12
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2384616.2384654

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

358 M. Chalupa and C. Richter

http://creativecommons.org/licenses/by/4.0/

	Bubaak-SpLit: Split what you cannot verify (Competition contribution)

