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Chapter 4
Indicators of Transformation Processes: 
Change Profiles as a Method 
for Identifying Indicators

Franziska Engelbogen, Oliver Nakoinz, Daniel Knitter, Camilla Zeviani, 
Simon Stoddart, Steffen Strohm, Gerrit Günther, Victoria Alliata, 
and Ulrike Löptien

4.1  Introduction

Societies are in a constant state of change. Archaeological research has shown how 
some of the driving factors of change in societies include technological innovation, 
change in subsistence strategies, climate change (e.g. Chap. 6), environmental 
change, changes in political organisation (e.g. Chap. 9), and population increase or 
decrease. The list of factors can be extended and detailed at will. However, at what 
point and in what combination do these factors lead to profound transformations? 
Recognising and understanding transformation processes is the central research 
focus of CRC 1266 “Scales of Transformation”. Each of the previously mentioned 
processes may contribute individually to change, but it is their interplay that 
describes the picture of a profound transformation. Our knowledge on components 
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of individual transformation processes is heavily influenced by region-specific 
chronologies, cultural materials, data availability and research standards. Due to the 
data variability, and to avoid deterministic approaches, this chapter does not aim to 
identify a “universally valid set of indicators” of transformation, but rather define a 
multi-proxy approach based on archaeological aspects, changes in social relations 
or subsistence, and environmental factors. Analysing singular factors only does not 
do justice to the complexity of human-environmental interactions. The identifica-
tion of indicators and their interconnection will ideally permit a better understand-
ing of transformation patterns on a transregional and diachronic scale. In addition to 
establishing sets of parameters which can be used as indicators of transformation, 
learning which parameters do not serve as indicators contributes to a much more 
efficient work flow.

A particularly useful tool for identifying and comparing transformations is 
change profiles or change plots. Change plots show the degree of change between 
two phases. This kind of visualisation makes it possible to address the interaction 
between different parameters and hence it highlights the most relevant ones. 
Therefore, change profiles might provide us with information about which factors 
played a significant role in shaping transformations and how the strategies for their 
integration varied in different (archaeological) contexts. This method is rather easy 
to apply to different regions and processes and results in a synthetic plot of changing 
factors. The interpretation has to carefully consider potential natural correlations of 
different factors that are not entirely independent.

Accordingly, the aim of this chapter is to provide a method not only to visualise 
interdisciplinary conducted results on transformations, but also to provide a multi- 
proxy approach for identifying relevant factors in transformational phases using a 
minimal set of highly available archaeological information. This will not include a 
full description, or even detection, of all transformations, but rather a decent 
approach for identifying corresponding transformations within different domains. 
The parameters used comprise geographical key numbers, such as the topographic 
position index (TPI) and locational preferences, as well as archaeological informa-
tion, such as site category and the location of specific artefacts such as weapons, 
imports, and jewellery. Some parameters will show a rather marginal influence but 
still contribute to a holistic perspective that provides a balance between too simplis-
tic and too complex models. The data sets of this pilot study cover the early Iron 
Age in South-West Germany and the Iron Age in Central Italy. Especially, for the 
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transformation in South-West Germany the interplay of different social, economic 
and ritual factors is quantified within change profiles. Furthermore, an estimation of 
the intensity of each transition can be compared to identify those factors most rele-
vant to the transformation.

An important aspect of this approach is the use of publicly available geographi-
cal data and the accessibility of the archaeological data used, which ensures not 
only a certain degree of reproducibility but also the extendibility of this approach. 
The latter is particularly important, since the present study is a pilot study which 
aims to trigger additional ones with targeted sets of parameters. These further analy-
ses are intended to include other CRC 1266 projects, as well as completely indepen-
dent analyses by different authors.

4.1.1  Domains, Parameters and Indicators 
for Transformations

Transformations are defined here primarily as processes leading to a substantial and 
enduring re-organisation of socio-environmental interaction patterns, e.g. changed 
material culture, social relations, settlement patterns or subsistence strategies. A 
transformation leads to a transformed society that both adapts to new conditions and 
shapes new conditions. Transformations cannot be reversed because the society has 
a completely new configuration. Therefore, the continuous change which character-
ises all communities and societies cannot be considered to be a transformation. 
Social organisations can adapt gradually to new conditions; societies can collapse 
and re-emerge with a different shape or undergo transformations that change the 
internal mechanism of the society. Gradual adaptation has its limitations, it is not 
only the current political situation that shows that social and political systems tend 
to preserve themselves and not to transform, if not forced to.

Transformations are embedded in a dynamic process of change between external 
environmental contexts and internal socio-cultural contexts (cf. Fig. 2.2). These 
contexts can be assigned to domains, which can range from economy and culture to 
climate and landscape. Parameters can be assigned to the domains, but they can also 
be related to each other and cannot be considered as independent variables. 
Parameters are described by indicators or quantitative proxies. Inequality, for exam-
ple, can be represented by indicators such as house size, equipment or distribution 
patterns. However, indicators that are primarily assigned to the parameter of burial 
rites can also be used as parameters for inequality. Indicators, parameters, and 
domains form a complicated network of interrelationships and mutual references. 
Additionally, due to the mutual interference of the factors, a common synchronous 
representation makes sense in order to be able to circumvent possible duplications 
in the evaluation. The following examples serve as an illustration of the intercon-
nectedness of the individual factors, parameters and domains.

The parameter climate influences temperature, precipitation, growing season 
duration of crops and thus also the possible subsistence strategies. Climate has 
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far- reaching influences on agricultural societies, and thus defining independent vari-
ables from the parameters of, for example, subsistence, economy, vegetation or 
hydrology will be difficult. Humans live in, and with, their environment, which is 
strongly affected by climate. Even in the industrial age, with manifold technical 
achievements and comprehensive knowledge, societies have to face new problems 
and conflicts, which are triggered and intensified by the current climate change. 
Despite the important influence of climate, other relevant factors should not be 
ignored when interpreting the curves. It is the innovative nature of humans that 
reduces their dependence on climate. Climate variability is plotted on the synoptic 
change profiles as a parameter for orientation, but is not included in the analyses.

Settlement patterns can be driven by climatic changes, for example, when the 
hydrology of the region changes and settlements move closer to bodies of water, or 
when regions are too dry for arable provisioning of the community. The factors to 
be derived from this, such as proximity to water, elevation (TPI, aspect, etc.) can be 
derived from the location, categorisation, and dating of sites in combination with 
digital elevation models. A critical analysis of the source situation should precede, 
especially when considering distance to water and other settlements, as missing 
settlements or imprecise dating can have a significant impact on the results.

The social domain of settlement systems, on the other hand, such as even distri-
bution within a region versus the clustering of settlements, can be considered as 
detached from climate. However, caution must still be taken in the interpretation 
here, and the inherent limitations of the method and alternative explanatory models 
must be examined.

Other social markers can be extracted from burial rites. The number and size of 
burial mounds or cemeteries, the number of “status symbols” in graves (weapons, 
chariots, ornamental vessels, jewellery), or even changes in burial rite (e.g. the 
change from inhumation to cremation graves) can be interpreted as effects of social 
change in a change profile. Changes in the ritual sphere of a society can also be 
seen, for example, from a change in burial rite and the associated change in world- 
view (Weltanschauung). The shift to inhumation, together with the abandonment of 
the hoard tradition and of sun iconography, at the beginning of the Early Iron Age 
can be seen as an expression of a fundamentally changed world-view and concep-
tion of the afterlife (Rebay-Salisbury, 2017). However, an additional political aspect 
cannot be excluded, especially at the beginning of the early Iron Age, because the 
so-called elites first accepted the new ideological world-view, before it became gen-
erally accepted by the whole population (Faupel, 2021; Tremblay Cormier, 2017).

4.2  Archaeological Case Studies

With the selection of the case studies, two quite contrasting cases are considered. In 
one case, little additional data is available besides the categorisation and dating of 
the site; therefore, the first step is to begin analysing the site parameters and then, if 
possible, to add further research results at a later stage. The second case study has 
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numerous additional data from a very detailed data collection of an earlier project 
(http://landman- neu.sfb1266.uni- kiel.de/landman/repository/24/). The comparison 
of these two case studies is intended to show the feasibility of transformation 
research with change profiles and location-based indicators. Furthermore, in both 
cases a phase with well-known transformation has been chosen; these transforma-
tions take place almost at the same time, but in very different geographical settings.

The Early Iron Age in Baden-Württemberg represents a well-known transforma-
tion of society – which includes the emergence and rise of certain elites, visible in 
prestige graves and princely seats in the Hallstatt period, followed by a process 
sometimes called democratisation, in the Latène period – and is a perfect test case 
for the parameters focusing on settlement location. The second case study of Etruria 
partly covers the same period but has completely different history, with the emer-
gence of city states, their competition, and the end of a balanced political system by 
the Roman occupation.

4.2.1  Baden-Württemberg

Ostentatious burial mounds, rich grave goods, and princely seats with exotic 
Mediterranean imports describe the picture of the early Iron Age in southwestern 
Germany and the Alsace. With the beginning of the Iron Age, a new epoch seems to 
have dawned, which led to a change in the form of settlement, brought new materials 
and thus new markets with it, as well as introduced a new burial custom. At first sight, 
this new cultural phenomenon has an enormous spread and extends – divided into the 
western and eastern Hallstatt areas – over almost all of Central Europe. However, if 
one takes a closer look at the material culture, the settlement pattern and the burial 
rites, this cultural entity is divided into numerous small regional groups. Studies have 
clearly shown that the heterogeneity of the cultural groups is predominant (Nakoinz, 
2013; Parzinger, 1991). The commonalities are induced by an elite that apparently 
shared a comparable symbolism of their power (Tremblay Cormier, 2017).

The transition from the Late Bronze Age to the Early Iron Age is not recognisa-
ble in the archaeological material as an abrupt change. The introduction of the new 
material, iron, is also slightly delayed in relation to the social changes already dis-
cussed. The fact that the typology of numerous artefacts develops continuously 
from the Bronze Age into the Iron Age is a clear indication of changes within a 
domain. The accumulation of these changes, especially the changed settlement pat-
terns and possibly new social structure, combined with climatic changes (Billamboz, 
2007; Milcent, 2009) led to a transformation process.

Even though the end of the Early Iron Age is chronologically more precise than 
the beginning, the possible reasons for the collapse of the Hallstatt culture are not 
fully understood. Climatic deterioration, migratory movements (Celtic migration), 
and centres of power shifting northward are possible explanations (Brun, 1995; 
Fernández-Götz, 2018; Maise, 1996; Tomaschitz, 2002). Recognisable changes 
include a drastic reduction in population and the collapse of central places, such as 
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the so-called princely seats. The settlement pattern in the following epoch is charac-
terised by a very decentralised settlement pattern (Fernández-Götz, 2018).

Accordingly, by considering the Early Iron Age in Baden-Württemberg, two 
transformation horizons are considered: on the one hand, the change from the 
Bronze Age to the Iron Age and, on the other hand, the transition of the Hallstatt 
Period to the Latène Period. The fact that profound changes in society occurred dur-
ing these periods is evident in the analysis of material culture, but it remains unclear 
which factors are relevant in this phase of change and which are possibly “only” 
clear detectable archaeologically.

4.2.2  Etruria

The region of Etruria is commonly identified as the area between the Arno and Tiber 
rivers, with its eastern borders defined by the mountainous chain of the Apennines. 
Here, several urban centres rose to prosperity during the first millennium BCE, each 
characterised by their own cultural identities and political institutions, (Haynes, 
2000), but united by a sense of belonging to the same ethnic identity.

The study of material culture, especially of aristocratic funerary contexts, high-
lighted these aspects, but were often approached from an antiquarian point of view, 
and therefore stripped of their social and cultural context (Izzet, 2007, p. 16). Further 
impediments are the limited data coming from urban contexts, as these ancient cit-
ies have either been severely damaged by erosion or by reoccupation. Moreover, the 
texts and language of the Etruscans are limited in number, as well as in their com-
prehension: the majority of the information comes from foreign sources (Greek and 
Roman), who had the habit of reporting the Etruscans as fun-loving but lewd peo-
ple. Because of such scant and biased information, landscape studies from numer-
ous twentieth-century surveys and excavation projects become vital for the study of 
a civilisation that has its roots deep in the Bronze Age and that developed over a 
millennium, going through several ‘transformations’.

And ‘transformation’ is indeed the characterising quality of Etruria. Several 
stages can be highlighted, from the occupation of open sites in the Middle 
Bronze Age, to their abandonment by the tenth century BCE, and the choice to 
relocate large portions of the population on naturally defensible locations 
(Peroni, 1989). From the tenth to the eighth centuries BCE, the largest plateaus, 
where available, were preferred for the establishment of large centres, while a 
good portion of the earlier, smaller sites were abandoned. Clusters of villages 
formed, initiating a major process of nucleation and a radical change in value 
system and political development, all of which was particularly visible in the 
new warrior ideology present in the cremation cemeteries that rose around them. 
This new cultural manifestation is referred to as the ‘Villanovan’ period, with 
sparks of what will be characteristic for the fully urbanised Etruscan period 
(Stoddart, 2016). These include the emergence of lineages and elites, the acqui-
sition of resources, and the mitigation of conflicts by promoting the stability of 
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centralised polities (Terrenato, 2011, 2020). These pull factors are completed in 
the following centuries, from the eighth century BCE onwards, when centralisa-
tion was accompanied by gradual craft-specialisation and social differentiation, 
as well as technological development. These transformations are represented by 
large tumuli that surround the now-urbanised plateaus, as well as the country-
side, characterised by rich deposits showing the integration within eastern 
Mediterranean trade networks (Bartoloni, 2012, p. 103). In this period, Etruscan 
centres become forces to be reckoned with, some establishing their primacy on 
the sea, as well as on the Italian peninsula, through the control of resources, 
trade routes and the foundation of colonies. Conflicts must have characterised 
relations not only with external players (Greeks and later Romans) but also 
among the cities themselves, as the destruction of minor frontier minor settle-
ments such as Acquarossa and Murlo and the foundation of a league of Etruscan 
cities can indicate (Stoddart, 2020). Parallel to this, the previously emptied 
landscape underwent a massive repopulation, with the development of complex 
settlement hierarchies sustaining such growth.

These major developments affected Etruria at different rates and at different 
times: southern centres became prominent in the early phase of Etruscan devel-
opment, while northern centres emerged unchallenged when southern Etruria 
declined from the fifth century BCE. After the loss of international supremacy 
with the battle of Cumae (474 BCE), these southern centres had to deal with the 
aggressive political agenda of a new and determinant factor of transformation: 
Rome. One by one the cities fell or joined Rome, Veii being the first, and colo-
nies were founded. Northern centres, on the other hand, opted for a different 
strategy  – one of collaboration –, seeking political advantages, as is evident 
once again from the rural data and the funerary evidence. Etruria was severely 
punished during the Marius/Sulla conflict for siding with the loser (Torelli, 
1990). It was dismantled in 27 BCE, when a new phase of its history started, one 
that saw it officially as part of Roman Italy, becoming its seventh region, with 
the disappearance of the Etruscan language and the adoption of Latin (Haynes, 
2000, pp. 385–386).

4.3  Data

Comparable datasets of specific, known transformational phases are rarely avail-
able. Regions differ not only in their individual geography and associated vegeta-
tion, climate, and possible subsistence strategies, but also in their source material. 
Additionally, differences refer not only to archaeological source filters, but also to 
the presence of palaeoenvironmental archives, as well as current research status. 
Even within the CRC 1266, which investigates various transformations, it is not 
always possible to obtain a good, directly comparable database. The categorising, 
dating, and localisation of a site can serve as the smallest common denominator, 
although there are limits here; for example, the dating accuracy. If one accepts a 
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certain degree of inaccuracy, which usually describes the archaeological reality, 
these three fundamental aspects about a site can be compared to some extent. 
However, the inaccuracy must be taken into account when interpreting the results. 
By evaluating location parameters, a comparative study can be carried out, which 
can be supported by additional data if necessary. In addition, depending on the 
epoch, research question, and data availability, additional data might cover other 
social and political factors, such as a known settlement hierarchy, prestigious graves, 
the number and distribution of imported goods, central buildings, or signs of social 
group affiliations.

4.3.1  Geographical Data

Modern digital elevation models are used for evaluating parameters of the location 
of a given site. Whether modern data can be used to study past changes in parame-
ters depends on the degree of change in landscape and the likelihood of preserved 
archaeological features. The continuous transformation of landscapes is well known 
(Gerlach, 2003; Kvamme, 2006). Whether it is erosion induced by climate or 
changes caused by anthropogenic land use, the speed and extent of change are rel-
evant. Knitter et al. (2019) compared the duration of the existence of landforms with 
that of monuments from a Neolithic case study to demonstrate the applicability of 
modern terrain models. Valleys or isolated hills exist for a period of between 1000 
and 10,000  years (Ahnert, 1981), while more pronounced landforms endure for 
even longer periods. The epochs under consideration here are about 3000 years old, 
so the modern surface can be considered comparable.

Nevertheless, during the past two centuries, there have been notable changes in 
the landscape. These anthropogenic influences, such as building activities, raw 
material extraction, channelling of rivers, and reallocation of agricultural lands after 
World War II, do not change the geomorphological trend of a landscape (Herzog, 
2014; Herzog & Posluschny, 2011; Kvamme, 2006; Mischka, 2007; Sauerbier 
et al., 2006).

The present analysis of the geographical data is designed for a regional compari-
son, which is why a DEM with a resolution of 90 m (SRTM of 3-arc-second1) was 
chosen. This provides a sufficiently precise representation of the landscape without 
being overly influenced by modern structures (such as highways). The R-Package 
geodata (Hijmans et al., 2023) was used to download the SRTM 3 digital elevation 
model, the global administrative boundaries (GADM) and the soil data for the area 
of the case study in Baden-Württemberg. Afterwards, the package terra (Hijmans, 
2023) was used for calculating derived data, such as slope and aspect. The soil data 
(ISRIC, 2021, https://www.isric.org/explore/soilgrids) are from 15–30  cm depth 

1 Generally, accuracy for SRTM-C band data (90% confidence intervals are 8.8 m absolute geolo-
cation error and a 6.2 m absolute elevation error: Rodriguez et al., 2005).
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and cover nitrogen (total nitrogen (N) g/kg), pH (pH (H2O)), sand (>0.05 mm, in 
fine earth %) and clay (<0.002 mm, in fine earth %).

4.3.2  Climate Data

The climate data originate from transient model simulations of the Earth System 
Model from the Max Planck Institute for Meteorology (MPI-ESM, version 1.2: 
Mauritsen et al., 2019; cf. also Mikolajewicz et al., 2018). The model consists of the 
spectral atmosphere general circulation model ECHAM6.3 (Stevens et al., 2013), 
the land surface vegetation model JSBACH3.2 (Raddatz et al., 2007), and the primi-
tive equation ocean model MPIOM1.6 (Marsland et al., 2003). In this set-up, the 
atmospheric component ECHAM6.3 has a T31 horizontal resolution (approx. 3.75°) 
with 31 vertical hybrid s-levels which resolve the atmosphere up to 0.01  hPa 
(Stevens et al., 2013). The ocean component, MPIOM1.6, has a nominal resolution 
of 3° with two poles located over Greenland and Antarctica (Mikolajewicz et al., 
2007). The Earth System Model was started from a spun-up glacial steady state and 
integrated from 26 ka until the year 1950 with prescribed atmospheric greenhouse 
gases (Köhler et al., 2017) and insolation (Berger & Loutre, 1991). Volcanoes are 
not included. The ice sheets and surface topographies were prescribed from the 
GLAC-1D (Briggs et  al., 2014; Tarasov et  al., 2012) reconstructions (Kageyama 
et al., 2017, see standardised PMIP4 experiments). The topography varies with time 
(Meccia & Mikolajewicz, 2018) and river routing (Riddick et al., 2018). We focus 
our analysis on simulated temperature and precipitation with a time resolution of 
100-year averages during the last 10 ka of the simulation.

The reference model refers to the version described in Kapsch et al. (2021, run 
212). To assess the model uncertainties, this reference model simulation is com-
pared to additional simulations based on another ice sheet product (ice6-g: Peltier 
et  al., 2012) and a slightly changed cloud parametrisation. By combining these 
modifications, four model simulations are used in total.

The climate models for both case studies are aligned with an archaeological 
chronology. Therefore, variation in temperature (average, summer, and winter) and 
precipitation is depicted in dates BCE (see Figs.  4.1 and 4.2). Although climate 
variation will be plotted in the change profiles of the given transformational phases, 
climate is not assumed to be the sole trigger of transformation. Nevertheless, cli-
matic variation is important to highlight changes in specific domains, and serves as 
orientation in change profiles.

The average temperature rises at the beginning of the Hallstatt period in Baden- 
Württemberg, with a maximum around 650  BCE.  During the Hallstatt period a 
minimum average temperature occurs around 350 BCE. The variation in tempera-
ture becomes more prominent when considering the average temperature curves for 
summer versus winter seasons.

4 Indicators of Transformation Processes: Change Profiles as a Method for Identifying…
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Fig. 4.1 Climate variation during the Early Iron Age in Baden-Württemberg

Similar to climate curves in Baden-Württemberg, a rising average temperature 
can also be observed at 650 BCE in Etruria; however, the average temperature does 
not drop as drastically as in Baden-Württemberg (Fig. 4.2).

4.3.3  Archaeological Data

For the present analysis, an existing data collection was used, which lists the loca-
tions of the early Iron Age in Baden-Württemberg with coordinates, datings and, if 
available, archaeological finds. The database (SHKR: Krauße et al., 2013; cf. also 
Faupel, 2021; Nakoinz, 2013; http://landman- neu.sfb1266.uni- kiel.de/landman/
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Fig. 4.2 Climate Variability for Etruria during the Iron Age

Table 4.1 Site numbers for 
case study in 
Baden-Württemberg

Phase Counts

Ha C + Ha D 1019
Hallstatt period (Ha) 2137
Early Latène period (FLT) 505
Iron age (EZ) 2901
undated 8170

repository/24/) contains 7954 graves and 2353 settlements. The graves include 
undated burial mounds that very likely date to the Iron Age (see Table 4.1).

According to the variable precision of dating (Table 4.2), the number of sites 
decreases with increasing dating precision. This accounts for the fact that the sum 
of Ha C and Ha D sites does not match the number of Ha sites (Table 4.1), although 
the Hallstatt period is supposed to comprise Ha C and Ha D only, while Ha A and B 
are Bronze Age.

Due to the methodological focus of this chapter, we are using the phases Ha C, 
Ha D and Early Latène (= Lt A and Lt B). Hallstatt (= Ha C and Ha D) is considered 
for comparison, as mentioned above, and the chronological subphases such as Ha 
D2 are not taken into consideration for this chapter; though in the future they need 
to be considered in order to obtain detailed knowledge on all transformations.

4 Indicators of Transformation Processes: Change Profiles as a Method for Identifying…
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Table 4.4 Chronology and sites for Etruria

Phase names Start (BCE) End (BCE) Centre (BCE) Duration (in years) Sites

Iron Age −1000 −730 −865 270 71
Orientalising Phase −730 −580 −655 150 286
Archaic Phase −580 −470 −525 110 957
Classical Phase −470 −330 −400 140 643
Hellenistic Phase −330 −30 −180 300 2354

Phase Graves Settlements

Hallstatt C period (Ha C) 161 91
Hallstatt D period (Ha D) 537 250
Hallstatt period (Ha) 909 1147
Early Latène period (FLT) 234 296

Table 4.3 Type of sites for case 
study in Baden-Württemberg

Table 4.2 Chronology for Baden-Württemberg

Name_
short Name_long Plotname

Start 
(BCE)

End 
(BCE)

Centre 
(BCE)

Duration (in 
years)

Ha Hallstatt period Ha C-D −800 −450 −625 350
Ha C Hallstatt C period Ha C −800 −620 −710 180
Ha D Hallstatt D period Ha D −620 −450 −535 170
FLT Early Latène period Lt A-B −450 −250 −350 200

The two categories of sources, graves and settlements, are distributed differently 
(see Table 4.3), so that source filters can be deduced. Hence, both categories are 
analysed separately. This makes six datasets to analyse in total: graves Ha C, graves 
Ha D, graves Early Latène, settlements Ha C, settlements Ha D and settlements 
Early Latène. Accordingly, these datasets cover two transformations: Ha C to Ha D, 
and Ha D to Early Latène.

The archaeological data for the case study in Etruria are based on the Palmisano 
et al. (2017) data collection (see Table 4.4 for the used chronology and sites).

4.4  Methodology

Before describing the methods in detail, a rough sketch will be given in order to 
provide an orientation in the methods section. This chapter aims to explore the use 
of rather simple and widely applicable transformation indicators. For this purpose, 
we focus on rather well-known transformations and use only the location-based 
indicators for these transformations. Although the Iron Age transformations used in 
this chapter are rather well known, sound quantitative approximations of the inten-
sity of change are not available for these transformations. Hence, a simple 

F. Engelbogen et al.



75

validation of the results of our indicators is not possible, and we have to turn to 
hermeneutic evaluations of the indicators which compare the different Iron Age 
transformations and this involves additional information.

The first step is to define indicators. For this purpose, we develop simple charac-
teristic numbers for the different phases that aim to use natural units and are nor-
malised; for example, based on point pattern analysis. These numbers are used to 
calculate the factor of change between the phases. In addition, some indices provide 
change factors directly, since no single characteristic number for the phases is 
involved.

The next step is to explore the interrelationship of the provided indicators, for 
which we assume a certain degree of correlation. A principal component analysis 
(PCA) serves the purpose of a first exploration and visualisation. In the next step, a 
certain correlation threshold is used to define clusters of indicators, one of which is 
selected as representative of each cluster. This approach reduced the number of 
indicators considerably without reducing the information the indicators cover too 
much. The visualisation of these remaining indicators with change profiles provides 
us with a basis for evaluating the predictive power of the indicators. Finally, the 
location indicators are compared and discussed with other information as herme-
neutic evaluation.

4.4.1  Point Pattern Analysis

This study applies different methods that are concerned with the location of sites. 
The conceptual background is formed by the so-called first-order and second-order 
point pattern analysis (PPA). While first-order analysis is focused on the environ-
mental parameters that determine a site location, second-order analysis investigates 
the relationship of sites to other sites. Hence, first-order analysis focuses on eco-
nomic aspects, while second-order analysis focuses rather on social aspects at a 
certain level.

Based on the first and second order analysis, transformation indicators are then 
defined. These indicators are presented with diachronic change profiles. The dia-
chronic change profiles have the purpose of comparing the results of the individual 
cases. This allows us to estimate the degree of changes. Furthermore, the compari-
son is much more methodologically robust than the estimation of particular point 
pattern types.

Finally, correlation analysis and principal component analysis serve the pur-
pose of validating the set of indicators and identifying redundant variables. With 
these methods we will answer the question of which minimum set of indicators 
is required to characterise a transformation from the perspective of settlement 
patterns.
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4.4.1.1  Identifying First-Order Effects

First-order effects of PPA are estimates of a point pattern with regard to under-
lying or explanatory covariates, most likely environmental parameters such as 
topographic features, geomorphological conditions, or the distance and access 
to fresh water deriving from hydrologic systems. Inherent in such an approach 
is the rather deterministic assumption that particular environmental features in 
the landscape are more attractive than others, and that there are environmental 
factors that control human behaviour. Depending on the type of archaeological 
record (e.g. settlement or graveyard), attraction and rejection in the moment of 
human-environment interaction can be – at least theoretically – traced through 
the manifestation of the record itself as a function of the explanatory covariates. 
Eventually, and considering large archaeological site databases, this produces 
an estimate of preference or avoidance of particular landscape features during 
specific chronological periods and further allows tracing differences among 
groups, time-slices, or geographic areas.

Furthermore, the approach presented in this chapter enables us to track site 
location parameters not only as a spatially static component in human decision-
making; it also integrates a catchment composition evaluation in the analysis. 
Using continuous data, for example from slope gradient generated using the 
DEM, preferences for particular slope ranges, and thus topographic roughness, 
can be estimated. In addition, a focal approach can be applied that aims at test-
ing the composition of particular environmental conditions within a predefined 
complementary region. This has the advantage that, for example, when using a 
soil database not only the environmental conditions at a specific site (here a 
point, which can be considered at best two-dimensional) are taken into account, 
but also the variation of these conditions within the catchment; in this case, dif-
ferent soil types with different suitability for crop cultivation, as pastures, or for 
settlement purposes.

The terrain characteristic is calculated with the function terrain from the terra 
package (Hijmans, 2023) based on the srtm3 digital elevation model (CIGAR-CSI: 
Jarvis et al., 2008). Slope, aspect, TPI (Topographic Position Index), TRI (Terrain 
Ruggedness Index), and roughness are used.

4.4.1.2  Identifying Second-Order Effects

The second order effects (Baddeley et al., 2015; Nakoinz & Knitter, 2016; Ripley, 
1981) focus on the interaction between sites: do they reject or attract new ones? Or 
is there no interaction at all? At a point pattern level, the question is whether existing 
points determine the location of new ones. At a data level, we are turning from the 
relationship of the sites to other kinds of data, to the relationship inside the site 
dataset itself. The reflective nature of the methods discussed here accounts for the 
name ‘second-order point pattern analysis’.

The traditional approach of second-order point pattern analysis is to test whether 
a point pattern could be the result of a random point process, specifically a Poisson 
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process. Defining squares and comparing the counted points to the point number 
estimated by a theoretical process has the disadvantage of arbitrary squares influ-
encing the result. Ripley (1981), hence, suggested distance-based methods he called 
field methods. The basic idea is to look at the distances between points and calculate 
the accumulated numbers up to a threshold that serves as an independent variable of 
the curve. If the curve of the empirical point pattern matches the one of the theoreti-
cal random point process, interaction cannot be assumed. Due to the problem of 
estimating how far apart the two curves can be while still assuming randomness, 
simulations are used. The upper and lower limits of the simulations of random pro-
cesses are indicated in the graphs. Randomness is rejected if the empirical curve is 
outside this area.

Ripley (1981) defined different types of curves according to the consideration of 
different pairs of points. The nearest neighbour function or G-function considers the 
nearest neighbours of each point only. If the empirical curve is above the theoretical 
one for random processes, more shorter connections than expected exist and hence, 
clustered point pattern is expected. The probability of a next point being nearby is 
rather high due to the concentration of the points in a certain cluster. Accordingly, 
an empirical curve below the theoretical one indicates a regular pattern because the 
points are spaced with rather maximal distances.

The empty space function or G-function uses a simulated set of random points 
that connect to the nearest data point. The interpretation is inverse because the like-
lihood of a simulated point of having a data point nearby is rather low for clusters, 
since the simulated points are not concentrated in the same area as the data points. 
An empirical curve below the theoretical one shows more large distances from the 
random points to the data points than expected.

Finally, the K-function has to be mentioned. This function works similarly to the 
G-function but does not consider only the nearest neighbour. For this reason, the 
K-function is considered rather robust but not very sensitive to specific patterns. 
The G- and F-function in particular have a specific sensitivity. The G-function can 
be said to take a perspective from inside the pattern because each data point pro-
vides a starting point for a connection, and hence a perspective on the pattern. Low 
density areas and the overarching organisation of clusters are blind spots in this 
approach, while the F-function focuses on exactly these aspects. Accordingly, the 
different functions complement each other and one function alone is not able to 
produce a decent description of a point pattern.

The second-order point pattern analysis can be considered to represent the social 
aspect of landscape archaeological research because it focuses on the relationship of 
sites. This type of analysis cannot reveal details of the relationship between differ-
ent communities, but simplifies rather complex relationships to an estimation of 
intended intensity of interaction between the sites. This approach has two weak-
nesses. First, either first-order effects are excluded completely or they need to be 
included into the analysis by making them part of the simulation of the theoretical 
point patterns. Both alternatives are rather unrealistic in archaeology. Second, the 
theoretical models usually used in the analysis are meaningless in archaeology. It 
would require specific archaeological point pattern simulations instead of Poisson 
processes to gain meaningful knowledge. These points would question the 
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application of second-order point pattern analysis in archaeology if a simple solu-
tion were not at hand. This solution is to not interpret the results directly, but to 
compare the results of different phases and regions. In this way, the influence of the 
first-order effects and of the theoretical model are minimised.

For this purpose, the curves need to be transformed to single numbers. With this 
additional simplification we lose further information but the basic characteristics of 
the point patterns are still preserved. Since we do not need the theoretical model to 
answer a question concerning the nature of the point pattern, but rather to character-
ise the point pattern, we can just use the theoretical curve as a base line and subtract 
it from the empirical one. Subsequently, the mean value of the sample points of the 
curve can be calculated. This number has a different meaning than just using the 
mean of the distances used for the curve, because the curves are mapping frequen-
cies not distances. This leads us to a final simplification. Though the meaning of the 
index developed in the aforementioned process is different from an index based on 
the mean nearest neighbour distance, this difference is not that relevant for the com-
parison of different phases. Finally, we reach very simple second-order point pattern 
indicators that are based on the nearest neighbour distances and that are justified by 
the reasoning above. With this tool at hand we are able to compare different phases 
quite easily.

4.4.2  Identification of Indicators

Technically, we can distinguish three cases due to the kind of data used for the char-
acterisation of the transformations and the phases.

 1. num: Each settlement pattern is characterised by a specific number. Two point 
patterns can be compared by the difference of the characteristic numbers divided 
by the characteristic number of the first point pattern. This number represents the 
relative change.

 2. vec: Each settlement pattern is characterised by a specific vector or set of num-
bers such as the number of sites at certain altitude ranges. These spectra allow us 
to calculate distances between the point patterns. For this purpose, we are using 
the Manhattan distance because each variable is scaled in the same way, but the 
variables need not establish a meaningful space in which the Euclidean distance 
would make sense. The distances can be scales comparable with the other 
indices.

 3. mat: Each settlement pattern is characterised by a specific matrix or complex set 
of numbers, such as density distribution of two settlement patterns. In this case, 
a specific function (e.g. the displacement score) is used to describe the relation-
ship of the two settlement patterns.
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Though the change profiles would be the preferred place to compare two settlement 
patterns from two phases, for all three cases transformation indices are calculated 
for the sake of coherence and comparison.

In the case of vectors of characteristic value spectra, the values are normalised to 
fit the interval between 0 and 1, and twelve categories are defined. The observations 
of each category are calculated with the histogram function, and hence this indicator 
type is indicated with “hist” as part of its name. We have to distinguish two perspec-
tives on the transformations. First, the values can change and this transformation 
aspect is covered by the distance between the two point patterns. In this case the 
diversity of values might be preserved. As an illustration, in the first phase only low 
altitudes might be used for settlement purposes, while in the second phase the settle-
ments might only use high altitudes. In both cases the diversity is low. In a third 
case, all altitudes might be used. In this case the diversity is high. Obviously, the 
distance based on the vector of values has to be distinguished from the change of 
diversity. We use different diversity indices (Shannon-Weaver index (cf. Chap. 5), 
Simpson index, evenness (Oksanen, 2022; Oksanen et  al., 2022) and inverse 
weighted rank sum) that also are indicated in the name of the indicators.

Now follows the description of the different indicators used in this study. In gen-
eral, 1 and 2 indicate the two settlement patterns, while i indicates grid cells or posi-
tions in a vector. Furthermore, dens  =  kernel density, nn  =  nearest neighbour 
distance, cnn = cross pattern nn from one point pattern to another one, k = neigh-
bourhood degree, v = vector of values, data = actual observed settlement pattern, 
random = simulated settlement pattern (Tables 4.5, 4.6, and 4.7).

Table 4.5 Displacement measures

displacement1 The kernel density estimation values for the two settlement patterns are 
compared by calculating mean((abs(dens1i – dens2i)) / max(c(dens1, dens2))). 
This is the difference in density patterns.

displacement2 The number of grid cells with a larger value in the second pattern than in the 
first one is divided by the number of grid cells: Σ(𝑘𝑑𝑒1𝑖 <𝑘𝑑𝑒2𝑖)/𝑙𝑒𝑛𝑔𝑡h((𝑘𝑑𝑒1𝑖)). 
A value of 0.5 represents an equal distribution, while lower or higher values 
can indicate an extension of the occupied area rather than an actual 
displacement.

displacement3 This displacement score is based on the nearest neighbour distances and uses 
the mean value of the nearest neighbours of all points from the first point 
pattern to the second point pattern, minus the mean of the nearest neighbour 
distances of both point patterns and divided by the mean of the nearest 
neighbour distances of both point patterns: (𝑚𝑒(𝑐𝑛𝑛𝑖) − 𝑚𝑒𝑎𝑛(𝑐(𝑛𝑛1𝑖, 𝑛𝑛2𝑖)))/
𝑚𝑒𝑎𝑛(𝑐(𝑛𝑛1𝑖, 𝑛𝑛2𝑖)). For displacement3 only the nearest neighbour (k = 1) is 
used.

displacement4 This displacement score is similar to displacement3, but instead of the nearest 
neighbour (k = 1) the fifth neighbourhood degree (k = 5) is used. This provides 
a less sensitive but more robust result.
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Table 4.6 Shannon-Weaver index, Simpson index, evenness and inverse weighted rank sum

even_slope Evenness of categorised slope values
even_aspect Evenness of categorised aspect values.
even_TPI Evenness of categorised Topographic Position Index (TPI) values.
even_TRI Evenness of categorised Terrain Ruggedness Index (TRI) values.
even_roughness Evenness of categorised roughness values.

even_soil_nitro Evenness of categorised soil nitrogen values.

even_soil_phh2o Evenness of categorised water pH values.

even_soil_sand Evenness of categorised sand values.

even_soil_clay Evenness of categorised clay values.

simpson_slope Simpson index of categorised slope values.

simpson_aspect Simpson index of categorised aspect values.

simpson_TPI Simpson index of categorised TPI.
simpson_TRI Simpson index of categorised TRI.
simpson_
roughness

Simpson index of categorised roughness values.

simpson_soil_
nitro

Simpson index of categorised soil nitrogen values.

simpson_soil_
phh2o

Simpson index of categorised water pH values.

simpson_soil_
sand

Simpson index of categorised sand values.

simpson_soil_
clay

Simpson index of categorised clay values.

shannon_slope Shannon-Weaver index of categorised slope values.

shannon_aspect Shannon-Weaver index of categorised aspect values.

shannon_TPI Shannon-Weaver index of categorised TPI.
shannon_TRI Shannon-Weaver index of categorised TRI.
shannon_
roughness

Shannon-Weaver index of categorised roughness values.

shannon_soil_
nitro

Shannon-Weaver index of categorised soil nitrogen values.

shannon_soil_
phh2o

Shannon-Weaver index of categorised water pH values.

shannon_soil_
sand

Shannon-Weaver index of categorised sand values.

shannon_soil_
clay

Shannon-Weaver index of categorised clay values.

(continued)
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rank_slope Inverse weighted rank sum of categorised slope values: sum(sort(vi) * 
length(vi):1) / length(vi)2. The values are sorted and multiplied with their 
inverse rank and divided by the square number of values.

rank_aspect Inverse weighted rank sum of categorised aspect values.
rank_TPI Inverse weighted rank sum of categorised TPI.
rank_TRI Inverse weighted rank sum of categorised TRI.
rank_roughness Inverse weighted rank sum of categorised roughness values.

rank_soil_nitro Inverse weighted rank sum of categorised soil nitrogen values.

rank_soil_phh2o Inverse weighted rank sum of categorised water pH values.

rank_soil_sand Inverse weighted rank sum of categorised sand values.

rank_soil_clay Inverse weighted rank sum of categorised clay values.

hist_slope Manhattan distance of the of categorised slope values.
hist_aspect Manhattan distance of categorised aspect values.
hist_TPI Manhattan distance of categorised TPI values.
hist_TRI Manhattan distance of categorised TRI values.
hist_roughness Manhattan distance of categorised roughness values.

hist_soil_nitro Manhattan distance of categorised soil nitrogen values.

hist_soil_phh2o Manhattan distance of categorised water pH values.

hist_soil_clay Manhattan distance of categorised clay values.
hist_soil_sand Manhattan distance of categorised sand values.

Table 4.6 (continued)

Table 4.7 Second order indices

ppa_G G-score: (mean(nn(datai, datai)) – mean(nn(random1i, random1i))) / 
mean(nn(random1i, random1i)). The mean of the nearest neighbour distance of 
observed points to other points of the observed settlement pattern, minus the mean of 
the nearest neighbour distance of simulated points to other points of the simulated 
settlement pattern, divided by the mean of the nearest neighbour distance of simulated 
points to other points of the simulated settlement pattern. The G-score accounts for 
the internal perspective and is an inverse clustering score.

ppa_F F-score: mean(nn(datai, randomi)) – mean(nn(random1i, random2i)) / 
mean(nn(random1i, random2i)). The mean of the nearest neighbour distance of 
observed points to points of a simulated pattern, minus the mean of the nearest 
neighbour distance of simulated points to other points of another simulated settlement 
pattern, divided by the mean of the nearest neighbour distance of simulated points to 
other points of another simulated settlement pattern. The F-score accounts for the 
external perspective and is a direct clustering score.

nSites Relative change of the number of sites.
siteFreq Relative change of the site frequency (sites/year).
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4.4.3  Exploring the Initial Set of Indicators

The input of the synthesic analysis is a table with the transformation indicators as 
columns and the transformations of the different regions and period transitions as 
rows. Bar plots of the different rows allow for a visual comparison of the transfor-
mations. A principle component analysis of this table contributes to the question of 
the relationship between variables and objects. The plots of the first two dimensions 
are usually hard to judge because a certain degree of the variability is hidden in the 
remaining dimensions. The cos2 colouring (see package factoextra), helps to esti-
mate which points are affected by this phenomenon and to judge whether or not it is 
necessary to also plot other pairs of dimensions. Keeping this problem in mind, the 
PCA-plots help estimate groups of similar transformations and groups of redundant 
transformation indices.

For a sound analysis of groups of redundant indicators, we are using a hierarchi-
cal cluster analysis (complete linkage) based on a correlation matrix (Pearson cor-
relation index). The histogram is cut at an acceptable level (e.g. 0.05) to obtain 
groups of redundant indicators. One indicator might be sufficient to represent an 
indicator group, but the small number of transitions observed in this study prevents 
generalisation.

It is worth noting that the cluster analysis on the variables is required because the 
PCA focuses on re-projecting the data to another set of dimensions. In this study we 
are not interested in obtaining artificially transformed variables with reduced dimen-
sions, but in deciding on a reduced set of original indicators.

4.4.4  Change Profiles

When looking at change, one inevitably has to deal with three components: time, 
the before, and the after. Even though it has been known since the introduction of 
Albert Einstein’s (1905) theory of relativity that the Newtonian concept of an abso-
lute time, which passes equally at every place in the universe, is wrong, time still 
plays a key role in measuring change. Without the measure of time, no change can 
be detected because the reference point is missing.

Change can be quantified by comparing specific aspects of two time slices. 
Relative time series, as they result from relative chronology, also lend themselves to 
such a consideration, since the sequence of events can be determined. In a change 
profile, time is plotted on the x-axis and individual changing processes are quanti-
fied on the y-axis. A variation at a certain point in time, relative to the previous time 
period, is entered with a normalised value. If there are no further changes in the 
following period, the value to be entered is zero in a systemic perspective.

If, for example, several new crops are developed synchronously with each other, 
there will be an increase in the corresponding value. Assuming this condition per-
sists for a few generations, the value drops to the baseline. Once a crop plant 
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establishes itself, another rise appears. This is because the abandonment of previous 
practices also represents a fundamental change and is not synonymous with a “step 
backwards” or a “return to the previous state”. Phases with a high rate of innovation 
result in a high rate of change, as does the manifestation of a new standard. Before 
a transformational phase, the values might differ slightly throughout the parameters. 
During the transformational phase, there is a clear increase in the change profiles, 
either staggered or synchronous. After the transformative process, the change values 
“calm down” again, which can be recognised by low values within the different 
parameters of the change profile. For the graphical representation of change pro-
files, the value of a factor is plotted as a bar plot. If the rate of change remains con-
stant, and more or less the same number of individual aspects change, the height of 
the individual bars remains similar. The value is created by the difference of the 
quantified change to the previous time span: change = abs(nafter – nbefore).

In order to display factors synchronously, the individual change values are lined 
up one above the other, aligned according to absolute chronology and grouped 
according to parameters. The independence of the factors is not guaranteed (see 
discussion on the latent influence of climate), so they are correctly presented as 
individual bars. The values of change are plotted on the y-axis and normalised 
beforehand to avoid over-estimating factors with good data or high counting rates. 
The absolute numbers do not imply any valuation of the importance of the factor, 
but result from the nature of the data. The significance of a changing factor does not 
necessarily depend on the count rates, but on the change within the behaviour that 
resulted in this particular change. The deposition of hoard finds, for example, ends 
in Central Europe with the beginning of the Early Iron Age. This factor of the ritual 
domain, which reflects fundamental changes in the concept of the afterlife, can be 
represented by presence/absence. The number of certain artefacts in graves, on the 
other hand, is better represented by quantities. By normalising the rates of change, 
the influence of count rates and quantity of artefacts is minimised and presented in 
a comparable way. The quantification of the rate of change is strongly determined 
by the respective factor.

Change profiles in the present case studies show the absolute chronology2 on the 
x axis. Since relative chronologies are accompanied by the assumption of epoch 
transitions and often also transformations, absolute dating is to be preferred. 
Furthermore, two difficulties occur when using a relative time scale. First, the defi-
nition of chronological stages is determined by the archaeological material. 
Naturally, it is easier to define epoch boundaries when the material culture changes 
fundamentally. However, relative time scales are not evenly distributed, so that a 
phase can cover a significantly different length of time. Hence, for the creation of a 
change profile, the relative chronology should be mapped onto an absolute chronol-
ogy. A fuzzy approach can be used to mitigate the dominance of the relative stage 
allocations, for example by distributing the numbers over the absolute time. If, for 

2 This differs from the graphical representation for the identification of indicators (see Fig. 4.4). 
Here, the explicit transitions are used to display changes between the two assumed phases.
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example, the number of settlements is plotted as a factor, insufficiently precisely 
dated sites can be divided among the time classes with a fuzzy approach and thus 
relative phases that are easier to identify can be balanced out. Second, the use of 
absolute chronologies allows to easily in-cooperate precisely dated material. Using 
a fuzzy approach allow here again to take in to account method inherit dating 
imprecisions.

4.4.5  Software

The analyses in this chapter were conducted using R (R Core Team, 2022) and the 
R packages geodata (Hijmans et  al., 2023), terra (Hijmans, 2023), sf (Pebesma, 
2018), spatstat.geom and spatstat.explore (Baddeley et al., 2015), FactoMineR (Lê 
et  al., 2008), factoextra (Kassambara & Mundt, 2020), and ape (Paradis & 
Schliep, 2019).

4.5  Results

4.5.1  Transformation Spectra

For presenting the results, all transformation indicators are compiled in one table 
with indicators in columns and transformations in rows (Fig. 4.3). The indicators 
form a kind of transformation profile that can be visualised with bar plots for each 
transformation. For these bar plots we omit the y-scale since the information of the 
normalised indicators also can be understood without looking at the actual numbers.

The transformation indicators help to characterise the transformations in detail. 
We start with the two transformations in Baden-Württemberg, which were recorded 
from the perspective of the graves and the settlements respectively. For the sake of 
simplicity, we call the transition from Ha C to Ha D the first transformation and that 
from Ha D to Lt A/B the second. First, we turn to the topographic indicators. Slope 
changes strongly in the first transformation and less in the second, with diversity 
increasing strongly at first and increasing little, or decreasing slightly, in the second 
transformation. Aspect also changes strongly in the first transformation and less in 
the second. The diversity of the values, however, is hardly changed in the first trans-
formation and increases slightly in the second. The same pattern of first strong and 
then weaker change is also observed for the TPI, whereby the change is smaller for 
the settlements than for the graves. Diversity increases at first and then remains the 
same or even decreases slightly. The differences in TRI and roughness decrease 
from the first to the second transformation for the graves and remain more or less 
the same for the settlements. Diversity first increases and then tends to decrease.
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Fig. 4.3 Bar plot of the initial location-based transformation indicators for all considered Iron Age 
transformations

The chemical soil indicators show a heterogeneous picture of distances. Diversity 
decreases for the graves in the first transformation and in the second, while this is 
reversed for the settlements. It should be borne in mind that these indicators cer-
tainly do not provide primary evidence, as soil chemistry may have changed more 
than the other parameters. As indirect indicators, however, they may well show 
changes. In any case, their interpretation is difficult. The changes in soil types are 
easier to assess here. The changes in clay decrease from the first to the second trans-
formation, while diversity increases strongly in the first transformation and then 
slightly in the second. For the sand, we can observe that the distances tend to 
increase from the first to the second transformation, with diversity first increasing 
slightly. For the graves, sand decreases in the second transformation, but increases 
for the settlements. Overall, the increase is stronger for the settlements.

The first displacement score is slightly positive, especially for the graves, indi-
cating a slight shift in settlement space. High values of the second displacement 
score for the first transformation indicate an increase in the settlement area, while 
low values for the second transformation show a reduction. The negative values of 
the third displacement score in the first transformation indicate a slight shift and 
densification of the settlement areas. This effect is significantly lower in the second 
transformation. Both are confirmed by the fourth displacement score with some-
what more moderate values.
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We turn now to the second order effects, for which we only have two indicators: 
the G-score and the F-score. The scores we are using can be interpreted as a kind of 
inverse (G) or direct (F) clustering coefficient since it measures the neighbourhood 
distances in relation to a certain base line. The G-score decreases slightly in both 
transformations and only increases slightly for the settlements in the second trans-
formation. The F-score, on the other hand, first increases and then decreases, with 
the graves being more subject to this change. Overall, the clustering reaches its 
maximum in Ha D, with the internal structure of the clusters remaining largely the 
same. The G-score shows obviously smaller effects than the F-function. This sug-
gests that it is mainly the large-scale structures that change, while the local or 
cluster- internal structures, i.e. the view from within, vary less. The difference in 
chronological phases indicates an increase in clustering in the external (F) view at 
the transition from Ha C to Ha D. This may be because settlements are becoming 
more ephemeral (more settlement sites in the same time and in close proximity) or 
because isolated settlements are disappearing. The pattern is consistent with the 
concentration of power discussed by Biel (1987), Sievers (1982) and Pare (1992), 
but can also be explained by a change in land use or an increase in insecurity. At the 
transition from Ha D to Early Latène a decrease of the clustering can be observed. 
The numbers of sites show a clear change and the site frequencies do not differ 
much because the phases have similar length. In the first transformation, the num-
bers of graves, in particular, increased significantly. In the second transformation, 
the numbers of graves decrease while the numbers of settlements continue to 
increase slightly.

Overall, the picture of a Ha C to Ha D transformation emerges, which is clearly 
more substantial than, but also somewhat different to, the transformation from Ha D 
to Lt A/B.

Let us now turn to Etruria. Here we have data on four transformations, but only 
on one type of site at a time, the settlements. The first two transformations show 
considerable changes while the later two are characterised by rather low change 
values. For the first two transformations, the diversity of the slope increases while it 
decreases slightly with the other transformations.

The same is also true for the aspect; the first two transformations have high 
change values while the later two transformations show lower change values. The 
diversity of the aspect shows rather low values throughout. The change values and 
the diversity of the TPI show the same patterns as for slope. TRI and roughness also 
have higher values in the first two transformations than in the later two transforma-
tions. The diversity of TRI and roughness decreases in the first, second and fourth 
transformations, and only increases in the third transformation. The change in 
chemical soil values is quite strong in the first two transformations, moderate to 
strong in the fourth transformation and rather small in the third transformation. The 
diversity of the chemical soil values increases according to the already known pat-
tern in the first two transformations, drops somewhat during the third transforma-
tion and shows only slight changes in the fourth.

Sand and clay change strongly in the first and third transformations, slightly less 
in the second and even less in the fourth. The diversity of sand increases slightly in 
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the first transformation, more strongly in the second, drops noticeably in the third 
transformation and is only slightly influenced by the last transformation. For the 
clay, an increase can be seen in the first transformation and a decrease in the third 
transformation. The other two transformations show low change values.

The first displacement score shows rather low values in all transformations, 
while the second shows predominantly medium values and thus small changes. 
Only for the fourth transformation is the value somewhat higher and indicates an 
expansion of the settlement area. Displacement score 3 shows negative values in the 
first, second and fourth transformations, indicating densification, which only 
decreases in the third transformation. Displacement score 4 has a negative value 
only in the fourth transformation and increasingly positive values until then. Thus, 
while the nearest neighbour moves closer in the first two transformations, the fifth 
neighbour moves further away in the first three transformations.

This picture is also confirmed by the G-score and F-score. The inner clustering 
decreases in the first two transformations and then remains the same. Viewed from 
the outside, the clustering also decreases in the first two transformations, then 
increases and then decreases again in the fourth transformation. The number of sites 
increases in the first two transformations, then decreases, and increases again in the 
third transformation. The first transformation has a strong growth of the site num-
bers that is even stronger when looking at the site frequencies, as well as an internal 
and an external de-clustering. In combination with the slight expansion of the settle-
ment area this speaks to a stronger and more systematic spatial organisation. This 
continues with the second transformation that, in contrast, maintains the internal 
settlement structure. The third transformation with decreasing site numbers, increas-
ing clustering from the external perspective, and the preservation of the internal 
structure, seems to reverse the process. This transformation is consistent with a 
certain centralisation process that abandons isolated areas and focuses on the urban 
sites. Finally, the fourth transformation resembles the second one, but the increase 
in site numbers becomes less pronounced when looking at the site frequencies.

Overall, a dichotomy emerges with strong changes in the first two transforma-
tions. The later two transformations are less pronounced and partly opposite. The 
third transformation, in particular, seems to differ from the others and to represent a 
kind of consolidation.

Though this description of the transformations does not address all aspects avail-
able with the transformation indices, a rather rich technical image of the transforma-
tions in the different regions emerges. The simple transformation indicators paint a 
picture of a rather complex settlement development that involves a multitude of 
decisions. At the same time, the indicators also allow a comparison of regions that 
offer entirely different source situations. This is made possible by the fact that the 
indicators are quite abstract and have been partly adjusted by multiple normalisa-
tion. The price to be paid for this advantage is that it is more difficult to assess the 
concrete characteristics of the respective transformation processes. This cannot be 
done at the level of abstraction necessary for comparison and must be done in the 
individual regions against the background of the individual developments and 
parameter characteristics. Since this is not the aim of this chapter, we will not try to 
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reduce the abstraction, but rather to increase it. This is done with the following 
analyses and visual representations.

4.5.2  Transformation Plot

The transformation plot presents values of all transformation indices at the date of 
the transformation. In order to better see the values on the x-axis, the square-root of 
the indices is used. This means that low values (much smaller than 1) are scaled up 
and that values larger than 1 are scaled down. The mean value of all indicators per 
transformation is presented as solid black point. In addition to this effect, all indica-
tors become positive and hence, measure the degree of transformation independent 
of the decrease or increase of the value.

The transformation plot (Fig. 4.4) shows that the mean values of the early trans-
formations (before 500 BC) all have slightly higher mean values than the later ones. 
This change in the transformation degree is independent of the region, since it 
affects Baden-Württemberg as well as Etruria. The black horizontal line aims to 
highlight this effect. This might indicate supra-transformation at the next level of 
abstraction. Judging the significance of this effect cannot be based on statistical 
significance tests only, but requires a deeper understanding of the relationship 
between the indicators. For now, we just can take this assumed supra-transformation 
as a hypothesis for future research.

Fig. 4.4 Transformation plot of all considered Iron Age transformations. The colours identify 
index values from the same transformation in a specific region and the black dots are the mean 
values of each transformation. The horizontal line is merely for orientation; to better distinguish 
the mean values of the early and late transformations
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4.5.3  Synopsis of Preliminary Location Parameter

The synopsis is dedicated to the question of how the transformation indicators are 
related. A principal component analysis can help with exploring the data-inherent 
structures and hence shed light on the relationship of variables as well as of objects.

The scree plot (Fig. 4.5) reveals that 67% of the variance in the data is covered 
by the first two dimensions. Though a considerable part is hidden in the remaining 
dimensions, this value suggests that most information is visible in a plot of the first 
two dimensions. The cos2 value shows how much an original indicator contributes 
to the first two new dimensions. The plot indicates that some indicators are highly 
correlated and hence, redundant.

The variable and object plots (Figs. 4.6 and 4.7) of the transformations show that 
the transformations are different, but that some form a kind of cluster. In particular, 
the clusters of the early and late transformations in Baden-Württemberg, which 
indicate a similarity of the transformations perceived from the settlements and from 
the graves, assures us that the indicator approach makes sense.

For the actual detection of the groups of indicators, we use a cluster analysis of 
the original data because a reduction of the dimensions cannot be covered by theory. 
Instead of a distance matrix, we use a correlation matrix, since we aim to find clus-
ters of highly correlated indicators. A heatmap (Fig.  4.8) shows this correla-
tion matrix.

Fig. 4.5 Scree plot of the principle component analysis of the initial transformation indicators
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Fig. 4.6 Variable (indicator) plot of the principle component analysis of the initial transformation 
indicators

A hierarchical complete linkage cluster analysis produces a dendrogram that can 
be cut at a level of 0.05 to reveal the clusters of highly correlated indicators. Each 
indicator is assigned to a cluster and for each cluster a representative can be selected.

4.5.4  Indicator Selection

It emerged that most indicators provide specific aspects for the characterisation of 
sites. Nonetheless, only part of the information is useful for an identification. We 
hence develop two sets of indicators, one for identification and one for characterisa-
tion. The latter includes more correlated indicators than the first one. Each displace-
ment score provides information complementing each other. Because the distances 
are also covered by the G-scores and F-scores, we keep displacement 1 and 2 for 
identification and use all indicators for characterisation.
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Fig. 4.7 Object (transformation) plot of the principle component analysis of the initial transfor-
mation indicators

The analysis reveals that the different diversity scores are highly correlated. The 
evenness seems to be the most powerful diversity indicator, or rather inverse diver-
sity indicator, in particular because it makes the Shannon-Weaver index compara-
ble. This leads to the decision to keep evenness for the identification indicator set 
and evenness and ranking for the characterisation data set.

Additionally, as expected, TRI and roughness are highly correlated, so that we 
keep TRI for both sets. The chemical soil data are hard to judge for our purpose, so 
that they are not included in our indicator sets.

All histogram-based distance scores, as well as the second order scores and the 
site frequency, are kept for both indicator sets. The site number offers additional 
information involving the length of the phases compared to the site frequency, but is 
much less telling than the site frequency and, hence, is excluded.

4.5.5  Change Profiles for Early Iron Age 
in Baden- Württemberg (Fig. 4.9)

The case study on Southwest Germany serves as an example to show how additional 
information is involved. The change profiles visualise parameters from different 
domains and climate change.

Climate change reaches a maximum in the seventh century BCE and a phase of 
change starting in the third century BCE. In the period between, climate change is 
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Fig. 4.8 Heatmap of the Pearson correlation of the initial transformation indicators

less pronounced, with a local maximum in the mid-fifth century BCE. This local 
maximum coincides with maximal change values in most domains. For the settle-
ment and grave numbers, that value is even higher than the change of the previous 
transformations. However, caution is required with these numbers. The change val-
ues map the hierarchy of the chronological system, and the strong change in ques-
tion corresponds with the Hallstatt and Latène transition. Though this effect is real, 
to some extent the aoristic dating reinforces the main transitions. The comparison 
with the transformation plot (see Fig. 4.4), which is less prone to have this aoristic 
bias because all observations are relative to a specific baseline, shows that the trend 
is the same: stronger change in the Hallstatt period, including the Latène transition. 
If we consider the bias, the indicators map the well-known transformations in a 
convincing way. It is just the correlation with climate change that is rather poor, but 
a convincing correlation cannot be assumed on a regional level.

The other domains suffer far less from the aoristic bias of the change values, 
because the poorly dated sites play a much smaller role in this subset of the data. 
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Fig. 4.9 Change profile for the Early Iron Age in Baden-Württemberg (A) Temperature variation; 
(B) Change in settlement structures (grey: number of settlements; green: graves); (C) Changes in 
ritual domain (grey: graves; green: inhumation; orange: cremation; blue: hoards); (D) Changes in 
inequality and conflicts (grey: gold objects; green: gagate objects; orange: swords; blue: daggers; 
black: lance / arrows); (E) Technological innovations (grey: iron objects; green: bronze objects; 
orange: Fibulae); dashed lines indicate the main chronological phases
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These other domains, in particular, provide additional information for compar-
ing the different transformations. The ritual domain has a dominant change in 
burial practices in earlier phases, while the change in hoard numbers becomes 
relevant from the late fifth century BCE onwards. This is particularly interesting 
because it does not coincide with the main chronological transition.

The social sphere, involving inequality and conflict, provides a particularly 
detailed pattern. With a very strong transformation at about 700 BCE, we enter a 
phase of social visibility that is usually considered to be the emergences of elites 
and prestige. The next strong transformation at 600  BCE amplifies this process. 
This phase ends with the main chronological transition in the middle of the fifth 
century BCE. It is worth mentioning that only the sword numbers change frequently 
throughout the younger transformations. This might be caused by a change from 
prestige to status, and the role of the sword as a status indicator with changing 
relevance.

The technological domain shows a similar pattern. At about 700 BCE, maximal 
values are reached in nearly all indicators from this domain.

The overall pattern is that of a main transformation at the main chronological 
transition in the mid-fifth century BCE, with more pronounced sub- 
transformations in the early part of the period. Comparing the different domains, 
two patterns can be distinguished. The first pattern, represented by the settle-
ment and ritual domains, shows a noticeable change at 700 BCE and an even 
stronger one at 500  BCE.  The second pattern, represented by the social and 
technical domains, shows a strong transformation at 700 BCE, a decent one at 
600 BCE and a rather minor one at 500 BCE. These patterns indicate that social 
processes and technical innovations trigger the process characterised as the 
“emergence of elites”, while settlement structures and ritual aspects are mainly 
involved in a later transformation of the society. A first process focused on the 
formation of a specific social group, which supports and accelerates technical 
developments, is followed by a second process that involved the whole society 
and includes a kind of social consolidation. The less-pronounced transforma-
tions in the social and technological domains prepare the way for the second 
transformation process.

This analysis indicates that different processes took place, which affected the 
domains differently. Nonetheless, the different transformations are likely to have 
influenced each other and to be part of one longer transformation process that is not 
uniform, but has distinct and characteristic phases. Even domains with low change 
values play an integral role in this process.

4.6  Discussion

The main idea of this chapter is to make transformations comparable by introducing 
an abstraction layer, with transformation indicators that indicate the degree of 
change between two phases. This approach can be applied to completely different 
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sets of archaeological data as long as the geographical location and the chronology 
of the sites are available.

An important question is, which set of indicators is sufficient for characterising 
the transformations and hence for measuring the degree of change? We were able to 
reveal that some indicators are correlated.

The clusters can contain two types of indicators: indicators that are actually 
redundant and indicators that only correlate in the considered transformations (see 
Table 4.8). Since only a few transformations were considered in this chapter, the 
second category should be taken into account and indicators should not be excluded 
prematurely. We therefore only exclude indicators that are both strongly correlated 
and seem to be related in terms of content. Thus, at least one indicator is obtained 
from each cluster.

Since many indicators cover very similar things, for example the different dis-
placement scores, it could be assumed that many indicators are redundant. In fact, 
however, only a few indicators seem to be redundant.

The numerous indicators, many of which are interrelated in terms of content, 
have an astonishingly low level of redundancy. This gives us a large number of rela-
tively simple indicators that all describe certain aspects of the transformations and 
can characterise them well and in a differentiated way.

This observation opens the door for developing a transformation classification 
based on the transformation indicators. Different kinds of transformations can be 
identified and characterised, and perhaps even supra-transformations can be 
detected.

The transformation indicators used in our case study show a different dynamic. 
Some categories show small changes, while others show rather substantial changes. 
We assume the reason to be partially different degrees of dynamics within the dif-
ferent categories. Though this is probably mapping real behaviour of the different 
categories, this phenomenon makes a comparison rather difficult because the over-
all result is dominated by the dynamic categories, no matter how relevant they are. 
A solution to this problem could be a calibration of the change indicators according 
to the categories. The result would be transformation indicators that show the same 
level of change in general. It will not be possible to calibrate the values using “real” 
values. However, a calibration using some standard case studies might be sufficient 
for the purpose of gaining better comparability. The development of this kind of 

Table 4.8 Indicators for identification or characterisation of transformations

Transformation indicators for 
identification: Transformation indicators for characterisation:

displacement1, displacement2, even_
slope, even_aspect, even_TPI, even_
TRI, even_soil_sand, even_soil_clay, 
hist_slope, hist_aspect, hist_TPI, 
hist_TRI, hist_sand, hist_clay, ppa_G, 
ppa_F, siteFreq

displacement1, displacement2, displacement3, 
displacement4, even_slope, even_aspect, even_TPI, 
even_TRI, even_soil_sand, even_soil_clay, rank_slope, 
rank_aspect, rank_TPI, rank_TRI, rank_soil_sand, 
rank_soil_clay, hist_slope, hist_aspect, hist_TPI, hist_
TRI, hist_sand, hist_clay, ppa_G, ppa_F, siteFreq
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calibration certainly has to consider the kind of transformation typology men-
tioned above.

It should be mentioned, that the set of transformation indicators considered in 
this chapter is rather limited. In particular some scientific data, such as stable iso-
topes (e. g. Ventresca Miller et al., 2021) or aDNA data (e. g. Gretzinger & Schiffels, 
2020; Schiffels et al., 2016; Schmid & Schiffels, 2023) could prove to be extremely 
helpful if they become available across the board.

4.7  Conclusion

Summing up the results of the transformations in South-West Germany, and includ-
ing the additional information besides the simple settlement pattern indicators, we 
can characterise the transformations. When we consider the first transformation, the 
transition from Ha C1 to Ha C2 is of high intensity. Changes mainly concern gold 
objects, gagate, weapons – with the exception of swords, which have half the change 
intensity – and fibulae, as well as iron and bronze items. Less intense, but still sub-
stantial, are the components of the settlement patterns and the burial rituals. The 
swords are at the same level. Hoards do not play a role in the change. Overall, the 
focus of this transformation is obviously on the social and economic domain. 
Though not one of the transitions traditionally considered highly relevant, this 
transformation shows strong activities in the technological and social sphere, where 
a reconfiguration of society that concerns all of its parts is underway.

The next transformation, the transition from Ha C to Ha D, is rather of medium 
intensity. Only the displacement of the sites is strong. Gagate, iron, and lances are 
at a medium level, while settlement patterns, burial rituals, gold, swords, daggers, 
bronze, and fibula are factors of low intensity. The type of settlement pattern 
remains, while the settlement locations change. Besides this observation, this trans-
formation is mainly concerned with the social and technological domains. This tran-
sition is traditionally perceived as the emergence of elites. It somehow continues the 
trend of the previous transformation. The rather large lance change value indicates 
that it still does not only concerned the elites.

The third transformation is the transition from Ha D1 to Ha D2, and this one is 
even less intense than the previous one. The strongest factor (gold) with low change 
intensities is from the social domain. Inhumation graves, settlement patterns, lances, 
and the technical domain play an even smaller role, while the remaining factors do 
not contribute to the transformation at all. If we want to name a focus of this trans-
formation, that would be the social domain. The rather short Ha D2 phase is intro-
duced by a transformation that, though not very intense, mainly concerns the elites.

The transition from Ha D2 to Ha D3 is stronger, and the most intense factor is 
hoards, with a very strong change. The settlement patterns also show a strong 
change, followed by the swords and the inhumations. Lances, gold, and technologi-
cal factors play a minor role in small change intensities. The focus of this transfor-
mation is on settlement patterns and the ritual domain and hence, it represents a new 
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type of transformation compared with the previous Iron Age transformations. With 
Ha D3, we are entering a kind of culmination of the social processes of the Hallstatt 
period, and at the same time a certain consolidation.

The transition from the Hallstatt to the Latène period is also a rather strong trans-
formation that concerns all domains. Hoards, gagate, and lances show medium 
change intensities and represent the smallest factors of change in this transforma-
tion. The settlement pattern is at about the same level. Here, we can perceive a 
strong change in settlement numbers and moderate changes in the site locations and 
the type of settlement patterns. It is hardly possible to define a focus for this trans-
formation. The Latène period is not only marked by a new art style, but also by a 
very strong ritual component. At the same time, a social transformation that affects 
all parts of society takes place, with the elites particularly affected as they become 
less visible.

Our final transformation is the transition from Latène B to C, which shows rather 
low intensities. The strongest factors are the swords, the inhumations and the settle-
ment patterns on a medium level, while all other factors show minor or zero contri-
bution to the transformation. The settlement patterns and the ritual domain seem to 
dominate the focus slightly. While the later part of the Early Latène period (Lt B) is, 
in particular, considered a kind of democratisation, the transition to Lt C is marked 
by the swords and conflict-oriented factors in contrast to the prestige of social status.

The case studies in this chapter suggest that a set of location-based transforma-
tion indicators can be used to indicate, characterise, and measure the degree of 
transformations. The change profiles appear to be a useful tool for comparing and 
integrating the multitude of location-based transformation indicators and informa-
tion from other domains. This allows for the development and communication of 
rather complicated or even complex transformation interpretations.

The correlation between similar transformation indices is much smaller than 
expected and hence, they offer a better and more detailed characterisation of the 
transformations. The change profiles allow the easy integration of additional infor-
mation. This allows a deeper understanding of the individual transformations and 
even of interrelated transformations. For the case study from South-West Germany, 
we revealed two interrelated transformation processes. The first process focuses on 
the formation of the elites, which supports and accelerates technical developments. 
This prepared the way for the second process, which affects the whole society and 
involves a kind of social consolidation.

A remaining problem is that different domains and sub-domains, represented by 
indicator types and single indicators, have different natural degrees of change or 
different natural variability. Though this is a result in its own right, it makes com-
parison more difficult. A calibration of the change factors, according to several very 
different case studies, could be a solution and would at the same time be a sound 
measure of the natural variability. This suggestion goes beyond the present chapter, 
however, due to the required number of case studies.

The change profiles suffer from an aoristic dating bias that has to be considered 
with the interpretation. Because of the simple methods and greatly limited data 
requirements, the location-based indicators appear to be a rather simple though 
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powerful tool, but obviously they cannot cover all domains. A next step could be to 
develop similar sets of indicators for other domains.

With the diachronic representation of the changing processes via synchronous 
quantification, change profiles make it possible to integrate information from differ-
ent domains for the interpretation of transformations. The benefits of the method 
provided here are twofold: first, by using a widely available set of parameters (in 
this case of the location of sites) change profiles can identify indicators for well- 
known transformations. This needs to be transferred to other assumed indicators 
and applications. Second, change profiles provide a tool for visualising heteroge-
neous data and deepening our understanding of intertwined parameters.
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