
Chapter 2 
Learning Projection-Based 
Reduced-Order Models 

2.1 Motivation and Basic Assumptions 

In this chapter, we introduce the solution space for high-fidelity models based on 
partial differential equations and the finite element model. The manifold learn-
ing approach to model order reduction requires simulated data. Hence, learning 
projection-based reduced order models (ROM) has two steps: (i) an offline step for 
the computation of simulated data and for consecutive machine learning tasks, (ii) an 
online step where the reduced order model is used as a surrogate for the high fidelity 
model. The offline step generates a train set and a validation set of simulated data. 
The accuracy and the generalisation of the reduced order model is evaluated in the 
online step by using a test set of data forecast by the high-fidelity model. The test set 
aims also to check the computational speedups of the reduced-order model compare 
to the high-fidelity model. 

Learning projection-based reduced order model makes sense only if there is a 
significant computational speedup at the price of an acceptable loss of accuracy in 
predictions. The longer the computational time of the high-fidelity model, the smaller 
the acceptable speed up, if we save hours or days of numerical simulations. Regarding 
the acceptable accuracy of reduced predictions, engineers working in industry and 
scientists working in laboratories do not have the same expectations. In our own expe-
rience, learning projection-based reduced order model has the capability to adapt to 
engineering tasks, high-fidelity models elaborated in laboratories, in terms of accu-
racy and computational time. This approach contributes to data continuity between 
physics-based knowledge developed in laboratories and practical applications for 
engineering tasks. 

From the mathematical point of view, Céa’s lemma gives an overview of manifold 
learning for model order reduction applied to elliptic equations. Let .V be a real 
Hilbert space, such that the weak form of the elliptic equation reads: find .~u ∈ V, 
such that: 

.a(~u,~v) = L(~v), ∀~v ∈ V, (2.1) 
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where.a(·, ·) is a bilinear form, with coercivity constant .β > 0 and continuity conti-
nuity constant .Ca > 0. .L(·) is a linear form. Section 2.2 gives more details on weak 
forms. Let us .Vh a finite dimensional subspace of . V. Here, .Vh is an approximate 
solution space for the elliptic equation. The approximate solution of the elliptic equa-
tion is denoted by.u ∈ Vh ⊂ V. The Galerkin projection of the elliptic equation onto 
the solution space reads: find .u ∈ Vh ⊂ V such that: 

.a(u, v) = L(v), ∀ v ∈ Vh, (2.2) 

where .Vh has been substituted for . V. Céa’s lemma states that: 

.||~u − u|| ≤ Ca

β
||~u − v||, ∀ v ∈ Vh, (2.3) 

where .|| · || is a norm in . V. The related scalar product is denoted by .⟨·⟩. In Finite 
Element models, .Vh is the span of finite element shape functions. But Céa’s lemma 
holds for all finite-dimensional subspace of. V. The closer. ~u to the solution space.Vh , 
the smaller the right-hand term of Céa’s lemma (2.3), and therefore one can expect 
a better prediction . u in Eq. (2.2), although we do not know. ~u. 

In few words, a reduced-order model is obtained by introducing a smaller solution 
space .Vn ⊂ Vh of smaller dimension .n < N . A projection-based reduced order 
model can be achieved by using the Galerkin projection (2.2), where.Vn is substituted 
for .Vh . The conclusion of Céa’s lemma holds again. The closer . ~u to the solution 
space.Vn , the better the prediction. ̂u ∈ Vn . Manifold learning comes into play when 
we are given a set of predictions.(u(i))i=1,...,m in a common ambient space.Vh , related 
to a given finite element mesh. The basic assumptions in manifold learning for model 
order reduction are: 

• a latent space of reduced dimension is hidden in the data.(u(i))i=1,...,m , its dimension 
is denoted by . n, 

• a machine learning algorithm is available to learn this latent space by using a train 
set of simulated data extracted from.(u(i))i=1,...,m , 

• the distance between . ~u and this latent space is small enough, although we do not 
know. ~u, 

• a numerical scheme enables the projection of the elliptic equation onto the latent 
space, in order to set up the reduced order model, 

• the computational complexity of the solution of the reduced order model is smaller 
that the computational complexity of the finite element prediction, 

• the computational complexity of the reduced order model is an increasing function 
of . n. 

As explained above, when the latent space is a vector subspace .Vn , both Galerkin 
projection and Céa’s lemma hold, but simulation speedup may not be achieved. The 
study of more complex situations is the purpose of this Chapter. An estimation of 
computational complexity of projection-based reduced order model is proposed in 
Sect. 2.3.6.
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Remarks: 

• In the Rayleigh-Ritz method a small set of trial functions that satisfy the boundary 
conditions for . ~u is introduce to span a solution space. This solution space is not 
related to any finite element model. The inclusion of the latent space in the ambient 
space .Vh is essential for model order reduction. 

• The finite element ambient space.Vh incorporates homogeneous Dirichlet bound-
ary conditions (.~u = 0) on a boundary of the domain where the partial differential 
equations are set up). When such boundary conditions may change in the instances 
.(~u(i)

N )i=1,...,m these conditions must be taken into account as a linear constraint that 
supplement the partial differential equation. Such an issue appears when consid-
ering contact problems [ 38] for instance. 

• Important limitations of projection-based model reduction methods includes sit-
uations where the geometry has to be handled in the exploitation phase of the 
reduced-order models, for instance when the problem features contact boundary 
conditions, crack propagation or when the geometry is a variability of the problem 
to learn. Geometrical variabilities are handled in the authors’ works [ 1, 2, 22, 60, 
61, 92]. 

2.2 High-Fidelity Model (HFM) 

Consider an abstract partial differential equation in a domain. Ω, with a.μ-variability: 

.D(~u; ξ ,μ) = 0, ξ ∈ Ω, ~u ∈ V. (2.4) 

The weak form of this partial differential equation reads: find .~u ∈ V such that 

.

{

Ω

~v D(~u; ξ ,μ) dξ = 0, ∀~v ∈ V. (2.5) 

As an illustration, the concepts of this chapter are illustrated on a nonlinear struc-
tural mechanics problem, for which details on the high-fidelity model are provided in 
this Section. For an example with another physics, we refer to the authors’ work [ 21], 
where a nonlinear transient thermal problem is considered. 

The mechanical structure occupies the domain . Ω, whose boundary .∂Ω is parti-
tioned as .∂Ω = ∂ΩD ∪ ∂ΩN such that .∂Ωo

D ∩ ∂Ωo
N = ∅, see Fig. 2.1. 

The structure is subjected to a quasi-static time-dependent loading, composed of 
an homogeneous Dirichlet boundary conditions on .∂ΩD and Neumann boundary 
conditions on .∂ΩN in the form of a prescribed traction .TN , as well as a volumic  
force. f . The setting depends on some variability. μ, which can be a parameter vector, 
or represent some nonparametrized variability. The evolution of the displacement 
.~uμ(ξ , t) over .(ξ , t) ∈ Ω × [0, T ] is the solution of the following equations:
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Fig. 2.1 Schematic 
representation of the 
structure of interest [ 18] 

. 

∈(~uμ) = 1

2

(

∇~uμ + (∇~uμ)T
)

, in Ω × [0,T], (compatibility equation)

div
(

σ
μ
c

)

+ f μ = 0, in Ω × [0,T], (equilibrium equation)

σ
μ
c = σ c(∈(~u

μ), yμ), in Ω × [0,T], (constitutive law)

~uμ = 0, in ∂ΩD × [0,T], (prescribed zero displacement)

σ
μ
c · n∂Ω = Tμ

N , in ∂ΩN × [0,T], (prescribed traction)

~uμ = 0, yμ = 0, in Ω at t = 0, (initial condition)
(2.6) 

where . ∈ is the linear strain tensor, .σμ
c is the Cauchy stress tensor, .yμ denotes the 

internal variables of the constitutive law and .n∂Ω is the outward normal vector on 
.∂Ω. We precise that the evolution of the internal variables .yμ is updated when the 
constitutive law is solved. 

Define .H 1
0 (Ω) = {v ∈ L2(Ω)| ∂v

∂ξi
∈ L2(Ω), 1 ≤ i ≤ 3 and v|∂ΩD = 0}. Denote 

.{ϕi }1≤i≤N ∈ R
N×N , a finite element basis whose span, denoted .Vh , constitutes an 

approximation of .H 1
0 (Ω)3; .N is the number of finite element basis functions, hence 

the number of degrees of freedom of the discretized prediction. A discretized weak 
formulation reads: find .uμ ∈ Vh such that for all .v ∈ Vh , 

.

{

Ω

σ c(∈(u
μ), y) : ∈(v) =

{

Ω

f μ · v +
{

∂ΩN

T μ
N · v, (2.7) 

that we denote for concision.Fμ (uμ) = 0, where.uμ is the vector of.N coordinates for 
.uμ ∈ Vh . A Newton algorithm can be used to solve this nonlinear global equilibrium 
problem at each time step: 

.
DFμ

Du

(

uμ,k
) (

uμ,k+1 − uμ,k
) = −Fμ

(

uμ,k
)

, (2.8) 

where 

.
DFμ

Du

(

uk
)

i j
=

{

Ω

∈
(

ϕ j
) : K (

∈(uμ,k), yμ
) : ∈ (ϕi ) , (2.9) 

and
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Fig. 2.2 Linear manifold learning 

.Fμ
(

uμ,k
)

i =
{

Ω

σ c
(

∈(uμ,k), yμ
) : ∈ (ϕi ) −

{

Ω

f μ · ϕi −
{

∂ΩN

T μ
N · ϕi . (2.10) 

In the two relations above,.K (

∈(uμ,k), yμ
)

is the local tangent operator,. uμ,k ∈ V
is the k-th iteration of the discretized displacement field at the current time-step, and 

.uμ,k =
(

uμ,k
i

)

1≤i≤N
∈ R

N is such that.uμ,k =
N

∑

i=1

uμ,k
i ϕi . In particular,. f μ,.T μ

N ,. u
μ,k

and.yμ are known and enforce the time-dependence of the solution. Depending on the 
constitutive law, the computation of the functions.

(

uμ,k, y
) |→ σ c

(

∈(uμ,k), yμ
)

and 
.
(

uμ,k, yμ
) |→ K (

∈(uμ,k), yμ
)

can require the resolution of a complex differential-
algebraic system of equations. 

2.3 Linear Manifold Learning for Projection-Based 
Reduced-Order Modeling 

We start by explaining the online phase. Since we want to construct and solve the 
reduced-order model (ROM) in the most efficient way, the offline phase is dedicated 
to precompute as many steps as possible, under the considered variability. 

Linear manifold learning means that the solution manifold is approximated by a 
vector subspace of the ambient solution space, as illustrated in Fig. 2.2. 

2.3.1 Approaches Preceding the Use of Machine Learning 

In structural mechanics, normal modes have been introduced for the analysis of 
vibrations in structures. When considering free vibrations, without external force, the 
solution of linear hyperbolic equation is sought by using the separation of space and
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time variables: .uN (x, t) = ψ(x) ̂u(t), where .x ∈ Ω is the space variable and . t ∈ R

the time variable. The hyperbolic equation of free vibration reads: find . ψ(x) ∈ VN

and . ̂u(t) ∈ R such that .uN (x, t) = ψ(x) ̂u(t) and 

.⟨ρ üN , vN ⟩ + a(uN , vN ) = 0, ∀ vN ∈ VN . (2.11) 

It follows that . ̂u(t) is an harmonic function of frequency denoted by . f and .ψ is 
the eigenvector related to the eigenvalue .λ = (2 π f )2 of the following generalized 
eigenproblem: find .ψ ∈ VN and . λ such that 

.a(ψ, vN ) − λ ⟨ρ ψ, vN ⟩ = 0, ∀ vN ∈ VN , (2.12) 

where the rank of this system of equation is supposed to be.N − 1 in order to find non 
zero eigenmodes. This eigenproblem admits .N orthogonal normal modes that span 
.VN . Therefore a selection of. n normal modes span a reduced subspace of dimension 
. n. In the beginning of the . 21st century, model reduction using variable separation 
scheme in partial differential equations has been extended to an arbitrary number of 
variable by using low-rank approximations such as the Proper Generalized Decom-
position [ 5]. Eigenmodes are global functions in contrast to finite element shape 
functions that have a local support. For dynamical problems involving nonlinear 
contributions to the PDE, adaptive computations of reduced subspaces have been 
proposed by Almroth et al. [ 4] and Noor et al. [ 79], by using Rayleigh-Ritz global 
functions. The set of these global functions is a reduced basis of the finite-element 
approximation-space. 

The idea of using statistics to generate a solution space for differential equations 
has been proposed in the seminal work of Lorenz in [ 69] (in page 31), by using 
empirical orthogonal functions. The Galerkin projection of PDEs on empirical modes 
have been first developed in [ 13], where a reduced basis is computed via the proper 
orthogonal decomposition [ 70] of observational data. This was the first step towards 
manifold learning for projection-based model order reduction, which we now present. 
For other presentations of this technologies, the reader can refer to [ 81, 87]. 

2.3.2 Online Phase: Galerkin Projection 

The reduced-order model is constructed in the form of a Galerkin method written 
on a Reduced-Order Basis (ROB). In the present case, it consists in assembling the 
physical problem in the same fashion as the HFM in Sect. 2.2, with the difference that 
the finite element basis.(ϕi )1≤i≤N ∈ R

N×N , is replaced by a ROB.(ψi )1≤i≤n ∈ R
n×N , 

with .n << N . Hence, the reduced Newton algorithm is constructed as 

.
DFμ

Dû

(

ûkμ
) (

γ μ,k+1 − γ μ,k
) = −Fμ

(

ûkμ
)

, (2.13)
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where 

.
DFμ

Dû

(

ûkμ
)

i j
=

{

Ω

∈
(

ψ j
) : K (

∈(ûkμ), yμ

) : ∈ (ψi ) (2.14) 

and 

.Fμ

(

ûkμ
)

i
=

{

Ω

σ
(

∈(ûkμ), y
) : ∈ (ψi ) −

{

Ω

fμ · ψi −
{

∂ΩN

Tμ,N · ψi . (2.15) 

In the two relations above, .ûkμ ∈ V̂ := Span (ψi )1≤i≤n is the .k-th iteration of the 

reduced displacement field for the current time-step and . γ μ,k =
(

γ
μ,k
i

)

1≤i≤n
∈ R

n

is such that 

.ûkμ =
n

∑

i=1

γ
μ,k
i ψi . (2.16) 

Notice that the use of the Galerkin method is made possible by the linearity of the 
tangent problem (2.13) and the choice of a linear dimensionality reduction technique 
in (2.16). 

The online stage is called efficient if the reduced problem can be constructed 
and solved in computational complexity independent of . N . When the variability . μ
is parametrized, efficiency is possible by precomputing various terms. With non-
parametrized variability, depending on its nature, some assembling task with a linear 
complexity in .N may be required at the beginning of the online stage (for instance 
for a boundary condition). All these scenarios are handled by genericROM, the ROM 
library developped at Safran and presented in Sect. 4.2. 

The offline phase contains three steps, for which we present below the method-
ological choices made in genericROM. 

2.3.3 Offline Phase 

2.3.3.1 Data Generation 

This step corresponds to the generation of the snapshots by solving the high-fidelity 
model. In parametric contexts, the simplest workflows consist in choosing param-
eter values a priori, following Design of Experiments (DoE, see [ 50] for a recent 
technique), and computing the corresponding snapshots by solving the high-fidelity 
model.
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2.3.3.2 Data Compression: Dimensionality Reduction 

This step corresponds to the generation of the ROB.(ψi )1≤i≤n . One of the most classi-
cal and simple method is the snapshot Proper Orthogonal Decomposition (POD) [ 25, 
86], detailed below: 

1. Choose a tolerance .∈POD. 
2. Compute the correlation matrix.Ci, j = {

Ω
ui · u j , .1 ≤ i, j ≤ Ns , where.Ns is the 

total number of HFM snapshots. 
3. Compute the .∈POD-truncated eigendecomposition of . C : .ξi ∈ R

Nc and .λi > 0, 
where .1 ≤ i ≤ n, are  the . n first eigenvector and eigenvalues. 

4. Compute the reduced order basis .ψi (x) = 1√
λi

Ns
∑

j=1

u j (x)ξi j , .1 ≤ i ≤ n. 

The advantages of the snapshot-POD are a reasonable computational complexity 
when the number of degree of freedom of the high-fidelity model are much larger than 
the number of snapshots, and the fact that this algorithm can be easily parallelized. 

Variants can be used, for instance in the Reduced Basis [ 84] and the POD-
greedy [ 41] methods, with respectively an orthonormalization of the computed high-
fidelity snapshots and the incremental Singular Value Decomposition (SVD) [ 15]. 

2.3.3.3 Operator Compression 

A ROM is called online-efficient if in the online stage, the reduced problems can be 
constructed and solved in computational complexity independent of. N . The operator 
compression step consists in additional treatments required for the efficiency of the 
online stage, by pre-processing some computationally demanding integration tasks 
over the high-fidelity domain .Ω and .∂ΩN . We notice that without any additional 
treatment, the numerical integration involved in the assembling of Eq. (2.13) strongly 
limits in practice the efficiency of the ROM: no speedup with respect to the high-
fidelity model can be obtained in practice. The complexity of such an additional 
treatment depends on the type of parameter-dependence of the problem. This step is 
actually needed for all classes of problems reduced by projection-based methods. 

Consider the simplest case: a linear problem with an affine dependence in the 
parameter . μ, for instance .Aμu = c, where .Aμ = A0 + μA1. Denote V, the matrix 
whose columns are the vectors of the ROB evaluated at the high-fidelity degrees 
of freedom. The obtained ROM writes .VT AμVû = VT c: it is not assembled in the 
online phase, but rather the matrices .VT A0V and .VT A1V and the vector .VT c are 
precomputed in the offline stage so that the reduced problem is constructed without 
approximation and efficiently by summing two small matrices. The operator com-
pression step consists in this case in the construction of .VT A0V and .VT A1V in the 
offline stage. 

Actually, there exist linear problems for which the operation compression step 
require an additional approximation, and nonlinear problems that can be carried-
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out exactly. In the first case, consider .Aμu = c with . Ai j =
{

Ω

∇ (

g(x, μ)ϕ j (x)
) ·

∇ϕi (x) and .ci = {

Ω
f (x)ϕi (x), where . u is the unknown, . f a known loading and 

.g(x, μ) a known function with variables . x and .μ that cannot be separated: the 
previous precomputation of reduced matrices cannot be applied, and a treatment is 
required to, for example, approximately separate the dependencies in . x and . μ of . g
as .g(x, μ) ≈ ∑d

k=1 g
a
k (x)g

b
k (μ). Then, .VT AμV ≈ ∑d

k=1 g
b
k (μ)Ak where . (Ak)i j =

{

Ω

∇ (

gak (x)ϕ j (x)
) · ∇ϕi (x), so that the efficiency of the online stage is recovered; the 

Empirical Interpolation Method has been proposed in [14, 71] for this purpose. A case 
of linear problem in harmonic aeroacoustics with nonaffine dependence with respect 
to the frequency is available in [ 20]. Conversely, nonlinearities can be handled without 
approximation in some cases, for instance, the advection term in fluid dynamics can 

be precomputed in the form of an order-3 tensor:.
{

Ω

ψi · (

ψ j · ∇)

ψk ,.1 ≤ i, j, k ≤ n; 

see [ 3] for the reduction of the nonlinear Navier-Stokes equations with an exact 
operator compression step. Other examples are found in structural dynamics with 
geometric nonlinearities, where order-2 and -3 tensors can also be precomputed, 
see [ 58, Sect. 3.2] and [ 73]. 

When additional approximations are required, the methods proposed for the oper-
ator compression step are call “hyper-reduction” in the literature. This term was 
coined by the seminal method proposed in [ 88] in 2005, but has been extended to 
refer to all the methods proposing a such second reduction stage. Hyper-reduction 
methods include the Empirical Interpolation Method (EIM, [ 14]), the Missing Point 
Estimation (MPE, [ 12]), the Best Point Interpolation Method (BPIM, [ 78]), the 
Discrete Empirical Interpolation Method (DEIM, [ 23]), the Gauss-Newton with 
Approximated Tensors (GNAT, [ 17]), the Energy-Conserving Sampling and Weight-
ing (ECSW, [ 36]), the Empirical Cubature Method (ECM, [ 45]), and the Linear 
Program Empirical Quadrature Procedure (LPEQP, [100]). The reader can find an 
algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpo-
lation Method for a nonlinear thermal problem in [ 39]. A particular focus is given 
on hyper-reduction techniques via oblique projection and empirical cubature in the 
following sections. 

2.3.4 Hyper-Reduction via a Reduced Integration Domain 

Hyper-reduction via a reduced integration domain has been proposed in [ 88]. It 
requires a train set of displacement predictions, so that a reduced approximation 
vector space can be trained. The finite elements simulations that generate the train 
set of displacement fields are also predicting stresses fields .σ and internal vari-
ables . y. Hence, additional reduced bases can be trained for these variables, by using 
these simulation results [ 89]. Heuristically, we found it more accurate to include a 
reduced basis for the stresses. σ , as an additional reduced basis for this hyper-reduction
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scheme. Such a reduced basis is also very convenient for error estimation [ 91]. The 
finite element shape functions for displacement fields are denoted by .(ϕi )i=1,...,N . 
For stress fields, we also need to introduce a related finite element representation. 
We denote by .(ϕσ

i )i=1,...,Nσ the dedicated shape functions. In the linear framework 
of manifold learning, we assume that the same finite element mesh is used for the 
target simulation, in the online step or for the test set of data, and all simulations 
used to generate the train set of data. 

In practice, the implementation of the hyper-reduction follows the manifold learn-
ing step that trains reduced bases for displacements and stresses. We recall that they 
are respectively denoted by .V ∈ R

N×n and .Vσ ∈ R
N σ ×nσ

in their matrix form, and 
.(ψk)k=1,...,n .(ψσ

k )k=1,...,nσ in their continuous form: 

.ψk(x) =
N

∑

i=1

ϕi (x)Vik, ∀ x ∈ Ω, k = 1, . . . , n, (2.17) 

.ψσ
k (x) =

N σ

∑

i=1

ϕσ
i (x)V σ

ik , ∀ x ∈ Ω, k = 1, . . . , nσ . (2.18) 

The reduced displacement reads: 

. ̂u(x) =
n

∑

k=1

ψk(x) γk, ∀x ∈ Ω. (2.19) 

The hyper-reduction method proposed in [88] aims at computing reduced coordinates 
.(γk)k=1,...,n introduced in Eq. (2.19), by projecting the equilibrium equation on. V, via  
a restriction of the domain .Ω to a Reduced Integration Domain (RID) denoted by 
.ΩR . By following the empirical interpolation method [ 14], interpolation points are 
computed for column vectors in .V and .Vσ separately [ 48]. The set of respective 
interpolation points are denoted by .Pu and .Pσ . We follow Algorithm 2.1, proposed 
for the Discrete Empirical Interpolation Method [ 23]. 

The RID.ΩR is such that it contains the interpolation points related to . V and.Vσ . 
For engineering applications, the RID can also include a zone of interest in .Ω that 
is user-defined, by using a subset of finite elements. This zone of interest is denoted 
by .ΩZ I ⊂ Ω. By construction, for contact-free problems, the RID is the following: 

.ΩR = ΩZ I ∪i∈Pu supp(ϕi ) ∪i∈Pσ supp(ϕσ
i ), (2.20) 

where .supp( f ) ∈ Ω is the support of function . f . In practice, .ΩR has its own finite-
element mesh. It is a reduced mesh involving much less elements than the original 
finite element mesh of. Ω. It can be enlarge by adding a layer of connected element in 
the original mesh. Integration of constitutive equations are performed on this reduced 
mesh, without any intrusive operation on the original finite element solver. A similar 
hyper-reduction scheme has been developed in [ 38] for contact problems.
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Algorithm 2.1: Interpolation points of the Discrete Empirical Interpolation 
Method (DEIM) [ 23] 

Input : reduced basis vectors V[:, k] ∈  RN , k = 1, . . .  M 
Output: interpolation point index set I := {i1, . . . ,  iM } 

1 set I0 := ∅ ; // initialization 
2 for l = 1 . . . ,  M do 
3 Ul−1 ← V[:, 1 : (l − 1)] ; // truncated basis 

4 A ← (Ul−1[Il−1, :]T Ul−1[Il−1, :])−1Ul−1[Il−1, :]T ; // projector 
5 ql ← V[:, l] −  Ul−1AV[Il−1, l] ; // interpolation residual 
6 il ← arg maxi∈{1,...,N } |(ql )i | ; // maximum of residual 
7 Il := Il−1 ∪ {il } ; // extend interpolation points 
8 end 
9 set I := IM . 

Once the RID is obtained, a set of test functions is set up in order to restrain the 
balance equations to .ΩR . They are denoted by .ψ R j : 

.P =
{

i ∈ {1, . . . , N },
{

Ω\ΩR

(ϕi )
2 dΩ = 0

}

, (2.21) 

.ψ R j (x) =
∑

i∈P
ϕi (x) Vi j , ∀x ∈ Ω, j = 1, . . . , n, (2.22) 

where .P is the set of all degrees of freedom in .ΩR excepted those belonging to 
the interface between .ΩR and its counterpart. This interface is denoted by .IR . As  
explained in [ 94], the test functions are null on the interface.IR , as if Dirichlet bound-
ary conditions were imposed to the RID. On this interface, displacements follow the 
shape of the modes .ψk according to Eq. (2.19). The hyper-reduction method gives 
access to reduced coordinates.(γk)k=1,...,n that fulfill the following balance equations, 
for contactless problems: 

.  ̂u(x) =
n

∑

k=1

ψk(x) γk, ∀x ∈ ΩR (2.23) 

.

{

ΩR

ε(ψ R j ) : σ (ε( ̂u)) dΩ (2.24) 

. −
{

ΩR

ψ R j fμ dΩ −
{

∂ΩR∩∂ΩN

ψ R j Tμ, N dS = 0. (2.25) 

. ∀ j = 1, . . . , n (2.26) 

The matrix form of the hyper-reduced balance equations reads: find .γ ∈ R
n such 

that
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. ̂u(x) =
N

∑

i=1

ϕi (x) ̂qi , ∀x ∈ ΩR, (2.27) 

. ̂q = V γ , (2.28) 

.F HR(γ ) := V[P, :]T F (V γ )[P], (2.29) 

.F HR(γ ) = 0, (2.30) 

where .V[P, :] denotes a row restriction of matrix .V to indices in . P. The reduced 
Newton-Raphson step reads: 

. ̂uk(x) =
N

∑

i=1

ϕi (x) ̂qk
i , ∀x ∈ ΩR, (2.31) 

. ̂qk = V γ k, (2.32) 

.KHR := V[P, :]T DFμ

D ̂u
( ̂uk−1)[P, :] V, (2.33) 

.KHR (γ k − γ k−1) = −V[P, :]T F ( ̂uk−1)[P], (2.34) 

where the reduced stiffness matrix.KHR is computed by using solely the elements of 
the RID.ΩR . We assume that the matrix.KHR is full rank. This assumption is always 
checked in numerical solutions of hyper-reduced equations. Rank deficiency may 
appear when the RID construction do not account for the contribution of a reduced 
basis dedicated to stresses. 

Once the RID is represented as a finite element mesh, this hyper-reduction scheme 
is intrusive solely for the linear solver involved in the Newton-Raphson step and its 
related convergence criterion. Nevertheless, the mesh of the RID has to include labels 
for the set . P or its counterpart .IR . This counterpart is the set of degrees of freedom 
connected to elements of the original mesh that are not in the reduced mesh. 

Remarks: 

• Here the most complex operations are indeed the computation of .KHR and the 
solution of the reduced linear system of equations. They respectively scale linearly 
with .card(P) n2 and . n3. Hence .n3 has to be small enough compared to .N if we 
consider the computational complexity for the solution of sparse linear systems in 
the finite element method. 

• Because of the spreading nature of interpolation points, most of the time, the RID 
is not a compact subdomain. 

• The hyper-reduced order model is a kind of submodel where the displacements at 
the interface .IR follow the shape of the modes .ψk according to Eq. (2.19). 

• Finite element corrections for displacements and stresses can be easily computed 
over the RID once the reduced prediction have been achieved. This scheme is 
termed Hybrid Hyper-Reduction in [ 46]. 

• A parallel programming of the hyper-reduction method has been proposed in [ 95].
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• Reduced order models not only save computational time, they save computational 
resources including energy consumption savings as explained in [ 90] and memory 
footprint [ 46]. 

Property 1: In linear elasticity, if .KHR is full rank, the hyper-reduced balance 
equations are equivalent to an oblique projection of the finite element prediction 
.q ∈ R

N : 

.∏T := V[P, :]T K[P, :], (2.35) 

. ̂q = V (∏T V)−1∏T q, (2.36) 

.and ∏T
 ̂q = ∏T q, (2.37) 

with .K q = F. Hence the hyper-reduced prediction of the reduced vector .γ is a 
minimizer for . f (β): 

.γ ★ ∈ R
n, f (γ ★) = ||∏T

(

V γ ★ − q
) ||22. (2.38) 

Here.∏ is a projector for elastic stresses in.ΩR according to the reduced test functions: 

.

N
∑

i=1

∏ik (V γ − q)i =
{

ΩR

ε(ψ R k) : (σ ( ̂q) − σ (q)) dΩ. (2.39) 

The proof is straightforward. Here, .KHR = ∏T V. The Jacobian matrix for . f
reads .J = VT ∏ ∏T V = (KHR)T KHR . If  .KHR is full rank, then . J is symmetric 
definite positive and .J−1 = (KHR)−1 (KHR)−T . Then, both the minimization prob-
lem and the hyper-reduced equation have a unique solution. The solution of the 
minimization problem is: 

.q f = V J−1VT ∏ ∏T q, (2.40) 

. = V (KHR)−1 ∏T q, (2.41) 

. = V (KHR)−1 V[P, :]T K[P, :] q, (2.42) 

. = V (KHR)−1 V[P, :]T F[P], (2.43) 

. =  ̂q. (2.44) 

As an intermediate result, Eq. (2.42) is the oblique projection. 
In linear elasticity, the Céa’s lemma holds. Let us denote .q◦ ∈ R

N the minimizer 
of the upper bound in Eq. (2.3) related to this lemma:
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.q◦ = arg min
q★∈RN

||~u −
N

∑

i=1

ϕi q
★
i ||, (2.45) 

.~v◦ =
N

∑

i=1

ϕi q
◦
i . (2.46) 

The best projection of the minimizer .q◦ in the approximation space is denoted by 
.γ P : 

.γ P = argming∈Rn (q◦ − V g)TM(q◦ − V g), (2.47) 

.~vP =
N

∑

i=1

ϕi (V γ P)i . (2.48) 

Let us introduce an ideal reduced basis .V◦ ∈ R
N×n (It assumes that .n is an 

ideal reduced dimension) such that: .q◦ = V◦ γ ◦, and .V◦TMV◦ = I, where . Mi j =
⟨ϕi ,ϕ j ⟩. Hence .γ P = VTMV◦ γ ◦. 

Property 2: In linear elasticity, the upper bound of approximation error is 
increased by a Chordal distance [101] between . V and the ideal reduced basis .V◦: 

.||~u −~v◦|| ≤ ||~u −~vP|| + ||γ ◦||2 dCh(V◦,V), (2.49) 

where .dCh(V◦,V) is the Chordal distance between .V◦ and . V. 
Hence, the smaller the Chordal distance between the sub-space spanned by. V and 

.V◦, the better the reduced prediction by using a Galerkin projection (When the RID 
covers the full domain). A certification of the reduced projection can be achieved, 
when all errors admit an upper bound, by following the constitutive relation error 
proposed in [ 47, 55]. 

The Chordal distance uses the principal angles .θ ∈ R
n , .θk ∈ [0, π/2[ for . k =

1, . . . , n, computed via a full singular value decomposition: 

.VT MV◦ = U cos(θ)U◦T , UTU = U◦TU◦ = I, (2.50) 

.dCh(V◦,V) = ||sin(θ)||F , (2.51) 

.||U◦||2F = n, (2.52) 

where .|| · ||F is the Frobenius norm. Here, .cos(θ) and .sin(θ) are cosine and sine 
diagonal matrices. In addition the following property holds when a full SVD is 
computed: 

.U◦ U◦T = I, U UT = I. (2.53) 

The proof of the previous property is straightforward by using the triangular 
inequality. We just need to prove that: 

.||~v◦ −~vP|| ≤ ||γ ◦||2 dCh(V◦,V).
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Hence, the proof is the following: 

. ||~v◦ −~vP||2 = γ ◦T (V◦ − V VTMV◦)T M (V◦ − V VTMV◦) γ ◦

= γ ◦T (I − V◦TMVVTMV◦) γ ◦. (2.54) 

Therefore 

.||~v◦ −~vP||2 = γ ◦T (I − U◦ cos(θ)2 U◦T ) γ ◦ (2.55) 

. = γ ◦T U◦(I − cos(θ)2) U◦T γ ◦ (2.56) 

. = γ ◦T U◦sin(θ)2 U◦T γ ◦ (2.57) 

. = ||sin(θ) U◦T γ ◦||22. (2.58) 

For all matrices .A ∈ R
n×m and .B ∈ R

m×n the following property holds: 

. ||AB||F ≤ ||A||F ||B||F ,

and for .a ∈ R
n: .||a||F = ||a||2. 

Thus: 
.||~v◦ −~vP||2 ≤ ||sin(θ)||2F ||U◦T γ ◦||22 ≤ ||sin(θ)||2F ||γ ◦||22. (2.59) 

Property 3: When the identity matrix is substituted for. K in Eqs. (2.35) and (2.36) 
is known as the Gappy POD reconstruction [ 35] of truncated variables .q[P]. The  
reconstructed vector in .R

N is: 

.~q = V (V[P, :]T V[P, :])−1V[P, :]T q[P]. (2.60) 

This Gappy POD reconstruction is useless for displacement variables because the 
oblique projection in Eq. (2.36) is a direct outcome of the hyper-reduced prediction. 
But such a reconstruction is very convenient for stress variables that the hyper-
reduced scheme forecasts only on .ΩR . The reconstructed stress variables reads: 

.~qσ = Vσ (Vσ [Pσ
, :]T Vσ [Pσ

, :])−1Vσ [Pσ
, :]T qσ [Pσ ], (2.61) 

where .Pσ
is the set of all stress indices available in .ΩR . Since the RID contains 

interpolation points for .Vσ , these points are included in .Pσ
, therefore the truncated 

matrix.Vσ [Pσ
, :] is full column rank and the reconstruction is a well posed problem. 

Remark about the RID construction and the DEIM: If the RID contains solely 
the elements connected to interpolation points related to the reduced basis . V, such 
that .P = Pu , then the Gappy POD gives the interpolation scheme of the DEIM: 

.~qDE IM = V (V[Pu, :])−1 q[Pu]. (2.62) 

But, when considering the hyper-reduction scheme, one can observe overfitting in 
the sense that the train set of displacement is very well approximated by the DEIM
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reconstruction, but the hyper-reduced predictions are not accurate. For this reason, we 
recommend the use of the additional reduced basis .Vσ and the related interpolation 
points. 

Various applications of the hyper-reduction method using a RID have been devel-
oped for: 

• thermal problems in structures or solids, in [ 88], 
• boundary element models [ 93], 
• reduced simulations of sintering processes [ 99], 
• ductile damage predictions, including unstable localisation of strains [ 97], 
• reduction of multidimensional domains, when space variables are an Euclidean 
space of arbitrary dimension .D > 3 [ 98], 

• simulation of viscoelastic-viscoplastic composites materials [ 74], 
• model calibration in plasticity of materials [ 37, 46, 96], 
• contact problems using Lagrange multipliers [ 38, 62], 
• arc length algorithm for buckling problems or strain localisation [ 59], 
• micromorphic continua including higher order stress fields [ 48]. 

2.3.5 Hyper-Reduction via Empirical Cubature 

To assemble the linearized equations of the reduced Newton algorithm (2.13) when 
using the ROM in the online phase, hyper-reduction techniques via empirical cuba-
ture aim to compute the costly integrals over the high-fidelity domain by replacing 
the high-dimensional quadrature formula by a low-dimensional reduced quadrature 
with positive weights. The ECSW [ 36], ECM [ 45] and LPEQP [100] are methods 
implementing such reduced quadratures. In this section, we present the ECM, more 
details are available in [ 19]. 

We consider the high-fidelity model described in Sect. 2.2. The integrals involved 
in the assembling of the linearized Eq. (2.7) make use of high-fidelity quadrature 
formulas. Apply such quadrature to the reduced internal forces vector: 

.

F̂ int
i (t) :=

{

Ω

σ
(

∈(û), y
)

(x, t) : ∈ (ψi ) (x)

=
∑

e∈E

ne
∑

k=1

ωkσ
(

∈(û), y
)

(xk, t) : ∈ (ψi ) (xk), 1 ≤ i ≤ n,

(2.63) 

where. E denotes the set of elements of the mesh,.ne the number of quadrature points 
for the element . e, .ωk and .xk are the quadrature weights and points associated to . e. 
The total number of quadrature points is denoted .NG . 

The ECM aims to approximate the high-fidelity quadrature by a reduced quadra-
ture with positive weights, which, when applied to the reduced internal forces vector, 
writes
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.F̂ int
i (t) ≈

ng
∑

k '=1

ω̂k 'σ
(

∈(û), y
)

(x̂k ' , t) : ∈ (ψi ) (x̂k '), 1 ≤ i ≤ n, (2.64) 

where .ω̂k ' > 0 and .x̂k ' are respectively the reduced quadrature weights and points, 
and .ng << NG is the length of the reduced quadrature. 

Denote . fq := σ
(

∈(u(q//n)+1), y
) : ∈

(

ψ(q%n)+1
)

, .1 ≤ q ≤ nNc. where .// and . %
are the quotient and the remainder of the Euclidean division. Denote as well . ZnG

a subset of .[1; NG] of size .nG and .JZnG ∈ R
nNc×nG and .b ∈ N

nNc such that for all 
.1 ≤ q ≤ nNc and all .1 ≤ q ' ≤ nG , 

.JZnG =
(

fq(xZnG
q' )

)

1≤q≤nNc, q '∈ZnG

, b =
({

Ω

fq

)

1≤q≤nNc

, (2.65) 

where .ZnG
q ' denotes the .q '-th element of .ZnG . We remind that . n is the number of 

POD modes, see Sect. 2.3.3.2. Let.ω̂ ∈ R
+n
G ,. 

(

JZnG ω̂
)

q =
nG
∑

q '=1

ω̂q 'σ
(

∈(u(q//n)+1), y
)

(xZnG
q' ) : ∈

(

ψ(q%n)+1
)

(xZq' ), .1 ≤ q ≤ nNc, is a candidate approximation for 

.

{

Ω

σ
(

∈(u(q//n)+1), y
) : ∈

(

ψ(q%n)+1
) = bq , .1 ≤ q ≤ nNc. The problem of finding 

the more accurate reduced quadrature formula of length .nG for the reduced internal 
forces vector is: 

.
(

ω̂,ZnG
) = arg min

ω̂'∈R+nG ,Z'nG ⊂[1;NG ]
||

||JZ'nG ω̂' − b
||

|| , (2.66) 

where.||·|| denotes the Euclidean norm. Minimizing the length of the reduced quadra-
ture formula as well leads to a NP-hard problem, which solution can be approximated 
using a Nonnegative Orthogonal Matching Pursuit algorithm, see Algorithm 2.2. 

Algorithm 2.2: Nonnegative Orthogonal Matching Pursuit. 
Input : J , b, tolerance ∈Op.comp., xk , 1  ≤ k ≤ NG 
Output: ω̂k , x̂k , 1  ≤ k ≤ d. 

1 Set Z = ∅, k' = 0, ω̂ = 0 and  r0 = b ; // initialization 
2 while ||rk' ||2 > ∈Op.comp. ||b||2 do 
3 Z ← Z ∪ max index

(

(

J[1;NG ]
)T 

rk'
)

4 ω̂ ← arg 
ω̂'>0 

min
||

||b − JZ ω̂'||
||

2 

5 rk'+1 ← b − JZ ω̂ 
6 k' ← k' + 1 
7 end 
8 d ← k '
9 x̂k := xZk , 1  ≤ k ≤ d
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In Algorithm 2.2, .J[1;NG ] satisfies the definition (2.65) with .ZnG = [1; NG]. The  
positivity of the weights of the reduced quadrature preserves the spectral properties 
of the operator associated with the high-fidelity problem, see [ 19, Remark 1]. 

2.3.6 Computational Complexity 

In this section we restrict our attention to elliptic problems or to linearized problems. 
The bilinear part of the weak form for finite-dimensional solution spaces is a matrix. 
When using Finite Element solution space, this matrix is sparse. But when using a 
reduced solution space, this matrix is usually a full matrix. Therefore, computational 
complexity of the finite element prediction is the complexity of the solution of sparse 
linear system. It scales linearly with .N ω2, where . ω is the band width of the sparse 
matrix. For the reduced prediction, the solution of a full linear system scales linearly 
with . n3. We recommend to restrict linear model reduction schemes, with or without 
hyper-reduction, to reduced dimension . n lower than .N 1/3, otherwise the solution of 
reduced equation will have a computational complexity similar to the complexity of 
the finite element model. This recommendation does not concern explicit solvers. 

2.4 Nonlinear Manifold Learning for Projection-Based 
Reduced-Order Modeling 

Consider a parametrized variability, and a set of snapshots generated using the high-
fidelity model over a sampling of the parameter domain. The parametrized problem is 
said nonreducible when applying a linear data compression over this set of snapshots 
leads to a ROB containing too many vectors for the online problem to feature an 
interesting speedup. Formally, this happens when the Kolmogorov n-width . dn(M)

decreases too slowly with respect to . n, where we recall that . n is the cardinality of 
the ROB, 

.dn(M) := inf
Hn∈Gr(n,H)

sup
u∈M

inf
v∈Hn

||u − v||H , (2.67) 

with the Grassmannian .Gr(n,H) being the set of all .n-dimensional subspaces of 
.H and.Hn ∈ Gr(n,H) the subspace spanned by the considered ROB. Qualitatively, 
the solution manifold .M covers too many independent directions to be embedded 
in a low-dimensional subspace. To address this issue, several techniques have been 
developed: 

• Problem-specific methods tackle the difficulties of some specific physics problems 
that are known to be nonreducible, such as advection-dominated problems which 
have been largely investigated, for instance in [ 16, 49, 85].
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• Online-adaptive model reduction methods update the ROM in the exploitation 
phase by collecting new information online as explained in [102], in order to limit 
extrapolation errors when solving the parametrized governing equations in a region 
of the parameter space that was not explored in the training phase. The ROM can 
be updated for example by querying the high-fidelity model when necessary for 
basis enrichment [ 18, 44, 56, 80, 88]. 

• ROM interpolation methods [ 6– 9, 24, 64– 68, 75, 76] use interpolation techniques 
on Grassmann manifolds or matrix manifolds to adapt the ROM to the parameters 
considered in the exploitation phase by interpolating between two precomputed 
ROMs. 

• Dictionaries of basis vector candidates enable building a parameter-adapted ROM 
in the exploitation phase by selecting a few basis vectors. This technique is pre-
sented in [ 54, 72] for the Reduced Basis method. 

• Nonlinear manifold ROM methods [ 57, 63] learn a nonlinear embedding and 
project the governing equations onto the corresponding approximation manifold, 
by means of a nonlinear function mapping a low-dimensional latent space to the 
solution space. 

• Dictionaries of ROMs rely on the construction of several local ROMs adapted to 
different regions of the solution manifold. These local ROMs can be obtained by 
partitioning the time interval [ 32, 33], the parameter space [ 33, 34, 42, 44, 51, 
52, 82], or the solution space [ 10, 11, 27, 40, 77, 82, 92]. 

In the following Sects. 2.4.1 and 2.4.2, we provide more details on the last two 
entries of the previous list. 

2.4.1 Nonlinear Dimensionality Reduction via Auto-Encoder 

Nonlinear manifold learning means that the solution manifold is approximated by 
a domain in the ambient solution space that is not included in a low-dimensional 
vector subspace, as illustrated in Fig. 2.3. 

Let us consider a formal representation of parabolic and nonlinear Partial Dif-
ferential Equations (PDEs) that are parameterized with respect to some physical 
parameters of interest. We mean by physical parameters the parameters that appear 
directly within the equations such as the boundary conditions, the viscosity for fluid 
mechanics (henceforth the Reynolds number), the time step for dynamical systems 
of fluid flows or infectious diseases, etc. These parameters are denoted. μwithout any 
loss of generality as introduced in the preceding section. The formal representation 
of the equations is given as follows: 

.
∂~u

∂t
= f (~u, μ). (2.68)
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Fig. 2.3 Nonlinear manifold learning 

Reduced order modeling based on nonlinear data compression techniques might 
be a solution for example when the described physical fields by the model equations 
require a large number of vectors in the ROM as specified above. Nevertheless there 
are cases where even if the physical solution fields are completely reducible, the 
Galerkin projection may not be appropriate for the model equations describing this 
physics. 

Convection-diffusion PDEs have this stability issue even more generally when 
considering Galerkin projection using finite element basis functions. In the literature, 
it is proved that the coherent structures of a turbulent, unsteady and in-compressible 
fluid flow are reproducible by a small number of POD basis functions. However, 
if these functions are used to solve the Newton-Raphson problem of the associated 
reduced order Galerkin dynamical system, then an instability appears as a function of 
the time. In the literature, many solutions are proposed to tackle this difficulty while 
keeping the reduced order approximation in a linear space spanned by the POD basis 
functions. We can refer to the Petrov-Galerkin technique, the least square minimiza-
tion of the equations residual, the variational finite element method, etc. Recently, 
nonlinear approximations of the solution fields in a manifold of reduced dimension 
start to gain importance in the literature. In this case, the reduced order model is said 
to be a nonlinear projection based reduced model. Some authors introduced nonlin-
ear approximations using Deep Learning approaches for projection based reduced 
models. We find in the literature more classical nonlinear approximations based on 
the Kernel POD technique. 

In what follows, we make a focus from the literature on Deep Learning projection 
based reduced models and their different possible formulations. More precisely, we 
are talking about Deep AutoEncoders (DAEs) from the domain of Deep Learning. 
DAEs are artificial neural networks formed of layers of spatial convolutions, nonlin-
ear activation functions and linear systems called fully connected functions. These 
architectures are used to perform nonlinear dimensional reduction, following unsu-
pervised data compression. Henceforth, the DAE allows to determine latent features 
within a set of given inputs.
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We denote by. h and. g respectively the encoder mapping and the decoder mapping 
of a DAE. In general . g is the transpose mapping of . h. We denote by .  ̂α the reduced 
latent features inferred by . h. The dimension of the latent features is equal to the 
intrinsic dimensionality of the manifold as stated in Remark 2.1 in [ 63]. This intrinsic 
dimensionality is in the current case the dimension .Nμ of the vector of parameters 
. μ, which may include the time variable also. 

We note that the reduced latent features of a DAE are not parameterized variables 
in general. In other words they can be seen as non-parametric features associated with 
a given set of inputs. This formulation is interesting in the framework of projection-
based model reduction, where the associated parameters are given straightforwardly 
by the physical equations. Hence, knowing the variable parameters within the inputs 
data helps only with the determination of the intrinsic dimension of the manifold. 

In the literature, we find two different formulations for DAEs projection based 
reduced models. 

The first formulation was proposed by Kashima [ 53] and Hartman et al. [ 43]. 
It is very analogical to the Galerkin formulation of projection based reduced mod-
els: given . h and . g such that .g ◦ h : ~u −→  ̂u and . ̂u ≈ ~u, then the reduced model is 
formulated as follows: 

.
∂

∂t
 ̂α(μ) = h ◦ f ◦ g( ̂α(μ)) ,  ̂α(t = 0) = h(~u(t = 0)) (2.69) 

. = h ( f (g( ̂α(μ)), μ)) . (2.70) 

In the above formulation, the authors relied on the following three points in order to 
set the time derivative of the latent features equal to the right hand side of Eq. (2.69). 

• .
∂

∂t
g( ̂α(μ)) belongs to the manifold described by .μ −→ ~u(μ), 

• .h

(

∂

∂t
g( ̂α(μ))

)

= ∂

∂t
h (g( ̂α(μ))), 

• .h ◦ g = INμ
. 

Remark 2.1 The first two above items are hypothesis that are fulfilled in the case 
where. h and. g are linear or affine functions. The last item is fulfilled theoretically by 
the inputs data compression using parameters optimisation of the DAE architecture. 

The second formulation of DAEs projection based reduced models is proposed 
in [ 63], where a least square minimisation of the residual of parabolic PDEs because 
of the decoder approximation is performed. Then, the reduced model is formulated 
as follows in order to determine the reduced latent features: 

.
∂

∂t
 ̂α(μ) = argmin

 ̂v(μ)∈RNμ ||J ( ̂a(μ)) ̂v(μ) − f (g( ̂a(μ)), μ)||22 , (2.71) 

where. ̂v(μ) is the time derivative of. ̂a(μ), .||.||2 denotes the mean square norm or the 
euclidean norm and, . J is the Jacobian matrix of the decoder mapping which belong
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element-wise to the tangent space to the solutions manifold at a given point. . J is 
expressed as follows: 

. J :  ̂a −→ ∇g( ̂a).

In this second formulation, the authors do not suppose that the velocity of the decoder 
approximation is in the manifold of the solutions because mathematically it belongs 
to the tangent space to the manifold at a given point. Hence, they claim that encoding 
the decoder approximation will produce a poor approximation by the reduced model. 

2.4.2 Piecewise Linear Dimensionality Reduction 
via Dictionary-Based ROM-Nets 

Parts of this section has been inspired from the authors previous work [ 30]. 
Piecewise linear manifold learning means that the solution manifold is approxi-

mated by a dictionary of local linear subspaces, as illustrated in Fig. 2.4, where we 
denote .M the solution manifold. 

The solution manifold is partitioned to get a collection of subsets .Mk ⊂ M that 
can be covered by a dictionary of low-dimensional subspaces, enabling the use of 
local linear ROMs. If .{Mk}k∈[[1;K ]] is a partition of .M, then: 

.∀k ∈ [[1; K ]], ∀N ∈ N
∗, dN (Mk) ≤ dN (M). (2.72) 

The concepts of ROM-net and dictionary-based ROM-net are introduced in [ 27], 
which we present in this section. Suppose we dispose of an already computed dic-
tionary of ROMs for the parametrized problem (2.4), where each element of the 
dictionary is a ROM that can approximate the problem on a subset of the solution 
manifold .M. A dictionary-based ROM-net is a machine learning algorithm trained 
to assign the parameter.μ ∈ X to the ROM of the dictionary leading to the most accu-

Fig. 2.4 Piecewise linear manifold learning
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Fig. 2.5 Exploitation phase of a dictionary-based ROM-net. .K local ROMs, combined with a 
classifier .CK for automatic ROM .CK (μ) recommendation, are used to predict the quantity of 
interest. Z(μ)

rate reduced prediction. This assignment, called model recommendation in [ 77], is 
a classification task, see Fig. 2.5. 

The dictionary of ROMs is constructed in a clustering stage, during which snap-
shots are regrouped depending on their respective proximity on .M, in the sense of 
a particular dissimilarity measure we introduced in [ 29] and [ 26]. The dissimilar-
ity between two parameter values .μ,μ' ∈ X, denoted by .δ(μ,μ'), involves the sine 
of the principal angles between subspaces associated to the solutions of the HFM 
.u(μ), u(μ') ∈ M, see  [  26, Definition 4.10]. Applying a k-medoids clustering algo-
rithm on the solution manifold.M using the dissimilarity. δ leads to an optimal parti-
tioning for a dictionary of local ROMs, in a sense introduced in [ 26, Property 4.13]. 
We refer to the remaining of [ 26] for the description of a practical efficiency criterion 
of the dictionary-based ROM-net, which enables to decide, before the computation-
ally costly steps of the workflow, if a dictionary of ROMs is preferable to one global 
ROM, and how to calibrate the various hyperparameters of the ROM-net. 

Remark 2.2 Importance of the classification. One could argue that the classification 
step can be replaced by choosing the cluster . k for which the dissimilarity measure 
.δ(μ, μ̃k)between the parameter. μ and the cluster medoid.μ̃k is the smallest. However, 
we recall that the computation of the dissimilarity measure requires solving the 
HFM at the parameter value . μ, which would render the complete model reduction 
framework useless. Hence, the classification step enables to bypass this HFM solve 
and directly recommend the appropriate local ROM. 

As briefly mentioned in the introduction of Sect. 2.4, local ROMs can be con-
structed by partitioning the parameter space [ 33, 34], in which case the classification 
step is not required: the cluster affectation is made by computing distances directly 
in the parameter space. In other cases, partitioning in the solution space can be 
considered without requiring a classification step [ 10]. Consider a time-dependent 
problems where the initial condition is not a parameter of the problem, and sup-
pose an efficient computation of the clustering distance in the solution space based 
on the reduced solution at the previous time-step. Then, local basis affectation and 
switching is possible without requiring classification. 

The training of the classifier can be difficult when working with physical fields: 
simulations are costly, data are in high dimension and classical data augmentation
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techniques for images cannot be applied. Hence, we can consider replacing the HFM 
by an intermediate-fidelity solver for generating the data needed for the training of 
the classifier, by considering coarser meshes and fewer time steps. We point out that 
the HFM should be used at the end for generating the data required in the training of 
the local ROMs. We propose in [ 28] improvements for the training of the classifier 
in our context by developing a fast variant of the mRMR [ 83] feature selection 
algorithm, and new class-conserving transformations of our data, acting like a data 
augmentation procedure. 

2.5 Iterative and Greedy Strategies 

For the sake of the presentation, we have separated the offline and online phases, 
where the Reduced-Order Model is learnt, then exploited. Actually, more involved 
strategies exist, where the ROM is constructed in a iterative fashion. The Reduced 
Basis Method [ 84] is a greedy method, where the ROB is constructed by a sin-
gle snapshot, corresponding to a randomly chosen parameter value, and the ROB 
is enriched by the parameter value that maximizes the error made by the current 
ROM. In complex parameter dependencies, the hyper-reduction scheme can be sim-
ulateously constructed as the ROB grows, see [ 31] for such a scheme, with the EIM 
as hyper-reduction. This greedy construction as been extended to time-dependant 
problems in the POD-greedy method [ 41], and simultaneous hyper-reduction con-
struction have also been proposed [ 88]. 

Such iterative strategies rely on a efficient computation of the error made by the 
ROM. Error estimation is investigated in the next chapter. 
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