Skip to main content

Interactions of Free-Living Nematodes and Associated Microorganisms with Plant-Parasitic Nematodes

  • Chapter
  • First Online:
Sustainable Management of Nematodes in Agriculture, Vol.2: Role of Microbes-Assisted Strategies

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP,volume 19))

  • 135 Accesses

Abstract

Soil nematode communities comprise different trophic groups, including herbivores, bacterivores, fungivores, omnivores, and predators. Aim of this review is to discuss the relationship linking free-living and plant-parasitic nematodes with their associated soil bacteria. Nematodes and bacteria mutual relationships in food webs include pathogenic bacteria transmission, pest control, role in sustainable agriculture and healthy soil, and the regulation of harmful nematodes. Plant-parasitic and free-living nematodes (bacterivores and fungivores) are the most influential groups observed in most agricultural systems. Free-living species are essential in soil nutrient cycling through mineralization and are a resource in sustainable agriculture. They spread and transmit bacteria, and some of them, such as Steinernema and Heterorhabditis, bear symbiont species with pest control capabilities. Metabarcoding analyses showed a complex of bacteria (e.g., Pedobacter) associated with free-living bacterivores nematodes. The association of the free-living nematodes with bacteria can impact the reproduction of plant-parasitic nematodes in soil. Increasing the soil microbial component through decomposition and natural plants in uncultivated soil is associated to increasing numbers of free-living nematodes. However, entomopathogenic species may suppress plant-parasitic nematodes or have no effect on their density in the agricultural system. Free-living bacterivores (e.g., Panagrellus redivivus), omnivores (e.g., Aporcelaimellus), and fungivores (e.g., Aphelenchus avenae) are considered as indicators of soil health in the various natural and agricultural systems. In conclusion, free-living nematodes and their associated microbiome play a critical role in nutrient cycling with an indirect potential in the regulation of plant-parasitic nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, B. J., Fodor, A., Koppenhöfer, H. S., Stackenbrandt, E., Stock, S. P., & Klein, M. G. (2006). Biodiversity and systematic of nematode–bacterium entomopathogens. Biological Control, 37, 32–49. https://doi.org/10.1016/j.biocontrol.2005.11.008

    Article  Google Scholar 

  • Adlimoghaddam, A., Boeckstaens, M., Marini, A. M., Treberg, J. R., Brassinga, A. K., & Weihrauch, D. (2015). Ammonia excretion in Caenorhabditis elegans: Mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1. Journal of Experimental Biology, 218(Pt 5), 675–683. https://doi.org/10.1242/jeb.111856

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, G. L., Caldwell, K. N., Beuchat, L. R., & Williams, P. L. (2003). Interactions of a free-living soil nematode, Caenorhabditis elegans, with surrogates of food-borne pathogenic bacteria. Journal of Food Protection, 66, 1543–1154.

    Article  PubMed  Google Scholar 

  • Andrássy, I. (2005). Free-living nematodes of Hungary (Nematoda errantia). I. In C. Csuzdi & S. Mahunka (Eds.), Pedozoologica Hungarica, N. 3 (518pp.). Hungarian Natural History Museum.

    Google Scholar 

  • Baquiran, J. P., Thater, B., Sedky, S., De Ley, P., Crowley, D., & Orwin, P. M. (2013). Culture independent investigation of the microbiome associated with the nematode Acrobeloides maximus. PLoS One, 8, e67425. https://doi.org/10.1371/journal.pone.0067425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat, A. H., Chaubey, A. K., Shokoohi, E., & Mashela, P. W. (2019). Study of Steinernema hermaphroditum (Nematoda, Rhabditida), from the West Uttar Pradesh, India. Acta Parasitologica, 64, 720–737. https://doi.org/10.2478/s1168

    Article  CAS  PubMed  Google Scholar 

  • Bhat, A. H., Chaubey, A. K., Shokoohi, E., & Machado, R. A. R. (2021). Molecular and phenotypic characterization of Heterorhabditis indica (Nematoda: Rhabditida) nematodes isolated during a survey of agricultural soils in Western Uttar Pradesh, India. Acta Parasitologica, 66, 236–252. https://doi.org/10.1007/s11686-020-00279-y

    Article  CAS  PubMed  Google Scholar 

  • Bohlen, P. J., & Edwards, C. A. (1994). The response of nematode trophic groups to organic and inorganic nutrient inputs in agroecosystems. In J. W. Doran, D. C. Coleman, D. F. Bezdicek, & B. A. Stewart (Eds.), Defining soil quality for a sustainable environment (pp. 235–244). Agronomy Society of America.

    Google Scholar 

  • Bongers, T., & Ferris, H. (1999). Nematode community structure as a bioindicator in environmental monitoring. Tree, 14, 224–228.

    CAS  PubMed  Google Scholar 

  • Britto, D., & Kronzucker, H. (2002). NH4+ toxicity in higher plants: A critical review. Journal of Plant Physiology, 159, 567–584. https://doi.org/10.1078/01761610222260815

    Article  CAS  Google Scholar 

  • Brmež, M., Ivezić, M., & Raspudić, E. (2006). Effect of mechanical disturbances on nematode communities in arable land. Helminthologia, 43, 117–121.

    Article  Google Scholar 

  • Castillo, J. D., Vivanco, J. M., & Manter, D. K. (2017). Bacterial microbiome and nematode occurrence in different potato agricultural soils. Microbial Ecology, 74, 888–900. https://doi.org/10.1007/s00248-017-0990-2

    Article  PubMed  Google Scholar 

  • Chen, H., Li, B., Fang, C., Chen, J., & Wu, J. (2007). Exotic plant influences soil nematode communities through litter input. Soil Biology and Biochemistry, 39, 1782–1793.

    Article  CAS  Google Scholar 

  • Chen, S. Y., Sheaffer, C. C., Wyse, D. L., Nickel, P., & Kandel, H. (2012). Plant-parasitic nematode communities and their associations with soil factors in organically farmed fields in Minnesota. Journal of Nematology, 44, 361–369.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, X. Y., Xue-Liang, Tian, X. L., Wang, Y. S., Lin, R. M., Mao, Z. C., Chen, N., & Xie, B. Y. (2013). Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation. Scientific Reports, 3, 1869. https://doi.org/10.1038/srep01869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darsouei, R., Karimi, J., & Shokoohi, E. (2014). Oscheius rugaoensis and Pristionchus maupasi, two new records of entomophilic nematodes from Iran. Russian Journal of Nematology, 22, 141–155.

    Google Scholar 

  • Dirksen, P., Marsh, S. A., Braker, I., Heitland, N., Wagner, S., Nakad, R., et al. (2016). The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biology, 14, 38. https://doi.org/10.1186/s12915-016-0258-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doran, J. W., & Safley, M. (1997). Defining and assessing soil health and sustainable productivity. In C. E. Pankhurst, B. M. Doube, & V. V. S. R. Gupta (Eds.), Biological indicators of soil health (pp. 1–28). CAB International.

    Google Scholar 

  • Edin, E., & Viketoft, M. (2017). Free-living plant-parasitic nematodes do not affect the efficiency of seed tuber fungicide treatment against Rhizoctonia solani. American Journal of Potato Research, 94, 258–265. https://doi.org/10.1007/s12230-016-9561-1

    Article  CAS  Google Scholar 

  • Ekschmitt, K., Bakonyi, G., Bongers, M., Bongers, T., Boström, S., Dogan, H., et al. (2001). Nematode community structure as indicator of soil functioning in European grassland soils. European Journal of Soil Biology, 37, 263–268. https://doi.org/10.1016/S1164-5563(01)01095-0

    Article  Google Scholar 

  • Fallon, D. J., Kaya, H. K., Gaugler, R., & Sipes, B. S. (2002). Effects of entomopathogenic nematodes on Meloidogyne javanica on tomatoes and soybeans. Journal of Nematology, 34, 239–245.

    PubMed  PubMed Central  Google Scholar 

  • Ferreira, T. D. F., Souza, R. M., & Dolinski, C. (2011). Assessing the influence of the entomopathogenic nematode Heterorhabditis baujardi LPP7 (Rhabditina) on embryogenesis and hatching of the plant-parasitic nematode Meloidogyne mayaguensis (Tylenchina). Journal of Invertebrate Pathology, 107, 164–167. https://doi.org/10.1016/j.jip.2011.04.002

    Article  PubMed  Google Scholar 

  • Ferris, H., & Tuomisto, H. (2015). Unearthing the role of biological diversity in soil health. Soil Biology and Biochemistry, 85, 101–109.

    Article  CAS  Google Scholar 

  • Ferris, H., Venette, R. C., & Lau, S. S. (1996). Dynamics of nematode communities in tomatoes grown in conventional and organic farming systems, and their impact on soil fertility. Applied Soil Ecology, 3, 161–175.

    Article  Google Scholar 

  • Ferris, H., Bongers, T., & de Goede, R. G. M. (2001). A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13–29.

    Article  Google Scholar 

  • Ferris, H., Pocasangre, L. E., Serrano, E., Muñoz, J., Garcia, S., Perichi, G., & Martinez, G. (2012). Diversity and complexity complement apparent competition: Nematode assemblages in banana plantations. Acta Oecologica, 40, 11–18.

    Article  Google Scholar 

  • Freckman, D. W. (1988). Bacterivorous nematodes and organic-matter decomposition. Agriculture Ecosystems and Environment, 24, 195–217. https://doi.org/10.1016/0167-8809(88)90066-7

    Article  Google Scholar 

  • Gaugler, R. (Ed.). (2002). Entomopathogenic nematology (p. 388). CABI Publishing.

    Google Scholar 

  • Gaugler, R., & Bilgrami, A. (Eds.). (2004). Nematode behaviour (p. 419). CABI Publishing.

    Google Scholar 

  • Gibs, D. S., Anderson, G. L., Beuchat, L. R., Carta, L. K., & Williams, P. L. (2005). Potential role of Diploscapter sp. strain LKC25, a bacterivorus nematode from soil, as a vector of food borne pathogenic bacteria to postharvest fruits and vegetables. Applied and Environmental Microbiology, 71, 2433–2437.

    Article  Google Scholar 

  • Grewal, P. S., Lewis, E. E., & Venkatachari, S. (1999). Allelopathy: A possible mechanism of suppression of plant-parasitic nematodes by entomopathogenic nematodes. Nematology, 1, 735–743.

    Article  Google Scholar 

  • Griffiths, B. S., Wheatley, R. E., Olsen, T., Henriksen, K., Ekelund, F., & Rønn, R. (1998). Dynamics of nematodes and protozoa following the experimental addition of cattle or pig slurry to soil. Soil Biology and Biochemistry, 30, 1379–1387.

    Article  CAS  Google Scholar 

  • Haegeman, A., Vanholme, B., Jacob, J., Vandekerckhove, T. T., Claeys, M., Borgonie, G., & Gheysen, G. (2009). An endosymbiotic bacterium in a plant-parasitic nematode: Member of a new Wolbachia supergroup. International Journal of Parasitology, 39, 1045–1054. https://doi.org/10.1016/j.ijpara.2009.01.006

    Article  PubMed  Google Scholar 

  • Hassani-Kakhki, M., Karimi, J., & Shokoohi, E. (2013). Molecular and morphological characterization of Pristionchus pacificus (Nematoda: Rhabditida: Neodiplogastridae), a new record of an entomophilic nematode from Iran. Biologia, 68, 910–917. https://doi.org/10.2478/s11756-013-0232-0

    Article  Google Scholar 

  • Heininger, P., Hoss, S., Claus, E., Pelzer, J., & Traunspurger, W. (2007). Nematode communities in contaminated river sediments. Environmental Pollution, 146, 64–76.

    Article  CAS  PubMed  Google Scholar 

  • Igiehon, N., & Babalola, O. (2018). Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. International Journal of Environmental Research and Public Health, 15, 574. https://doi.org/10.3390/ijerph15040574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingham, R. E., Trofymow, J. A., Ingham, E. R., & Coleman, D. C. (1985). Interactions of bacteria, fungi, and their nematode grazers: Effects on nutrient cycling and plant growth. Ecological Monographs, 55, 119–140.

    Article  Google Scholar 

  • Ishibashi, N., & Kondo, E. (1986). Steinernema feltiae (DD-136) and S. glaseri persistence in soil and bark compost and their influence on native nematodes. Journal of Nematology, 18, 310–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail, A. E., Rawia, A. E., & El-Nagdi, W. M. A. (2006). Effect of different composts, biofertilizers and olive pomace as soil amendments on Rotylenchulus reniformis, growth and chemical analysis of jasmine. Egyptian Journal of Applied Science, 2, 909–916.

    Google Scholar 

  • Javed, N., Khan, S., Imran-Ul-Haq, Atiq, M., & Kamran, M. (2012). Effect of Steinernema glaseri and Heterorhabditis indica on the plant vigour and root-knot nematodes in tomato roots at different densities and time of applications. Pakistan Journal of Zoology, 44, 1165–1170.

    Google Scholar 

  • Jensen, H. J., & Siemer, S. R. (1971). Protection of Fusarium and Verticillium propagules from selected biocides following ingestion by Pristionchus lheritieri. Journal of Nematology, 3, 23–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanfra, X., Liu, B., Beerhues, L., Sørensen, S. J., & Heuer, H. (2018). Free-living nematodes together with associated microbes play an essential role in apple replant disease. Frontiers in Plant Science, 9, 1666. https://doi.org/10.3389/fpls.2018.01666

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenney, E., & Eleftherianos, I. (2016). Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture. International Journal for Parasitology, 46. https://doi.org/10.1016/j.ijpara.2015.09.005

  • Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P., & Rasmann, S. (2016). The abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Frontiers in Ecology and Evolution, 4, 84. https://doi.org/10.3389/fevo.2016.00084

    Article  Google Scholar 

  • Khan, Z., & Kim, Y. H. (2007). A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Applied Soil Ecology, 35, 370–379.

    Article  Google Scholar 

  • Khan, M. W., & Pathak, K. N. (1993). Nematodes as vectors of bacterial and fungal plant pathogens. In M. W. Khan (Ed.), Nematode interactions (pp. 251–272). Springer. https://doi.org/10.1007/978-94-011-1488-2

    Chapter  Google Scholar 

  • Lacey, L. A., Frutos, F., Kaya, H. K., & Vail, V. (2001). Insect pathogens as biological control agents: Do they have future? Biological Control, 21, 230–248.

    Article  Google Scholar 

  • LaMondia, J. A., & Cowles, R. S. (2002). Effects of entomopathogenic nematodes and Trichoderma harzianum on the strawberry black root rot pathogens Pratylenchus penetrans and Rhizoctonia fragariae. Journal of Nematology, 34, 351–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster, J., Frontera-Suau, R., & Abebe, E. (2018). A peek into the microbiome of two free-living aquatic nematodes Anticoma & Daptonema. Nematoda, 5, e012018.

    Article  Google Scholar 

  • Lewis, E. E., & Grewal, P. S. (2005). Interactions with plant-parasitic nematodes. In P. S. Grewal, R. U. Ehlers, & D. I. Shapiro-Ilan (Eds.), Nematodes as biocontrol agents (pp. 349–362). CABI Publishing.

    Chapter  Google Scholar 

  • Lewis, E. E., Grewal, P. S., & Sardanelli, S. (2001). Interactions between Steinernema feltiae–Xenorhabdus bovienii insect pathogen complex and root-knot nematode Meloidogyne incognita. Biological Control, 21, 55–62.

    Article  Google Scholar 

  • López-Fando, C., & Bello, A. (1995). Variability in soil nematode populations due to tillage and crop rotation in semi-arid mediterranean agrosystems. Soil and Tillage Research, 36, 59–72.

    Article  Google Scholar 

  • Machado, R. A. R., Thönen, L., Arce, C. C. M., Theepan, V., Prada, F., Wüthrich, D., et al. (2020). Engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm. Nature Biotechnology, 38, 600–608. https://doi.org/10.1038/s41587-020-0419-1

    Article  CAS  PubMed  Google Scholar 

  • Majdi, N., & Traunspurger, W. (2015). Free-living nematodes in the freshwater food web: A review. Journal of Nematology, 47, 28–44.

    PubMed  PubMed Central  Google Scholar 

  • McSorley, R. (2022). Soil-inhabiting nematodes. Retrieving from https://edis.ifas.ufl.edu/in138. Accessed on July 2022.

  • Meyer, J. M., Baskaran, P., Quast, C., Susoy, V., Rödelsperger, C., Glöckner, F., & Sommer, R. (2017). Succession and dynamics of Pristionchus nematodes and their microbiome during decomposition of Oryctes borbonicus on La Réunion Island. Environmental Microbiology, 19, 1476–1489. https://doi.org/10.1111/1462-2920.13697

    Article  CAS  PubMed  Google Scholar 

  • Nagesh, M., & Parvatha Reddy, P. (2000). Status of mushroom nematodes and their management in India. Integrated Pest Management Reviews, 5, 213–224.

    Article  Google Scholar 

  • Navarro, P. D. (2012). Entomopathogenic nematodes: Their interactions with plant pathogens and insecticides in the soil. http://hdl.handle.net/10150/265815. Access on 21 Sept 2020.

  • Neher, D. A. (1999). Nematode communities in organically and conventionally managed agricultural soils. Journal of Nematology, 31, 142–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neher, D. A. (2001). Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33, 161–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nour, S. M., Lawrence, J. R., Zhu, H., Swerhone, G. D. W., Welsh, M., Welacky, T. W., & Topp, E. (2003). Bacteria associated with cysts of the soybean cyst nematode (Heterodera glycines). Applied and Environmental Microbiology, 69, 607–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurashikin-Khairuddin, W., Abdul-Hamid, S. N. A., Mansor, M. S., Bharudin, I., Othman, Z., & Jalinas, J. (2022). A review of entomopathogenic nematodes as a biological control agent for red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Insects, 13, 245. https://doi.org/10.3390/insects13030245

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyczepir, A., Shapiro-Ilan, D. I., Lewis, E. E., & Handoo, Z. (2004). Effect of entomopathogenic nematodes on Mesocriconema xenoplax populations in peach and pecan. Journal of Nematology, 36, 181–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogier, J., Pagès, S., Frayssinet, M., & Gaudriault, S. (2020). Entomopathogenic nematode-associated microbiota: From monoxenic paradigm to pathobiome. Microbiome, 8, 25. https://doi.org/10.1186/s40168-020-00800-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pankhurst, C., Doube, B. M., & Gupta, V. V. S. R. (1997). Biological indicators of soil health. Wallingford.

    Google Scholar 

  • Poinar, G. O., Jr., & Georgis, R. (1990). Characterization and field application of Heterorhabditis bacteriophora strain HP88 (Heterorhabditidae: Rhabditida). Revue de Nématologie, 13, 387–393.

    Google Scholar 

  • Procter, D. L. C. (1986). Fecundity, reproductive effort, age-specific reproductive tactics and intrinsic rate of natural increase of a high arctic nematode belonging to the genus Chiloplacus. Holarctic Ecology, 9, 104–108.

    Google Scholar 

  • Renčo, M., & Baležentiené, L. (2015). An analysis of soil free-living and plant-parasitic nematode communities in three habitats invaded by Heracleum sosnowskyi in Central Lithuania. Biological Invasions, 17, 1025–1039. https://doi.org/10.1007/s10530-014-0773-3

    Article  Google Scholar 

  • Renčo, M., & Kováčik, P. (2012). Response of plant parasitic and free living soil nematodes to composted animal manure soil amendments. Journal of Nematology, 44, 329–336.

    PubMed  PubMed Central  Google Scholar 

  • Robinson, A. F. (1995). Optimal release for attracting M. incognita, Rotylenchus reniformis and other nematodes to carbon dioxide in sand. Journal of Nematology, 27, 42–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sajnaga, E., & Kazimierczak, W. (2020). Evolution and taxonomy of nematode-associated entomopathogenic bacteria of the genera Xenorhabdus and Photorhabdus: An overview. Symbiosis, 80, 1–13. https://doi.org/10.1007/s13199-019-00660-0

    Article  CAS  Google Scholar 

  • Šalamún, P., Renčo, M., Kucanová, E., Brázová, T., Papajová, I., Miklisová, D., & Hanzelová, V. (2012). Nematodes as bioindicators of soil degradation due to heavy metals. Ecotoxicology, 21, 2319–2330. https://doi.org/10.1007/s10646-012-0988-y

    Article  CAS  PubMed  Google Scholar 

  • Samaliev, H. Y., Andreoglou, F. I., Elawad, S. A., Hague, N. G. M., & Gowen, S. R. (2000). The nematicidal effects of the Pseudomonas oryzihabitans and Xenorhabdus nematophilus on the root-knot nematode Meloidogyne javanica. Nematology, 2, 507–514.

    Article  Google Scholar 

  • Samuel, B. S., Rowedder, H., Braendle, C., Félix, M. A., & Ruvkun, G. (2016). Caenorhabditis elegans responses to bacteria from its natural habitats. Proceedings of the National Academy of Sciences, USA, 113, E3941–E3949. https://doi.org/10.1073/pnas.1607183113

    Article  CAS  Google Scholar 

  • Sapkota, R., & Nicholaison, M. (2015). High-throughput sequencing of nematode communities from total soil DNA extractions. BMC Ecology, 15, 3. https://doi.org/10.1186/s12898-014-0034-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Schloter, M., Nannipieri, P., Sørensen, S. J., & Van Elsas, J. D. (2018). Microbial indicators for soil quality. Biology and Fertility of Soil, 54, 1–10. https://doi.org/10.1007/s00374-017-1248-3

    Article  CAS  Google Scholar 

  • Schmidt, J. H., Hallmann, J., & Finckh, M. R. (2020). Bacterivorous nematodes correlate with soil fertility and improved crop production in an organic minimum tillage system. Sustainability, 12, 6730. https://doi.org/10.3390/su12176730

    Article  CAS  Google Scholar 

  • Seddiqi, E., Shokoohi, E., Divsalar, N., & Abolafia, J. (2016a). Descriptions of four known species of the families Panagrolaimidae and Alloionematidae (Nematoda: Rhabditida) from Iran. Tropical Zoology, 29, 87–110.

    Article  Google Scholar 

  • Seddiqi, E., Shokoohi, E., & Karimi, J. (2016b). New isolate of Heterorhabditis baceriophora from southeastern, Iran. Iranian Journal of Animal Biosystematics, 12, 181–190.

    Google Scholar 

  • Shapiro-Ilan, D. I., Nyczepir, A. P., & Lewis, E. E. (2006). Entomopathogenic nematodes and bacteria applications for control of the pecan root-knot nematode, Meloidogyne partityla, in the greenhouse. Journal of Nematology, 38, 449–454.

    PubMed  PubMed Central  Google Scholar 

  • Shokoohi, E. (2023). Impact of agricultural land use on nematode diversity and soil quality in Dalmada, South Africa. Horticulturae, 9, 749. https://doi.org/10.3390/horticulturae9070749

    Article  Google Scholar 

  • Shokoohi, E., Abolafia, J., Kheiri, A., & Zad, J. (2007). Nematodes of the order Rhabditida from Tehran province (Iran). The genus Chiloplacus Thorne, 1937. Russian Journal of Nematology, 2, 129–151.

    Google Scholar 

  • Shokoohi, E., Mashela, P. W., & Iranpour, F. (2019). Diversity and seasonal fluctuation of tylenchid plant-parasitic nematodes in association with alfalfa in the Kerman Province (Iran). Journal of Nematology, 51, 1–14. https://doi.org/10.21307/jofnem-2019-074

    Article  Google Scholar 

  • Shokoohi, E., Mashela, P. W., & Machado, R. A. R. (2022). Bacterial communities associated with Zeldia punctata, a bacterivorous soil-borne nematode. International Microbiology, 25, 207–216. https://doi.org/10.1007/s10123-021-00207-8

    Article  CAS  PubMed  Google Scholar 

  • Sikder, M. M., Vestergård, M., Sapkota, R., Kyndt, T., & Nicolaisen, M. (2020). A novel metabarcoding strategy for studying nematode communities. BioRxiv. https://doi.org/10.1101/2020.01.27.921304

  • Singh, J. S. (2015). Plant–microbe interactions: A viable tool for agricultural sustainability. Applied Soil Ecology, 92, 45–46.

    Article  Google Scholar 

  • Soto, L. A., Salcedo, D. L., Arvizu, K., & Botello, A. V. (2017). Interannual patterns of the large free-living nematode assemblages in the Mexican exclusive economic zone, NW Gulf of Mexico after the deepwater horizon oil spill. Ecological Indicators, 79, 371–381. https://doi.org/10.1016/j.ecolind.2017.03.058

    Article  Google Scholar 

  • Steiner, G. (1933). Rhabditis lambdiensis, a nematode possibly acting as a disease agent in mushroom beds. Journal of Agricultural Research, 46, 427–435.

    Google Scholar 

  • Stirling, G., & Linsell, K. (2020). Nematodes as a biological indicator. Retrieved from http://www.soilquality.org.au/factsheets/nematodes-as-a-biological-indicator

  • Stirling, G. R., Stanton, J. M., & Marshall, J. W. (1992). The importance of plant-parasitic nematodes to Australian and New Zealand agriculture. Australasian Plant Pathology, 21, 104–115.

    Article  Google Scholar 

  • Tahat, M. M., Alananbeh, K. M., Othman, Y. A., & Leskovar, D. I. (2020). Soil health and sustainable agriculture. Sustainability, 12, 4859. https://doi.org/10.3390/su12124859

    Article  CAS  Google Scholar 

  • Tian, X., Cheng, X., Mao, Z., Chen, G., Yang, J., & Xie, B. (2011). Composition of bacterial communities associated with a plant parasitic nematode, Bursaphelenchus mucronatus. Current Microbiology, 6, 117–125. https://doi.org/10.1007/s00284-010-9681-7

    Article  CAS  Google Scholar 

  • Traunspurger, W., Höss, S., Witthöft-Mühlmann, A., Wessels, M., & Güde, H. (2012). Meiobenthic community patterns of oligotrophic and deep lake Constance in relation to water depth and nutrients. Fundamental and Applied Limnology, 180, 233–248.

    Article  CAS  Google Scholar 

  • Treonis, A. M., Unangst, S. K., Kepler, R., Buyer, J., Cavigelli, M., Mirsky, S., & Maul, J. (2018). Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Scientific Reports, 8, 2004. https://doi.org/10.1038/s41598-018-20366-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • USDA. (2015). Biological indicators and soil functions. https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/health/assessment/?cid=stelprdb1237387

  • Wardle, D. A. (2002). Communities and ecosystems: Linking the aboveground and belowground components. Princeton University Press.

    Google Scholar 

  • Yadav, S., Patil, J., & Kanwar, R. (2018). The role of free living nematode population in the organic matter recycling. International Journal of Current Microbiology and Applied Sciences, 7, 2726–2734. https://doi.org/10.20546/ijcmas.2018.706.321

    Article  CAS  Google Scholar 

  • Yeates, G. W., Bardgett, R. D., Cook, R., Hobbs, P. J., Bowling, P. J., & Potter, J. F. (1997). Faunal and microbial diversity in three welsh grassland soils under conventional and organic management regimes. Journal of Applied Ecology, 34, 453–470.

    Article  Google Scholar 

  • Yergaliyev, T. M., Alexander-Shani, R., Dimerets, H., Pivonia, S., Bird, D. M., Rachmilevitch, S., & Szitenberg, A. (2020). Bacterial community structure dynamics in Meloidogyne incognita-infected roots and its role in worm-microbiome interactions. mSphere, 5, e00306–e00320. https://doi.org/10.1128/mSphere.00306-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, D., Feng, H., Schuelke, T., De Santiago, A., Zhang, Q., Zhang, J., Luo, C., & Wei, L. (2019). Rhizosphere microbiomes from root knot nematode non-infested plants suppress nematode infection. Microbial Ecology, 78, 470–481. https://doi.org/10.1007/s00248-019-01319-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Shokoohi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shokoohi, E. (2024). Interactions of Free-Living Nematodes and Associated Microorganisms with Plant-Parasitic Nematodes. In: Chaudhary, K.K., Meghvansi, M.K., Siddiqui, S. (eds) Sustainable Management of Nematodes in Agriculture, Vol.2: Role of Microbes-Assisted Strategies. Sustainability in Plant and Crop Protection, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-031-52557-5_5

Download citation

Publish with us

Policies and ethics