
AISE: A Symbolic Verifier by Synergizing
Abstract Interpretation and Symbolic Execution

(Competition Contribution)

⋆

1 College of Computer, National University of Defense Technology, Changsha, China
2 State Key Laboratory of Complex & Critical Software Environment, National

{wz,zbchen}@nudt.edu.cn

Abstract. AISE is a static verifier that can verify the safety properties
of C programs. The core of AISE is a program verification framework
that synergizes abstract interpretation and symbolic execution in a novel
manner. Compared to the individual application of symbolic execution
or abstract interpretation, AISE has better efficiency and precision. The
implementation of AISE is based on KLEE and CLAM.

Keywords: Abstract Interpretation · Symbolic Execution · Program
Verification.

1 Verification Approach

Given a program P and a property φ, a software verification technique or tool
verifies whether P satisfies φ, i.e., all the behavior (e.g., the program paths)
of P satisfies φ. If P does not satisfy φ, a counter-example (e.g., a program
input) will be given to demonstrate the violation of φ. Until now, many software
verification techniques and tools have been developed and applied in different
areas to result in successful stories [3,18,20,7,17].

AISE is a software verifier that verifies C programs with respect to reachability
properties [5]. AISE’s key idea is to synergize symbolic execution (SE) [4,21] and
abstract interpretation (AI) [10,11]. In the main loop, our tool performs symbolic
execution to analyze the program under verification. However, SE faces path ex-
plosion problem [23,16,9] when the program contains loops, which makes it infea-
sible for sound verification. AI can abstract a program in an over-approximation
manner and automatically infer the program invariants at different program loca-
tions, which can be used to verify the property. However, the imprecision caused
by over-approximation may result in false positives. AISE aims to combine these
two techniques in a synergic manner to improve the verification’s scalability as
much as possible while ensuring precision. When doing SE, AISE carries out AI
online to verify a part of the program, which can be used to prune the safe paths.
On the other hand, SE can also improve the precision of AI. AISE only reports
the violations detected by SE.
⋆ Jury member
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 347–352, 2024.
https://doi.org/10.1007/978-3-031-57256-2_19

Zhen Wang1,2 and Zhenbang Chen1,2(B)

University of Defense Technology, Changsha, China

https://orcid.org/0009-0005-7947-3509
https://orcid.org/0000-0002-4066-7892
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_19&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

C Program

Property
/

Symbolic Execution

Abstract Interpretation

CFG
safe or
unsafe

AISE

Verified

Counter
Example

Fig. 1: AISE’s verification framework

2 Framework

Figure 1 shows AISE’s framework, which contains an AI module and a SE mod-
ule. The two modules communicate by delivering control-flow graph (CFG) and
verification results to help each other. On the one hand, SE constructs the sub-
CFG on which AI is carried out; On the other hand, the verification results of
AI are returned to SE to prune the redundant paths, i.e., the paths that are
guaranteed to satisfy the property.

2.1 Symbolic Execution Module

The SE module takes a C program as input and then executes the program with
symbolic inputs. The SE procedure is a state-forking procedure [4]. The whole
process is as follows. At the beginning of execution, the SE module constructs an
initial symbolic state for the input program. As the state is executed, the data
of the state is changed by executing instructions one by one. When the state
encounters a branch instruction, a new state is forked based on the original state.
A global state pool containing all forked states is maintained. After executing an
instruction, the current state is paused, and another state is selected from the
state pool to execute. When a state is terminated (i.e., a state after executing
the program exit instruction), AISE constructs a sub-CFG that contains all the
instructions and the edges of the execution path that led to the state and carries
out AI on the sub-CFG. Based on the AI’s verification result, the state pool
is updated, i.e., adding the newly forked states or removing the pruned states.
When SE finds a violation of an assertion, AISE reports the violation.

2.2 Abstract Interpretation Module

The AI module takes a sub-CFG as input and outputs safe or unsafe. Given the
abstract domain [11], the AI module analyses the CFG to produce an invariant
at each program location. The invariant describes the constraints of variables at
the program location. Then, based on the invariant I, we can check the property
φ by checking the validity of I ⇒ φ. If all assertions are checked, AISE can prune

348 Z. Wang and Z. Chen

states that can only reach the edges in the sub-CFG. Intuitively, all the possible
paths start from these states are contained in the sub-CFG, so they are all safe
paths. Therefore, we can prune all states from which only the nodes and edges
of the sub-CFG can be reached. Pruning states reduces the path space of SE
and improves the scalability of verification.

2.3 Example

Figure 2 gives an example3 to illustrate the idea of AISE. This program contains
a loop adding y to x. AI using interval domain [11] fails to verify this assertion
because y’s invariant at Line 11 is (−∞, 1000000], which is not sufficient to prove
the assertion. SE can verify this program by exploring all paths, but SE needs a
long time as the paths of this program are numerous.

1 int main() {
2 int x=__VERIFIER_nondet_int();
3 int y=__VERIFIER_nondet_int();
4 if (!(y <= 1000000))
5 return 0;
6 if (y>0) {
7 while(x<100) {
8 x=x+y;
9 }

10 }
11 assert(y<=0||(y>0 && x>=100));
12 return 0;
13 }

Fig. 2: C code segment

x=__VERIFIER_nondet_int()
y=__VERIFIER_nondet_int()

assume(y <= 1000000)

assume(y > 0)

while(x < 100)

x = x + y assert(y<=0 || (y>0 && x>=100)

exit

Fig. 3: CFG based on a path

AISE can verify this program successfully in a short time. The SE module
only needs to explore a few paths because many can be pruned. After SE module
explores the following path: 2→3→4→6→7→8→7→11→12, it constructs the
sub-CFG in Figure 3 based on this path. For this sub-CFG, the AI module
successfully verifies the assertion. Then, AISE framework updates the state pool
in the SE module, killing all the states forked from line 7. These states are forked
when encountering the loop head. Then, there are no more states in the pool and
SE terminates, i.e., a safe result. This also demonstrates that SE can improve
the precision of AI by considering the sub-CFG of a symbolic path.

3 Implementation, Results and Discussion

AISE’s implementation is based on the AI framework CLAM [2,17] and the SE
tool KLEE [7]. STP [15] is the SMT solver of SE. AISE accepts the input in
3 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/raw/main/c/loops/

terminator_03-2.i

AISE: A Symbolic Verifier by Synergizing Abstract Interpretation 349

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/raw/main/c/loops/terminator_03-2.i
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/raw/main/c/loops/terminator_03-2.i

LLVM [1] intermediate representation. The AI module of AISE uses the polyhedron
abstract domain [12], and we use the implementation in Apron library [19]. The
search strategy of the SE module is nurs:covnew. Besides, AISE also integrates
ESBMC [22] to handle floating-point programs because the SE’s module does not
support the analysis of floating-point programs.

AISE participants in the ReachSafety-Loops category of SV-COMP 2024 [6].
Table 1 shows AISE’s results. AISE achieved 847 points in this category, and there

Table 1: AISE’s results

number time(s)

total tasks 790

total correct 491 9400
correct true 356 6200
correct false 135 3200

total incorrect 0 0

score 847

were 4 tools ranked ahead of it: Bubbaak [8],
Symbiotic [20], VeriAbs [13], VeriAbsL [14].
The figure4 shows the score-based quantile
plots in this category. When the time is less
than about 100s, AISE achieved the high-
est score among all the tools. If the pruning
method works, AISE can verify a program in a
short time; otherwise, AISE may fail to finish
the job. Many of the AISE’s failed cases are
the programs with non-linear expressions. AI
is limited for non-linear polynomials. Besides,
AISE is also not efficient at handling large ar-
rays. For example, AISE does not support symbolic size array, which is an inher-
ited shortage from KLEE.

4 Software Project, Setup and Contributors

AISE only participats in the ReachSafety-Loops category of SV-COMP bench-
marks. The usage of AISE is as follows.

./bin/aise <program>

The <program> is the input program. AISE only needs the input program as the
parameter because all the properties in the ReachSafety-Loops benchmarks are
the same, i.e., (unreach-call, ILP32), and these properties are built in AISE.

AISE can be found at https://github.com/zbchen/aise-verifier. AISE is a pro-
totype project developed by National University of Defense Technology. The
license of AISE is GPL 3.0. People involved in the project are fully listed as the
authors of this paper.

Data-Availability Statement

AISE’s artifact is available at Zenodo: https://doi.org/10.5281/zenodo.10201159.

Acknowledgement This research was supported by National Key R&D Pro-
gram of China (No. 2022YFB4501903) and the NSFC Program (No. 62172429).
4 https://sv-comp.sosy-lab.org/2024/results/results-verified/

quantilePlot-ReachSafety-Loops.svg

350 Z. Wang and Z. Chen

https://github.com/zbchen/aise-verifier
https://doi.org/10.5281/zenodo.10201159
https://sv-comp.sosy-lab.org/2024/results/results-verified/quantilePlot-ReachSafety-Loops.svg
https://sv-comp.sosy-lab.org/2024/results/results-verified/quantilePlot-ReachSafety-Loops.svg

References

1. LLVM. https://llvm.org, accessed 2023-12-17
2. CLAM repository. https://github.com/seahorn/clam (2022)
3. Baier, D., Beyer, D., Chien, P.C., Jankola, M., Kettl, M., Lee, N.Z., Lemberger,

T., Lingsch-Rosenfeld, M., Spiessl, M., Wachowitz, H., Wendler, P.: CPAchecker
with strategy selection (competition contribution). In: Proc. TACAS. LNCS ,
Springer (2024)

4. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3) (may 2018). https://
doi.org/10.1145/3182657, https://doi.org/10.1145/3182657

5. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoe-
belen, P., Mckenzie, P.: Reachability Properties, pp. 79–81. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04558-9_6,
https://doi.org/10.1007/978-3-662-04558-9_6

6. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Proc. TACAS. LNCS , Springer (2024)

7. Cadar, C., Dunbar, D., Engler, D.R., et al.: Klee: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: OSDI. vol. 8, pp.
209–224 (2008)

8. Chalupa, M., Henzinger, T.A.: Bubaak: Runtime monitoring of program verifiers.
In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. pp. 535–540. Springer Nature Switzerland,
Cham (2023)

9. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution to-
ward unverified program executions. In: Proceedings of the 38th International Con-
ference on Software Engineering. p. 144–155. ICSE ’16, Association for Computing
Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2884781.2884843,
https://doi.org/10.1145/2884781.2884843

10. Cousot, P.: Abstract interpretation. ACM Comput. Surv. 28(2), 324–328 (jun
1996). https://doi.org/10.1145/234528.234740, https://doi.org/10.1145/234528.
234740

11. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. p. 238–252. POPL ’77, Association for Computing Machinery, New
York, NY, USA (1977). https://doi.org/10.1145/512950.512973, https://doi.org/
10.1145/512950.512973

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. p. 84–96. POPL ’78, Association for Com-
puting Machinery, New York, NY, USA (1978). https://doi.org/10.1145/512760.
512770, https://doi.org/10.1145/512760.512770

13. Darke, P., Agrawal, S., Venkatesh, R.: Veriabs: A tool for scalable verification
by abstraction (competition contribution). In: Groote, J.F., Larsen, K.G. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. pp. 458–462.
Springer International Publishing, Cham (2021)

14. Darke, P., Chimdyalwar, B., Agrawal, S., Kumar, S., Venkatesh, R., Chakraborty,
S.: Veriabsl: Scalable verification by abstraction and strategy prediction (com-
petition contribution). In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and

AISE: A Symbolic Verifier by Synergizing Abstract Interpretation 351

https://llvm.org
https://github.com/seahorn/clam
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-662-04558-9_6
https://doi.org/10.1007/978-3-662-04558-9_6
https://doi.org/10.1007/978-3-662-04558-9_6
https://doi.org/10.1145/2884781.2884843
https://doi.org/10.1145/2884781.2884843
https://doi.org/10.1145/2884781.2884843
https://doi.org/10.1145/234528.234740
https://doi.org/10.1145/234528.234740
https://doi.org/10.1145/234528.234740
https://doi.org/10.1145/234528.234740
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770

Algorithms for the Construction and Analysis of Systems. pp. 588–593. Springer
Nature Switzerland, Cham (2023)

15. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) Computer Aided Verification. pp. 519–531. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007)

16. Godefroid, P., Luchaup, D.: Automatic partial loop summarization in dynamic
test generation. In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis. p. 23–33. ISSTA ’11, Association for Computing Machinery,
New York, NY, USA (2011). https://doi.org/10.1145/2001420.2001424, https://
doi.org/10.1145/2001420.2001424

17. Gurfinkel, A., Navas, J.A.: Abstract interpretation of LLVM with a region-based
memory model. In: Bloem, R., Dimitrova, R., Fan, C., Sharygina, N. (eds.) Soft-
ware Verification - 13th International Conference, VSTTE 2021, New Haven, CT,
USA, October 18-19, 2021, and 14th International Workshop, NSV 2021, Los An-
geles, CA, USA, July 18-19, 2021, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 13124, pp. 122–144. Springer (2021). https://doi.org/10.1007/
978-3-030-95561-8_8, https://doi.org/10.1007/978-3-030-95561-8_8

18. Heizmann, M., Bentele, M., Dietsch, D., Jiang, X., Klumpp, D., Schüssele, F.,
Podelski, A.: Ultimate Automizer 2024 (competition contribution). In: Proc.
TACAS. LNCS , Springer (2024)

19. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. pp. 661–
667. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

20. Jonáš, M., Kumor, K., Novák, J., Sedláček, J., Trtík, M., Zaoral, L., Ayaziová,
P., Strejček, J.: Symbiotic 10: Lazy memory initialization and compact symbolic
execution (competition contribution). In: Proc. TACAS. LNCS , Springer (2024)

21. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7),
385–394 (jul 1976). https://doi.org/10.1145/360248.360252, https://doi.org/10.
1145/360248.360252

22. Menezes, R., Aldughaim, M., Farias, B., Li, X., Manino, E., Shmarov, F., Song, K.,
Brauße, F., Gadelha, M.R., Tihanyi, N., Korovin, K., Cordeiro, L.: ESBMC v7.4:
Harnessing the power of intervals (competition contribution). In: Proc. TACAS.
LNCS , Springer (2024)

23. Saxena, P., Poosankam, P., McCamant, S., Song, D.: Loop-extended symbolic ex-
ecution on binary programs. In: Proceedings of the Eighteenth International Sym-
posium on Software Testing and Analysis. p. 225–236. ISSTA ’09, Association
for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/
1572272.1572299, https://doi.org/10.1145/1572272.1572299

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

352 Z. Wang and Z. Chen

https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/1572272.1572299
https://doi.org/10.1145/1572272.1572299
https://doi.org/10.1145/1572272.1572299
https://doi.org/10.1145/1572272.1572299
https://doi.org/10.1145/1572272.1572299
http://creativecommons.org/licenses/by/4.0/

	AISE: A Symbolic Verifier by Synergizing Abstract Interpretation and Symbolic Execution (Competition Contribution)

