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Abstract Artificial Intelligence (AI) promises economic growth and solutions to 
global problems but also raises societal concerns. Training AI models has a big 
carbon footprint due to data processing in fossil-fuel-reliant data centers. If the data 
centers are outside the European legal space, data processing incurs privacy risks. 
Besides, reliance on AI aggravates Europe’s dependence on non-European chip-
makers, whose supply chains can be disrupted. To address such concerns, NeuroSys 
develops energy-efficient neuromorphic hardware tailored to AI applications that 
protect privacy by processing data locally. NeuroSys aims to build a chip plant near 
Aachen in Germany to support Europe’s technological sovereignty. This depends on 
an innovation ecosystem where socio-technical transformations emerge in transdis-
ciplinary collaboration. This chapter introduces NeuroSys as a testbed for studying
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how transformation research can contribute to the sustainability and trustworthiness 
of AI Made in Europe. 

Keywords Transformation research · Transdisciplinary collaboration · Innovation 
ecosystem · Neuromorphic computing · Artificial intelligence 

1 Introduction 

The promise of AI to transform society for the better has been promoted by tech-
companies, scientists, and policymakers since the early 2010s. In the meantime, AI 
has become so efficient and fast in processing large amounts of data that it can be 
applied in many economic sectors. AI is not only considered to be the key technology 
for future economic growth across the globe (Aghion et al. 2018); it is also described 
as a driving force for achieving the United Nations Sustainable Development Goals 
by tackling global challenges related to the future of work, climate change, and 
health care (Vinuesa et al. 2020). AI systems can help companies and public admin-
istrations to reduce resource consumption, produce less waste, and optimize energy 
efficiency in production processes (Nishant et al. 2020). It can further monitor and 
predict environmental changes to support decision-making in precision agriculture 
and ecosystem management (Plattform Lernende Systeme 2022). The societal rele-
vance of AI was recently emphasized during the Covid-19 pandemic, when it enabled 
contact tracing, provided diagnosis support, and contributed to workplace safety 
(Sipior 2020). 

Yet, these promising narratives are accompanied by a growing critical discourse 
on the ethical, material, and political challenges that AI poses (for an overview, see 
Garvey 2021). Ethical concerns may refer to the transparency and reliability of AI 
(Campolo and Crawford 2020). While AI is a generic term used in diverse ways in 
the media and public discourses (Collins 2021; Nguyen and Herman 2022), technical 
experts usually use the term to refer to machine learning (algorithms build a model 
based on sample or training data to make predictions) and deep learning (a subset 
of machine learning whose algorithm structure mimics the human brain). As it is 
difficult to understand, even for experts, how deep learning algorithms transform 
input into output, concerns about transparency and reliability arise, especially in 
those cases where algorithms are involved in decision-making that affects human 
beings (e.g., advice on employment) (Campolo and Crawford 2020). This opacity 
may conceal the fact that automated decisions reinforce existing discrimination due 
to biases that an algorithm picks up from training data (Benjamin 2019; Chun 2021). 
In addition, the big data requirements for training algorithms lead to data protection 
and privacy considerations, for instance, in cases where the algorithms use personal 
data and make inferences about sensitive information (Hu 2020; Murdoch 2021). In 
response to these ethical concerns, the European Commission (2020) aims to build 
a regulatory framework for “trustworthy AI” (p. 10) that protects personal data, 
privacy, and non-discrimination.



Transdisciplinary Development of Neuromorphic Computing Hardware … 273

While the socio-ethical impacts of AI applications have been widely discussed 
over the last decade, the material backbone of these applications has only recently 
gained attention (Coeckelbergh, 2021; Crawford  2021; Denkena 2021; Van Wyns-
berghe 2021). The materiality of AI is becoming increasingly relevant because 
high-performance applications, for example in natural language processing, rely on 
training large-scale models which takes weeks of computing time, costs hundreds of 
millions of dollars, and leaves a considerable carbon footprint. Moreover, the produc-
tion of electronic devices on which AI runs consumes a lot of energy and makes 
extensive use of plastics as well as raw materials, such as cobalt and aluminum. 
AI-embedded short-lived end user devices require frequent replacement of these 
materials whose extraction and disposal incur environmental costs. In recognizing 
these costs, the European Green Deal suggests incorporating environmental impacts 
assessments into policies that incentivize sustainable AI applications (Gailhofer et al. 
2021). 

The material backbone of AI, in particular the production of semiconductor chips, 
also invokes political concerns. Global manufacturers of semiconductor chips are 
mainly located in Asia and the USA (Brown and Linden 2011). The global chip 
shortage during the Covid-19 pandemic revealed the vulnerability of supply chains 
(Hess and Kleinhans 2021). Moreover, in light of rising protectionism related to a 
“US-China trade war” (Bown 2020, p. 1), European access to computer chips is 
threatened (Varas and Varadarajan 2020). To increase resilience toward supply chain 
disruptions and to strengthen Europe’s position in the semiconductor industry, the 
European Chips Act will provide public investment in support of regional chip design 
and production (Von Der Leyen 2022). A large part of this investment will feed into 
the development of energy-efficient transistors for AI applications (ibid.). 

In line with European policy-making efforts to address the ethical, material, and 
political challenges posed by AI, the German Ministry of Research and Education 
(BMBF) funds the NeuroSys Cluster4Future, which was launched in 2022. NeuroSys 
is a high-tech innovation cluster that seeks to build an innovation ecosystem around 
the development of neuromorphic computing hardware for AI applications in the 
Aachen region of Germany. Neuromorphic computing denotes a computer chip archi-
tecture that emulates the neural network of the human brain. This chip architecture 
is expected to be more energy-efficient than computer hardware, which is based on 
graphic processing units that are commonly used for training AI models. Not only 
does energy-efficient neuromorphic hardware promise to reduce AI’s carbon foot-
print, it can also foster data security and privacy because it can be used for mobile 
edge-computing devices, like sensors and smart watches. These devices process data 
locally rather than sending them to cloud services owned by foreign companies whose 
operations do not fall under European data protection laws. To develop neuromor-
phic computing hardware in tandem with AI applications that respect data protection 
and privacy concerns, NeuroSys bundles expertise from scientists, engineers, social 
scholars, industrial professionals, and municipal actors in an emerging innovation 
ecosystem. The innovation ecosystem consists in an interacting set of diverse actors 
whose collaboration facilitates the transfer of research results into business models 
and supports a long-term vision of the project: building a semiconductor chip plant
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in the Aachen region that will produce neuromorphic computing hardware tailored 
to specific AI applications for autonomous driving, personalized health care, smart 
cities, the Internet of Things, and digitalization. A local chip plant would support 
European sovereignty in the semiconductor industry and place European values (e.g., 
democracy, open innovation, responsible AI) at the center of chip development. 
To orient innovation processes toward European values and to incorporate societal 
considerations in research and development, NeuroSys pursues a transdisciplinary 
approach that builds structures for innovation ecosystem governance. 

The aspirations of NeuroSys go beyond those of ordinary high-tech innovation 
initiatives because the cluster is not only committed to achieving technological excel-
lence, but also to building an innovation ecosystem in which social, environmental, 
and economic considerations are integrated in research and development processes. 
The cluster is thus a prime example of the model of transformation research intro-
duced in this edited volume. By bringing the model from theory into practice, 
NeuroSys will reveal the opportunities and challenges that emerge in the research 
process. In this way, it will make valuable contributions to discourses on transforma-
tion research (Kollmorgen et al. 2015; Wittmayer and Hölscher, 2017), Responsible 
Research and Innovation (Owen et al. 2012; Von Schomberg et al. 2013), and adja-
cent fields, such as integrative research (Fisher et al. 2015; Schikowitz and Maasen 
2021), ELSI/A (Ethical, Legal & Social Impacts/Aspects) research (Balmer et al. 
2016a; Zwart et al. 2014), and anticipatory governance (Barben et al. 2007; Guston  
2014). NeuroSys will help to assess the practical feasibility of transdisciplinary trans-
formation research for contributing to trustworthiness and sustainability of AI made 
in Europe. 

This chapter presents the NeuroSys Cluster4Future as a practical implementation 
of the Aachen model of transformation research (Letmathe et al., this volume).1 After 
introducing the technological background and organizational structure of NeuroSys 
in more detail, the chapter elucidates how NeuroSys addresses the technological, 
economic, societal, and environmental dimensions of the model. In this way, the 
chapter showcases the holistic transdisciplinary approach of NeuroSys, which treats 
social and technical transformations as being inextricably linked. While the chapter 
emphasizes the opportunities of such an approach, it also reveals the challenges that 
may emerge in the implementation phase.

1 Letmathe et al. (this volume) use ‘transformation research’ as an umbrella term for three different 
positionings of research in the transformation process: (1) transformation research which observes 
and analyzes transformation processes, (2) transformational research that aims at shaping transfor-
mation processes, and (3) research transformation which refers to a change in research itself. We do 
not distinguish between these positionings in this chapter, because NeuroSys endorses all of them. 
The chapter is included in the section on transformational research in this edited volume because 
most of the research activities described here fall under this category. 
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2 Neuromorphic Computing 

While the recent history of the semiconductor industry reveals that it has always 
been forced to adapt to various crises (Brown and Linden 2011), chipmakers now 
face a fundamental challenge: to explore new ways of organizing a chip that matches 
recent breakthroughs in AI. Training large AI models on modern microprocessors— 
central processing units (CPUs) and graphic processing units (GPUs)—consumes 
high amounts of energy (Prytkova and Vannuccini 2022). A major reason is the 
von Neumann architecture, in which processing and memory units are implemented 
as separate blocks interchanging data intensively and continuously on a computer 
chip (Von Neumann 1945). This data transfer is responsible for a large part of a 
chip’s power consumption while also slowing down the processing speed of the 
system. These energy and speed costs associated with the continuous movement 
of data are commonly referred to as the von Neumann bottleneck. Recent analyses 
indicate that increasing demand for computing power in AI applications will likely 
outpace improvements of digital computing on modern microprocessors (Amodei 
and Hernandez 2018; Lohn and Musser 2022). 

To meet the demands of AI, one possibility is to embrace different software-
hardware system architectures, such as neuromorphic computing, which may offer 
advantages over digital computing for specific applications (Waldrop 2016). To 
develop neuromorphic computing chips, researchers take inspiration from the brain 
(Mehonic and Kenyon 2022). In contrast to the von Neumann architecture, there is 
no separation between data storage and processing in the brain since neurons and 
synapses perform both functions. Information processing in the neural network of 
the human brain consumes on average 20 watts; this is several orders of magnitude 
less energy than what an artificial neural network of the same size requires (ibid. 
citing Wong et al. 2012). The exceptional capabilities of the brain inspired electrical 
engineering already in the late 1980s, when Carver Mead at the California Insti-
tute of Technology coined the term “neuromorphic computing” to denote systems 
and devices that mimic some functions of biological neural systems (Mead 1998). 
As activities under the label have continued to evolve and diversify over the years, 
the precise definition of “neuromorphic computing” has become a matter of debate 
(Mehonic and Kenyon 2022; Schuman et al. 2022). In communities of chipmakers, 
neuromorphic computing generally refers to the engineering of brain-inspired modes 
of computing. Brain-inspired computer chips can evade the von Neumann bottleneck 
through in-memory computing. This means that, similarly to the human brain, a single 
device co-locates memory and processing, which eliminates constant data transfer 
and significantly improves the system efficiency (Fig. 1). Examples of neuromorphic 
chips are the Loihi from Intel (Davies et al. 2018) and the True North, a joint venture 
of IBM and DARPA (Merolla et al. 2014). The True North has a power density of 1/ 
10.000 that of most modern microprocessors (Hsu 2014).

The True North and the Loihi are specialized chips. Whereas CPUs are used for 
general-purpose chips on which a range of programs can run, software needs to be 
tailor-made for neuromorphic computing hardware (Prytkova and Vannuccini 2022).
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Fig. 1 a von Neumann architecture and bottleneck between memory and processing unit and 
b neuromorphic chip architecture

To develop software-hardware system architectures for neuromorphic computing, 
researchers from multiple disciplines (e.g., physics, material science, software engi-
neering, computer science) need to work together. For these researchers, the following 
topics are of special interest: neuromorphic materials and devices, neuromorphic 
circuits, neuromorphic algorithms, applications, and ethics (Christensen et al. 2022). 
The NeuroSys Cluster4Future addresses these topics by organizing experts from 
various academic disciplines and industry sectors into distinct projects that engage 
in collaborative relationships with one another. 

3 Organization of the NeuroSys Cluster4Future 

The NeuroSys Cluster4Future consists of five projects A–E, each focusing on a 
different research topic. These topics correspond to the expertise of neuromorphic 
computing researchers at three prominent research institutes in the Aachen region of 
North Rhine-Westphalia: RWTH Aachen University, Research Center Jülich, and the 
non-profit enterprise AMO GmbH. These institutes have previously worked together 
in NEUROTEC, a research partnership funded by the BMBF since 2019 to develop 
energy-efficient neuromorphic computing hardware for AI applications in cooper-
ation with industrial partners from the region. Several researchers and companies 
involved in NEUROTEC from the fields of physics, material science, neuroscience, 
computer science, and electrical engineering also participate in NeuroSys and have 
co-created the technical projects A–D (Fig. 2). These projects map onto the value 
chain of neuromorphic computing, ranging from research on material components of 
computer chips over the integration of such components in hardware-related circuit 
designs to case studies on applications of neuromorphic hardware.

Projects A and B focus on basic research. Project A studies the characteristics of 
memristors; these are material components which have the ability to change their 
resistance depending on the applied voltage or current. This ability makes them 
suitable for representing the weights between neurons in an artificial neural network. 
Memristors are thus important components for creating a hardware architecture that
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Fig. 2 Organization of the NeuroSys Cluster4Future

is inspired by the neural network of the human brain. While project A draws on 
microelectronics, project B examines optical signal transmission in neuromorphic 
hardware. That means that it focuses on using light, rather than electronics, to encode 
and transmit information. In comparison with electronic signal transmission, optical 
systems reduce latency and enable high data transmission rates. Researchers from 
projects A and B collaborate to study the combination of electronic and photonic 
approaches in neuromorphic hardware. 

To exploit the technological potential of neuromorphic hardware for AI systems, 
project C brings together expertise from hardware-related circuit design, automated 
system design, and neuroscience. The aim is to develop innovative circuit architec-
tures based on the properties of novel devices and material systems. By means of 
characterization and modeling, the complexity of the hardware is reduced to aspects 
that are relevant for exploration on an algorithmic level. In turn, the development 
of algorithms poses specific requirements for the device properties of neuromor-
phic hardware. Insights from neuroscience provide impulses for both hardware and 
software development. 

With a focus on software development, project D investigates use cases of neuro-
morphic hardware. The goal is to prepare and optimize software from specific appli-
cation areas for neuromorphic hardware. High-performance computing combined 
with relatively low energy consumption enables the processing of sensitive or time-
critical data at the point of use (edge computing). Such potential benefits of neuro-
morphic hardware for specific AI applications will be evaluated with performance 
measures. 

In addition to the technical projects, NeuroSys includes an additional project— 
project E—that works further along the value chain, examining the societal dimen-
sions of neuromorphic computing research and development. Project E facilitates
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an economically viable, ethically robust, socially desirable, and environmentally 
sustainable development process for the innovations emerging from projects A to 
D. Economists develop business models and analyze value chains to support the 
successful market entry of these innovations. Professional management of patent 
licensing is provided so that the research institutions and industry partners of the 
cluster can benefit economically from the research results. Social scientists and ethi-
cists study and contribute to the emergence of an innovation ecosystem around neuro-
morphic computing technologies that takes societal considerations and European 
values into account in research and innovation processes. As sustainability is consid-
ered as a key value, they also help NeuroSys project members to assess and address 
the environmental impacts of neuromorphic computing research and development. 

While the basic outline of the NeuroSys project organization is expected to remain 
relatively stable, the work pursued within the projects will be dynamic, with actors, 
expertise, and interests joining the projects over the course of the nine-year funding 
period. For example, project E may recruit additional researchers with a background 
in sustainable development and life cycle assessment to deepen investigations on the 
environmental aspects of neuromorphic computing products. It may also strengthen 
collaborations with municipal officials from Aachen and neighboring towns as well 
as societal stakeholders (e.g., environmental groups) when the vision of a local chip 
plant comes closer to realization. Moreover, the Cluster4Future funding scheme 
requires NeuroSys to attract industry partners for participating in and financially 
supporting the cluster. The aim is to stimulate the market transfer of emerging 
technologies early in the research and development process. 

Collaborations between NeuroSys projects, industrial actors, and societal stake-
holders are an important condition for the realization of the project goals. As the spiral 
in Fig. 2 illustrates, these collaborations are intended to intensify over the course of 
the project duration so that research questions, activities, and outcomes from the 
different NeuroSys projects and partners will become more intertwined over time. 
The practical conditions necessary for such close intertwining to occur are regular 
meetings, joint seminars, and workshops (for examples of these, see Sect. 4.4.). In 
addition, NeuroSys researchers may have the opportunity to shadow the activities of 
a foreign project within the cluster to gain a better understanding of other disciplinary 
norms, practices, and cultures. Another example is the recently initiated NeuroSys 
Academy, a series of seminars in which early-career researchers explain the basics 
of their disciplinary fields to one another, discuss work-in-progress, and discover 
shared interests. The central objective is to cultivate communication, collaboration, 
and learning across disciplinary divides. 

4 Transformation Research in NeuroSys 

In considering the NeuroSys Cluster4Future as a whole, the orchestration of its 
diverse activities resembles project designs in the field of transformation research. 
The field spans various discourses and approaches rooted in the social sciences
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(Heyen and Brohmann 2017). They range from sustainability transition studies and 
transition management (Geels and Schot 2007; Loorbach 2010; Rip et al. 1998), 
over innovation studies (Ömer-Rieder and Tötzer 2004; Smith et al. 2010), diffusion 
research (Rogers 1995; Wilson 2012), and change management (Boje et al. 2012), 
to literature on post-growth and sufficiency (De Saille et al. 2020; Jackson 2009; 
Stengel 2011). While there is little consensus on the definition of transformation 
(Feola 2015), the following examples tend to be associated with the term: the shift 
towards a low-carbon future (Foxon et al. 2013; Geels 2018), changes in media and 
communication sparked by the Internet and smart phones (Dolata and Schrape 2013; 
Küng et al. 2008), and “smart agenda[s]” (Köhler et al. 2019, p. 15) for mobility, urban 
development, and product manufacturing (Luque-Ayala and Marvin 2015; Manders 
et al. 2018; Van Agtmael and Bakker 2016). What these examples have in common 
is that they associate the introduction of new technologies with wider changes in 
society, economy, and geography. However, what makes a change transformative, 
whether transformation is radical and/or gradual, and how transformation relates to 
other concepts, such as transition, regime shift, resilience, and adaptation are topics 
of discussion in transformation research (Köhler et al. 2019). 

This chapter sidesteps these discussions because transformation research in 
NeuroSys is not predominantly a social science endeavor. Although it resembles 
engaged social science approaches that initiate and shape transformation processes 
while describing and analyzing them at the same time (Herberg et al. 2021; see also 
Feola 2015; Heyen and Brohmann 2017), transformation research is considered as a 
transdisciplinary undertaking in NeuroSys in which all projects (see A–E in Sect. 3) 
participate. In NeuroSys, transformation research refers to science and technology 
development that is intertwined with societal, economic, and regional changes, while 
also reflexively engaging with processes and outcomes of change. Science and tech-
nology development can be considered as reflexive if the researchers involved can 
position themselves and their work within these wider changes to capture and antic-
ipate how they themselves shape and are shaped by such changes (Stirling et al. 
2006). 

As these definitions are closely aligned with Letmathe et al.’s (this volume) model 
of transformation research, this chapter is structured according to the four dimensions 
of that model: technology, economics, society, and environment. In applying these 
dimensions to NeuroSys, the chapter demonstrates how a holistic transdisciplinary 
approach to transformation research can be put into practice. While the technolog-
ical dimension elaborates on the kinds of technologies developed in the cluster, the 
economic dimension assesses their potential to enter and transform markets. The 
societal dimension discusses how building an innovation ecosystem around neuro-
morphic computing shapes—and is shaped by—structural, political, and cultural 
changes in the region. Both the societal and the environmental dimension further 
elucidate how an innovation ecosystem can be steered in order to support socially 
desirable, ethically acceptable, and environmentally benign research and innovation 
processes.
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4.1 Technology 

Technology development in NeuroSys is characterized by a co-design of neuro-
morphic hardware and tailor-made software. Whereas the design of hardware and 
software is split traditionally by a well-defined interface—the ISA (Instruction Set 
Architecture)—new processing principles in the neuromorphic computing domain 
promote a sequential approach: material and devices are defined first and inform 
the subsequent development of architectures, algorithms, and applications (Schuman 
et al. 2022). Quite differently, NeuroSys engages in a co-design process all across the 
design hierarchy (Fig. 3). In this co-design process, specific needs of algorithms and 
applications can influence the development of novel devices and material systems; 
at the same time, novel algorithms and learning models are developed that exploit 
the technical capabilities of neuromorphic hardware (Aimone 2021). Hence, the 
high performance of neuromorphic hardware at low energy consumption is a result 
of innovative connections between new materials and devices and the functions of 
entire AI systems (Chakraborty et al. 2020). 

These connections are subject to a “technology push” and an “application pull” 
(Grunwald 2019, p. 76). On the one hand, results from basic research on mate-
rials and devices can push the development of algorithmic approaches. For example, 
emerging hardware devices inspired by the plasticity of the human brain can stim-
ulate the development of new neuromorphic computing algorithms, which match 
how plasticity functions on these devices (Parsa et al. 2020). On the other hand, 
applications can pull hardware development into specific directions. The accuracy 
demands of applications can help to define the requirements of a specific crossbar 
implementation as well as the size and number of crossbars in a corresponding 
System-on-Chip. The push–pull dynamic requires hardware and software devel-
opers to engage in a continuous collaborative process of alignment, for instance,

Fig. 3 Algorithm-hardware 
co-design 
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between the compute complexity required for highly-performant applications and 
the capabilities of neuromorphic hardware. 

In NeuroSys, the application pull is stronger than in ordinary high-tech projects 
because industry actors are involved in early stages of the research and develop-
ment process. Their involvement focuses on use cases of neuromorphic computing 
technology. Although there is currently no commercial neuromorphic computing 
technology available, Schuman et al. (2022) predict two wide areas of AI appli-
cations. First, neuromorphic computers could accelerate AI operations on personal 
computing devices, such as smartphones, laptops, and desktops. Neuromorphic accel-
erators improve battery life by realizing AI operations with significantly less power 
than today’s state-of-the-art accelerators. 

Second, low power consumption of neuromorphic hardware is also relevant for 
edge-computing applications. Edge computing refers to a type of computing where 
data analysis and processing are performed close to the points of data generation. 
Instead of sending data to a cloud service for remote processing, edge computing 
allows data to be processed locally, which supports data security and privacy by 
reducing network traffic (De Salvo 2018; Li and Huang 2021). These features are 
relevant for the following application areas: autonomous systems, such as vehicles 
and drones (Viale et al. 2021); remote sensors, especially in energy-constrained 
environments (Vanarse et al. 2017); robotics (Cheng et al. 2020); wearable technology 
and prostheses (Daus 2022; Osborn et al. 2018); and the Internet of Things, which 
is of particular interest in industrial contexts and smart homes (Fayyazi et al. 2018; 
Liu et al. 2017). 

From this range of potential applications, four use cases are investigated in 
NeuroSys: 

1. A camera-based measurement device will be developed for medical applications. 
The device will generate visual and thermal images of wounds whose diagnoses 
will be made with the help of neural networks. As the device is supposed to be 
mobile and light, it could be used in hospitals and care facilities. 

2. A speech recognition and translation system will be built that relies on edge 
computing. The system will enable real-time language translation on mobile 
devices, such as smartphones. 

3. A basic technology of semantic video analysis will be created for application 
in different domains. Examples are video editing on smartphones, segmentation 
of organs on medical images, and tracking of traffic participants in intelligent 
vehicles. 

4. An invasive medical controller will be developed, which helps to adjust treatment 
measures to the changing biological measurements of a patient through rein-
forcement learning algorithms. Such a medical controller could be an artificial 
pancreas or a pacemaker. 

These cases were selected because they all rely on energy-efficient hardware for 
mobile use but vary in terms of data: visual and thermal images, oral speech and 
written texts, video recordings, and biological measurements such as blood glucose 
concentration and heartbeat. These kinds of data have different features and their
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processing must satisfy specific demands. For example, the data rate of an artifi-
cial pancreas is low, but the device must be highly accurate in predicting treatment 
measures. Video segmentation systems, by contrast, must handle relatively large 
volumes of data, but the importance of accuracy varies per application (e.g., video 
editing for personal use vs. traffic tracking in autonomous cars). By tailoring algo-
rithms to these use cases, NeuroSys tests the potential of neuromorphic computing 
hardware to satisfy diverging application demands. Moreover, speech recognition 
and language translation systems as well as semantic video analysis were selected 
as use cases because they depend on complex AI models which have high demands 
for their underpinning hardware. Hence, these technologies are “hard” use cases 
and could become prototypical benchmarks for the development of neuromorphic 
hardware. 

NeuroSys researchers assess whether neuromorphic hardware is as performant as 
conventional hardware in working with hundreds of millions of parameters. Whereas 
neuromorphic computing hardware has been shown to outperform conventional 
microprocessors in terms of energy efficiency (Hsu 2014), Schuman et al. (2022) 
state that there is yet to appear an AI application for which neuromorphic computing 
is superior to other deep learning approaches in terms of accuracy (the number of 
an algorithm’s correct predictions divided by the number of its total predictions). 
The authors anticipate a variety of challenges that could stifle the growth in neuro-
morphic algorithm and application development, for instance the lack of established 
benchmarks and metrics to evaluate which hardware system is most suitable for a 
given application and the integration of neuromorphic computing in a heterogenous 
computing environment. More specifically, Zidan et al. (2018) outline materials and 
device challenges of memristor-based neuromorphic hardware as it is developed in 
NeuroSys. 

While enumerating the technical challenges of neuromorphic hardware develop-
ment would go beyond the scope of this chapter, it is important to emphasize that 
they indicate a gap between expectations and reality. The history of microelectronic 
reveals that it can take a long time for such a gap to be closed. It took nearly four 
decades from the postulation of the memristor by Chua in 1971 until scientists from 
Hewlett Packard labs made the first operational memristor (Chua 2018; Mainzer 
2022). Sometimes, the expectation-reality gap was never closed; several microelec-
tronic devices (e.g., the Josephson junction and molecular electronics) promising to 
provide alternatives to the dominance of conventional silicon chips were studied for 
decades but failed to reach practical application and disappeared from view (Mody 
2017). 

Neuromorphic hardware is nowadays available in research communities, but it 
has not been used in real-world applications yet. However, market researchers and 
developers of neuromorphic computing technology predict that neuromorphic chips 
will be available on the market in about 3–5 years (La Barbera and Huang 2022; 
Yole Report 2021). Although these predictions are promising, NeuroSys has set 
itself an ambitious agenda. As the hardware systems and applications studied in 
NeuroSys primarily target prototype demonstrations in the first three years of the 
funding period, the cluster starts its activities on a mid-level technology readiness
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level. This means that the cluster seeks to facilitate an early market transfer of a tech-
nology under development whose commercial competitiveness is a topic of ongoing 
investigation—a task further advanced by the economic dimension of NeuroSys. 

4.2 Economics 

The economic dimension of NeuroSys supports one of the cluster’s main objectives: 
achieving technological sovereignty for Europe in semiconductor and AI research, 
development, and production. This objective is aligned with the European Chips 
Act adopted in 2023. After years of decline in semiconductor investment (Fig. 4), 
the Chips Act aims to increase Europe’s share of global chip production capacity to 
20% from its current level of about 10% (Timmers 2022). As the global chip crisis 
exposed supply chain vulnerabilities which led to production stops (Pennisi 2022), 
the Chips Act strives to bring parts of the value chain to Europe. 

In support of European technological independence, NeuroSys seeks to build an 
innovation ecosystem in the Aachen region, where neuromorphic computing chips 
will be designed and produced in close collaboration with companies that incorporate 
these chips in their products. To ensure the long-term usability of the innovations that 
will arise from NeuroSys, the economic dimension will evaluate possible business 
models. Moreover, the value chains of neuromorphic chips and associated products 
will be mapped to assess their feasibility with regard to its organization structure and 
the necessary competencies along the value chain. It is important for the establishment 
of neuromorphic hardware and software in the respective markets to identify possible 
cost savings, which can affect both the production and the use of the hardware. For this

Fig. 4 Semiconductor capital expenditure by headquarter locations (IC Insights cited by European 
Commission 2022, p. 74) 
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reason, the study of the cost structures and value chains relevant to the production of 
neuromorphic hardware and software must be analyzed in detail. The same applies 
to the markets in which the resulting innovations are applied. This research is a 
prerequisite for commercializing NeuroSys innovations; it will also inform later 
analyses of external costs as well as quantifications of socio-environmental impacts. 

To stimulate and inform entrepreneurial activities in and around NeuroSys, the 
economic dimension will quantify the target market potential of neuromorphic 
computing technologies. The market potential can be assessed on the basis of appli-
cations for which neuromorphic computing offers tailored solutions (see Sect. 4.1). 
However, the market potential of these applications is difficult to estimate at present 
because neuromorphic computing hardware has not yet reached market maturity. 
While the exact amount of neuromorphic computing hardware in future applications 
is still unknown, these applications can be organized into three categories. First, 
existing applications will be supplemented by neuromorphic hardware. Second, some 
applications will stimulate a production shift toward neuromorphic hardware because 
neuromorphic hardware is equally—or better—suited to performing a specific task. 
Here, the monetary benefit of the unique advantages of neuromorphic hardware will 
determine when the underlying technology of existing applications will be changed. 
Third, novel applications will emerge that are not possible or even conceivable with 
current hardware. 

The first two categories target a certain share of existing markets. One of those 
markets is AI. According to a Statista (2022a) report (using the forecast from Inter-
national Data Corporation), the global AI market is expected to reach up to 552.3 
billion U.S. dollars by the year 2024. This includes hardware (server, storage), soft-
ware (applications, software platforms, system infrastructure software, application 
development and deployment), and services (business services, IT services) (ibid.). 
The market size of machine learning, deep learning, supervised learning, unsuper-
vised learning, reinforcement learning, natural language processing, context-aware 
computing, and computer vision is estimated to reach 227.46 billion U.S. dollars by 
2024 and is expected to rise to 1,591 billion U.S. dollars by the year 2030 (ibid., using 
the forecast from GlobeNewswire). These estimates emphasize the growing demand 
for AI applications. Considering only the market for AI hardware, the market revenue 
is forecast to grow from 15.7 billion U.S. dollars in 2022 to 70.9 billion U.S. dollars 
by 2026 (Statista 2022b). A major customer of AI hardware will be the automotive 
industry, whose market size is expected to increase from 30 billion U.S. dollars in 
2020 to 55 billion U.S. dollars by 2025 (Statista 2022c). 

Although the specific market penetration of neuromorphic computing cannot 
be anticipated accurately at present, the general market predictions for neuromor-
phic applications are promising. Therefore, NeuroSys could have an impact on 
the competitive development of the wider high-tech sector and could transform 
the labor market in the Aachen region. Students, researchers, engineers, and other 
professionals will be attracted to the region both for education and employment 
in neuromorphic computing research, development, and production. To establish 
a platform for expert training, the university and further organizations involved in 
NeuroSys plan to develop and offer new fields of study as well as degree programs.
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In this vein, university education will be complemented by learning opportunities 
for industry employees with the support of business development agencies, such 
as RWTH Innovation GmbH and the Chamber of Commerce and Industry Aachen. 
Hence, NeuroSys’ investments in the local semiconductor workforce complement the 
high investments of the European Chips Act in semiconductor manufacturing (Heck 
2022). This step is crucial to build an innovation ecosystem around neuromorphic 
computing technologies, which secures their long-term economic success. 

4.3 Society 

The societal dimension of NeuroSys focuses on the social order which enables and 
supports the emergence of an innovation ecosystem around the development of neuro-
morphic computing hardware in the Aachen region. Although the notion “innovation 
ecosystem” has been adopted with diverging meanings by academic, management, 
and policy-making discourses (Autio and Thomas 2021; Chhillar 2022), it is used 
here to denote an interacting set of actors who seek to realize the assumed benefi-
cial outcomes of innovation (Adner 2017). The establishment of such an innovation 
ecosystem is an essential driving force for the socio-technical transformation process, 
which Van Agtmael and Bakker (2016) describe as a shift from “rustbelt” to “brain-
belt” (p. 23). The authors use the American term “rustbelt” for areas in the USA and 
Europe which were once powerful industrial sectors but then experienced decline 
due to the elimination or outsourcing of manufacturing. They observe that some 
former rustbelts have become brainbelts: local research and development of smart 
products transform regions into innovation hubs. This transformation is driven by a 
collaborative ecosystem of universities, small and medium-sized companies, start-
ups, local authorities, and a variety of supporters and suppliers. The reason is that one 
single research institute or company is not in a position to pursue the development 
of smart products, like computer chips, new materials, biotechnology, and medical 
devices. To tackle the complex tasks of developing smart products and transferring 
them into the market, transdisciplinary collaborations need to be established. An 
innovation ecosystem provides the social, material, and institutional conditions for 
such collaborations to emerge. 

To transform the Aachen region—formerly a coal mining area—into an innovation 
hub, the NeuroSys project seeks to create an innovation ecosystem around the devel-
opment of neuromorphic computing hardware. The NeuroSys cluster pools a trans-
disciplinary set of actors from RWTH Aachen University, Research Center Jülich, 
the non-profit Research and Technology Organization AMO GmbH, and regional 
technology companies as well as start-ups. The cluster is not a closed entity; it is the 
nucleus of an expanding innovation ecosystem. A resource for the organic growth 
of the ecosystem is the advisory board, which includes regional, national, and Euro-
pean members from science, industry, and society. All involved actors constitute a 
dynamic system which connects the research and development activities anchored 
in the cluster with innovation initiatives stimulated by external partners, such as the
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Fig. 5 Innovation ecosystem emerging around neuromorphic computing technology in the Aachen 
region2 

City of Aachen, the regional competence platform KI.NRW, and European projects 
launched under Horizon 2020 and Horizon Europe. NeuroSys is thus a “connec-
tor” (Van Agtmael and Bakker 2016, p. 26): an organized group with the vision, 
the relationships, and the motivation for catalyzing the emergence and growth of an 
innovation ecosystem (Fig. 5). 

To study the development of an innovation ecosystem from a social science 
perspective, different strands of literature are combined. The multi-level perspec-
tive is instructive for analyzing transformation processes of socio-technical systems 
(Geels 2004; Geels and Schot 2007). It distinguishes between three levels: a cultural, 
political, and material landscape, socio-technical regimes constituted by the prac-
tices of different actor groups, and the niche which is the nucleus of innovation. 
Climate change and associated political calls for sustainable AI, for example, in the 
European Green Deal (Gailhofer et al. 2021), can be regarded as pressures in the 
landscape. These pressures create instability in the regimes (e.g., technological and 
product regime, science regime, user and market regime) which preserve the existing 
socio-technical system around the use of GPU-based hardware for AI applications.

2 The figure displays the logos of companies who are a) official members of the NeuroSys 
Cluster4Future, b) members of the external advisory board, and c) potential cluster members. The 
following companies belong to the different groups: a) AiXscale Photonics, Black Semiconductor, 
Clinomic, Gremse-IT, AixACCT Systems, AppTek, RWTH Innovation, STAR Healthcare Manage-
ment, AIXTRON, ELMOS Semiconductor; b) BMW, Bosch, ELMOS Semiconductor, Ford, HEAD 
acoustics, Infineon, Siemens, SiPearl, Utimaco, Umlaut; c) Audi, Mercedes-Benz, Trumpf, Miltenyi 
Biotec. 
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Fig. 6 Multi-level perspective on the transformation pathway of neuromorphic computing hard-
ware (adapted from Geels and Schot 2007, p. 407) 

Neuromorphic computing hardware may take advantage of such instability and may 
break through markets once it has been sufficiently developed in the technological 
niche of NeuroSys, i.e., a space protected by public subsidies and strategic company 
investments (Fig. 6). 

For a new technology to move out from a niche into companies and markets, 
quadruple helix collaborations can support the transfer. Quadruple helix collabora-
tions are a form of research and innovation in which actors from research institutes, 
industry, government, and civil society collaborate toward realizing a shared innova-
tion goal (Carayannis and Campbell 2009). Such collaborations are important, espe-
cially if public subsidies for technology development come with high political and 
societal pressure on researchers to find a solution to a grand challenge. These pres-
sures may induce researchers to continue working on the seemingly promising tech-
nological solution despite negative outcomes (Geels and Raven 2006). To avoid hype-
backlash dynamics (Garud and Karnøe 2003), technological niches could incentivize 
researchers to flexibly adjust technology development and evaluation routines in 
response to continual feedback by users, policy makers, and special-interest groups. 
Such multi-stakeholder learning can occur in quadruple helix collaborations. 

The opportunities and challenges that arise from bringing together diverse groups 
of actors in collaborative projects have been studied in historical and social science 
scholarship (Mody 2017; Nguyen and Marques 2021; Popa et al. 2020). Collabo-
ration and networking provide support for knowledge sharing, but they depend on 
relationships of trust. The reason is that research groups and companies may fear the
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loss of competitive advantage due to knowledge leakage (Bogers 2011; Chesbrough 
2003), especially in the current geopolitical climate of the semiconductor industry, 
where “technology theft” by Asian competitors is suspected (Li et al. 2021, p. 122). 
While non-disclosure agreements among universities and companies may be time-
intensive and cumbersome (Berlin 2017; Parthasarathy 2017), the creation of legal 
and technological frameworks around a new technology can facilitate market entry 
in the long run. The development of reporting and benchmarking guidelines across 
research fields and streamlining quality, security, and sustainability standards across 
markets and national contexts supports the inclusion of the technology in existing 
infrastructures, processes, and products (Cheng et al. 2022; Van Den Ende and Kemp 
1999). 

Another aspect of quadruple helix collaborations is the participation of societal 
stakeholders. Participation has become a key concept in social science literature on 
the production of knowledge and innovation (Kimura and Kinchy 2019; Lezaun 
et al. 2017). It is often considered to be the defining feature of “transdisciplinary 
research,” which denotes the collaboration between researchers and non-academic 
actors (Defila and Di Giulio 2015). Despite the ubiquitous talk about the importance 
of transdisciplinarity in academic and policy discourses, empirical research on prac-
tices of participation reveals that inputs from societal stakeholders and wider publics 
are often not included in innovation processes (Felt et al. 2012a, 2016; Irwin et al. 
2012). One reason is that stakeholders have different interests, goals, and perspec-
tives, which may be in tension with one another (Blok et al. 2015a, b). The tension 
between economic profit and socio-ethical considerations has been widely discussed 
in business ethics and responsible innovation literature (Garst et al. 2017; Hahn et al. 
2018), and practical strategies to manage this tension have been proposed (Almquist 
et al. 2016; Long and Blok 2017; Porter and Kramer 2011). 

Building on this literature, a holistic approach that takes socio-ethical consid-
erations into account in the process of research and development is embedded in 
NeuroSys. The following list provides examples of such considerations:

• Trust in AI: Social acceptance of AI technologies is conditioned on trust in these 
technologies (O’Neill 2018; Thiebes et al. 2021). Trust is breached if AI output 
discriminates on the basis of race, gender, or age, or if data security cannot be 
warranted (Amoore 2020; Benjamin 2019; Chun 2021).

• Human autonomy and AI: Research has shown that users of AI systems are 
concerned about these systems violating their autonomy, for instance, by pater-
nalistic nudging or impoverishing capacities for self-determination through 
increasing deferral of decision-making processes to algorithms (Laitinen and 
Sahlgren 2021; Nagel 2016).

• Sustainability of AI: The production of neuromorphic computing hardware is 
likely to have environmental costs, for example with regard to the extraction 
of minerals, water, and fossil fuels, which can be undergirded by pollution, 
extinction, depletion, and war (Crawford 2021; Letmathe and Wagner 2018). 

The societal dimension of NeuroSys does not only study the socio-ethical aspects 
of neuromorphic computing but also helps to sensitize actors in the innovation
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ecosystem to these aspects. The aim is to facilitate the governance of a “respon-
sible innovation ecosystem” (Smolka and Böschen 2023; Stahl 2022). Responsible 
innovation ecosystem governance is conceptualized as a “capacity” (Fisher 2007; 
Guston 2014; Guston and Sarewitz 2002) of actors to integrate the societal dimen-
sions of research and innovation into their work. As capacities are shaped by wider 
political, institutional, and material structures, it needs to be investigated which socio-
technical architecture of the innovation ecosystem supports socio-ethical reflection 
and responsible decision-making. The evolution of the innovation ecosystem around 
NeuroSys is thus a socio-technical transformation in which reflexive technology 
development, collaborative innovation, and responsible governance are intertwined. 
Instead of probing consumer and public reactions once a specific neuromorphic 
computing technology is ready for purchase, societal acceptance emerges in a collab-
orative process of “integrative” (Fisher et al. 2015) research and development. For 
this purpose, social and technoscientific experts continuously collaborate with one 
another, rather than engaging in a division of labor. A division of labor is common in 
technical projects with an add-on social science task force, such as in typical forms 
of Begleitforschung (Kromrey 2017; Schikowitz and Maasen 2021). NeuroSys, by 
contrast, builds an ecosystem linking social and technological innovation inextri-
cably with each other. In adopting this approach, NeuroSys could become a role 
model for other regions, technologies, and research projects. 

4.4 Environment 

NeuroSys seeks to introduce neuromorphic computing to AI-dominated software 
domains, such as computer vision, speech recognition, and autonomous decision-
making, where conventional computer hardware reaches its limits of performance 
and energy efficiency. High energy demands for training neural networks with 
deep learning methods are of environmental concern because energy is currently 
not derived from carbon–neutral sources in many locations, and, where renewable 
energy is available, it might be better allocated elsewhere (Strubell et al. 2019). 
Strubell et al. estimate that the process of training a deep-learning natural language 
processing model consumes roughly the same amount of energy as five cars over the 
cars’ lifetimes (ibid., p. 1). In light of the global climate change crisis, algorithms 
that can perform mental tasks may not be worth the environmental costs. NeuroSys 
aims to create more “sustainable AI” (Van Wynsberghe 2021) which reduces the 
environmental impacts (e.g., carbon footprints) of developing and using AI models. 

The environmental dimension of NeuroSys approaches sustainable AI holistically 
by not equating sustainability with energy efficiency but by adopting a broader view: 
critical interrogations of “techno-fix” narratives accompany technology develop-
ment. Techno-fix narratives are based on a dominant rationality in society and policy-
making according to which global challenges like climate change can be “fixed” 
by technological innovation that is advanced by technoscientific experts (Ludwig
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et al. 2021). Speculative technological innovations are cast as solutions to biodiver-
sity, public health, and climate change crises (Thomas 2015). These narratives do 
not acknowledge that complex issues like climate change are “wicked problems” 
(Peters 2017; Rush  2019) that have neither a straightforward problem definition nor 
a solution because they can be approached from different disciplinary perspectives 
and may affect stakeholders in drastically different ways. A critical interrogation of 
a techno-fix narrative related to neuromorphic computing asks whether switching 
to more energy-efficient computer hardware will indeed reduce the carbon foot-
prints of AI applications. To answer this question, the environmental dimension of 
NeuroSys follows Bratton’s suggestion: “If we really want transformation, we have 
to slog through the hard stuff (history, economics, philosophy, art, ambiguities and 
contradictions). Bracketing it off to the side to focus just on technology, or just on 
innovation, actually prevents transformation” (Bratton cited in Thomas 2015, p. 93). 

Historical, economic, and societal considerations need to be considered when 
exploring the relations between neuromorphic computing technology and carbon 
emissions because of the so-called “rebound effect” (Santarius 2012, 2015; Santarius 
et al. 2016). The concept denotes an increased energy demand that is driven by effi-
ciency improvement. Santarius distinguishes between different types of rebound 
effects to explain why energy efficiency improvements often fail to translate into 
adequate absolute reductions of energy service demand. From the diversity of 
rebound effects that could be related to neuromorphic computing, two examples are 
presented here. A financial rebound effect may occur if neuromorphic computing 
hardware is used for new energy-intensive multi-feature AI applications rather than 
for making existing products more energy-efficient. Material rebound effects can 
result from (a) the energy consumed in the research, development, and production 
process of neuromorphic computing hardware, and (b) in building new capacities as 
well as infrastructures necessary for the implementation of this new type of hardware 
in products. 

As neuromorphic computing hardware is still in its research and develop-
ment phase, the aforementioned rebound effects are hypothetical. Yet, sensitizing 
researchers, technology developers, industrial actors, and societal stakeholders to 
potential rebound effects early on in the process helps them make decisions that are 
oriented toward sustainability goals. In light of financial, material, and structural 
rebound effects, it is important to balance the economic and social desirability of 
AI services and products against their environmental costs before investing in their 
development. An environmental outlook is not only relevant in the “upstream” design 
and “downstream” regulation of a technology, but also in the “midstream” of research 
and development (Fisher et al. 2006, p. 490). Välikangas’ (2022) case study indicates 
that global challenges like climate change play an important role in the design and 
grant proposal writing of research projects, but that their relevance diminishes in later 
stages as other targets gain precedence, in particular academic excellence. The author 
suggests that one way of enhancing the interconnection between research and grand 
challenges is to encourage actors involved in research and development to reflect on 
the social, ethical, and environmental dimensions of their day-to-day work. Along
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these lines, NeuroSys incorporates reflexive exercises (i.e., dialogues, group discus-
sions, multi-stakeholder workshops) in the midstream of research and development 
that probe actors to consider the environmental aspects of neuromorphic computing 
technology in everyday decision-making (cf. Fisher 2007). In approaching sustain-
able AI as a socio-technical phenomenon rather than as a technological fix, careful 
deliberation is required to decide what kinds of applications could be supported by 
neuromorphic computing in which contexts and at which social, environmental, and 
economic costs. 

5 Conclusion 

In applying Letmathe et al.’s model of transformation research to the NeuroSys 
Cluster4Future (Fig. 7), this chapter highlights that technological, economic, soci-
etal, and environmental dimensions of transformation are deeply intertwined. The 
technology development in NeuroSys introduces a shift away from conventional 
hardware for AI applications toward neuromorphic computing alternatives, whose 
emulation of the human brain promises significant energy efficiency and performance 
improvements. This technological transformation goes hand in hand with economic 
developments. Successful market entrance of neuromorphic hardware depends on 
the emergence of a competitive innovation ecosystem that can co-exist and merge 
with the current regime, sustaining the use of GPUs for AI applications (Dattée et al. 
2018; Prytkova and Vannuccini 2022). At the same time, if neuromorphic computing 
hardware outperforms state-of-the-art technology, it may also accelerate the growth 
of such an innovation ecosystem. This will become visible in corresponding societal 
transformations in the Aachen region. NeuroSys plays into regional visions of trans-
forming the Rhenish area into an “innovation valley” (ZRR 2021, p. 222) populated 
by skilled researchers, engineers, and professionals working at smart manufacturing 
plants or in co-working spaces within repurposed industrial buildings. The cluster 
is thus interlinked with the structural transformation of the Rhenish area, where the 
coal phase-out opens up “experimental spaces of transformation” (Böschen et al. 
2021, p. 227) for innovative projects to participate in reshaping the region.

This chapter further emphasizes that active participation in shaping the technolog-
ical, economic, societal, and environmental dimensions of transformation requires 
reflexive engagement with technology development and its wider contexts. Following 
Herberg et al. (2021), who claim that transformation research can only be scientifi-
cally grounded, fruitful for society, and ethically responsible if it engages in radical 
reflexivity,3 a self-critical ethos is intended to become a defining feature of NeuroSys. 
To cultivate this ethos, stepping out of disciplinary and professional comfort zones 
and experiencing disconcerting differences (Hillersdal et al. 2020, p. 74; Smolka

3 “Diese Ansätze [der Transformationsforschung] können jedoch nur wissenschaftlich fundiert, 
gesellschaftlich fruchtbar und ethisch verantwortungsvoll gestaltet werden, wenn sie mit einer 
radikalen Selbstreflexion verbunden sind.” (Herberg et al. 2021, p. 7).  
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Fig. 7 Aachen model of 
transformation research 
applied to NeuroSys

et al. 2021) is a common practice in the cluster—not only across socio-technical 
divides but also within the technological domain where discussions between material 
scientists, physicists, neuroscientists, and computer scientists enable interrogations 
of disciplinary perspectives. 

However, one may question whether socio-ethical reflexivity in transdisciplinary 
work can be cultivated if technoscientific project partners outnumber those with a 
background in the humanities and social sciences. Five projects within the NeuroSys 
cluster (see projects A–D in Sect. 3) are technoscientific in nature while only one 
project (project E) focuses on economic, socio-ethical, and environmental dimen-
sions—an imbalance that is also reflected in funding and workforce. Therefore, the 
gray petal of the flower depicting transformation research in NeuroSys (Fig. 7) does 
not seem to be of an appropriate size. Yet, the equal size of all petals was a deliberate 
choice. It illustrates that reflexive engagement with the economic, societal, and envi-
ronmental dimensions of neuromorphic computing research and development does 
not hinge on continuous collaboration with social scientists and humanities scholars. 
Instead, it is considered as a capacity of all project partners that can be activated and 
enhanced in such collaborations. In light of abundant literature on the challenges 
of transdisciplinary collaboration (Felt et al. 2012b; Schikowitz 2020; Viseu  2015) 
and of consortia resembling the NeuroSys cluster organization (Aicardi et al. 2018; 
Balmer et al. 2016b; Rabinow and Bennett 2012), the carriers and barriers of capacity 
building will be investigated. Hence, Fig. 7 illustrates the ambition rather than the 
actual state of NeuroSys. The ambition to give societal considerations, economic 
trade-offs, and sustainability concerns as much relevance as scientific and techno-
logical quests in everyday work practices will be put to the test in NeuroSys’ research 
and development process.
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Last but not least, readers may have noticed that the term “innovation 
ecosystem”—albeit frequently mentioned throughout the chapter—remains vaguely 
defined. The reason is that the innovation ecosystem is the object of transformation 
research in NeuroSys. The aforementioned socio-technical transformations associ-
ated with NeuroSys are in one way or another related to an innovation ecosystem 
emerging around neuromorphic computing technologies. Which shape this innova-
tion ecosystem will take, how far it will reach geographically and institutionally, who 
will be involved in which role, function, and position are topics to be further explored. 
More specifically, the following questions will guide future research: What are the 
different ways to imagine the innovation ecosystem of neuromorphic computing? 
How do such imaginations shape and how are they shaped by socio-technical trans-
formations? How do place-based factors influence transformation processes and 
ecosystem evolution? What are specific innovations in this ecosystem? Who could 
they benefit and who could they put at a disadvantage? How can the innovation 
ecosystem become both competitive and responsible? How do regional conditions, 
socio-material structures, and institutional contexts enable and constrain respon-
sible innovation ecosystem governance? In answering these questions, NeuroSys will 
study and interrogate assumptions of “innovation” and “ecosystem” concepts (Oh 
et al. 2016; Von Schomberg and Blok 2021). In this way, NeuroSys will strengthen 
attempts to adopt an innovation ecosystem perspective in transformation research 
(Führ 2022) and in Responsible (Research and) Innovation discourses (Smolka and 
Böschen 2023; Stahl 2022). 
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