
Goblint Validator: Correctness Witness
Validation by Abstract Interpretation

(Competition Contribution)

Simmo Saan1(B) ⋆, Julian Erhard2,3 , Michael Schwarz2 ,
Stanimir Bozhilov2 , Karoliine Holter1 , Sarah Tilscher2,3 ,

Vesal Vojdani1 , and Helmut Seidl2

1 University of Tartu, Tartu, Estonia
{simmo.saan,karoliine.holter,vesal.vojdani}@ut.ee

2 Technische Universität München, Garching, Germany
{julian.erhard,m.schwarz,stanimir.bozhilov,

sarah.tilscher,helmut.seidl}@tum.de
3 Ludwig-Maximilians-Universität München, Munich, Germany

Abstract. Goblint is an abstract interpretation framework for C pro-
grams with a specialty in concurrency. Using a novel approach, we turn
it into a validator of YAML correctness witnesses for all SV-COMP cate-
gories. We describe its results at SV-COMP 2024 which includes the first
large-scale evaluation of our validator.

1 Validation Approach

Goblint Validator is an extension of the Goblint verifier [14–16] for validation
of correctness witnesses in the YAML format [1], consisting of location and loop
invariants. The extension involves two related but independent components:
witness invariants are checked for correctness and unassumed for speedup. We
present here a high-level overview of our recently-published approach to abstract-
interpretation–powered witness validation [17].

Correctness of witness invariants is determined by treating them as additional
proof obligations. However, instead of inserting assert statements into the program,
the validator uses the Goblint verifier as a black box to check whether its
computed abstract states satisfy the witness invariants. Hence, invalid witness
invariants cannot undermine soundness of the verification process via refinement.

Speedup from witness invariants is attained by incorporating novel unassume
statements with the invariants into the program. As opposed to refining the
abstract state like assume operations, these relax the state instead. Doing so in a
controlled manner, fixpoint iteration can converge faster, i.e., in fewer iterations.
In the best case, the witness invariant precisely characterizes the fixpoint, avoiding
further iteration. Unassuming can also make the abstract interpreter more precise,
without requiring more expressive abstract domains, by leading the solver to a
more precise fixpoint, which widening would otherwise extrapolate over [17].
⋆ Jury member
c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14572, pp. 335–340, 2024.
https://doi.org/10.1007/978-3-031-57256-2_17

https://orcid.org/0000-0003-4553-1350
https://orcid.org/0000-0002-1729-3925
https://orcid.org/0000-0002-9828-0308
https://orcid.org/0009-0002-1361-942X
https://orcid.org/0009-0008-3725-4131
https://orcid.org/0009-0009-9644-7475
https://orcid.org/0000-0003-4336-7980
https://orcid.org/0000-0002-2135-1593
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57256-2_17&domain=pdf
https://eapls.org/pages/artifact_badges/


Sound unassume operators must preserve all reaching concrete states, thus
preserving soundness of the entire analysis. Goblint Validator implements
two different unassume operators:

1. For non-relational domains (e.g., numeric intervals or points-to sets), a classic
propagating algorithm for assume operators [4, 7] is adapted with minimal
modifications. This admits relaxing abstract values in dynamically allocated
memory through pointers.

2. For relational domains (e.g., octagons), dual-narrowing [8] is employed to
retain more relations than a generic unassume operator definition [17].

2 Software Architecture

Goblint Validator builds on the Goblint verifier [14–16] which is imple-
mented in OCaml, uses an updated fork of CIL [12] as its frontend and Apron [9]
for relational domains.

Instead of altering the control-flow graphs, unassume statements are inserted
implicitly as events that activated analyses can handle. In the modular architec-
ture of Goblint [2] the unassume analysis is responsible for emitting these events
after transfer functions corresponding to witness invariants. Widening tokens [10]
are used to delay widening and allow the invariants to be incorporated without
immediate precision loss. The solution of a side-effecting constraint system [3, 18]
is post-processed to validate witness invariants and determine the verdict.

3 Strengths and Weaknesses

Overall, Goblint Validator inherits the strengths and weaknesses of Goblint,
which are described in its tool papers [14–16]. Thanks to the generic validation
approach, the validator works in all SV-COMP categories as the Goblint
verifier, including those that are currently excluded from correctness witness
validation, e.g., concurrency. Due to over-approximation, the verifier can only
prove the absence of bugs, but not their presence. Consequently, the validator
can currently only confirm correctness witnesses. However, it could be extended
to reject violation witnesses in the future.

We evaluate our validator according to the same three aspects considered
by Beyer et al. [6]: same-framework consistency, content-effort dependence and
cross-framework validation. The first two only focus on witnesses produced by
the Goblint verifier.

Regarding same-framework consistency, table 1 lists how many tasks with each
property it can verify and how many of those witnesses Goblint Validator
can confirm. The overall average confirmation rate of 78% is lower than the
90% Beyer et al. [6] report for CPAchecker and UAutomizer with GraphML
witnesses. Reasons for unconfirmed witnesses range from excessive precision
loss by unassuming to validator crashes. In some cases, the validator exceeds
resource limits, likely due to large witnesses with many unhelpful invariants. A

336 S. Saan et al.



Goblint: Correctness Witness Validation by Abstract Interpretation 337

Table 1. Number of tasks verified by Goblint and their witness validation verdicts by
Goblint Validator, grouped by property.

Goblint Validator

Property
Correct
tasks

Goblint
verified Confirmed Unconfirmed

unreach-call 11,351 1,894 1,064 (56%) 830
no-overflow 5,562 3,932 3,416 (87%) 516
termination 1,536 619 297 (48%) 322
no-data-race 781 695 510 (73%) 185
valid-memsafety 2,796 1,963 1,801 (92%) 162
valid-memcleanup 2 0 – –

Total 22,028 9,103 7,088 (78%) 2,015

0.1 1 10 100 1,000
0.1

1

10

100

1,000

CPU time for Goblint (s)

C
P

U
ti
m

e
fo

r
G

o
bl

in
t

V
a
li

d
at

o
r

(s
)

Fig. 1. CPU time scatter plot where each mark (in blue) indicates a task verified by
Goblint and whose witness was confirmed by Goblint Validator. Ordinary least
squares (OLS) regression (in red) follows y = 0.76x+ 0.14 (r2 = 0.94).

Table 2. Percentage of witnesses from other verifiers confirmed by Goblint Validator.

Ultimate

Verifier CPAchecker CPV Mopsa Automizer GemCutter Kojak Taipan

Confirmed 8% 6% 78% 46% 60% 57% 51%



handful of instances indicate mismatches between witness generation and their
interpretation due to implementation errors in either the verifier or the validator.
Fixing such issues could improve the overall quality of the framework [6].

Regarding content-effort dependence, fig. 1 plots the corresponding verification
and validation times in the 7,088 confirmed cases. While the results at the low
end (< 1 s) are noisy, the results at the high end (> 5 s) show the benefit of
witness validation, with up to 10× improvements. Regression analysis estimates
an average speedup of 24%, which matches our previous results [17], albeit with
greater variance. This is unlike CPAchecker and UAutomizer for which no
general performance improvement from consuming witnesses was observed [6].

Regarding cross-framework validation, table 2 presents the confirmation
rate of Goblint Validator of correctness witnesses from other tools. For
the Ultimate tool family, the percentage is between 46% and 60%, which is
similar to what Beyer et al. [6] observed. We have a high ratio for the Mopsa
abstract interpreter [11], although it only produces trivial witnesses containing
no invariants, on which Goblint Validator effectively reduces to the Goblint
verifier. Nevertheless, overwhelming success of Mopsa in the SoftwareSystems
category warrants independent validation of abstract interpretation results.

4 Tool Setup and Configuration

Goblint Validator version svcomp24-0-gc2e9465a7 took part in all categories
except FalsificationOverall of SV-COMP 2024 [5, 13]. It is available in both binary
(Ubuntu 22.04) and source code form at our GitHub repository.4 Instructions for
building from source can be found in the README.

The tool-info module for BenchExec is named goblint and the benchmark
definition for SV-COMP is goblint-validate-correctness-witnesses-2.0.
They correspond to running the tool as follows:

./goblint --conf conf/svcomp24-validate.json \
--set witness.yaml.unassume witness.yml \
--set witness.yaml.validate witness.yml \
--set ana.specification property.prp input.c

5 Software Project and Contributors

Goblint Validator development takes place alongside Goblint on GitHub,
while related publications are listed on its website.5 It is an MIT-licensed project
initiated by Technische Universität München and the University of Tartu.

Acknowledgments. This work was supported by Deutsche Forschungsgemeinschaft
(DFG) – 378803395/2428 ConVeY 2. We would like to thank everyone who has
contributed to the Goblint framework over the years, laying the foundation for our
validator.
4 https://github.com/goblint/analyzer/releases/tag/svcomp24
5 https://github.com/goblint/analyzer and https://goblint.in.tum.de

338 S. Saan et al.

https://github.com/goblint/analyzer/releases/tag/svcomp24
https://github.com/goblint/analyzer
https://goblint.in.tum.de


Data Availability Statement. All data of SV-COMP 2024 are archived as described
in the competition report [5] and available on the competition website. This includes
the verification tasks, results, witnesses, scripts, and instructions for reproduction. The
version of Goblint as used in the competition is archived on Zenodo [13].

Bibliography

[1] Format for correctness witnesses, version 2.0 (2023), URL https://sosy-lab.
gitlab.io/benchmarking/sv-witnesses/yaml/correctness-witnesses.html

[2] Apinis, K.: Frameworks for analyzing multi-threaded C. Ph.D. thesis, Tech-
nische Universität München (2014)

[3] Apinis, K., Seidl, H., Vojdani, V.: Side-Effecting Constraint Systems: A Swiss
Army Knife for Program Analysis. In: APLAS ’12, pp. 157–172, Springer
(2012), doi: 10.1007/978-3-642-35182-2_12

[4] Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and
box consistency. In: Logic Programming, p. 230–244, The MIT Press (1999),
doi: 10.7551/mitpress/4304.003.0024

[5] Beyer, D.: State of the art in software verification and witness validation:
SV-COMP 2024. In: TACAS ’24, Springer (2024)

[6] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses:
exchanging verification results between verifiers. In: FSE ’16, pp. 326–337,
ACM (2016), doi: 10.1145/2950290.2950351

[7] Cousot, P.: The calculational design of a generic abstract interpreter. In:
Calculational System Design, NATO ASI Series F. IOS Press, Amsterdam
(1999), URL https://www.di.ens.fr/~cousot/COUSOTpapers/publications.
www/Cousot-Marktoberdorf98.pdf.gz

[8] Cousot, P.: Abstracting induction by extrapolation and interpolation. In:
VMCAI ’15, pp. 19–42, Springer (2015), doi: 10.1007/978-3-662-46081-8_2

[9] Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for
static analysis. In: CAV ’09, pp. 661–667, Springer (2009), doi: 10.1007/
978-3-642-02658-4_52

[10] Mihaila, B., Sepp, A., Simon, A.: Widening as abstract domain. In:
NASA Formal Methods, pp. 170–184, Springer (2013), doi: 10.1007/
978-3-642-38088-4_12

[11] Monat, R., Milanese, M., Parolini, F., Boillot, J., Ouadjaout, A., Miné,
A.: Mopsa-C: Improved verification for C programs, simple validation of
correctness witnesses. In: TACAS ’24, Springer (2024)

[12] Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate
language and tools for analysis and transformation of C programs. In: CC
’02, pp. 213–228, Springer (2002), doi: 10.1007/3-540-45937-5_16

[13] Saan, S., Erhard, J., Schwarz, M., Bozhilov, S., Holter, K., Tilscher, S.,
Vojdani, V., Seidl, H.: Goblint at SV-COMP 2024 (Nov 2023), doi: 10.5281/
zenodo.10202867, tool artifact

[14] Saan, S., Erhard, J., Schwarz, M., Bozhilov, S., Holter, K., Tilscher, S.,
Vojdani, V., Seidl, H.: Goblint: Abstract interpretation for memory safety
and termination (competition contribution). In: TACAS ’24, Springer (2024)

Goblint: Correctness Witness Validation by Abstract Interpretation 339

http://dx.doi.org/10.1007/978-3-642-35182-2_12
http://dx.doi.org/10.7551/mitpress/4304.003.0024
http://dx.doi.org/10.1145/2950290.2950351
https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/Cousot-Marktoberdorf98.pdf.gz
https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/Cousot-Marktoberdorf98.pdf.gz
http://dx.doi.org/10.1007/978-3-662-46081-8_2
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-642-38088-4_12
http://dx.doi.org/10.1007/978-3-642-38088-4_12
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.5281/zenodo.10202867
http://dx.doi.org/10.5281/zenodo.10202867


[15] Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler, R., Vojdani,
V.: Goblint: Thread-modular abstract interpretation using side-effecting
constraints. In: TACAS ’21, pp. 438–442, Springer (2021), doi: 10.1007/
978-3-030-72013-1_28

[16] Saan, S., Schwarz, M., Erhard, J., Pietsch, M., Seidl, H., Tilscher, S.,
Vojdani, V.: Goblint: Autotuning thread-modular abstract interpreta-
tion. In: TACAS ’23, vol. 2, pp. 547–552, Springer (2023), doi: 10.1007/
978-3-031-30820-8_34

[17] Saan, S., Schwarz, M., Erhard, J., Seidl, H., Tilscher, S., Vojdani, V.:
Correctness witness validation by abstract interpretation. In: VMCAI ’24,
pp. 74–97, Springer (2024), doi: 10.1007/978-3-031-50524-9_4

[18] Seidl, H., Vogler, R.: Three improvements to the top-down solver.
Math. Struct. Comput. Sci. 31(9), 1090–1134 (2021), doi: 10.1017/
S0960129521000499

340 S. Saan et al.

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits use, sharing, adaptation, distribution, and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/978-3-031-30820-8_34
http://dx.doi.org/10.1007/978-3-031-50524-9_4
http://dx.doi.org/10.1017/S0960129521000499
http://dx.doi.org/10.1017/S0960129521000499
http://dx.doi.org/10.1007/978-3-031-30820-8_34
http://dx.doi.org/10.1007/978-3-030-72013-1_28
http://dx.doi.org/10.1007/978-3-030-72013-1_28

	Goblint Validator: Correctness Witness Validation by Abstract Interpretation (Competition Contribution)



