
A State-of-the-Art Karp-Miller Algorithm
Certified in Coq

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
{thibault.hilaire,david.ilcinkas,jerome.leroux}@labri.fr

Abstract. Petri nets constitute a well-studied model to verify and study
concurrent systems, among others, and computing the coverability set
is one of the most fundamental problems about Petri nets. Using the
proof assistant Coq, we certified the correctness and termination of the
MinCov algorithm by Finkel, Haddad, and Khmelnitsky (FOSSACS
2020). This algorithm is the most recent algorithm in the literature that
computes the minimal basis of the coverability set, a problem known to
be prone to subtle bugs. Apart from the intrinsic interest of a computer-
checked proof, our certification provides new insights on the MinCov
algorithm. In particular, we introduce as an intermediate algorithm a
small-step variant of MinCov of independent interest.

Keywords: Petri net · Karp-Miller tree algorithm · Minimal coverabil-
ity set · Coq · Certified decision procedure

1 Introduction

Petri nets constitute a well-studied model to verify and study concurrent sys-
tems, with several applications in other domains, like in chemical [1] and bi-
ological process [2,26] (see [31] for additional applications). Formally, a Petri
net is given by a finite set of places and a finite set of transitions. Each place
is marked with a natural number that can be incremented or decremented by
the transitions. A function that maps places to the marked numbers is called a
marking. The reachability set of a Petri net from an initial marking is the set of
markings that can be obtained by executing a sequence of transitions from the
initial marking.

The central problem about Petri nets is the reachability problem that consists
in deciding whether a final marking is in the reachability set. Many important
computational problems in logic and complexity reduce or are even equivalent
to this problem [15,31]. The reachability problem is known to be Ackermann-
complete [5,23,6,20]. On positive instances, it can be decided with efficient di-
rected exploration strategies [3], but general complete algorithms deciding the
problem are complex [24], and require a lot of implementation efforts [7].

This high complexity is not always a barrier in practice since many problems
related to Petri nets can be decided by introducing an over-approximation of the

Thibault Hilaire(B) , David Ilcinkas , and Jérôme Leroux

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 370–389, 2024.
https://doi.org/10.1007/978-3-031-57246-3_21

https://doi.org/10.1007/978-3-031-57246-3_21
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_21&domain=pdf
http://orcid.org/0009-0008-7324-8767
http://orcid.org/0000-0002-0094-4330
http://orcid.org/0000-0002-7214-9467
https://eapls.org/pages/artifact_badges/

reachability set, called the coverability set [18]. This set is defined by introducing
the cover relation over the markings, defined by x ≤ y if x is less than or equal to
y component-wise, i.e., on each place. The coverability set is then defined as the
downward-closure of the reachability set. It provides a way to decide a variant
of the reachability problem, called the coverability problem. This latter problem
can be solved by computing what is called a basis of the coverability set. Its
definition uses the notion of ω-markings, an extension of markings that allows
to mark places with a special symbol denoted by ω, and interpreted as an infinite
number. The well-quasi-order theory [11] shows that any downward-closed set of
markings can be symbolically represented by a finite set of ω-markings, called a
basis. Moreover, this theory also proves that there exists a unique minimal one
for the inclusion relation.

The computation of bases of coverability sets is exactly the purpose of the
Karp-Miller algorithm introduced in [19]. This algorithm inductively computes
trees where nodes are labeled by ω-markings. When the algorithm stops, those
labels form a basis of the coverability set. Karp-Miller algorithms (including
all variants) are not optimal in worst-case complexity for deciding the cov-
erability problem. In fact, those algorithms have an Ackermannian computa-
tional complexity [8,25] while the coverability problem is known to be Expspace-
complete [28]. There exist other algorithms, based on backward computations
from the final marking, that are optimal in worst-case [4,21]. However, Karp-
Miller algorithms outperform backward computation algorithms in practice (see
[3] for benchmarks). Moreover, the computation of the coverability set bases
provides ways to decide other properties than the coverability problem, like the
termination and boundedness problems, as well as some liveness properties. It
follows that this algorithm is central for analyzing Petri nets.

Bases computed by the Karp-Miller algorithm are not minimal (for the in-
clusion relation) since they may contain distinct ω-markings x, y with x ≤ y.
Naturally, the unique minimal basis of the coverability set can be computed
by first invoking the Karp-Miller algorithm, and then applying a simple reduc-
tion algorithm. However, such a computation is not optimal in practice since it
requires computing several ω-markings that will be discarded only at the end
of the computation. A first attempt to avoid this problem was introduced by
Alain Finkel in [9]. This algorithm is an optimization of the original Karp-Miller
algorithm that seems very natural. However, a subtle problem when the compu-
tation is performed on a very particular instance was discovered only 14 years
later in [10]. Several authors tried to find patches for that bug by proposing
various solutions [13,29,27,30]. Finally, in [12], an efficient algorithm removing
on-the-fly useless basis elements was proved to be correct with a pen-and-paper
proof. This algorithm, called MinCov, is a state-of-the-art algorithm for com-
puting the minimal basis of the coverability set. It can be seen as a variant of
the Karp-Miller algorithm based on the new notions of abstractions and acceler-
ations. Since algorithms a la Karp-Miller are prone to subtle bugs, formal proofs
certified by proof assistants are called for.

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 371

Our Contributions.

– We developed a complete formal proof in Coq of the correctness and termi-
nation of the MinCov algorithm, via an intermediate algorithm called Ab-
stractMinCov. We follow the Coq formalization of Petri nets and mark-
ings introduced in [33], built on top of the Mathematical Components
library [14] (MathComp). This formalization contains several formal proofs
and basic concepts related to Petri nets and markings that we extended to
handle recent notions. Our proofs are based on this code to take benefits from
those developments, but also to easily measure the gap between Coq formal
proofs of two algorithms that compute coverability set bases: the original
Karp-Miller algorithm and a state-of-the-art one.

– We provide two new characterizations of the central notion of abstractions
used by the MinCov algorithm. A simple mathematical one, and an alge-
braic one that shows that three operators on abstractions (weakening, con-
traction, and acceleration) provide a complete set of rules for generating any
abstraction starting from the Petri net transitions. The proof of this result
is based on the Jančar well-quasi-order on executions [17,22].

– We introduce as an intermediate algorithm a small-step variant of MinCov,
called AbstractMinCov. We implemented in Coq proofs of the correct-
ness and termination of AbstractMinCov. Since the original MinCov
algorithm can be simulated by our algorithm, the proof that the original
MinCov algorithm is correct and terminates is obtained at the cost of a
simple Coq proof. Compared to a direct proof, our approach provides more
succinct proofs in Coq, because proving that some properties are invariant
is usually easier for a small step than for a big step. Additionally, our algo-
rithm provides room for optimization by decorrelating some transformations
performed by the original algorithm (this is discussed in the conclusion).

Outline. Our Coq formalization of Petri nets, markings, and ω-markings are
given in Section 2, while the ones on abstractions and accelerations are given in
Section 3. The Coq modelization of MinCov is provided in Section 4, and our
small-step algorithm AbstractMinCov is presented in Section 5. The code is
available on Software Heritage [16].

2 Petri Nets

A Petri net is a tuple P = ⟨P, T,Pre,Post⟩ where P, T are two finite sets of ele-
ments called respectively places and transitions, and Pre,Post are two mappings
from T to NP . An element x ∈ NP is called a marking. We denote by x(p) the
value of x at the place p. Markings Pre(t) and Post(t), where t is a transition in
T are called respectively the precondition and the postcondition of t.

We follow the Coq formalization of Petri nets and markings introduced in
[33]. That formalization was introduced to prove the correctness and termination
of the original Karp-Miller algorithm. This formalization is built on top of the

T. Hilaire, D. Ilcinkas, and J. Leroux372

Mathematical Components library [14] (MathComp). This library provides
finite types (see the Coq keyword finType below) that provides a useful type
for Petri net places and transitions, but also functions with finite domain (see
ffun). Markings are conveniently represented by these functions. More precisely,
in our Coq proofs, Petri nets and markings are defined as follows.

Record petri_net :=
PetriNet
{ place transition : finType;

_ _ : transition -> {ffun place -> nat}; (* pre, post *)
}.

Definition marking (pn : petri_net) := {ffun place pn -> nat}
(* Re-type the 3rd and 4th fields of PN to use the name "marking". *)
Definition pre (pn : petri_net) : transition pn -> marking pn :=

let: PetriNet _ _ p _ := pn in p.
Definition post (pn : petri_net) : transition pn -> marking pn :=

let: PetriNet _ _ _ p := pn in p.

Now, let us provide some elements of Petri net semantics. Given a Petri
net P, a transition t ∈ T is said to be fireable from a marking x if Pre(t) ≤ x;
where ≤ is the component-wise extension of the usual order ≤ on N, i.e. x ≤ m

iff x(p) ≤ m(p) for every place p ∈ P . In that case we write x
t−→ y where

y = x − Pre(t) + Post(t) is called the marking obtained after firing t from x.
We extend the notion of fireability to a sequence σ = t1 . . . tk of transitions
t1, . . . , tk ∈ T by x

σ−→ y if there exists a sequence x0, . . . , xk of markings such
that x0 = x, xk = y and xj−1

tj−→ xj for every 1 ≤ j ≤ k. In that case, we say
that σ is fireable from x and y is naturally called the marking obtained after
firing σ from x. When such a sequence σ exists, we say that y is reachable from
x (for the Petri net P).

The Petri net reachability problem consists in deciding, given a Petri net P
and two markings x, y, whether y is reachable from x. The reachability prob-
lem is Ackermann-complete [5,23,6,20] and algorithms deciding the problem are
complex [24]. However, this high lower bound is not always a barrier in practice
since many problems related to Petri nets can be decided by computing an over-
approximation of the reachability property, called the coverability, obtained by
introducing the downward-closed sets.

More formally, the downward closure of a set M of markings is defined as
the set {x ∈ NP | ∃y ∈ M, x ≤ y}. We say that M is downward-closed if it is
equal to its downward closure. Downward-closed sets can be finitely represented
by introducing the notion of ω-markings, a notion also known as the ideal repre-
sentation of downward-closed sets (see [11] for extra results). We first introduce
the set Nω defined as N ∪ {ω}, where ω is a special symbol not in N that is
interpreted as an infinite number. This interpretation is defined by extending
the total order ≤ over N into a total order on Nω by n ≤ ω for every n ∈ Nω. An

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 373

ω-marking is an element of x ∈ NP
ω . In [33] and in our Coq proofs, ω-markings

are defined with the type markingc as follows.

Definition natc := optiontop nat.
(* Here None (also denoted Top) denotes Omega and Some n denotes n *)
Definition markingc := {ffun place -> natc}.

We associate with an ω-marking x the downward-closed set ↓x of markings
defined as {y ∈ NP | y ≤ x}. We also denote by ↓B, where B is a finite set
of ω-markings, the downward-closed set

⋃
x∈B ↓x. Let us recall from the well-

quasi-order theory [11] that any downward-closed set M of markings admits a
finite set B of ω-markings, called a basis of M , such that M = ↓B. Bases provide
finite descriptions of downward-closed sets. Naturally a downward-closed set can
have several bases. However, among all the bases of a downward-closed set, the
unique minimal one (for the inclusion relation) can be computed from any basis
as follows. We say that a finite set B of ω-markings forms an antichain if for
every x, y ∈ B such that x ≤ y, we have x = y. Notice that if B is a basis of
a downward-closed set M that is not an antichain, then there exist x, y ∈ B
such that x < y. Since in that case B\{x} is also a basis of M , it follows that
by recursively removing from B the ω-markings that are strictly smaller than
another one in B, we derive from any basis another one that is an antichain. One
can prove that this antichain is the unique minimal basis of M (for the inclusion
relation).

Given a Petri net P, we say that a marking z ∈ NP is coverable from a
marking x0 if there exists a marking y ≥ z reachable from x0. The set of coverable
markings is called the coverability set.

Since coverability sets are downward-closed, they can be described by bases.
The computation of such those bases is exactly the purpose of Karp-Miller al-
gorithms. While ω components were introduced in the original Karp-Miller al-
gorithm [19] with some algorithmic techniques, this notion was abstracted away
in [12] as kind of meta-transitions, called accelerations and abstractions. Those
notions are recalled in the next section. They are used to compute the minimal
basis of the coverability set, called the clover in [12]. In our Coq proofs, we en-
code the clover as a list of ω-markings (a list is denoted by seq). The definition
uses the coverable predicate defined in [33].

Definition clover (m0 : marking) (l : seq markingc) :=
antichain l /\
forall m : marking,

coverable m0 m <-> exists mc : markingc, (mc \in l) && (m \in mc).

(* perm_eq is the list equivalence modulo permutation *)
Theorem clover_unique m0 (l1 l2: seq markingc):

clover m0 l1 -> clover m0 l2 -> perm_eq l1 l2.

T. Hilaire, D. Ilcinkas, and J. Leroux374

3 Abstractions and Accelerations

Abstractions provide a simple way to explain why some markings can be cov-
ered from other ones. In this section we first recall the definition and semantics
of ω-transitions. Then we introduce the abstractions following the definition
introduced in [12], based on ω-transitions. We show that this rather technical
definition is in fact equivalent to a new simpler one. Whereas the proof of equiva-
lence between the two definitions is simple, we think that our definition provides
interesting intuitions on abstractions. Finally, in the last part of this section we
show that three operators on abstractions (weakening, contraction, and acceler-
ation) provides a complete set of rules for generating any abstraction starting
from the Petri net transitions. The proof is based on the Jančar well-quasi-order
on executions [17,22].

Since our Coq proofs for this part are obtained by series of case analyses
(not complicated but lengthy in Coq), we do not provide additional information
concerning that part of our implementation. All proofs can be found in the file
New_transitions.v.

3.1 ω-Transitions

An ω-transition t is a pair t = (x, y) where x, y ∈ NP
ω are ω-markings such that

x(p) = ω ⇒ y(p) = ω for every place p ∈ P . The ω-markings x and y are
respectively denoted by Pre(t) and Post(t) and they are called respectively the
precondition and the postcondition of t. This notation provides a natural way to
identify transitions of a Petri net as particular ω-transitions. We implemented ω-
transitions in Coq with the dependent datatype omega_transition as follows.

Definition transitionc := (markingc * markingc)%type

(* t.pre = Pre(t) and t.post = Post(t) *)
Definition inv_omega_transition (t: transitionc) :=

[forall p , (t.pre p == None) ==> (t.post p == None)].

Definition omega_transition := { t | inv_omega_transition t }.

We introduce the operator ⊖ : NP
ω × NP

ω → NP
ω defined component-wise by

x⊖ y = 0 if x ≤ y, ω if x = ω and y ∈ N, and x− y otherwise. As expected, an
ω-transition t is said to be fireable from an ω-marking x if Pre(t) ≤ x. In that
case, we write x

t−→ y where y = (x ⊖ Pre(t)) + Post(t) is called the ω-marking
obtained after firing t from x.

In order to provide a way to manipulate a sequence of ω-transitions as just one
single ω-transition, the notion of Hurdle [15], known by the Petri net community
for sequences of transitions, was extended to sequences of ω-transitions [12]. More
formally, we introduce an internal binary operator ⊗ on ω-transitions, called the
contraction, as follows:

s⊗ t = ((Pre(t)⊖ Post(s)) + Pre(s) , (Post(s)⊖ Pre(t)) + Post(t))

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 375

We implemented in Coq the contraction operator and we formally proved
the following lemma.

Lemma 1. For every ω-markings x, z ∈ NP
ω , the ω-transition s⊗ t satisfies:

x
s⊗t−−→ z ⇐⇒ ∃y ∈ NP

ω , x
s−→ y

t−→ z

In the sequel, given a sequence of ω-transitions σ = t1 . . . tk, we call the ω-
transition t = t1 ⊗ · · ·⊗ tk the contraction of σ and, when there is no ambiguity,
we identify σ with its contraction. It follows that Pre(σ) and Post(σ) are well
defined.

3.2 Abstractions

Following [12], an abstraction is an ω-transition a such that for all n ≥ 0, there
exists σn ∈ T ∗ such that for all p ∈ P with Pre(a)(p) ∈ N:

– Pre(σn)(p) ≤ Pre(a)(p)
– If Post(a)(p) ∈ N then Post(a)(p) + Pre(σn)(p) ≤ Post(σn)(p) + Pre(a)(p)
– If Post(a)(p) = ω then Pre(σn)(p) + n ≤ Post(σn)(p)

Our Coq implementation of abstractions is a direct translation of the previous
definition. We provide the code just below. In that code, note that seq_to_one
is a function that maps sequences of transitions to their contractions. Also, we
provide a simplification of the actual code in which we use the same symbols
for comparisons and operations independently of whether nat, natc, or a mix
of the two, are used. Similarly, we assume in the sequel implicit coercions from
omega_transition, abstraction, or acceleration to transitionc.

Definition inv_abstraction_aux (t : transitionc) (y : marking*marking)
(p : place) (n : nat) :=

mem_nc (t.pre p) (y.pre p)
/\ (t.post p != None -> t.post p + y.pre p <= t.pre p + y.post p)
/\ (t.post p == None -> y.pre p + n <= y.post p).

Definition inv_abstraction (t : transitionc) :=
forall (n : nat), exists (o_n : seq transition), forall (p : place),
t.pre p != None -> (inv_abstraction_aux t (seq_to_one o_n) p n).

Definition abstraction := { a : omega_transition | inv_abstraction a }.

The previous definition of abstraction is in fact equivalent to the following
simpler one, where Cover(x,P) for some ω-marking x denotes the set of markings
z such that x

σ−→ y for some word σ of transitions and some ω-marking y ≥ z.

Lemma 2. A given ω-transition a is an abstraction if, and only if, it satisfies
↓Post(a) ⊆ Cover(Pre(a),P).

T. Hilaire, D. Ilcinkas, and J. Leroux376

Note that this new characterization provides a way to constructively check
whether an ω-transition is an abstraction. This would allow us to declare ab-
stractions as an eqType in a future work.

We also recall the following lemma proved in [12]. This result is central for
the correctness of the algorithm MinCov. We implemented its proof in Coq in
the file New_transitions.v.

Lemma 3 (Lemma 1 in [12]). Let x0 be a marking of a Petri net P. For
every ω-markings x, y such that x a−→ y for some abstraction a, we have:

↓x ⊆ Cover(x0,P) ⇒ ↓y ⊆ Cover(x0,P)

3.3 Abstraction Builder

In this last part, we show that any abstraction can be built from Petri net tran-
sitions by applying three operators: weakening, contraction, and acceleration.

Let us first start with the simplest operator, called the weakening. We intro-
duce a partial order ⊑ on the ω-transitions defined by s ⊑ t if Pre(t) ≤ Pre(s)
and Post(s)+Pre(t) ≤ Post(t)+Pre(s). The second inequality intuitively means
that the effect of t is larger than or equal to the effect of s (component-wise).
Based on Lemma 2, we deduce that if t is an abstraction and s an ω-transition
such that s ⊑ t, then s is also an abstraction. Based on this observation, we
introduce a weakening operator that just replaces an abstraction t by any other
abstraction s ⊑ t.

The second simplest operator is the contraction. Based on Lemmas 1 and 2,
we can deduce that if s, t are two abstractions, then s⊗ t is also an abstraction.

The last operator, called the acceleration, associates with an ω-transition t
the ω-transition tω that intuitively corresponds to the infinite firing of t. More
formally, tω is defined as follows for every place p ∈ P :

Pre(tω)(p) =

{
ω if Pre(t)(p) > Post(t)(p)

Pre(t)(p) otherwise

Post(tω)(p) =

{
ω if Pre(t)(p) ̸= Post(t)(p)

Post(t)(p) otherwise

In [12], it is proved that if a is an abstraction then aω is also an abstraction.

Notice that tω = t if, and only if, Post(t)(p) ∈ {Pre(t)(p), ω} for every p ∈
P . If a is an abstraction and aω = a, we say that a is an acceleration. Since
accelerations play a central role in the MinCov algorithm, we implemented
them in Coq as follows.

Definition inv_accel (t : transitionc) :=
[forall p, (t.post p == None) || (t.post p == t.pre p)].

Definition acceleration := { a : abstraction | inv_accel a }.

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 377

The following Lemma 4 is one of the main result of this section. It shows
that any abstraction can be derived from the Petri net transitions by applying
the previously mentioned operators.

Lemma 4. An ω-transition a is an abstraction if, and only if, there exist w0,
t1, w1, . . . , tk, wk where w0, . . . , wk ∈ T ∗ and t1, . . . , tk ∈ T such that:

a ⊑ wω
0 t1w

ω
1 . . . tkw

ω
k

4 The Original MinCov Algorithm

In this section, we present our Coq implementation of the MinCov algorithm.
We tried to be as close as possible to the algorithm introduced in [12], to provide
convincing evidence that it is correct and terminating. We however omitted the
trunc function used in the MinCov pseudocode presented in [12] but not in
their Python implementation. In practice this function differs from the identity
function only when numbers computed by the algorithm are larger than the
number of atoms in the universe.

4.1 Explicit Coverability Trees

As already mentioned, this algorithm computes the minimal basis of the cover-
ability set of a Petri net P from an initial ω-marking x0. Similarly to the original
Karp-Miller algorithm, it computes inductively a tree T such that nodes are la-
beled by ω-markings, and edges by transitions. In the case of MinCov, the
constructed tree, called an explicit coverability tree, contains additional labels
that are explained a bit later. We implement explicit coverability trees in Coq
as the following inductive definition KMTE:

Inductive KMTE := | Empty_E
| Br_E of markingc &

(seq acceleration) &
bool &
{ffun transition -> KMTE}.

A node obtained with the constructor Empty_E is called empty, whereas a
node obtained with the constructor Br_E is called valid. The first line of the
constructor Br_E of a valid node N provides the ω-marking denoted by λ(N)
that labels the node N . The fourth line provides a function that inductively
maps each transition t to a subtree. The root node of that subtree is denoted by
N.t and called the child of N following t. Given a node, we call the unique word
σ ∈ T ∗ that labels the edges of the tree from the root to that node the address
of that node. A word σ ∈ T ∗ is called a valid address if it is the address of a
valid node. This node is denoted by Nσ in that case. A node is called a leaf if it
is valid and if N.t is an empty node for every transition t.

T. Hilaire, D. Ilcinkas, and J. Leroux378

Compared to trees computed by the Karp-Miller algorithm, explicit cover-
ability trees computed by the MinCov algorithm have two additional pieces of
information on each valid node, provided by the second and third lines of the
constructor Br_E. First of all, since trees may be partially destroyed when a sub-
tree corresponding to redundant computations is detected, the computation is
no longer a DFS exploration. In order to keep track of nodes that are waiting for
further exploration, called front nodes, each valid node is marked with a boolean
flag that is assigned to true when it is a front one. The set of front nodes of an
explicit coverability tree T is denoted by Front(T). Last but not least, explicit
coverability trees contain additional information to recover the way the node
labels were generated. To do so, the second line of the constructor Br_E of a
valid node N provides a sequence a1 . . . ak of accelerations denoted by µ(N).

In our implementation, we prove that the following properties (called invari-
ant properties in the sequel) are maintained throughout any execution of the
algorithm.

– Front nodes are always leaves (predicate Front_leaves).
– Non-front node labels form an antichain (predicate Not_Front_Antichain).

– The root node is valid, and x0
µ(Nε)−−−−→ λ(Nε) (predicate consistentE_head).

– If a valid node N is not the root, i.e. N = N ′.t for some node N ′ and some
transition t, then λ(N ′)

tµ(N)−−−−→ λ(N) (predicate consistentE_tree).

4.2 Step Relation

The MinCov algorithm is a while loop algorithm that updates a pair (T , A),
where T is an explicit coverability tree, and A is a (finite) sequence of accel-
erations. Accelerations that occur in T (in the µ labeling) are taken from A.
Moreover, the sequence A can only grow with new discovered accelerations. Ini-
tially, the MinCov algorithm begins with the pair (T , A) where A is the empty
sequence ε and T is the explicit coverability tree reduced to a single valid front
node Nε labeled by λ(Nε) = x0 and µ(Nε) = ε. The algorithm picks nondeter-
ministically a front node at each iteration of the while loop to transform the tree.
It terminates when the set of front nodes is empty and, at that point, returns the
current T (the set A is discarded at the end). Our Coq implementation of this
algorithm is defined by introducing a binary relation Rel on those pairs (T , A).
Such a one-step encoding provides all the possible nondeterministic behaviors of
the algorithm. It follows that our proofs of correctness and termination are valid
whatever the implemented particular exploration heuristic.

Formally, the relation Rel is defined as follows, with three constructors
Rel_clean, Rel_accel, and Rel_explo that are defined later in this section:

Variant Rel :
(KMTE * seq acceleration) -> (KMTE * seq acceleration) -> Prop :=

| Rel_clean [...] (* cleaning operation *)
| Rel_accel [...] (* accelerating operation *)
| Rel_explo [...] (* exploring operation *) .

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 379

As will be discussed later, the termination of the MinCov algorithm is
proved by certifying that the relation Rel is well-founded. For that reason,
Rel (T',A') (T,A) corresponds to a step of the MinCov algorithm from (T , A)
to (T ′, A′), and not the other way around.

One central notion of the algorithm is the definition of saturated ω-markings.
An ω-marking x is saturated for a sequence A of accelerations if, for every accel-
eration a ∈ A such that x

a−→ y for some ω-marking y, we have x = y. When an
ω-marking is not saturated for a sequence A, it can be saturated with respect to
A as follows. Note that in general, given two ω-markings x, y such that x

a−→ y
for some acceleration a, then y(p) ∈ {x(p), ω} for every place p. It means that y
is obtained from x by setting to ω some places of x. In particular, if x ̸= y, then
the number of places with natural numbers is strictly decreasing from x to y.
It follows that an algorithm that tries to apply in a round-robin fashion all the
accelerations in A eventually terminates on a fixed point in at most |P | rounds.
We implement this algorithm in Coq with a function saturate_KMTree A T ad
that takes as input a sequence A of accelerations, an explicit coverability tree T ,
and a valid address σ ∈ T ∗ (denoted by ad), and returns the explicit coverability
tree obtained from T by saturating λ(Nσ) with respect to A, and by append-
ing to µ(Nσ) the sequence of accelerations used by the round-robin saturation
algorithm.

The MinCov algorithm is implemented in such a way the labels of the non-
front valid nodes form an antichain. To enforce that property, the cleaning op-
eration takes as input two explicit coverability trees T and T ′, a sequence A
of accelerations, and an address σ (denoted by ad below), and checks if σ is
the address of a front node, if T ′ is the tree obtained from T by saturating Nσ

with respect to A (see above), and if there exists a non-front node N ′ such that
λ(Nσ) ≤ λ(N ′) in T ′ (predicate ad_covered_not_front T' ad below). In that
case, the cleaning operation puts in the relation Rel the pair (T , A) with (T ′′, A),
where T ′′ is obtained from T ′ by removing the node at address σ (implemented
by removeE_add T' ad).

Rel_clean (T:KMTE) A ad T': Is_Front T ad
-> T'= saturate_KMTree A T ad
-> ad_covered_not_front T' ad
-> Rel (removeE_add T' ad, A) (T,A)

When the previous cleaning operation cannot be applied on a front node
with address σ (~~ denotes the negation, and ad and ad' in the code refer
to σ and σ′), the algorithm checks if this front node, once saturated, is la-
beled by an ω-marking larger than the label of an ancestor with address σ′

(through the predicate Possible_acceleration, which also checks that σ′ is
the prefix of σ). If so, an accelerating operation is performed. It consists first in
computing the acceleration corresponding to the path between the two nodes.
More precisely, computingE_acceleration T' ad' ad computes the accelera-
tion a = (t1σ1 . . . tkσk)

ω, where σ = σ′t1 . . . tk for a sequence t1 . . . tk of transi-
tions, and σ1, . . . , σk are the sequences of accelerations that occur in T ′ from σ

T. Hilaire, D. Ilcinkas, and J. Leroux380

to σ′, i.e. σj = µ(Nσ′t1...tj). In that case, the accelerating operation puts in the
relation Rel the pair (T , A) with (T ′′, A′), where A′ is the sequence obtained by
adding a to A, and T ′′ is obtained from T ′ by removing the subtree of T ′ from
Nσ′ and by setting that node as a front node (to_FrontE T' ad below).

Rel_accel (T:KMTE) A ad T' ad' a: Is_Front T ad
-> T'= saturate_KMTree A T ad
-> ~~ ad_covered_not_front T' ad
-> Possible_acceleration T' ad' ad
-> a = computingE_acceleration T' ad' ad
-> Rel (to_FrontE T' ad', a :: A) (T,A)

When the previous cleaning and accelerating operations cannot be applied on
a front node (tested through No_Possible_acc for the accelerating operation),
the algorithm performs an exploration from that front node by trying to fire all
the transitions from the label of that node. This label x is computed after sat-
uration via the function m_from_add, from the tree and the address σ (denoted
by ad below) of the node. The exploring operation (see Rel_explo below) puts
in the relation Rel the pair (T , A) with (T ′′′, A), where T ′′ is the tree obtained
from T ′ by removing valid nodes labeled by an ω-marking smaller than x (im-
plemented by removeE_strict_covered T' x), and T ′′′ is obtained from T ′′

by removing the node at address σ from the front list, and by creating, for each
transition t such that there exists an ω-marking y such that x t−→ y, a front node
Nσt labeled by λ(Nσt) = y and µ(Nσt) = ε (this last operation is implemented
by Front_extensionE).

Rel_explo (T:KMTE) A ad T' mc: Is_Front T ad
-> T'= saturate_KMTree A T ad
-> ~~ ad_covered_not_front T' ad
-> No_Possible_acc T' ad
-> Some mc = m_from_add T' ad
-> Rel (Front_extensionE (removeE_strict_covered T' mc) ad, A) (T,A)

5 The AbstractMinCov Algorithm

The Coq proofs of correctness and termination of the MinCov algorithm are
obtained by introducing a variant of that algorithm, called AbstractMinCov.
This new algorithm takes a small-step approach obtained by decomposing the
three main operations (cleaning, accelerating, and exploring) of the original Min-
Cov into sequences of five small-step operations presented in this section.

We implemented in Coq a formalization of AbstractMinCov and proved
the correctness and termination of that algorithm. Since the original MinCov
algorithm can be simulated by our algorithm, we obtain at the cost of a simple
Coq proof of simulation that the original MinCov algorithm is correct and

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 381

terminates. Compared to a direct proof, our approach provides more succinct
proofs in Coq, because proving that some properties are invariant is usually
easier for a small step than for a big step.

Compared to the original MinCov algorithm, which performs the three main
operations in a strict order, the five operations of AbstractMinCov can be
executed in any order. It follows that new exploration heuristics, for instance
the early discarding of subtrees after the discovering of an acceleration, can be
implemented without rewriting any proof of correctness or termination.

In Section 5.1, we introduce the (implicit) coverability trees, the central data
structure of the AbstractMinCov algorithm. In Section 5.2, we present the
five operations of the AbstractMinCov algorithm. Finally, in Section 5.3 we
provide some elements of our termination and correctness Coq proofs.

5.1 Coverability Trees

We implement the (implicit) coverability trees in Coq as the following inductive
definition KMTree:

Inductive KMTree := | Empty
| Br of markingc &

bool &
{ffun transition -> KMTree}.

As one can see, they are nearly the same as explicit coverability trees: we
just remove the sequence of accelerations that was previously part of the label
of a node. The invariant properties introduced for explicit coverability trees (see
the end of Section 4.1) have straightforward counterparts for the coverability
trees, which are similarly maintained throughout any execution of Abstract-
MinCov.

5.2 The Algorithm

AbstractMinCov also consists of a main while loop that updates a pair
(T , A), where T is a coverability tree instead of an explicit one, and A a fi-
nite sequence of accelerations. Initially, the AbstractMinCov algorithm be-
gins with the pair (T , A) where A is the empty sequence ε and T is the cov-
erability tree reduced to a single valid front node Nε labeled by λ(Nε) = x0.
This tree is built by the Coq function KMTree_init. Then, at each round of
the loop, it picks one of the five operations it can apply on the pair, the one
whose precondition is met, and apply it. It terminates when none of the opera-
tions have preconditions satisfied by the pair (T , A). At the end, A is discarded
and only T is returned. As AbstractMinCov is nondeterministic, we imple-
ment it as a relation, like we do for MinCov. More precisely, we implement it
in Coq as a binary relation Rel_small_step on those pairs (T , A) such that
Rel_small_step (T',A') (T,A) corresponds to a step of AbstractMinCov
from (T , A) to (T ′, A′). Hence all possible executions of AbstractMinCov

T. Hilaire, D. Ilcinkas, and J. Leroux382

are encoded into decreasing sequences of Rel_small_step. Hence, by proving
its well-foundedness and its correctness, we prove that every execution of the
AbstractMinCov algorithm is correct and terminates.

Variant Rel_small_step :
(KMTree * seq acceleration) -> (KMTree * seq acceleration) -> Prop :=

| Rel_small_step_sat [...] (* saturating operation *)
| Rel_small_step_cln [...] (* cleaning operation *)
| Rel_small_step_acc [...] (* accelerating operation *)
| Rel_small_step_cov [...] (* covering operation *)
| Rel_small_step_exp [...] (* exploring operation *) .

In the file MinCov.v, operations of MinCov are proved to be simulated by
sequences of AbstractMinCov operations matching the following regular expres-
sions (for readability, the prefixes Rel_ and Rel_small_step_ are removed):

clean ⊆ sat∗ cln accel ⊆ sat∗ acc explo ⊆ sat∗ cov∗ exp

In MinCov, accelerations are added to the set A only during the accelerat-
ing operation, and the added acceleration comes from the considered branch of
the tree. On the contrary, the five operations of AbstractMinCov allow new
accelerations to be added to A. Such accelerations could be computed from the
tree like in MinCov, but they could also be discovered by running an external
heuristic algorithm for example.

The saturating operation is a small-step version of the already seen function
saturate_KMTree, applying only one acceleration at a time instead of applying
as many accelerations as possible. It can be performed on any front node N of
label x and address ad such that x a−→ y (i.e. y = apply_transitionc x a) and
x ̸= y, for some a ∈ A and some ω-marking y. The saturating operation simply
sets λ(N) to y (which is what the function saturate_a_little a T ad does).

Rel_small_step_sat T A A' ad mc (a:acceleration) mc': Is_Front T ad
-> List.In a A
-> Some mc = m_from_add T ad
-> Some mc' = apply_transitionc mc a
-> mc != mc'
-> Rel_small_step (saturate_a_little a T ad, A'++A) (T,A)

The cleaning operation is basically the same as the one of MinCov. The dif-
ference is that now the ω-marking of the considered node is required to be already
saturated (which can be obtained via the Rel_small_step_sat operation). Also
note that the removeE_add function has been replaced by the remove_add func-
tion (with the same behavior) because of the change from KMTE to KMTree. This
is also the case for several other functions in the other operations.

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 383

Rel_small_step_cln T A A' ad: Is_Front T ad
-> saturated_node A T ad
-> ad_covered_not_front T ad
-> Rel_small_step (remove_add T ad, A'++A) (T,A)

The accelerating operation is abstracted compared to the MinCov equivalent
operation. More precisely, the acceleration used to justify the cut of the branch
via the to_Front function may come from previous stages of the algorithm, or
be guessed during the operation. In the latter case, the acceleration may be
computed as in MinCov. It follows that subtrees rooted in non-saturated nodes
can be discarded earlier than in MinCov.

Rel_small_step_acc T A A' ad mc : ~~ Is_Front T ad
-> Some mc = m_from_add T ad
-> ~~ (saturated_markingc mc (A'++A))
-> Rel_small_step (to_Front T ad, A'++A) (T,A)

The covering operation removes a node of T when it is covered by a node in
Front(T). It corresponds to a part of the exploring operation of MinCov. The
non-prefix requirement is here to ensure that a front node does not trigger its
own deletion.

Rel_small_step_cov T A A' ad mc ad' mc': Is_Front T ad
-> Some mc = m_from_add T ad
-> Some mc' = m_from_add T ad'
-> mc' <= mc
-> ~~ prefix ad' ad
-> Rel_small_step (remove_add T ad', A'++A) (T,A)

The exploring operation is an abstracted version of the one in MinCov.
It only performs the extension of some front node N without any additional
transformation. However, stronger requirements are needed. Namely, N must be
already saturated (this can be obtained thanks to the saturating operation), and
the non-front nodes must satisfy the Not_Front_Antichain property once the
front flag of N is switched to false (this can be obtained thanks to the covering
operation).

Rel_small_step_exp T A A' ad: Is_Front T ad
-> saturated_node A T ad
-> Not_Front_Antichain (remove_Front T ad)
-> Rel_small_step (Front_extension T ad, A'++A) (T,A).

5.3 Certification

Termination proofs of Karp-Miller algorithms are usually based on the fact that
≤ is a well-quasi-order over the set of ω-markings. As in [33], we replace this

T. Hilaire, D. Ilcinkas, and J. Leroux384

classical notion with the notion of almost-full relation [32]. This order is however
just an ingredient and further arguments are needed. This is especially true for
MinCov, because the tree maintained in this algorithm may not only grow, as
in the original Karp-Miller algorithm, but also shrink. The code can be found
in the file Termination.v, including the following theorem, where Acc is the
predicate of the Coq standard library used in the constructive definition of
well-foundedness.

Theorem wf_Rel_small_step: forall (T : KMTree) (A : seq acceleration),
Front_leaves T ->
Not_Front_Antichain T ->
Acc Rel_small_step (T,A).

This theorem is proved thanks to a general well-founded rewriting relation
on trees described in the file wbr_tree.v.

Our correctness proof in Coq is close to the pen-and-paper one of Min-
Cov [12]. Whereas the correctness proof of the original Karp-Miller algorithm
is based on branches, operations on trees performed by MinCov depend on the
complete tree. The correctness proof can be found in the file Correctness.v,
whose main theorem is the following one, where clos_refl_trans_1n is the
predicate for the reflexive and transitive closure, and Markings_of_T computes
the list of all ω-markings of the input coverability tree.

Theorem Correctness T A (m0: marking):
clos_refl_trans_1n _ Rel_small_step (T,A) (KMTree_init m0) ->
(forall T' A', ~ Rel_small_step (T',A') (T,A)) ->
clover m0 (Markings_of_T T).

As in [12], this theorem is a corollary of two results, corresponding to the
two directions of the equivalence in the clover definition.

The main theorem of the file KMTrees.v, shown below, provides the first
direction by observing that the desired implication follows from the consistent
properties mentioned in Sections 4.1 and 5.1. The fact that these properties are
invariant (proved in file AbstractMinCov.v) implies that this implication is in
fact satisfied throughout the execution and not just when the algorithm has
terminated.

Theorem cover_consistent_KMTree A m0 T:
consistent_tree A T ->
consistent_head A m0 T ->
forall (mc: markingc) m,
mc \in Markings_of_T T ->
m \in mc ->
coverable m0 m.

The other direction is the main theorem of file Completeness.v.

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 385

Theorem Rel_small_step_all_covered T A (m0: marking):
clos_refl_trans_1n _ Rel_small_step (T,A) (KMTree_init m0) ->
(forall T' A', ~ Rel_small_step (T',A') (T,A)) ->
forall m, coverable m0 m -> exists (mc:markingc),
mc \in Markings_of_T T /\
m \in mc.

The following table summarizes the size of [33]’s and our formalizations. We
import and use all files from [33] except the Karp-Miller part.

[33] (commit bbb0668)
Technical tools 631 lines

Petri net 1226 lines
Karp-Miller 775 lines

[This paper]
Technical tools 1790 lines

Petri net extension 1869 lines
MinCov and AbstractMinCov 5590 lines

6 Conclusion

We provide a complete Coq certification of MinCov, an algorithm that com-
putes the minimal basis of the coverability set (of a Petri net with an initial
marking). Our development is obtained by introducing a small-step variant of
that algorithm, called AbstractMinCov. This variant consists of smaller and
more abstract steps than in MinCov, and which can be performed in any order.
This gives a lot of freedom to an actual implementation of the algorithm, leav-
ing room for heuristics. In particular, the step Rel_small_step_acc can prune
any subtree rooted on a non-saturated node. Note that such a subtree is nec-
essarily removed at some step of the MinCov algorithm, since every node is
saturated when the algorithm terminates. This early removal will decrease the
total number of node comparisons that are performed by operations maintain-
ing the antichain property (Rel_small_step_cln and Rel_small_step_cov). It
would be interesting to quantify the actual impact of such a strategy, and more
generally, of all the heuristics permitted by our AbstractMinCov algorithm.

The constructive logic of Coq provides automatic correct-by-construction
Ocaml code extraction. This is however not currently possible because we use
relations to describe the algorithms in order to preserve their non-determinism. It
should be interesting in a future work to implement choice functions and boolean
versions of our Prop predicates, and to benchmark the extracted code against
the existing Python implementation of MinCov. Since most of our predicates
are already boolean functions (although their boolean natures are hidden by a
coercion), we think that obtaining an OCaml extraction would be reasonably
easy. However, obtaining an efficient one would require a significant additional
amount of work.

Acknowledgments. We thank the anonymous reviewers for their numerous
and very interesting remarks.

T. Hilaire, D. Ilcinkas, and J. Leroux386

References

1. Angeli, D., Leenheer, P.D., Sontag, E.D.: Persistence results for chemi-
cal reaction networks with time-dependent kinetics and no global conserva-
tion laws. SIAM Journal on Applied Mathematics 71(1), 128–146 (2011).
https://doi.org/10.1137/090779401, http://www.jstor.org/stable/41111581

2. Baldan, P., Cocco, N., Marin, A., Simeoni, M.: Petri nets for modelling
metabolic pathways: A survey. Natural Computing 9, 955–989 (12 2010).
https://doi.org/10.1007/s11047-010-9180-6

3. Blondin, M., Haase, C., Offtermatt, P.: Directed Reachability for Infinite-State
Systems. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems - 27th International Conference, TACAS 2021,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12652, pp. 3–23.
Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_1

4. Bozzelli, L., Ganty, P.: Complexity Analysis of the Backward Coverability Algo-
rithm for VASS. In: Delzanno, G., Potapov, I. (eds.) Reachability Problems - 5th
International Workshop, RP 2011, Genoa, Italy, September 28-30, 2011. Proceed-
ings. Lecture Notes in Computer Science, vol. 6945, pp. 96–109. Springer (2011).
https://doi.org/10.1007/978-3-642-24288-5_10

5. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reachabil-
ity problem for Petri nets is not elementary. In: Charikar, M., Cohen, E. (eds.)
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. pp. 24–33. ACM (2019).
https://doi.org/10.1145/3313276.3316369

6. Czerwinski, W., Orlikowski, L.: Reachability in Vector Addition Systems is
Ackermann-complete. In: 62nd IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. pp. 1229–1240.
IEEE (2021). https://doi.org/10.1109/FOCS52979.2021.00120

7. Dixon, A., Lazic, R.: KReach: A Tool for Reachability in Petri Nets. In: Biere,
A., Parker, D. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems - 26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25-30, 2020, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 12078, pp. 405–412. Springer (2020). https://doi.org/10.1007/978-3-
030-45190-5_22

8. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
Primitive-Recursive Bounds with Dickson’s Lemma. In: Proceedings of the 26th
Annual IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-
24, 2011, Toronto, Ontario, Canada. pp. 269–278. IEEE Computer Society (2011).
https://doi.org/10.1109/LICS.2011.39

9. Finkel, A.: The Minimal Coverability Graph for Petri Nets. In: Rozenberg, G.
(ed.) Advances in Petri Nets 1993, Papers from the 12th International Confer-
ence on Applications and Theory of Petri Nets, Gjern, Denmark, June 1991.
Lecture Notes in Computer Science, vol. 674, pp. 210–243. Springer (1991).
https://doi.org/10.1007/3-540-56689-9_45

10. Finkel, A., Geeraerts, G., Raskin, J.F., Van Begin, L.: A counter-example to the
minimal coverability tree algorithm. Université Libre de Bruxelles, Tech. Rep 535
(2005)

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 387

https://doi.org/10.1137/090779401
http://www.jstor.org/stable/41111581
https://doi.org/10.1007/s11047-010-9180-6
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1007/978-3-642-24288-5_10
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1007/3-540-56689-9_45

11. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part
I: completions. Math. Struct. Comput. Sci. 30(7), 752–832 (2020).
https://doi.org/10.1017/S0960129520000195

12. Finkel, A., Haddad, S., Khmelnitsky, I.: Minimal Coverability Tree Construction
Made Complete and Efficient. In: Goubault-Larrecq, J., König, B. (eds.) Founda-
tions of Software Science and Computation Structures - 23rd International Confer-
ence, FOSSACS 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Pro-
ceedings. Lecture Notes in Computer Science, vol. 12077, pp. 237–256. Springer
(2020). https://doi.org/10.1007/978-3-030-45231-5_13

13. Geeraerts, G., Raskin, J.F., Van Begin, L.: On the Efficient Computation of
the Minimal Coverability Set for Petri Nets. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) Automated Technology for Verification and
Analysis. pp. 98–113. Springer Berlin Heidelberg, Berlin, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75596-8_9

14. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system. Ph.D. thesis, Inria Saclay Ile de France (2016)

15. Hack, M.: Decidability Questions for Petri Nets. Outstanding Dissertations in the
Computer Sciences, Garland Publishing, New York (1975)

16. Hilaire, T., Ilcinkas, D., Leroux, J.: Petri-net-in-coq (2024), https://archive.
softwareheritage.org/swh:1:rev:7b5523e30026266c471c73e911f0fda525c6f900;
origin=https://gitub.u-bordeaux.fr/thhilaire/petri-net-in-coq.git

17. Jančar, P.: Decidability of a Temporal Logic Problem for Petri Nets. Theor. Com-
put. Sci. 74(1), 71–93 (1990). https://doi.org/10.1016/0304-3975(90)90006-4

18. Kaiser, A., Kroening, D., Wahl, T.: Efficient Coverability Analysis by Proof Mini-
mization. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012 - Concurrency The-
ory - 23rd International Conference, CONCUR 2012, Newcastle upon Tyne, UK,
September 4-7, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7454,
pp. 500–515. Springer (2012). https://doi.org/10.1007/978-3-642-32940-1_35

19. Karp, R.M., Miller, R.E.: Parallel Program Schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969). https://doi.org/10.1016/S0022-0000(69)80011-5

20. Lasota, S.: Improved Ackermannian Lower Bound for the Petri Nets Reach-
ability Problem. In: Berenbrink, P., Monmege, B. (eds.) 39th International
Symposium on Theoretical Aspects of Computer Science, STACS 2022,
March 15-18, 2022, Marseille, France (Virtual Conference). LIPIcs, vol. 219,
pp. 46:1–46:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.STACS.2022.46

21. Lazic, R., Schmitz, S.: The ideal view on Rackoff’s coverability technique. Inf.
Comput. 277, 104582 (2021). https://doi.org/10.1016/j.ic.2020.104582

22. Leroux, J.: Vector addition system reachability problem: a short self-
contained proof. In: Ball, T., Sagiv, M. (eds.) Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26-28, 2011. pp. 307–316. ACM (2011).
https://doi.org/10.1145/1926385.1926421

23. Leroux, J.: The Reachability Problem for Petri Nets is Not Primitive Recur-
sive. In: 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022. pp. 1241–1252. IEEE (2021).
https://doi.org/10.1109/FOCS52979.2021.00121

24. Leroux, J., Schmitz, S.: Reachability in Vector Addition Systems is Primitive-
Recursive in Fixed Dimension. In: 34th Annual ACM/IEEE Symposium on Logic

T. Hilaire, D. Ilcinkas, and J. Leroux388

https://doi.org/10.1017/S0960129520000195
https://doi.org/10.1007/978-3-030-45231-5_13
https://doi.org/10.1007/978-3-540-75596-8_9
https://archive.softwareheritage.org/swh:1:rev:7b5523e30026266c471c73e911f0fda525c6f900;origin=https://gitub.u-bordeaux.fr/thhilaire/petri-net-in-coq.git
https://archive.softwareheritage.org/swh:1:rev:7b5523e30026266c471c73e911f0fda525c6f900;origin=https://gitub.u-bordeaux.fr/thhilaire/petri-net-in-coq.git
https://archive.softwareheritage.org/swh:1:rev:7b5523e30026266c471c73e911f0fda525c6f900;origin=https://gitub.u-bordeaux.fr/thhilaire/petri-net-in-coq.git
https://doi.org/10.1016/0304-3975(90)90006-4
https://doi.org/10.1007/978-3-642-32940-1_35
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.4230/LIPIcs.STACS.2022.46
https://doi.org/10.1016/j.ic.2020.104582
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.1109/FOCS52979.2021.00121

in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. pp.
1–13. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785796

25. Mayr, E.W., Meyer, A.R.: The Complexity of the Finite Containment Problem for
Petri Nets. J. ACM 28(3), 561–576 (1981). https://doi.org/10.1145/322261.322271

26. Peleg, M., Rubin, D., Altman, R.B.: Using Petri Net Tools to Study Properties
and Dynamics of Biological Systems. Journal of the American Medical Informatics
Association 12(2), 181–199 (03 2005). https://doi.org/10.1197/jamia.M1637

27. Piipponen, A., Valmari, A.: Constructing Minimal Coverability Sets. Fundam. In-
formaticae 143(3-4), 393–414 (2016). https://doi.org/10.3233/FI-2016-1319

28. Rackoff, C.: The Covering and Boundedness Problems for Vector Addition Sys-
tems. Theor. Comput. Sci. 6, 223–231 (1978). https://doi.org/10.1016/0304-
3975(78)90036-1

29. Reynier, P.A., Servais, F.: Minimal coverability set for petri nets: Karp
and miller algorithm with pruning. In: International Conference on Applica-
tion and Theory of Petri Nets and Concurrency. pp. 69–88. Springer (2011).
https://doi.org/10.1007/978-3-642-21834-7_5

30. Reynier, P., Servais, F.: On the Computation of the Minimal Coverability Set of
Petri Nets. In: Filiot, E., Jungers, R.M., Potapov, I. (eds.) Reachability Problems
- 13th International Conference, RP 2019, Brussels, Belgium, September 11-13,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11674, pp. 164–177.
Springer (2019). https://doi.org/10.1007/978-3-030-30806-3_13

31. Schmitz, S.: The complexity of reachability in vector addition systems. ACM
SIGLOG News 3(1), 4–21 (2016). https://doi.org/10.1145/2893582.2893585

32. Vytiniotis, D., Coquand, T., Wahlstedt, D.: Stop When You Are Almost-Full -
Adventures in Constructive Termination. In: Beringer, L., Felty, A.P. (eds.) Inter-
active Theorem Proving - Third International Conference, ITP 2012, Princeton,
NJ, USA, August 13-15, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7406, pp. 250–265. Springer (2012). https://doi.org/10.1007/978-3-642-32347-
8_17

33. Yamamoto, M., Sekine, S., Matsumoto, S.: Formalization of Karp-Miller tree
construction on petri nets. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings
of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs,
CPP 2017, Paris, France, January 16-17, 2017. pp. 66–78. ACM (2017).
https://doi.org/10.1145/3018610.3018626

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 389

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1145/322261.322271
https://doi.org/10.1197/jamia.M1637
https://doi.org/10.3233/FI-2016-1319
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1007/978-3-642-21834-7_5
https://doi.org/10.1007/978-3-030-30806-3_13
https://doi.org/10.1145/2893582.2893585
https://doi.org/10.1007/978-3-642-32347-8_17
https://doi.org/10.1007/978-3-642-32347-8_17
https://doi.org/10.1145/3018610.3018626
http://creativecommons.org/licenses/by/4.0/

	 A State-of-the-Art Karp-Miller Algorithm Certified in Coq

