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Abstract. AISE is a static verifier that can verify the safety properties
of C programs. The core of AISE is a program verification framework
that synergizes abstract interpretation and symbolic execution in a novel
manner. Compared to the individual application of symbolic execution
or abstract interpretation, AISE has better efficiency and precision. The
implementation of AISE is based on KLEE and CLAM.
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1 Verification Approach

Given a program P and a property φ, a software verification technique or tool
verifies whether P satisfies φ, i.e., all the behavior (e.g., the program paths)
of P satisfies φ. If P does not satisfy φ, a counter-example (e.g., a program
input) will be given to demonstrate the violation of φ. Until now, many software
verification techniques and tools have been developed and applied in different
areas to result in successful stories [3,18,20,7,17].

AISE is a software verifier that verifies C programs with respect to reachability
properties [5]. AISE’s key idea is to synergize symbolic execution (SE) [4,21] and
abstract interpretation (AI) [10,11]. In the main loop, our tool performs symbolic
execution to analyze the program under verification. However, SE faces path ex-
plosion problem [23,16,9] when the program contains loops, which makes it infea-
sible for sound verification. AI can abstract a program in an over-approximation
manner and automatically infer the program invariants at different program loca-
tions, which can be used to verify the property. However, the imprecision caused
by over-approximation may result in false positives. AISE aims to combine these
two techniques in a synergic manner to improve the verification’s scalability as
much as possible while ensuring precision. When doing SE, AISE carries out AI
online to verify a part of the program, which can be used to prune the safe paths.
On the other hand, SE can also improve the precision of AI. AISE only reports
the violations detected by SE.
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Fig. 1: AISE’s verification framework

2 Framework

Figure 1 shows AISE’s framework, which contains an AI module and a SE mod-
ule. The two modules communicate by delivering control-flow graph (CFG) and
verification results to help each other. On the one hand, SE constructs the sub-
CFG on which AI is carried out; On the other hand, the verification results of
AI are returned to SE to prune the redundant paths, i.e., the paths that are
guaranteed to satisfy the property.

2.1 Symbolic Execution Module

The SE module takes a C program as input and then executes the program with
symbolic inputs. The SE procedure is a state-forking procedure [4]. The whole
process is as follows. At the beginning of execution, the SE module constructs an
initial symbolic state for the input program. As the state is executed, the data
of the state is changed by executing instructions one by one. When the state
encounters a branch instruction, a new state is forked based on the original state.
A global state pool containing all forked states is maintained. After executing an
instruction, the current state is paused, and another state is selected from the
state pool to execute. When a state is terminated (i.e., a state after executing
the program exit instruction), AISE constructs a sub-CFG that contains all the
instructions and the edges of the execution path that led to the state and carries
out AI on the sub-CFG. Based on the AI’s verification result, the state pool
is updated, i.e., adding the newly forked states or removing the pruned states.
When SE finds a violation of an assertion, AISE reports the violation.

2.2 Abstract Interpretation Module

The AI module takes a sub-CFG as input and outputs safe or unsafe. Given the
abstract domain [11], the AI module analyses the CFG to produce an invariant
at each program location. The invariant describes the constraints of variables at
the program location. Then, based on the invariant I, we can check the property
φ by checking the validity of I ⇒ φ. If all assertions are checked, AISE can prune
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states that can only reach the edges in the sub-CFG. Intuitively, all the possible
paths start from these states are contained in the sub-CFG, so they are all safe
paths. Therefore, we can prune all states from which only the nodes and edges
of the sub-CFG can be reached. Pruning states reduces the path space of SE
and improves the scalability of verification.

2.3 Example

Figure 2 gives an example3 to illustrate the idea of AISE. This program contains
a loop adding y to x. AI using interval domain [11] fails to verify this assertion
because y’s invariant at Line 11 is (−∞, 1000000], which is not sufficient to prove
the assertion. SE can verify this program by exploring all paths, but SE needs a
long time as the paths of this program are numerous.

1 int main() {
2 int x=__VERIFIER_nondet_int();
3 int y=__VERIFIER_nondet_int();
4 if (!(y <= 1000000))
5 return 0;
6 if (y>0) {
7 while(x<100) {
8 x=x+y;
9 }

10 }
11 assert(y<=0||(y>0 && x>=100));
12 return 0;
13 }

Fig. 2: C code segment

x=__VERIFIER_nondet_int()
y=__VERIFIER_nondet_int()

assume(y <= 1000000)

assume(y > 0)

while(x < 100)

x = x + y assert(y<=0 || (y>0 && x>=100)

exit

Fig. 3: CFG based on a path

AISE can verify this program successfully in a short time. The SE module
only needs to explore a few paths because many can be pruned. After SE module
explores the following path: 2→3→4→6→7→8→7→11→12, it constructs the
sub-CFG in Figure 3 based on this path. For this sub-CFG, the AI module
successfully verifies the assertion. Then, AISE framework updates the state pool
in the SE module, killing all the states forked from line 7. These states are forked
when encountering the loop head. Then, there are no more states in the pool and
SE terminates, i.e., a safe result. This also demonstrates that SE can improve
the precision of AI by considering the sub-CFG of a symbolic path.

3 Implementation, Results and Discussion

AISE’s implementation is based on the AI framework CLAM [2,17] and the SE
tool KLEE [7]. STP [15] is the SMT solver of SE. AISE accepts the input in
3 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/raw/main/c/loops/

terminator_03-2.i
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LLVM [1] intermediate representation. The AI module of AISE uses the polyhedron
abstract domain [12], and we use the implementation in Apron library [19]. The
search strategy of the SE module is nurs:covnew. Besides, AISE also integrates
ESBMC [22] to handle floating-point programs because the SE’s module does not
support the analysis of floating-point programs.

AISE participants in the ReachSafety-Loops category of SV-COMP 2024 [6].
Table 1 shows AISE’s results. AISE achieved 847 points in this category, and there

Table 1: AISE’s results

number time(s)

total tasks 790

total correct 491 9400
correct true 356 6200
correct false 135 3200

total incorrect 0 0

score 847

were 4 tools ranked ahead of it: Bubbaak [8],
Symbiotic [20], VeriAbs [13], VeriAbsL [14].
The figure4 shows the score-based quantile
plots in this category. When the time is less
than about 100s, AISE achieved the high-
est score among all the tools. If the pruning
method works, AISE can verify a program in a
short time; otherwise, AISE may fail to finish
the job. Many of the AISE’s failed cases are
the programs with non-linear expressions. AI
is limited for non-linear polynomials. Besides,
AISE is also not efficient at handling large ar-
rays. For example, AISE does not support symbolic size array, which is an inher-
ited shortage from KLEE.

4 Software Project, Setup and Contributors

AISE only participats in the ReachSafety-Loops category of SV-COMP bench-
marks. The usage of AISE is as follows.

./bin/aise <program>

The <program> is the input program. AISE only needs the input program as the
parameter because all the properties in the ReachSafety-Loops benchmarks are
the same, i.e., (unreach-call, ILP32), and these properties are built in AISE.

AISE can be found at https://github.com/zbchen/aise-verifier. AISE is a pro-
totype project developed by National University of Defense Technology. The
license of AISE is GPL 3.0. People involved in the project are fully listed as the
authors of this paper.

Data-Availability Statement

AISE’s artifact is available at Zenodo: https://doi.org/10.5281/zenodo.10201159.
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4 https://sv-comp.sosy-lab.org/2024/results/results-verified/

quantilePlot-ReachSafety-Loops.svg
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