
8PhaseBehaviour of Colloidal Rods
MixedwithDepletants

So far, we have considered the phase behaviour of colloidal spheres mixed with
depletants. In Chap.3, we considered the simplest type of depletant, the penetrable
hard sphere (PHS). We then extended this treatment to ideal and excluded volume
polymers inChap.4; and inChap.6,we considered small colloidal spheres (including
micelles). Colloidal rods as depletants were addressed in Chap.7; however, Chap.7
only considered dilute dispersions of rods, in which the rods assume all configura-
tions and are hence isotropic. In this chapter, we consider the phase behaviour of
mixtures of colloidal rods and polymeric depletants, and we also account for higher
rod concentrations and the corresponding phase states.

8.1 Experimental Observations with Rod-Like Particle
Dispersions

Colloidal rods can be subdivided into synthetic inorganic rods, rod-like clay particles
and biological rods (see also [1]). Examples are given in Fig. 8.1. Suspensions of
rod-like particles exhibit interesting phase transitions and can assume various phase
states. For a description of the various liquid crystalline phases, we refer the reader
to the standard textbook on liquid crystals by de Gennes and Prost [2]. Lyotropic
liquid crystalline phases were recognised a long time ago in suspensions of rod-like
inorganic vanadium pentoxide (V2O5) colloids by Zocher [3], and later in solutions
of biological particles comprising the tobacco mosaic virus (TMV) by Bawden et al.
[4].

Upon concentrating a dilute rod suspension, a transition from an isotropic phase
to an orientationally ordered phase occurs for rods with a length–diameter ratio
L/D > 3.5. This is the so-called nematic liquid crystal phase, for which examples
are given in Figs. 8.2 and 8.3. The first step of the isotropic–nematic phase transition
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(a) V2O5 [5] (b) goethite [6] (c) boehmite [7]

(d) -FeOOH [8] (e) titania [9] (f) gold [10]

(g) CdSe [11] (h) silica [12] (i) Ge-immogolite [13]

(j) immogolite [14] (k) sepiolite [15]

(l) tabacco mosaic virus [16] (m) cellulose [17]

Fig.8.1 Transmission electronmicroscopy (TEM)micrographs of a–i synthetic inorganic, j, k clay
and l, m biological rod-like colloids. Reprinted with permission from a Ref. [5], copyright 1991
American Chemical Society (ACS); b Ref. [6], copyright 2006 ACS; c Ref. [7], copyright 1994
ACS; d Ref. [8], copyright 1996 ACS; e Ref. [9], copyright 2020Wiley; f Ref. [10], copyright 2009
Elsevier; g Ref. [11], copyright 2002 ACS; h Ref. [12], copyright 2011 ACS; i Ref. [13], copyright
2013 the Royal Society of Chemistry (RSC); j Ref. [14], copyright 1970 Cambridge University
Press; k Z. Zhang, Soochow University, China; l Ref. [16], copyright 1985 EDP Sciences; m
Ref. [17], copyright 1996 ACS
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(a) V2O5 [3] (b) tobacco mosaic virus (TMV) [4]

(c) boehmite [18] (d) TMV [19]

Fig. 8.2 Examples of a, b nematic tactoids and c, d macroscopic isotropic–nematic phase coexis-
tence observed between crossed polarisers. Reprinted with permission from: a Ref. [3], copyright
1925 Wiley; b Ref. [4], copyright 1936 Nature; c P. A. Buining, Utrecht University; d Ref. [19],
copyright 2006 Wiley

is the formation of spindle-like droplets (so-called tactoids) of the nematic phase that
float in the isotropic phase (Fig. 8.2a, b). Over time, these droplets coalesce to give
rise to a macroscopic nematic bottom phase and an isotropic top phase. The rods
have a different refractive index in parallel and perpendicular directions. As a result,
the nematic phase displays typical interference colours under crossed polarisers due
to a difference in retardation of light in different directions (Fig. 8.2c, d).

Oster [24] found an additional liquid crystal phase in suspensions of TMV in
which the particles are ordered in periodic layers. On average, the axes of the rods
are perpendicular to the layers (Fig. 8.3) and within the layers the rods behave like a
two-dimensional fluid. This phase is known as the smectic A phase (SmA) [2] . For a
long time, it was argued that attractive interactions between the rods were necessary
for the occurrence of this phase. Frenkel, Stroobants andLekkerkerker [25], however,
showed by using Monte Carlo simulations that smectic ordering occurs in a fluid of
hard rod-like particles, i.e., a smectic phase may appear solely driven by entropy.

Figure8.3b–d gives examples of confocalmicroscopy images of silica rod suspen-
sions with L/D ≈ 6. Upon increasing the silica rod concentration, Kuijk et al. [22]



244 8 Phase Behaviour of Colloidal Rods Mixed with Depletants

I N SmA AAA ABC

(a) schematic representation

(b) isotropic (c) nematic (d) smectic A (e) smectic A

Fig. 8.3 a Sketches [20,21] and b–d experimental observations [22] of the structure of different
phases of silica rods. e Iridescence observed in a smectic liquid crystal of TMV [23]. Reprinted
with permission from a Peters et al. [20] under the terms of CC-BY-4.0; b–d Ref. [22], copyright
2012 RSC and e Ref. [23], copyright 1985 Wiley

found isotropic (b), nematic (c) and smectic ordering (d) also. The layered structure
of the SmA with layer distances of the order of the wavelength of light gives rise
to impressive iridescence (see Fig. 8.3e). Computer simulations have revealed that
hard rods can also give rise to crystal phases AAA and ABC at high rod densities
(see Fig. 8.3a) [26,27].

The effect of nonadsorbing polymer on the isotropic–nematic phase transition has
been studied since the 1940swith a focus on the practical possibilities of isolation and
separation of viruses [28,29] (see Sect. 1.3.2.4). It was observed that the addition of
relatively small amounts of polymer to virus suspensions led to the ‘precipitation’ of
the virus particles (i.e., the formation of a concentrated phase of the virus particles).
Only much later in the 1990s were experiments initiated on model suspensions of
rod-like colloids mixed with polymers to study the treatment given in the previous
chapters to rod-like colloidsmixedwith depletant, and the results compared to theory
and computer simulations.

To connect the experimental observations discussed here to theoretical predic-
tions, we first discuss the Onsager theory (Sect. 8.2) to quantify the I–N phase tran-
sition of long hard rods and its extension to describe charged rods. Subsequently,
scaled particle theory of rods is discussed to approximate finite size effects of rods
in Sect. 8.3. In Sect. 8.4, theory for the phase behaviour of mixtures of hard rods
and nonadsorbing polymers is presented, and experimental examples are provided in
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Sect. 8.5. Finally, higher order phase states are included in the theoretical description
in Sect. 8.6. All sections are supplemented by comparison with experiment and/or
computer simulation results.

8.2 Onsager Theory of the Isotropic–Nematic Transition

8.2.1 Long Hard Rods

As we saw in the previous chapters, colloidal phase transitions of hard particles
are governed by entropy. This was first revealed by Onsager, who showed that the
isotropic–nematic (I–N) phase transition in assemblies of hard rods is driven solely
by entropy. He realised that an attractive force is not necessary for the I–N transition
by showing that an assembly of repelling rods exhibits a transition from an isotropic
to a nematic state due to a gain of packing entropy that compensates the loss of
orientational entropy. Onsager also demonstrated that the I–N transition may be
treated within a virial expansion of the free energy. In fact, this is a unique example
of a phase transition that can be treated using a virial expansion. For very thin,
rigid, hard particles the transition occurs at a very low volume fraction and the virial
expansion may even be truncated after the second virial term, leading to an exact
theory for infinitely thin particles. In the following, we give a brief exposition on
Onsager’s theory. For more details, we refer the reader to [30,31].

The Helmholtz free energy F for a dispersion of N hard rods (which we, as in
Sect. 7, model as spherocylinders with length L and diameter D) in a volume V in
the second virial approximation can be written as

F[ f ]
NkT

= constant − 1 + ln c + s[ f ] + cρ[ f ]. (8.1)

We have lumped in the constant quantities that do not affect the phase transition, i.e.,
have the same value in the coexisting phases. The quantity c is the dimensionless
concentration

c = bn, (8.2)

where b = (π/4)L2D is the excluded volume and n = N/V is the number density
of the rods. The orientational entropy is expressed through s[ f ]:

sor = −k
∫

f (�) ln[4π f (�)]d� = −ks[ f ], (8.3)

where f (�) is the orientational distribution function, which gives the probability
of finding a spherocylinder with an orientation characterised by the solid angle �.
Finally, −kcρ[ f ] is the packing entropy per particle, with

ρ[ f ] = 4

π

∫ ∫
| sin γ| f (�) f (�′)d�d�′, (8.4)



246 8 Phase Behaviour of Colloidal Rods Mixed with Depletants

where γ is the angle between the rods, which depends on their orientations � and
�′ (see Fig. 7.4).

As already remarked, the I–N transition originates from a competition between the
orientational and packing entropy. For low concentrations the orientational entropy
dominates and attains a maximum value for an isotropic distribution f = (4π)−1;
whereas for high concentrations the packing entropy becomes more important,
favouring a nematic orientation distribution. The orientational distribution is deter-
mined by the fact that the free energy must be a minimum. Upon minimising Eq.
(8.1), the integral equation

ln[4π f (θ)] = λ − 8c

π

∫
| sin γ(�, �′)| f (θ′)d�′ (8.5)

is obtained. Here, we have taken into account that f does not depend on the azimuthal
angle but only on θ, the polar angle between the rod vector and the nematic vector.
Furthermore, the distribution function f (θ)must satisfy inversion symmetry, imply-
ing the angles θ and π − θ are equivalent. Note that we assume the nematic phase
is apolar. The Lagrange multiplier λ is determined by requiring that f (θ) fulfils the
normalisation condition ∫

f (�)d� = 1. (8.6)

It is easily seen that the isotropic distribution function

f = 1

4π
(8.7)

satisfies Eq. (8.5) for all concentrations (although it is only for low concentrations
that this corresponds to a minimum of the free energy). For the isotropic phase, s
and ρ attain the values

sI = 0, ρI = 1, (8.8)

and hence
FI

NkT
= constant − 1 + ln c + c. (8.9)

Exercise 8.1. Derive Eq. (8.8) from Eqs. (8.3) and (8.4) using Eq. (8.7).

An exact solution to the non-linear integral equation Eq. (8.5) for higher concen-
trations, where a nematic distribution minimises the free energy, has not yet been
found but ways to solve it numerically have appeared [32,33]. For a didactic account
of how to solve Eq. (8.5) numerically, see Ref. [34]. This allows the determination
of s[ f ] and ρ[ f ] and, from thereon, the free energy in the nematic phase. To be
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in mechanical and chemical equilibrium, both phases must have the same osmotic
pressure and the same chemical potential (see Eqs. (A.13) and (A.14)),

PI(cI) = PN(cN), (8.10a)

μI(cI) = μN(cN). (8.10b)

These quantities can be obtained (see Appendix A) from the free energy using the
standard thermodynamic relations:

P = −
(

∂F

∂V

)
N ,T

, (8.11a)

μ =
(

∂F

∂N

)
V ,T

. (8.11b)

For the isotropic phase, we find from Eq. (8.9)

PIb

kT
= cI + c2I , (8.12a)

μI

kT
= constant + ln cI + 2cI. (8.12b)

Exercise 8.2. Show that Eqs. (8.12a) and (8.12b) follow from Eqs. (8.9) and
(8.11a) and (8.11b).

In the nematic phase, Eq. (8.1) gives

PNb

kT
= cN + c2Nρ[ f ], (8.13a)

μN

kT
= constant + ln cN + s[ f ] + 2cNρ[ f ]. (8.13b)

where the distribution f must be obtained numerically for each concentration from
Eq. (8.5). Solving the coexistence equations (8.10a) and (8.10b) with the above
expressions for the osmotic pressure and chemical potential numerically yields the
coexistence concentrations

cI = 3.290, cN = 4.191. (8.14)

The usual measure of the ordering in the nematic phase is given by the nematic order
parameter S, which is defined as

S =
∫

P2(cos θ) f (û)dû, (8.15)
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where û is an orientational unit vector, and P2 is the second Legendre polynomial.
For a dispersion of isotropic rods S = 0, whereas for ordered phases S can attain
larger values, approaching S → 1 for highly ordered rods. For the nematic phase of
infinitely long rods considered here,

S = 4π
∫ π/2

0
f (θ)

[
3

2
cos2 θ − 1

2

]
sin(θ)dθ (8.16)

has the value

S = 0.7922 (8.17)

for the coexisting nematic phase.
More convenient calculations of the phase transition can be performed by choos-

ing a trial function for the orientational distribution function f with one or more
variational parameters. The free energy as a function of these parameters can then
be minimised with respect to these parameters. Onsager [30] chose the following
function:

fO(θ) = κ cosh(κ cos θ)

4π sinh κ
. (8.18)

This expression only has a single variational parameter (κ) and gives the following
results for the coexisting concentrations and nematic order parameter at coexistence:

cI = 3.340 , cN = 4.486 , S = 0.848. (8.19)

Comparison of these results with the exact values in Eqs. (8.14) and (8.17) shows
that the trial function chosen by Onsager works quite well.

Odijk [35,36] realised that for large values of κ (and thus, for highly ordered
nematics), Onsager’s orientational distribution function can be approximated by a
simple Gaussian distribution function:

fG ∼ Ñ (κ) exp

(
−1

2
κθ2

)
0 ≤ θ ≤ π

2
, (8.20a)

∼ Ñ (κ) exp

(
−1

2
κ(π − θ)2

)
π

2
≤ θ ≤ π. (8.20b)

where Ñ (κ) is a normalisation constant. The advantage of this Gaussian distribution
function is that for large values of κ the quantities s[ f ] and ρ[ f ] can be represented
by the analytic expressions

s[ fG] ∼ ln κ − 1, (8.21)

and

ρ[ fG] ∼ 4√
πκ

. (8.22)
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This leads to the following expression for the free energy in the nematic phase:

F

NkT
∼ constant − 1 + ln c + ln κ − 1 + 4c√

πκ
. (8.23)

Minimising this expression with respect to κ,

∂F

∂κ
= 0, (8.24)

leads to

κ ∼ 4c2

π
. (8.25)

Hence,

F

NkT
∼ constant + ln

4

π
+ 3 ln c. (8.26)

Applying Eqs. (8.11a) and (8.11b) yields the following results for the (osmotic)
pressure and chemical potential of the rods in the nematic phase:

PNb

kT
= 3cN, (8.27a)

μN

kT
= constant + ln

4

π
+ 3 + 3 ln cN. (8.27b)

Combining these with the expressions given by Eqs. (8.12a) and (8.12b) for the
pressure and chemical potential in the isotropic phase, the coexistence Eqs. (8.10a)
and (8.10b) now take the simple forms:

cI + c2I = 3cN (8.28a)

ln cI + 2cI = 3 ln cN + ln

(
4

π

)
+ 3 (8.28b)

From this, we find the following coexisting concentrations:

cI = 3.451, cN = 5.122, (8.29)

implying, via Eq. (8.25), that κ = 33.4. Insertion of Eqs. (8.20a) and (8.20b) into
Eq. (8.16) using this value for κ gives

S = 0.910 (8.30)

for the nematic order parameter in the coexisting nematic phase.
While the results for the Gaussian distribution function differ more from the exact

results than the Onsager trial function (although in both cases the values are too high
for the coexisting concentrations and for the order parameter in the coexisting nematic
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phase), the calculations are substantially simpler [37] and provide a good estimate of
the I–N transition in more complicated situations (that we will encounter in the next
sections). Although the results of Onsager’s theory are of great fundamental and
methodological interest, they refer strictly to infinitely thin hard rods. Hence, the
applicability of the theory to experimental results is limited. In real suspensions of
rod-like particles, we have to take into account one or more of the following aspects:

• particles are not infinitely thin,
• particles may be polydisperse in size,
• particles are not hard but may show (long-range) repulsions, for instance, due to

charges or anchored polymeric brushes,
• there may be attractions between the particles and
• particles may be semiflexible.

Onsager [30] already addressed the issues of additional particle repulsions and poly-
dispersity. These and the other issues raised above have been considered extensively
(for a review, see [31]). Some of these complex elements will be treated in the rest
of this chapter.

8.2.2 Charged Rods

In experimental systems, the rod-like particles are often charged. This means that,
besides the hard-core excluded volume interaction, there is a double layer repul-
sion between the rods that gives rise to a soft repulsive interaction. Double layer
forces between charged colloids in a polar solvent are specified by the range and
the strength of the repulsive interaction [38]. The density of surface charge groups,
which is directly related to the electrostatic surface potential Ψ at the rod surface,
determines the strength of the repulsion. The ionic strength of themediumdictates the
Debye length, which mediates the range of the double layer repulsion. Onsager [30]
proposed to describe charged rods as hard rods with an effective diameter Deff > D.

Stroobants, Lekkerkerker and Odijk [39] used the pair interaction between two
charged rods to compute the second virial coefficient. This revealed an effective rod
diameter that is given by

Deff

D
= 1 + ln A′ + kE + ln 2 − 1

2

D/λD
, (8.31)

where λD is the ionic strength-dependent Debye length (see Sect. 1.2.2), kE is Euler’s
constant ≈ 0.577 and A′ follows from the pair interaction as

A′ = πλDζ2 exp [−D/λD]
2λB

, (8.32)
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with λB the Bjerrum length (see Sect. 1.2.2). The parameter ζ is the proportionality
constant of the outer part of the double layer electrostatic potential profile near a
charged rod [40]:

eΨ (r)

kBT
∼ ζK0(r/λD), (8.33)

where e denotes the elementary charge, r represents the distance from the centre line
of the rod, and K0 is the modified Bessel function of the second kind of order 0. For
a weakly charged rod, the Debye–Hückel approximation provides [41]

eΨDH(r)

kBT
= 4ZλDλBK0(r/λD)

DK1(D/2λD)
, (8.34)

where Z is the linear charge density (per unit length) of the rod and K1 is themodified
Bessel function of the second kind of order 1. Comparison of Eqs. (8.33) and (8.34)
enables ζ to be expressed in Eq. (8.32), giving

A′
DH = 8πZ2λ3

DλB exp [−D/λD]
D2K1

2(D/2λD)
. (8.35)

For thick and thin double layers, this results in the following respective asymptotic
analytical results [31]:

A′
DH �

{
2πZ2λDλB D 	 λD,
8Z2λ2

DλB
D D 
 λD.

(8.36)

Insertion of Deff for D into the equations for hard rods then enables the physical
properties of charged rods to be predicted. One may, for instance, insert the effective
rod concentration given in Eq. (8.2) using Deff to quantify the isotropic–nematic
phase transition of long thin rods outlined in the previous section. It is noted that
electrostatic twisting effects are not accounted for here. For those interested, see, for
instance, Ref. [39].

8.3 Scaled Particle Theory of the Isotropic–Nematic Transition

When considering finite-sized rods (and later on, the effect of depletion attraction
on the I–N transition in rod-like suspensions), we must take into account that the
second virial term B2 no longer strongly exceeds the higher virial terms. When there
are attractions between the rods, nearly parallel configurations are of paramount
importance and B2 is no longer the dominating virial coefficient, as in the case of
long, repulsive rods. It was shown that, for even slightly attractive rods, the third
virial coefficient B3 is almost as large as B2 [42]. This means that we must start
from a theory that takes into account higher virial coefficients. Here, we use scaled
particle theory (SPT) [43], which will be treated in this section. SPT for rods mixed
with polymers will subsequently be addressed in Sect. 8.4, following [44,45].
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SPT—a convenient and tractable way to incorporate higher virial coefficients in
the treatment of the isotropic–nematic phase transition—was applied in Sect. 7.3 to
obtain the osmotic pressure of an isotropic suspension of rods. The starting point of
SPT is the calculation of the reversible workW to insert an additional spherocylinder
into the system of spherocylinders to obtain the excess part of the chemical potential:

μex =
∫

f (�)W (�, 1, 1)d�, (8.37)

where W (�, 1, 1) is the reversible work to insert a spherocylinder with length L
and diameter D and orientation � in a system of hard spherocylinders. In Sect. 7.3,
we considered an isotropic assembly of rods but Eq. (8.37) applies equally well to
an orientationally ordered (nematic) system of rods, as long as we use an accurate
expression for the orientation distribution function, f (�). After replacing the second
virial contribution 2cρ[ f ] in Eq. (8.13b) with the chemical potential μex, we obtain

μ

kT
= constant’ + ln y + s[ f ],

+ (1 + 2 A[ f ])y +
(
A[ f ] + 3

2
B[ f ]

)
y2 + B[ f ]y3.

(8.38)

Here, y has its usual meaning

y = φ

1 − φ
,

with φ the volume fraction of the rods (which equals nv0), and v0 as the spherocylin-
der volume given by

v0 = π

4
LD2 + π

6
D3.

The quantities A[ f ] and B[ f ] are defined as

A[ f ] = 3 + 3(Γ − 1)2

3Γ − 1
ρ[ f ] (8.39)

B[ f ] = 12Γ (2Γ − 1)

(3Γ − 1)2
+ 12Γ (Γ − 1)2

(3Γ − 1)2
ρ[ f ], (8.40)

where

Γ = L

D
+ 1 (8.41)

is the overall length-to-diameter ratio. Using the Gibbs–Duhem equation (see Eq.
(A.12)), one obtains for the pressure

Pv0

kT
= y + A[ f ]y2 + B[ f ]y3 . (8.42)
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Exercise 8.3. Show that Eq. (8.42) recovers the SPT expression for the pres-
sure of a hard-sphere fluid (Eq. (3.37)) by setting Γ = 1 and imposing Eq.
(8.7).

Finally, the Helmholtz energy can be obtained from the relation

F = Nμ − PV ,

leading to

F[ f ]
NkT

= F̃[ f ]
φ

= constant′ − 1 + s[ f ] + ln y + A[ f ]y + 1

2
B[ f ]y2, (8.43)

with F̃ = Fv0/kT V (see Appendix A.2), which will be used in later sections.

Exercise 8.4. Show that in the limit L/D → ∞ and low concentrations the
above expression for the free energy reduces to the free energy in the second
virial approximation Eq. (8.1) with constant′ = constant + ln(L/D).

As indicated earlier, the I–N phase equilibria can be found simultaneously:

• using Eq. (8.24) to minimise F[ f ] numerically with respect to the orientational
distribution function f ,

• calculating the orientation distribution function of f ,
• calculating the (osmotic) pressure and chemical potential and
• solving the coexistence equations.

Hence, there are three equations with three unknowns: the two coexistence con-
centrations and κ. The results for the coexisting concentrations, which now depend
on L/D, are given in Fig. 8.4 (see also [45]). In this figure, we also present Monte
Carlo simulation results [27] and the Onsager limit result (L/D → ∞). Clearly,
the agreement between numerically solving the SPT expressions (solid curves) and
computer simulation results is quite good. In Fig. 8.5, we give the coexistence pres-
sure at isotropic–nematic coexistence for hard spherocylinders as a function of the
aspect ratio L/D.

It is interesting to compare the results obtained with the numerical orientational
distribution function with the results obtained with the Gaussian orientational distri-
bution function Eqs. (8.20a) and (8.20b). Minimising the free energy of Eq. (8.43) is
possible by substituting the expressions for s[ fG] and ρ[ fG] that are given by Eqs.
(8.21) and (8.22). This yields the following expression for κ:

κ = 36

π

(Γ − 1)4

(3Γ − 1)2

(
y + 2Γ

3Γ − 1
y2

)2

. (8.44)
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Fig. 8.4 Isotropic–nematic
phase coexistence for hard
spherocylinders as a function
of the inverse of the aspect
ratio L/D

Fig. 8.5 Pressure Pb/kT at
isotropic–nematic
coexistence for hard
spherocylinders as a function
of D/L . Note v0 =
b[D/L + (2/3)(D/L)2]

Exercise 8.5. Show that in the limit L/D → ∞ and at low rod concentrations
Eq. (8.44) reduces to Eq. (8.25).

Using Eq. (8.44) for κ in s[ fG] and ρ[ fG], and substituting these expressions
in Eqs. (8.38) and (8.42), provides us with analytical expressions for the chemical
potential and pressure in the nematic phase. The expressions for these quantities in
the isotropic phase are obtained by setting s = 0 and ρ = 1 in equations (8.38) −
(8.42). We can then solve the coexistence equations (8.10a) and (8.10b). The results
for the coexisting concentrations and the coexistence pressure obtained using the
Gaussian orientational distribution function are also given in Figs. 8.4 and 8.5 as the
dashed curves.

As in the Onsager limit, the results lie somewhat above the numerical solution
but are still quite reasonable. Given the fact that the Gaussian approximation is
transparent and simple, its use provides an extremely valuablemethod to scan through
a large parameter space as we shall see in the next sections.
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Fig. 8.6 Isotropic–nematic phase transition concentrations of TMV as a function of the ionic
strength. The data points are experimental results redrawn from Ref. [46]. Curves represent SPT
with Deff calculated by using Eq. (8.31) and following [39]. Equation (8.35) was used to calculate
A′. Parameters used: L = 282nm, D = 18nm, charge density Z = −10 e/nm and virus particle
molar mass Mp = 4 · 107 g/mol

This SPT description can be extended to also include the influence of a double
layer surrounding the rods in a polar solvent due to charges at the rod surface.
Basically, one can still apply Eq. (8.43) with Eq. (8.44) to describe charged rods,
but D is instead replaced with Deff given by Eq. (8.31). The I–N phase transition
concentrations for TMV virus as a function of salt concentration are given in Fig. 8.6,
as measured by Fraden et al. [46]. As the ionic strength increases the concentration of
virus in the coexisting phases increases. Without added salt, an isotropic phase of 15
mg/mL TMV coexists with a nematic phase of 23 mg/mL, while, at an ionic strength
of 60 mM, the coexisting concentrations are 90 mg/mL in the isotropic phase and
125mg/mL in the nematic phase. Replacing the electrostatic potential between TMV
particles with an appropriate effective diameter gives a reasonably good description
of the experimentally observed phase boundaries [46]. This provides information on
how the I–N phase coexistence varies with Deff , which in turn depends on the ionic
strength for charged rods.

8.4 Isotropic–Nematic Phase Behaviour of RodsMixed
with Penetrable Hard Spheres

We now consider the effect of added polymer on the phase behaviour of a system of
hard rods. The simplest representation of a polymer is a penetrable hard sphere (PHS)
with diameter σ = 2δ and radius δ equal to the depletion thickness. See Sect. 2.1 for
details about the PHS model.

The starting point for the calculation of the phase behaviour is the semi-grand
potential for the colloidal rods–PHSs system that is in osmotic equilibrium with a
reservoir of PHSs, which sets the chemical potential of the PHSs. This system is
depicted in Fig. 8.7. In the free volume approximation (see Sect. 3.3), we can write
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Fig. 8.7 Osmotic
equilibrium between a
dispersion of hard rods and
penetrable hard spheres (the
system) and a reservoir
containing a penetrable
hard-sphere dispersion

Fig. 8.8 Illustration of the
available free volume (the
unshaded volume) in a
dispersion of hard
spherocylinders

Eq. (3.26) as

�(N1, V , T , μ2) = F0(N1, V , T ) − PR〈Vfree〉0, (8.45)

where N1 stands for the number of rods, μ2 represents the chemical potential of the
depletants (PHSs), PR is the pressure in the reservoir and 〈Vfree〉0 is the free volume
for PHSs in the system of rods, illustrated in Fig. 8.8.
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For F(N1, V , T ), we use the SPT expression (Eq. (8.43)) [43], and the osmotic
pressure of the PHSs in the reservoir is given by

PR = nR2 kT ,

where nR2 is the number density of PHSs in the reservoir. The free volume is again
calculated using the relation

〈Vfree〉0
V

= α = e−W/kT , (8.46)

where W is the reversible work for inserting the PHSs into the hard rod suspension.
An expression for the work of insertionW can again be conveniently obtained using
SPT. The work W is calculated by expanding the PHS to be inserted from zero to
its final size. By writing the size of the scaled PHS as λσ (= 2λδ) in the limit that
λ → 0, the inserted sphere approaches a point particle. In this limit, it is very unlikely
that excluded volumes of the hard rods and added scaled PHS overlap. So,

W (λ) = −kT ln [1 − n1vexcl(λ)] for λ 	 1, (8.47)

where vexcl(λ) is the excluded volume of the added scaled PHS and a hard sphero-
cylinder with length L and diameter D:

vexcl(λ) = π

4
(D + λσ)2 L + π

6
(D + λσ)3. (8.48)

The opposite limit λ 
 1 corresponds to the case when the size of the inserted
PHS is very large. Then W is, to a good approximation, equal to the volume work
needed to create a cavity with volume

π

6
(λσ)3

and is given by

W = π

6
(λσ)3P for λ 
 1, (8.49)

where P is the (osmotic) pressure of the hard rod system given by (Eq. (8.42)).
In SPT, the above two limiting cases are connected by expandingW in a series in

λ:

W (λ) = W (0) +
(

∂W

∂λ

)
λ=0

λ + 1

2

(
∂2 W

∂λ2

)
λ=0

λ2 + π

6
(λσ)3P. (8.50)

This yields

W (λ = 1)

kT
= − ln(1 − φ1) +

[
6Γ q

3Γ − 1
+ 3(Γ + 1)q2

3Γ − 1

]
y1

+ 1

2

(
6Γ

3Γ − 1

)2

q2y21 + 2q3

3Γ − 1

Pv0

kT
,

(8.51)
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where

y1 = φ1

1 − φ1

q = σ

D
= 2δ

D

Inserting (Eq. (8.42)) for the pressure P of spherocylinders leads to the following
expression for the free volume fraction:

α = (1 − φ1) exp [−Q(φ1)] , (8.52)

where

Q(φ1) = ay1 + by21 + cy31 (8.53)

with

a = 6Γ

3Γ − 1
q + 3(Γ + 1)

3Γ − 1
q2 + 2

3Γ − 1
q3, (8.54a)

b = 1

2

(
6Γ

3Γ − 1

)2

q2 +
(

6

3Γ − 1
+ 6(Γ − 1)2

(3Γ − 1)2
ρ[ f ]

)
q3, (8.54b)

c = 2

3Γ − 1

(
12Γ (2Γ − 1)

(3Γ − 1)2
+ 12Γ (Γ − 1)2

(3Γ − 1)2
ρ[ f ]

)
q3. (8.54c)

Exercise 8.6. Check that, in the appropriate limit, Eq. (8.52) with Eqs. (8.53)
and (8.54), α reduces to Eq. (3.38) with a, b and c given by Eq. (3.38).

We now have all the contributions to construct the semi-grand potential � given
in (Eq. (8.45)). In order to obtain the phase behaviour, we proceed along the same
lines as for the system of pure rods involving the following steps:

• minimise � with respect to the orientation distribution function f (compute the
value of κ at which ∂�/∂κ = 0). Note that, in Eq. (8.45), both the free energy
of the pure rod system F0 and the free volume 〈Vfree〉0 depend on the orientation
distribution function f

• evaluate the orientation distribution function f
• calculate the (osmotic) pressure and chemical potential of the rods, which are

given by
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P = −
(

∂�

∂V

)
N1,μ2

= P0 + PR
(

α − n1
dα

dn1

)
, (8.55)

μ1 =
(

∂�

∂N1

)
V ,μ2

= μ0
1 − PR dα

dn1
, (8.56)

where P0 and μ0 are the pressure and chemical potential of the pure rod system,
and

• solve the coexistence relations (Eqs. (A.13) and (A.14))

μI
1

(
nI1,μ2

) = μII
1

(
nII1 , μ2

)
, (8.57)

P I (nI1,μ2
) = P II (nII1 , μ2

)
. (8.58)

Instead of formal minimisation of the free energy leading to an integral equation
for the orientational distribution function f , wewill first use theGaussian distribution
function, which simplifies the calculations considerably while leading to reasonably
accurate results. This is illustrated in Fig. 8.9, where we plot the isotropic–nematic
phase coexistence curve for L/D = 10 and q = 1. On the ordinate, the relative
reservoir concentration of PHSs in the reservoir φR

2 is plotted versus the volume
fraction of hard spherocylinders on the abscissa. The solid curves are the results for
the binodals using the Gaussian distribution function, while the dashed curves were
obtained using formal minimisation (see Ref. [45]). In Fig. 8.4, it was demonstrated
that the Gaussian overestimates the I–N concentrations somewhat for the pure hard

Fig.8.9 Isotropic–nematic phase coexistence for L/D = 10 and q = 1 in the reservoir representa-
tion. The Gaussian orientational distribution function result (solid curves) is compared to the coex-
istence computed using formal minimisation of the oriental distribution function (dashed curves).
Inset: Plot of the nematic order parameter S as a function of φR

2 of the nematic phase (numerical
approach: dotted curve, Gaussian approximation: solid curve) that coexists with the isotropic phase
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Fig.8.10 Phase diagrams calculated using free volume theory for spherocylinders (L/D = 20)with
added PHSs at three size ratios: q = 0.3 (left), q = 1 (middle) and q = 2.5 (right). The upper three
curves are in the reservoir representation and the lower curves are the system results. The Gaussian
form for the ODF was used to minimise the semi-grand potential and compute the coexistence
concentrations

spherocylinder dispersion, which is also shown here. For a pure rod dispersion the
Gaussian approximation provides a too sharply peaked orientation distribution func-
tion f , reflected by a too large value for the nematic order parameter S. Hence, the
loss of orientational entropy is overestimated for the pure rod dispersion.

As the depletant concentration becomes significant and attractions play a dom-
inating role f becomes sharply peaked. This is reflected in a strong increase of
the nematic order parameter S (see the inset in Fig. 8.9). Hence, the Gaussian ori-
entational distribution function becomes increasingly accurate at larger depletant
concentrations.

Phase diagrams for L/D = 20, computed using the Gaussian f , are plotted in
Fig. 8.10 for q = 0.3, q = 1 and q = 2.5. The upper plots are the reservoir depletant–
rod representations, while the lower plots are the system representations. These three
size ratios reflect different scenarios that are found in mixtures of spherocylinders
and depletants when accounting for rods in the isotropic and/or nematic phase states.
Depending on the length-to-width ratio of the rod-like particles and the ratio of
the depletant diameter over the rod diameter, we find the following types of phase
equilibria:

• coexistence between two isotropic phases (dilute and concentrated are the equiva-
lent of vapour and liquid) and a nematic phase. This phase behaviour is predicted
to occur for mixtures of relatively short rods and large depletants, so long-ranged
attractions.

• coexistence between an isotropic and a nematic phase.
• equilibria between two coexisting nematic phases for rodsmixedwith small deple-

tants, so short-ranged attractions.
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Fig.8.11 Critical end point (cep) curves for isotropic–isotropic (I1–I2) and nematic–nematic (N1–
N2) coexistence in dispersions of hard spherocylinders and PHSs as a function of the aspect ratio
L/D. Computed using the Gaussian approximation for the orientational distribution function. Inset:
magnified region for relatively small L/D

• coexistence between one isotropic phase and two nematic phases differing in con-
centration. This phase behaviour is predicted to occur for long rod-like particles
and relatively small depletants.

A critical end point (CEP) exists for both the critical isotropic–isotropic and
nematic–nematic points at given L/D. This CEP identifies the conditions for which a
certain phase transition ceases to exist. The occurrence of the three different regimes
as a function of the geometrical parameters L/D and q is shown in Fig. 8.11, as
marked by the isotropic–isotropic and nematic–nematic critical end points. As a
function of L/D the CEP values provide critical end curves. In the inset of Fig. 8.11,
we have marked the conditions for which we plotted the phase diagrams in Fig. 8.10.

The three types of phase behaviour are illustrated in Fig. 8.10 in a representation
showing colloid volume fraction φ1 against depletant concentration φR

2 . Experimen-
tally, one controls the depletant (for instance, nonadsorbing polymer) concentration
in the system:

n2 = − 1

V

(
∂�

∂μ2

)
N2,V

, (8.59)

rather than the polymer concentration (chemical potential) in the reservoir. Using
the relation

α = n2
nR2

= φ2

φR
2

, (8.60)

phase diagrams in the experimentally accessible (φ1, φ2) plane can be obtained
from the results in the (φ1,φ

R
2 ) plane. The resulting phase diagrams are presented in

Fig. 8.10 (lower diagrams).
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8.5 Experimental Phase Behaviour of Rod–PolymerMixtures

In this section, experimental results on the isotropic–nematic transition in mixed
suspensions of colloidal rods and polymer are discussed and compared to the theory
presented in the previous sections. The experimental results refer to three types of
rod-like colloidal particles, which in suspension give rise to isotropic–nematic phase
separation above a critical concentration:

• stiff and semiflexible virus particles,
• cellulose nanocrystals and
• colloidal boehmite (γ-AlOOH) rods.

In several experimental examples in this chapter, the rods are semiflexible. These
are usually described using the worm-like chain model, (see, for instance, Refs. [47,
48]). In this model, the rod-like object has some flexibility by assuming a gradual
change of the direction of the chain, which is in between the random walk character
of a Gaussian chain and a rigid rod. This gradual change is described by assuming
fluctuations in bond lengths and bond angles. In Fig. 8.12, u(s) is the direction vector
of the chain at position s along the contour of the chain, and Δs is the angle (θP)
between two direction vectors that are a distance apart. The persistence length lP
follows from:

〈u(s) · u(s + Δs)〉 = 〈cos θP(Δs)〉 = exp

(
−Δs

lP

)
. (8.61)

It follows that lP is the characteristic length scale, on which the direction vector u of
the chain varies.

The polymers added to the rod-like particles range from polysaccharides (heparin,
chondroitin sulfate, dextran) to polyethylene oxide (PEO) and polystyrene (PS).

s
O Ls+Δs

u(s)

u(s +Δs)

lP

Fig. 8.12 An example of a configuration of a semiflexible rod described as a worm-like chain
starting at position O , having a length L . The quantity u(s) is the direction vector of the chain at
position s. For explanation of the other symbols, see the main text. Inspired by Fig. 8 in Ref. [31]
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8.5.1 Stiff and Semiflexible Virus Particles Mixed with Polymer

Illustrative examples of rod-like colloidal particles are stiff and semiflexible virus
particles, such as the plant virus tobacco mosaic virus (TMV) and the filamentous
bacteriophages fd-virus, Pf1, Pf4. Table8.1 summarises the characteristics of the
virus particles discussed in this section.

Suspensions of TMV (see Fig. 8.13, taken from Ref. [56]) have long been recog-
nised as an interesting system to study the I–N transition [4]. TMV is a rigid cylin-
drical particle consisting of a protein shell enclosing double-stranded RNA. Fraden
et al. [46] measured the coexisting isotropic and nematic concentrations over a wide
range of ionic strengths (Fig. 8.6).

It was as early as 1942 that Cohen [28] conducted a study directed at the isolation
of TMV from infectious juice and observed that the addition of 5 mg/mL of the
polysaccharide heparin to a dilute TMV suspension (2 mg/mL) in 0.1 M phosphate
buffer (pH = 7.1) resulted in the production of needle-shaped paracrystals 5–20µm
in length (see Fig. 1.11 in Ref. [28]). These crystals may be considered as precursors
of the I–N transition [4]. In the 1990s, Sano and co-workers [56–58] added the
polysaccharide chondroitin sulfate (Chs) to dilute TMV suspensions with a view to
establish the antiviral activity of these polysaccharides. With electron microscopy,
Urakami et al. [56] observed that the addition of very low concentrations of Chs
(1 mg/mL) to dilute TMV suspensions (1 mg/mL) caused the formation of large raft-

Table 8.1 Characteristics of TMV [46], (wild-type) fd [19,49–51], Pf1 [50,52,53] and Pf4 [54,55]
virus particles. Acknowledgements to A. Tarafder, T. Bharat, P. Secor and P. Janmey for their help
with compiling this table

Virus Mp (kDa) L (µm) D (nm) L/D lP (µm)

TMV 4 · 104 0.3 18 17 > 10L

fd 1.64 · 104 0.88 6.6 133 2.5 ≈ 2.8L

Pf1 3.5 · 104 2 6 333 2 ≈ L

Pf4 6.08 · 104 3.8 6 633 2 ≈ 0.5L

Fig. 8.13 TEM micrograph
of TMV particles. Reprinted
with permission from
Ref. [56]. Copyright 1999
AIP Publishing
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Fig. 8.14 TEM micrograph
of ordered TMV particles as
induced by added
chondroitin sulfate.
Reprinted with permission
from Ref. [56]. Copyright
1999 AIP Publishing

Fig. 8.15 I–N phase
coexistence for hard
spherocylinders (L/D = 17)
mixed with PHSs,
mimicking TMV mixed with
polymers for size ratios
q = 0.4 (solid curves) and
q = 1.1 (dot-dashed curves)

like aggregates (Fig. 8.14). The effect of Chs on infectivity may, according to Sano
[57], be ascribed to these raft-like aggregates blocking the decapsulation process of
TMVprotein on the cellmembrane surface. The fact that very lowChs concentrations
lead to aggregation of TMV is attributed to its semirigidity [56,58].

Leberman [29] observed that addition of 6 mg/mL of the flexible polymer
polyethylene oxide (PEO) (M = 6 kDa, Rg = 3.6 nm) to a dilute 1 mg/mL TMV
suspension leads to precipitation of TMV, which may be considered as a sign of
the I–N transition. Figure8.15 presents a comparison of this experimental observa-
tion with the theoretical phase diagram for L/D = 300/18 = 17 and q = 2Rg/D =
2 · 3.6/18 = 0.4, which are the relevant parameters for this mixed TMV–PEO sus-
pension.

From this calculated phase diagram, we observe that at low TMV concentrations a
relative polymer concentrationφp = 0.125 is required to cause I–N phase separation,
which corresponds in this case to a mass concentration of cp = 3φpM/4πNAvR3

g =
6.4 mg/mL. The agreement with the experiment should be considered with care
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since the electrostatic interactions have not been taken into account in the theoretical
calculation.

More extensive measurements on the I–N transition in TMV suspensions with
added PEO (M = 100 kDa, Rg = 10 nm) were carried out by Adams and Fraden
[49]. At TMV concentrations of 20 mg/mL (where the pure rod system is in
the isotropic phase), they observed the first signs of I–N phase separation at 5
mg/mL added PEO and a more definite phase transition for 10 mg/mL added
PEO. For a direct comparison with the experimental observation, Fig. 8.15 also
presents the theoretical phase diagram for L/D = 17 (TMV as before) but now with
q = 2Rg/D = 2 · 10/18 = 1.1, which are the relevant parameters for this mixed
TMV–PEO suspension. From this calculated phase diagram, we observe that at low
TMV concentration a relative polymer concentration φp = 0.25 is required to cause
I–N phase separation, which corresponds in this case to a mass concentration of
cp = 3φpM/4πNAvR3

g = 10 mg/mL. This is again in reasonable agreement with
theory. As mentioned before, the electrostatic interactions that certainly play a role
have not been taken into account, and therefore the comparison with experiment
should be considered with care.

In addition to TMV, the liquid crystal phase behaviour of the semirigid cylindrical
fd-virus has been investigated extensively. The fd-virus particle consists of a protein
shell wound around a single ribbon of single-stranded DNA [59]. Figure8.16 shows
an AFM image of some fd-viruses. Near a neutral pH the linear charge density is
−5 to −20 e/nm. Fraden and co-workers [50] measured the coexisting isotropic and
(chiral) nematic concentrations over a wide range of ionic strengths of the wt fd-
virus. The onset of the (chiral) nematic phase occurs from 10 to 20mg/mL of fd-virus
as the ionic strength is increased from 1 to 100 mM. Dogic et al. [60,61] studied the
phase diagram of mixed suspensions of fd and dextran (Mp = 500 kDa, Rg = 18nm)
and an example is plotted in Fig. 8.17a.

A clear widening of the I–N transition of the fd-virus rod dispersion takes place
upon increasing the dextran concentration. Although this finding is quite general
for the I–N binodal, the corresponding spinodal points related to this phase transi-

Fig. 8.16 Image of fd-virus
mutant type Y21M particles
dried on a mica surface made
using AFM. Scale and depth
indicated. Image kindly
provided by O. Deschaume,
M.P. Lettinga and C. Bartic,
KU Leuven, Belgium
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Fig. 8.17 a Phase diagrams of dispersions containing fd-virus and dextran. Data points are mea-
sured phase coexistences. The phase diagram was measured at an ionic strength of 100 mM at pH
= 8.15 with added 500 kDa dextrans. Data replotted from Ref. [61]. b Predicted I–N phase coex-
istence for spherocylinders (L/D = 133, Deff = 11.57nm, L/Deff = 76.1, ionic strength of 100
mM) mixed with PHSs (2δ/Deff = 2.15). The dextran polymer has Rg = 17.6nm and the charge
density is taken as -10 e/nm

tion seem to be much less affected by adding nonadsorbing polymers [62]. At low
fd-virus concentrations, the I–N transition takes place upon adding large polymer
concentrations.

For direct comparison with the experimental phase diagram, we present the the-
oretical phase diagram for L/D = 880/6.6 = 133 and q = 2Rg/D = 2 · 11/6.6 =
3.3 in Fig. 8.17b. For detailed accounts of the ideal polymer chains, see Refs. [45,61].
The overall agreement between theory and experiment (compare Figs. 8.17a and
8.17b), while far from perfect, is satisfactory considering that fd is not completely
rigid and that dextrans are branched polymers. The rod flexibility is known to have a
significant effect on the I–N phase behaviour [31]. This is demonstrated by the inter-
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Fig. 8.18 Atomic force
microscopy image of Pf1
viruses in monovalent salt.
Image kindly provided by
P.A. Janmey from their study
reported in Ref. [64]

esting work of Barry, Beller and Dogic [63], who compared the phase behaviour of
a mutant filamentous virus, fd Y21M (Fig. 8.16), to that of a conventional fd wt.
The persistence length of fd wt is 2.8 ± 0.7 μm, whereas the persistence length of fd
Y21M is 9.9 ± 1.6 μm. Compared to fd wt, the location of the isotropic–cholesteric
phase transition for fd Y21M shifts to lower densities and approaches values that are
remarkably close to the Onsager prediction for rigid rods.

The filamentous bacteriophages Pf1 [50,53,64] and Pf4 [54,55] are structurally
similar to fd-virus. An atomic force microscopy image of the filamentous bacterio-
phage Pf1 [64] is presented in Fig. 8.18.

Booy and Fowler [65] observed small domains of smectic organisation (cybotactic
clusters [2]) in a nematic phase in suspensions of Pf1 at a concentration of 40mg/mL.
Using optical microscopy Dogic and Fraden [50] observed coexisting regions of the
nematic and smectic phases in suspensions of Pf1 with abrupt boundaries between
the phases, which is evidence of a first-order phase transition.

So far, no liquid crystal phases in pure suspensions of Pf4 have been reported; but
Secor et al. [54] andTarafder et al. [55] observed liquid crystal tactoids in suspensions
of Pf4 upon adding sodium alginate. In Fig. 8.19, we show the concentrations of Pf4
and sodium alginate where the tactoids appear [54].

Tarafder et al. [55] provided beautiful fluorescence microscopy images of Pf4
tactoids observed after mixing Pf4 with sodium alginate (Fig. 8.20a). The key role
of the tactoids is that they can encapsulate the pathogenic bacterium Pseudomonas
aeruginosa, shielding them from antibiotics [54,55,66]. Illustrative fluorescence
microscopy images of this encapsulation (Fig. 8.20b), can be found in [55].
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Fig. 8.19 Phase diagram indicating the stable (one phase) region (closed symbols) and unstable
demixing region (open symbols) in terms of the polymer (alginate) concentration and virus (Pf4)
concentration. The dotted curve that indicates the phase transition concentrations is drawn to guide
the eye. Replotted from the data in Ref. [54]

Fig. 8.20 Fluorescence microscopy images of Pf4 tactoids. a Tactoids observed in a mixture of
1mg/mL Pf4 and 10mg/mL sodium alginate 24h after mixing and b tactoids of Pf4 encapsulate
Pseudomonas Aeruginosa [55]. Figures were kindly provided by A.K. Tarafder and T.A.M. Bharat
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8.5.2 Cellulose Nanocrystals Mixed with Nonadsorbing Polymers

In 1959, Marchessault, Morehead and Walter [67] reported on the formation of
liquid crystals in suspensions of cellulose nanocrystals prepared from cellulose by
acid hydrolysis in sulfuric acid (see Fig. 8.1m for a microscopy image of cellulose
nanorods). The study of the isotropic–(chiral) nematic phase transition in suspensions
of cellulose nanocrystals [68] has since developed into a blossoming and fruitful field
of research (for an overview see Ref. [69]. See also [70,71] for more recent work).
Edgar and Gray [72] studied the effect of 2000 kDa dextran (Rg = 34 nm) on the
phase behaviour of cellulose nanocrystals (average length L = 110 nm, average
diameter D = 10 nm), prepared by acid hydrolysis of cotton filter paper.

In Fig. 8.21, we redraw the I–N phase behaviour at low dextran concentrations.
Above 7 wt % suspensions of these cellulose nanocrystals start to phase separate in
an isotropic and chiral nematic liquid crystal phase. At 13.3wt%, the relative volume
of chiral nematic phase (compared to the total volume) is 79%. This wide biphasic
range is a direct consequence of the polydispersity of the cellulose nanocrystals
[35,73] and has been observed in other dispersions containing polydisperse rod-like
colloids as well [15,74]. When dextran was added to the biphasic region, it led to
a significant broadening of the coexistence region and the dextran preferentially
partitions in the isotropic phase. These features are in agreement with the theory
described in Sect. 8.4.

8.5.3 Sterically Stabilised Colloidal Boehmite RodsMixed
with Polymer

As mentioned in the introduction of this chapter, suspensions of rod-like inorganic
colloids were the first systems in which the I–N transition was observed. In the
early 1960s, Zocher and Torök [75–77] and Bugosh [78] observed interesting liquid

Fig. 8.21 Influence of blue
dextran (Rg/D = 3.4)
concentration (normalised to
φp) on the isotropic–nematic
phase coexistence in
dispersions of rod-like
cellulose nanorods
(L/D = 11) with volume
fraction φ. Replotted from
Edgar and Gray [72]

�
p
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Fig. 8.22 TEM micrograph
of boehmite rods. Image
kindly provided by J.
Buitenhuis,
Forschungszentrum Jülich,
Germany

Fig. 8.23 Triphasic I1–I2–N
equilibrium in dispersions of
boehmite rods and
polystyrene chains in
ortho-dichlorobenzene [79].
Image kindly provided by J.
Buitenhuis,
Forschungszentrum Jülich,
Germany

crystal phase behaviour in aqueous dispersions of colloidal boehmite rods, shown in
Fig. 8.22.

Later, Buining and Lekkerkerker [74] observed isotropic–nematic phase sepa-
ration in a dispersion of sterically stabilised boehmite rods, which approximate
hard rods, in cyclohexane. Buitenhuis et al. [79] studied the effect of added 35
kDa polystyrene (Rg = 5.9 nm) on the liquid crystal phase behaviour of sterically
stabilised boehmite rods with average L = 71 nm and average D = 11.1 nm in
ortho-dichlorobenzene. Different phase equilibria were observed: two biphasic I–N
equilibria (both dilute isotropic phase I1 with nematic N and concentrated isotropic
phase I2 with nematic N) and a triphasic equilibrium I1–I2–N (Fig. 8.23). In this sys-
tem, the boehmite rods are quite polydisperse. Therefore, comparison with theory
should be done with an approach that includes polydisperse rods (see, for instance,
Refs. [33,80]). We further note no I1–I2 coexistence was observed experimentally
but rather an I1-gel at high polymer concentrations. The depletant-mediated appear-
ance of a nonequilibrium long-lived metastable state such as a gel resembles the
behaviour of colloidal sphere/polymer mixtures (see Chap.4).
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8.6 Phase Diagrams of Rod/polymer Mixtures Including
Highly Ordered Phases

In the previous sections we focused on the isotropic–nematic phase transition in
mixed suspensions of rod-like colloids and flexible polymers. In Sect. 8.3, it was
shown that scaled particle theory (SPT) provided the pressure and chemical poten-
tial of the hard spherocylinder reference system. SPT also enabled a route for the
calculation of the free volume fraction, the quantities required in the FVT calculation
of the phase diagram (see Sect. 8.4). Depending on L/D and δ/D, three types of
phase diagrams were obtained (presented in Fig. 8.10). For intermediate q values, a
significant broadening of the I–N biphasic region was obtained. For large q values
an isostructural I1–I2 transition arises in addition, while for small q values an addi-
tional N1–N2 transition arises. The broadening of the biphasic I–N region and also
a triphasic I1–I2–N equilibrium have indeed been observed experimentally in mixed
suspensions of rod-like colloids and flexible polymers [60,72,79]. We noted that the
theoretical prediction of the N1–N2 transition (which, so far, has not been observed
experimentally in mixed suspensions of rod-like colloids and flexible polymers)
should be treated with reservation.

The N1–N2 phase transition is predicted to occur at quite high volume fractions
of rods. At these high volume fractions, the N1–N2 transition may be superseded
by more highly ordered (liquid) crystal phases such as the colloidal smectic phase.
Experimentally, this colloidal smectic phase has been observed [24,50,81] in sus-
pensions of monodisperse rods. Simulations confirmed that hard rods can form a
thermodynamically stable smectic phase [25–27,82]. In this section, we outline how
the more dense highly ordered phases can be accounted for in the phase diagram of
mixtures of rod-like colloids and flexible polymers using FVT.

8.6.1 Full Phase Diagrams of Hard Spherocylinders

Computer simulation results of suspensions containing hard spherocylinders [25–
27] revealed that, with increasing concentration, isotropic (I), nematic (N), smectic–
A (SmA), AAA crystal and ABC crystal phases appear as preferred phase states
(Fig. 8.3a).

As discussed in Sect. 8.2.1, the rods have a random orientation in phase I, while,
in the other phases, they are aligned along a common nematic director. Both I and N
phases are fluids and have no long-range positional order. While SPT [43] provides a
reasonable equation of state for long rods, Parsons–Lee (PL) theory [83–85] is more
accurate for short rods. PL theory is basically an extension of the Carnahan–Starling
equation of state and is discussed in more detail in Sect. 9.2.2. See also [31]. To
accurately cover the full range of aspect ratios, Peters et al. [20] combined SPT and
PL using a sigmoidal interpolation procedure. In the SmA, AAA and ABC phases,
the particles are confined in layers and the nematic director is perpendicular to the
layers. For the SmA phase, there is, however, still no positional order within the
layers, while, in the AAA and ABC phases, the particles are ordered hexagonally. In



272 8 Phase Behaviour of Colloidal Rods Mixed with Depletants

the AAA phase, the rods of adjacent layers are stacked on top of each other, while,
in the ABC phase, they are stacked in between the rods of adjacent layers. For all
three phase states, an extended cell theory was developed by Peters et al. [20], based
upon an approach proposed by Graf and Löwen [86]. The final results were cast into
algebraic equations [20], which are summarised below.

In general, for any of these phases, the free energy can be split into an ideal,
orientational and packing contribution:

F̃ = Fv0

kT V
= F̃id + F̃or + F̃pack, (8.62)

with F̃id = φ ln(φΛ3/vc) − φ being independent of the phase state and F̃or = s[ f ]
given by Eq. (8.3). For the SmA phase, the cell model includes a thermodynamic
description of 2D discs with area fraction φ2D that captures the in-plane fluidity of
rods projected onto the smectic plane. The expression for the packing free energy
F̃pack of the smectic phase reads

F̃SmA
pack

φ
= − ln

(
1 − φ2D D̄

2
eff

)

+ φ2D D̄2
eff

1 − φ2D D̄2
eff

− ln

(
1 − Γ

Δ̄⊥

)
.

(8.63)

The quantities D̄eff and Δ̄⊥ in Eq. (8.63), as well as F̃or, can be determined by
simultaneously minimising the total free energy with respect to f (�) and Δ̄⊥ (see
Ref. [20] for details). The effective rod diameter D̄eff can be calculated using

Deff = 1 + A(Γ − 1)
∫

f (�)| sin(θ)|d�, (8.64)

where A was chosen such as to fit the resulting equations of state and nematic–
smectic-A phase transitions to those obtained from computer simulations [26,27].
The quantity A varies depending on whether the equations of state for the nematic
phase is based on SPT (A = 0.41φ) or PL (A = 0.28φ). For the sigmoidal inter-
pretation approach A = 0.41φh, with h = g + (1 − g)0.28/0.41, with g defined by
[20,21]

g = 1

1 + eΓt−Γ
, (8.65)

with Γt = 6, connecting the Onsager limit (Γ → ∞) and the sphere limit (Γ → 1).
For the AAA phase, Peters et al. [20] derived

F̃AAA
pack = φ + φ ln φAAA

cp − φ ln
(
Δ̄AAA‖ − D̄eff

)2

− φ ln

(
φAAA
cp /φ

(Δ̄AAA‖ )2
− 1

)
,

(8.66)



8.6 Phase Diagrams of Rod/polymer Mixtures Including Highly Ordered Phases 273

where for AAA the parameter A = 0.225φh in the definition of D̄eff was chosen
based on comparison with simulation results for the equations of state and the AAA–
ABC phase transition [26,27]. The resulting normalised layer spacing Δ̄‖ reads

Δ̄AAA‖ =
61/3

(
φAAA
cp
φ

)
+

(
9

φAAA
cp
φ + φAAA

cp
φ

√
3

(
27 − 2

φAAA
cp
φ

))2/3

62/3

(
9

φAAA
cp
φ + φAAA

cp
φ

√
3

(
27 − 2

φAAA
cp
φ

))1/3 . (8.67)

The spacing parameter Δ‖ is normalised through Δ̄‖ = Δ‖/D.
For theABCcrystal phase, an extended cell theory approach leads to the following

expression [20,86]:

F̃ABC
pack

φ
= 1 + ln φref − ln

(
Δ̄ABC‖ − D̄eff

)2 − ln

(
φref/φ

(Δ̄ABC‖ )2
− 1

)
, (8.68)

with

Δ̄ABC‖ =
61/3

(
φref
φ

)
+

(
9φref

φ + φref
φ

√
3

(
27 − 2φref

φ

))2/3

62/3
(
9φref

φ + φref
φ

√
3

(
27 − 2φref

φ

))1/3 ,

and

φref = π (3Γ − 1)

6
(√

3 (Γ − 1) + B
√
2
) ,

including the parameter B = 1.16. Next, the accuracy of these expressions is com-
pared to computer simulation results.

For L/D = 4, the rod concentration dependence of the resulting theoretical
osmotic pressures (curves) of the I, N, SmA and ABC phase states are plotted in
Fig. 8.24. The predictions are compared to computer simulation data of McGrother
et al. [26]. It is clear the equations of states correspond reasonably well to the com-
puter simulation data. For comparisons at other aspect ratios, see Ref. [20].

Phase coexistence between twophases can be established by imposingmechanical
and chemical equilibrium expressed by equality of osmotic pressure P and chemical
potential μ (Appendix A). Algebraic expressions for P and μ were derived [20] for
all phase states of the hard spherocylinders from the free energy expressions given
above.
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Fig. 8.24 Osmotic pressure of hard spherocylinders with L/D = 4 as a function of rod volume
fraction φ from both theory (solid curves) [20] and computer simulation results (data points) [26].
The stable phases include the isotropic (I), nematic (N), smectic-A (SmA), AAA crystal and ABC
crystal phases
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Fig.8.25 Phase behaviour of hard spherocylinders as a function of rod volume fractionφ and aspect
ratio D/L from both theory (solid curves) [20] and simulation (data points) [27]. The stable phases
include the isotropic (I), nematic (N), smectic-A (SmA), AAA crystal and ABC crystal phases

The theoretical predictions [20] for the binodals using the analytical equations
of states for all hard spherocylinder phase states discussed are shown in Fig. 8.25
(solid curves) as a function of volume fraction φ and aspect ratio D/L . Computer
simulation data of Bolhuis and Frenkel [27] are plotted as data points. The phase
diagram of rods without endcaps (see Ref. [82]) is very close to these results.
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It is noted (not shown) that in the sphere limit of L/D → 0 the equations of state
for the isotropic and ABC phases become equivalent to those of a hard-sphere fluid
and an FCC crystal, respectively (see Sect. 3.2.3). The agreement with the computer
simulation results is quite reasonable for these phase equilibria.

8.6.2 Phase Behaviour of Rod–Polymer Mixtures Including Highly
Ordered Phases

Next, the phase behaviour of mixtures of rod-like colloidal particles and polymers is
considered, including the highly ordered phases discussed in the previous subsection.
The rods are again described as hard spherocylinders and the nonadsorbing polymers
are treated as ideal depletants by describing them as PHSs with radius δ (see Chaps. 2
and 3). It is possible to explicitly include polymer–polymer interactions (seeChap.4),
which demonstrates that the PHS approximation for the polymer works well for the
relatively small polymers discussed here. Hence, phase diagrams are discussed for
mixtures of hard spherocylinders and PHSs.

The mixture is again described using FVT. The hard spherocylinder–PHS system
of interest is in contact with a PHS reservoir through a semi-permeable membrane
that is impermeable to the colloids but fully permeable for the polymers. Solvent
plays the role of continuum background again.

We use Eq. (8.43) for �, which we rewrite here as

�̃ = F̃ − αΠ̃R, (8.69)

with �̃ = �vc/kT V as the normalised semi-grand potential for the system of inter-
est, and F̃ = Fvc/kT V as the normalised Helmholtz free energy for a pure disper-
sion of hard spherocylinders. The free volume fraction α = 〈Vfree〉/V is the average
fraction of the system volume available to PHSs, and Π̃R is the normalised osmotic
pressure of the polymers in the reservoir, which is proportional to the reservoir poly-
mer coil volume fraction φR

p by Π̃R = φR
p (3Γ − 1)/(2q3).

A representative set of phase diagrams for colloid–polymer mixtures is shown in
Fig. 8.26 in terms of the polymer reservoir concentration φR

p versus the rod volume
fraction φ (see Refs. [21,87,88]). The rod aspect ratio is fixed at L/D = 12 and
polymer–rod size ratio is set to q = 0.4, 0.525 and 0.57. In the plots, the binodals
(solid curves) and three- and four-phase coexistences (dashed lines) are shown. In
most cases, the miscibility gaps widen as the polymer concentration is increased.
At the points where two binodals coincide, there is three-phase coexistence. For
instance, at q = 0.4 (left panel) the miscibility gap of N–SmA and SmA–AAA
coexistence widens as φR

p increases. At around φ = 0.4–0.65 and φR
p ≈ 0.05, the

binodals coincide and a triple N–SmA–AAA equilibrium emerges.
Increasing the polymer size qualitatively changes the phase diagram. The trends

are similar to those reported by Savenko and Dijkstra [89] in their Monte Carlo sim-
ulation study. For example, at q = 0.57 (right panel) the N–SmA binodal coincides
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Fig. 8.26 Phase diagrams of colloid–polymer mixtures in terms of the colloid volume fraction φ
and polymer reservoir concentration φR

p for colloidal rods of aspect ratio L/D = 12 and polymers
of size q = 2δ/D = 0.4 (left), 0.525 (middle), and 0.57 (right). Binodals are displayed as solid
curves, while three- and four-phase coexistences are indicated as dashed lines. Reprinted with
permission from Ref. [87] under the terms of CC-BY-4.0

pR

0.0 0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

I N

Sm
A

ABC

I1 N SmA

I1 I2 N

I1 I2

L/D = 5
q = 1

0.0 0.2 0.4 0.6 0.80.00

0.02

0.04

0.06

0.08

0.10

I N SmA AAA

ABC

I N2 SmA
I N1 N2

N1 N2

L/D = 50
q = 1

Fig.8.27 Phase diagrams of colloid–polymer mixtures in a similar representation as Fig. 8.26, but
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rods have an aspect ratio L/D = 5 (left) and L/D = 50 (right) and the polymers have a fixed
size 2δ = D, so q = 1. Binodals are displayed as solid curves, while three-phase coexistences are
indicated as dashed lines

with the I–N binodal and instead leads to a triple I–N–SmA coexistence. Similarly,
the N–AAA and I–N–AAA coexistences are only present at the smaller q = 0.4,
while the I–SmA binodals and I–SmA–AAA triphasic coexistence are only stable
at q = 0.57. The intermediate polymer size of q = 0.525 (middle panel) marks the
exact size ratio where all three binodals coincide at the same polymer reservoir
concentration. This leads to an I–N–SmA–AAA four-phase coexistence.

Next, the isostructural phase coexistences [88] discussed in Sect. 8.4 are re-
evaluated. In Fig. 8.27, two examples are given for L/D = 5 and L/D = 50 and
q = 1. As could be expected, the I1–I2 coexistence region (left panel) is large for
sufficiently large polymer sizes compared to the rod length. For L/D = 50 and
q = 1 (right panel), a region where N1–N2 phase equilibria are predicted appears.
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This is not superseded by I1–SmA2 or I–crystalline phase equilibria. So, although
these N1–N2 phase equilibria have not been observed they also appear as results from
theoretical calculations when taking higher ordered phases of the rods into account.
Moreover, the calculations reveal that (non-metastable) isostructural phase equilibria
are possible for all phase states [21].
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Fig.8.28 Phase diagrams of dextran/fd-virusmixtures. Data points aremeasured coexistences at an
ionic strength of 200 mM and pH = 8.10. In addition to the isotropic–nematic coexistence (dotted
coexistence lines), isotropic–smectic coexistence (dashed lines) is found at high polymer and rod
concentrations. Replotted from Ref. [90]. b Predicted phase diagram of a hard spherocylinder–
penetrable hard-sphere dispersion. Spherocylinders were modelled with L/D = 133, Deff =
9.64nm, L/Deff = 91.31, an ionic strength of 200 mM and mixed with PHSs with 2δ/Deff =
1.72. The dextran polymers have Rg = 11nm, the charge density is taken as −10 e/nm to mimic
the system of a. Solid curves represent I–N phase equilibria. The dashed lines represent I–N–Sm
triple coexistence. Above the triple region, there is I–Sm phase coexistence
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8.6.3 Comparison with Experiments

We now compare predictions including higher ordered phases with the limited num-
ber of experiments that have been reported in the literature. Dogic [90] extended the
earlier work of Dogic and Fraden [60] on mixed suspensions of fd and dextran to
higher dextran concentrations at a salt concentration of 200 mM. The phase diagram
he observed is plotted in Fig. 8.28a. Above dextran concentrations of 55 mg/mL the
I–N transition is superseded by the I–SmA transition. In Fig. 8.28b the predicted
phase diagram is plotted for the relevant size parameters. The effective diameter of
the rods was calculated using the theory presented in Sect. 8.2.2. The phase diagram
computed corresponds to the experimental one. No observations were reported on
the (narrow) triphasic I–N–SmA equilibrium that is expected between the biphasic
I–N and I–SmA phase equilibria.

An interesting aspect of bacteria is that they can assume a wide range of shapes
[91,93], examples of which are shown in Fig. 8.29. In 1954 Goldacre [92] showed
that, like viruses, some bacteria can be crystallised. The bacterial cells form regular
three-dimensional arrays, in which each cell corresponds to a molecule in a conven-
tional crystal. In the case of rod-shaped bacteria, the rods align in a parallel fashion,
as shown in Fig. 8.30 for Amoeba proteus [92].

Experimental work [94–96] demonstrated that, upon exceeding a certain con-
centration, suspensions of (non-motile) bacteria and nonadsorbing polymers exhibit
phase separation, just as colloid–polymer mixtures. Guided by the ideas of Goldacre
[92], we apply free volume theory to describe this phase separation. We highlight the
work presented bySchwarz-Linek et al. [95],who focused onmixtures ofEscherichia
coli (E. coli) (Fig. 8.31) and sodium polystyrene sulfonate (NaPSS).

The added NaPSS polymers have a molar mass of 64.7 kDa and a radius of
gyration of 14nm. The mixtures were studied in aqueous solutions containing 0.18
M salt, at which the Debye screening length is 0.8nm. In Fig. 8.32, we present results
of the phase behaviour of a suspension of E. coli bacteria with a volume fraction of
12.5% with different polymer weight fractions ranging from 0 to 10%.

Fig.8.29 Examples of bacteria and their shapes. Cocci have a spherical to ovoid shape and appear
not only as single cells (i) but also as pairs (e.g., Diplococci) (ii), clusters (e.g., tetrad) (iii) or chains
(e.g., Streptococci) (iv). Bacilli (v) and Diplobacilli (vi) are rod-shaped bacteria. Coccobacilli (vii)
resemble cocci and bacilli. Spiral bacteria (viii) are slightly curved microbes with a comma shape.
Pallisades are bacteria with a picket fence structure of connected rods (ix). Sketches made by Luuk
Tuinier, inspired by Ref. [91]
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Fig. 8.30 Microscopy image of three-dimensional arrays of Amoeba proteus bacteria. Scale bar
represents 10 µm. Reprinted with permission from Ref. [92]. Copyright 1954 Nature

Fig. 8.31 AFM image of
short, rod-like, E. coli
bacteria. The width of the
image represents 10 µm.
Reprinted with permission
from Ref. [95]. Copyright
2010 RSC

The pictures in Fig. 8.32 shows that the phase transition for a bacterial suspension
of a volume fraction of 12.5% takes place at a polymer weight fraction of about
0.2% and that the bacterial volume fraction of the concentrated phase has a volume
fraction of about 70%.

For the calculation of the phase behaviour, we assume that the E. coli bacteria
(see Fig. 8.31) can be modelled as spherocylinders with L = D ≈ 1 µm.We present
calculations for the phase separation between the isotropic phase and theABC crystal
phase.

Schwarz-Linek et al. [95] present no experimental evidence that the concentrated
phase is an ABC crystal, but it is known from the work of Goldacre [92] that such
phases can occur in suspension of bacteria. By applying the theory presented in
Sect. 8.6.2, we obtain the phase diagram plotted in Fig. 8.33b (see Ref. [97]).
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Fig. 8.32 E. coli cell
samples (cell density
≈ 9.6 · 1010 cfu/mL
(φ ≈ 0.125)) dispersed in
phosphate buffer with
NaPSS polyelectrolytes. The
polymer concentration (in
weight fraction) increases
from left to right, with
samples 1–11 containing
0%, 0.1%, 0.2%, 0.3%,
0.4%, 0.5%, 0.75%, 1%, 2%,
5% and 10% of NaPSS,
respectively. Times: a t=0, b
t= 30min, c t=100min, d
t=24h. e Shows the bottom
parts of samples 2—5 at 24h
at higher magnification.
Reprinted with permission
from Ref. [95]. Copyright
2010 RSC

In Fig. 8.33b, the drawn curves are the result of the theoretical calculations. The
datapoints are experimental results, indicating that the system shows (•) a single-
phase or (+) two-phase coexistence. The free volume calculations are in good agree-
ment with the experiments on phase separation in mixed suspensions of non-motile
bacteria and nonadsorbing polymers. For more details, see Ref. [97].
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Fig.8.33 Phase diagram of hard spherocylinders (L/D = 1) mixed with polymers (q = 2Rg/D =
0.028). a Predicted isotropic–ABC crystal phase coexistence (thick curves) with a few illustrative
tie-lines (thin lines) [97]. bComparison between predictions (curve) and experimental observations
of single-phase (•) or two-phase (+) systems [95]
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