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Preface to the Second Edition

Since 2011 when the First Edition of this book appeared, there has been substan-
tial experimental and theoretical progress in the multidisciplinary field of colloids
and the depletion interaction. This was made clear, for instance, by the special
issues ‘Self Assembly—Depletion Forces in Single Phase and Multi-Phase Com-
plex Fluids’ in Curr. Opin. Colloid Interface Sci. [1] and ‘Depletion Forces and
Asakura–Oosawa Theory’ in J. Chem. Phys. [2]. This Second Edition, written with
the invaluable contribution of Mark Vis as co-author, is an updated and enlarged
version of the First. This updated edition includes recent developments in the field
and selected references from the last decade. Further, the discussions on depletion
interactions and resulting phase behaviour induced by colloidal spheres and rods
have been extended with recent developments and are now presented separately in
Chaps. 6 and 7. We have also significantly extended Chap. 8 on ‘Phase behaviour
of colloidal rods with depletants’ with recent experimental and theoretical develop-
ments. This edition also contains several entirely new chapters. The first is a topic
suggested by the late Kurt Binder [3]: ‘The interface in demixed colloid–poly-
mer dispersions’, Chap. 5. The new Chaps. 9 and 10 concern the phase behaviour
of colloidal platelets and colloidal cubes in the presence of depletants. Further,
Chap. 11 focuses on various application areas of the concepts discussed in this
book.

We want to express our gratitude to the chemists and physicists who have helped
us with their constructive criticism and useful suggestions. Amongst these we
mention Louise Bailey, Patrick Davidson, Geoff Maitland and Ben Widom. We
are indebted to Max Martens, Max Schelling, Rik Wensink and Bert de With for
commenting in detail on several chapters of the manuscript; Edgar Blokhuis for
detailed comments on Chap. 5, Anja Kuhnhold for suggestions on Chaps. 7 and 8,
Pavlik Lettinga for critical remarks on Chap. 8, Daniel de las Heras and Matthias
Schmidt for useful comments on Chap. 9, and Frans Dekker, Laura Rossi and
Janne-Mieke Meijer for suggestions on Chap. 10. We thank Dzina Kleschanok,
Jasper Landman and Jolijn Nagelkerke for their work on depletion topics. We also
acknowledge Evan Spruijt for useful suggestions on macromolecular crowding.
We are most grateful to Elizabeth McKenzie for carefully proofreading this Sec-
ond Edition, making excellent suggestions to improve the content and structure
and particularly for helping us with our English.
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viii Preface to the Second Edition

When writing Chaps. 6 to 10, the work in the Ph.D. theses of Frans Dekker,
Álvaro González García, Joeri Opdam and Vincent Peters has been very useful.
The expert reader will recognise some of their work in the new chapters. Discus-
sions with them on depletion and its intricacies, as well as practical help, have
enabled us to extend the First Edition.

We express our appreciation for the pleasant cooperation with Annelies Kers-
bergen and Angela Lahee of Springer Nature, and the encouragement to think of a
Second Edition from Maria Bellantone. Finally, R. T. and M. V. thank the members
of the Laboratory of Physical Chemistry at Eindhoven University of Technology
for the stimulating environment. We were fortunate to have meticulous help and
management support from Pleunie Smits and, in the preparation of some of the
texts and figures of the manuscript, from Mieke Kröner.

H. N. W. L. wants to thank his wonderful wife Loes for her understanding and
support during the writing of this book: so many beautiful days that we could
have done something together were sacrificed to this Second Edition. R. T. thanks
Mieke, Luuk and Tim for their continuous support. M. V. thanks Maartje, Janneke
and Sietske for joyful distractions.

This work is published open access thanks to financial support from the
Open Access Books program of the Dutch Research Council (NWO) and by
the Library & Information Services Department of Eindhoven University of
Technology.

Utrecht/Eindhoven
February 2024

Henk N. W. Lekkerkerker
Remco Tuinier

Mark Vis
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Preface to the First Edition

The physical properties of colloidal suspensions are strongly affected by the forces
that act between the colloidal particles. Attempts to explain them in these terms go
back to the beginning of the twentieth century. Important and extensively studied
forces in colloidal systems are Van der Waals forces, electrostatic forces, steric
forces due to attached polymers and magnetic forces. In the last few decades
researchers have observed that the stability of colloidal particles is also affected
by nonadsorbing polymers in solution. The origin of this interaction was first
explained successfully in 1954 by S. Asakura and F. Oosawa. They used the con-
cept that the free volume available to nonadsorbing polymers increases whenever
two hard particles are sufficiently close to each other, such that their depletion
zones overlap and the total depletion zone decreases.

However, a number of important applications were used in technology and
medicine (long) before the depletion concept was introduced. For example, the
clustering of red blood cells induced by serum proteins had already been detected
at the end of the eighteenth century and forms the basis of the blood sedimentation
test that is still in use today. Furthermore, creaming of colloidal particles to con-
centrate latex dispersions upon the addition of polysaccharides was first studied in
the 1920s. The 1940s saw the start of using polysaccharides to isolate plant viruses.
Systematic and fundamental investigations on the effect of depletion interactions
in colloidal systems started with the work of B. Vincent in the UK, S. Hachisu in
Japan, and A. Vrij in The Netherlands in the 1970s. Work on the depletion inter-
action gained momentum after W. B. Russel and co-workers in the US clarified
the relationship between the range and depth of the depletion interaction and the
topology of the phase diagram in the 1980s. Since then, the depletion field has
evolved rapidly.

This book aims to provide a self-contained treatment of the depletion interaction
and the resulting phase behaviour in colloidal dispersions. It is hoped that the
book may be equally useful to both junior and senior undergraduate students in
physical chemistry, chemical and mechanical engineering, biophysicists or soft
condensed matter physics. At the same time, we hope that professional chemists
and engineers dealing with colloidal suspensions may find it a useful reference
book to gain an understanding of the implications of the depletion interaction for
handling suspensions.
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x Preface to the First Edition

In order to keep the size of the book within bounds a description of the inter-
face between demixed phases has not been included and the discussion of phase
transition kinetics is rather brief. We emphasise that we do not claim the refer-
ences quoted to be a complete list. If the reader prefers to, they can read the book
at three levels. For a general idea of depletion interactions and their implications
in science and technology it is recommended to study Chapter 1. At the second
level1 one can study Sections 2.1 and 2.2, Chapter 3 and Sections 4.1, 4.2, 4.4
and 8.1 to 8.6. This material could be used for an 8-hour senior undergraduate or
junior graduate course in physical chemistry or soft matter physics. The third level
covers the complete text of this monograph.

Many people have stimulated us to write this book. Initially, we had hoped
to write it with Dirk Aarts. His enthusiasm for the book project helped us greatly
during the early stages but he was unable to reserve enough time for the book after
his start in Oxford. We are indebted to him, to Jeroen van Duijneveldt and Gerard
Fleer for commenting in detail on drafts of several chapters of the manuscript. It
may well be that remaining errors and unclear aspects can be traced back to where
we foolishly disagreed with them.

We were fortunate to have meticulous help in the preparation of texts and fig-
ures of the manuscript from Mieke Kröner, while the illustrations benefited from
the advice of Jeannette Kröner.

R.T. wishes to thank Jan Dhont and the Soft Matter group at Forschungszen-
trum Jülich for their support during the initial stages leading to this book. The
members of the Colloids & Interfaces group at DSM Research, Leon Bremer,
Harm Langermans, Leo Vleugels, Benjamin Voogt, Jef Bisscheroux, and Feng Li,
are acknowledged for the pleasant and stimulating interactions. Peter Jansens and
Jeroen Kluytmans of DSM Research are thanked for supporting R.T. to finish the
book. Collaborations with Martien Cohen Stuart, Tai-Hsi Fan, Kees de Kruif, Peter
Schurtenberger, Takashi Taniguchi, and Agienus Vrij contributed to the evolution
of this book.

H.N.W.L. wishes to thank the staff members and his PhD students and Post-
docs at the Van ’t Hoff laboratory, with whom he had the privilege to work in the
period 1985–2010. He benefited from a long-term collaboration with Marc Baus,
Louise Bailey, Mike Cates, Bob Evans, Seth Fraden, Daan Frenkel, Jean-Pierre
Hansen, Joseph Indekeu, Geoff Maitland, Theo Odijk, Roberto Piazza, Wilson
Poon, Peter Pusey, Bill Russel, Patrick Warren and Ben Widom. H.N.W.L. would
like to thank the Royal Netherlands Academy of Arts and Sciences for the appoint-
ment as Academy Professor for the period 2006–2011, which made it possible to
write this book.

1 Updated for this Second Edition.



Preface to the First Edition xi

Finally, we express our appreciation for the encouragement from and pleas-
ant cooperation with Maria Bellantone, Mieke van der Fluit and Liesbeth Mol of
Springer Science + Business Media.

Geleen/Utrecht
December 2010

Remco Tuinier
Henk N. W. Lekkerkerker
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1Introduction

1.1 Colloids

According to IUPAC [1], the term colloidal refers to ‘a state of subdivision, implying
that the molecules or polymolecular particles dispersed in a medium have at least
in one direction a dimension roughly between 1nm and 1 μm, or that in a system
discontinuities are found at distances of that order’. Thismeans that colloidal particles
are submicrometre sized substances dispersed in a medium that can be a liquid or
a gas [2–10]. This implies that colloids are much bigger than ‘normal’ molecules
(though they may be comparable in size to macromolecules). The lower limit of the
length scale for a colloidal particle is close to a nm. The medium of low molecular
mass substances in a colloidal suspension can often be regarded as ‘background’with
respect to the colloidal size range and, in that case, thismediummay be approximated
as a continuum.

From a physics point of view, colloidal particles are characterised by observable
Brownianmotion, originating from a thermal energy of order of kT for each colloidal
particle. Particles in a solvent are considered to be Brownian if sedimentation can be
neglected with respect to thermal motion. This means that the sedimentation length,
the ratio of thermal energy and gravity force should be larger than the colloid radius.
The sedimentation length is defined as [11]:

�sed = kT

m∗g
. (1.1)

Here, the buoyant mass is given by m∗ = (4π/3)�ρR3 for a spherical colloid with
radius R, where �ρ is the density difference between particle and solvent. Hence,
the upper colloidal size corresponds to the condition where �sed ≈ R. For �ρ = 100
kg/m3, this implies an upper limit of the radius of about 1 μm at 300K.
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2 1 Introduction

Perrin [12] studied dispersed resin colloids and detected Brownian motion as a
visible manifestation of thermal fluctuations, verifying Einstein’s theoretical results
[13]. The height distribution of the resin colloids in the field of gravity was shown to
obey Boltzmann’s law for the sedimentation equilibrium. The picture emerged that
colloids behave as big atoms in many respects. Later, Onsager [14,15] andMcMillan
and Mayer [16] laid down a statistical mechanics foundation for the colloid–atom
analogy. They pointed out that the degrees of freedom of the solvent molecules in a
colloidal dispersion can be integrated out, implying the solvent can be considered as
‘background’. The resulting description only involves colloidal particles interacting
through an effective potential, the potential of mean force, that accounts for the
presence of the solvent.

Often, the (rotationally averaged) interactions between small spherical atoms and
some molecules can be reasonably described using the Lennard-Jones interaction
[17] (see Ref. [18] for an in-depth critical discussion). For many of these systems,
the phase diagrams scaled by the critical values of temperature, pressure and molar
volume appear similar as well. The fact that the thermodynamic properties of all
simple gases exhibit basic similarities is expressed by the law of corresponding
states of Van der Waals. A statistical mechanical derivation of this law was provided
by Pitzer [19].

Just as the pressure of an atomic gas is affected by the interaction between the
atoms, the physical properties of a colloidal dispersion depend on the potential of
mean force between colloidal particles. An extended law of corresponding states has
been conjectured [20], stating that knowledge of the potential of mean force between
spherical colloidal particles enables prediction of the phase diagram (topology).
Therefore, one may expect similarities between the phase diagrams of atomic and
colloidal systems.

Apart from such similarities, there are also distinct differences between atoms
and colloidal particles. In contrast to pair interactions between atoms, interactions
between colloidal particles can be tuned by choosing particle type or solvent, by
supplementing additives such as electrolytes, polymers or other colloidal particles,
or by modifying the particle surface. Since the 1970s it has gradually become clear
that adding small particles or polymers that do not adsorb onto the colloids opens up a
wide variety of possibilities for tuning the phase behaviour of colloidal dispersions.
The interactions mediated by such nonadsorbing species and the resulting phase
behaviour are at the core of this book.

The science of colloids is important for applications ranging from drug delivery
and dairying to coating technology and energy storage materials. Colloidal disper-
sions can be found in a wide range of environments and products. Industrial exam-
ples include emulsions (mayonnaise), foams (shaving cream), surfactant solutions
(shampoo) or polymer latex dispersions (paint). Long-term stability of a colloidal
dispersion is often desired, for example, in storage of paint [21] or food [22]; and this
is regularly achieved by adjusting the particle surface chemically or via adsorption.

Unconsciously, humankind has long held an interest in colloidal stability. For
example, carbon is the oldest ink material known, and its use for writing in Egypt
can be dated back to 3400 BCE [23]. The carbon used for making ink was soot in
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most cases. Bymixing it with gum arabic and water, soot was made into ink.Without
understanding the underlying principles, the Egyptians effectively used the principle
of stabilising dispersions by adsorbed macromolecules [3,24]. This is nowadays
recognised as an example of polymeric stabilisation (see Sect. 1.2.4). In this manner
the Egyptians succeeded in engineering the soot particles, such that they can remain
suspended for an indefinite period.

An example where the instability of colloids (clay) plays a role in nature is delta
formation. Deltas [25] are formed due to precipitation of colloidal (clay) particles
carried by the river as its flow meets the sea (or ocean), where the fresh river water
mixes with salty sea water. The delta formation process had already been described
by Barton [26] in 1918 before a clear understanding of the role of salt on colloidal
stability had been established.

Milk is a natural colloidal dispersion that contains casein micelles—self-
assembled protein associates with a diameter of about 200nm [27]. The casein
micelles are protected against flocculation by an assembly of dense ‘hairs’ (often
called a ‘brush’) at their surfaces. Polymer brushes can thus provide steric stabilisa-
tion of colloids. For millennia man has used the fact that milk flocculates and gels
when it is acidified, as in yogurt production. Below pH = 5 macroscopic floccula-
tion of the casein micelles in milk is observed [28]. This means that the interactions
between casein micelles change from repulsive to attractive. The explanation is that
acidification leads to collapse of the casein brushes [29]. In cheese-making the steric
stabilisation is removed by enzymes that induce gelation into cheese curd.

Modest solvent composition changes can also affect the state of a colloidal dis-
persion. A charge-stabilised dispersion of polymer latex particles or gold colloids
may flocculate irreversibly upon adding salt, while ion removal through dialysis
may turn the dispersion into an ordered structure that exhibits Bragg reflection [30].
Obviously, the physical state of a colloidal dispersion is a function of the interactions
between the colloidal particles.

In foods, paints and biological systems such as living cells, colloids and polymers
are often present simultaneously.When the polymers do not adsorb onto the colloidal
particles the result is a so-called depletion layer: a zone near the particle surfacewhich
contains a lower polymer concentration than the bulk of the solution. As we shall see,
overlap of depletion layers leads to an attractive depletion interaction between the
colloidal particles. The term depletion derives from Latin meaning ‘emptied out’.
The verb ‘plere’ is ‘to fill’ [31]. Thus a ‘pletion’ force is due to accumulation of
some substance between two colloids. The reversal, a ‘depletion’ force, is due to the
expulsion of material. Feigin and Napper [32] were probably the first to introduce
the term depletion.

Mixing colloids with polymers or other colloids can lead to phase transitions
or aggregation resulting in, for instance, gelation, crystallisation, glass transition,
flocculation, or fluid–fluid demixing of the dispersion. Figure1.1 illustrates a colloid–
polymer mixture and its tendency to phase separate into a phase enriched in colloids
and a phase concentrated in polymers due to the attractionmediated by nonadsorbing
polymer chains.



4 1 Introduction

Fig. 1.1 Representation of a
colloid–polymer mixture.
Top: the system just after
mixing. Bottom: the
dispersion becoming
inhomogeneous after mixing
the colloidal spheres with a
sufficiently high amount of
nonadsorbing polymers

The type of instability depends on the range and strength of the particle interac-
tions involved. The knowledge gained over the last decades on depletion effects in
mixtures of colloidal particles and polymers is of great interest for designers of new
products. Insight into the factors determining the stability of mixtures changes prod-
uct development from trial-and-error towards knowledge-driven innovation. This
book serves as a guide to help understand what happens when colloids are mixed
with polymers or other colloids.

This chapter gives an introduction to colloidal interactions (including the depletion
force in a historical context) and provides examples of themanifestations of depletion
effects. First, we start with a brief overview of colloidal interactions in Sect. 1.2,
including the basic concept of the depletion interaction. In Sect. 1.3, we outline
the effects of unbalanced forces, addressing depletion forces in colloidal dispersions
fromahistorical perspective, and including an overviewof selected literature. Finally,
a brief outline of the other chapters of this book are given in Sect. 1.4.

1.2 Colloidal Interactions

The basic understanding of colloidal interactions [10] commenced in the 1940s.
Derjaguin and Landau [33] in the former USSR, and Verwey and Overbeek [34] in
The Netherlands pointed out that, in a dispersion of charged colloids in an electrolyte
solution, the Van der Waals attraction between two colloidal particles is opposed
by a repulsion that originates from electrical double layers. This foundation for
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the stability of colloids is known as the DLVO theory and has been remarkably
successful in explaining the results of a vast number and broad range of experiments,
includingdirect forcemeasurements [35]. Polymers, either depleted fromor adsorbed
or anchored to colloidal surfaces, also turned out to strongly influence colloidal
interactions; these were not considered by DLVO.

In Sects. 1.2.1 and 1.2.2 we shall first consider Van der Waals and double layer
interactions (the two contributions to the DLVO potential (Sect. 1.2.3), and then dis-
cuss (polymeric) steric stabilisation by end-attached polymers in Sect. 1.2.4. Finally,
the depletion interaction will be addressed in Sect. 1.2.5.

1.2.1 Van derWaals Attraction

The attractive interaction between two colloidal particles is due to London–Van der
Waals attraction between their constituent atoms or molecules. For two atoms at a
centre-to-centre distance r apart, the attraction has the form:

W (r) = −C

r6
(1.2)

(see Chap.13 and Table13.3 in Ref. [35]). According to London theory [36], C is
given by the (approximate) expression

C = 3

4
E

(
αp

4πε0

)2

. (1.3)

Here, E is a typical (average) electronic excitation energy, αp is the static polaris-
ability and ε0 is the vacuum permittivity.

Hamaker [37] calculated the London–Van der Waals attraction between two col-
loidal particles by summation of all atomic/molecular Van der Waals interactions
between these two colloidal particles. For two colloidal spheres with radius R
(Fig. 1.2) and closest distance between the spheres h, the resulting Van der Waals
attraction without intervening medium reads (see for instance Ref. [38])

WVdW(h) = − A

6
f (h/R), (1.4)

with

f (h/R) = 2R2

h2 + 4Rh
+ 2R2

h2 + 4Rh + 4R2 + ln

(
h2 + 4Rh

h2 + 4Rh + 4R2

)
,

and

A = Cπ2n2, (1.5)

where n is the number density of the atoms/molecules in the colloidal particles.
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Fig. 1.2 Two colloidal spheres with radii R at closest separation distance h

To make an estimate of the quantity A, which is known as the Hamaker constant
we follow Israelachvilli [35] and use C = 10−77 J·m6 and a number density n =
2·1028 m−3 (corresponding to a diameter of 0.4nm of the atoms/molecules in the
colloidal particles). We then find

A = π2 · 10−77 · (3 · 1028)2 � 10−19 J. (1.6)

Values for theHamaker constants for differentmaterials range between (0.4 − 5) ·
10−19 J and can be found, for instance, in Table 13.2 in Ref. [35].With an intervening
medium between the colloidal particles the Hamaker constants are (significantly)
lower than without intervening medium. From the values presented in Table13.3 of
[35] it turns out that the reduction may be as much as a factor of 2 or 3.

From Eq. (1.4) it follows that the Van der Waals attraction is very strong at short
interparticle separations. For small h,

WVdW(h) � − AR

12h
. (1.7)

To stabilise a colloidal dispersion, a significant repulsion that prevents the parti-
cles getting too close and aggregating irreversibly is needed. The Van der Waals
interaction is shown schematically in Fig. 1.3 as the lower dashed curve.

Fig. 1.3 Common
contributions to the
interaction potential W (h)

between colloidal particles
as a function of separation
distance h: typical double
layer repulsion between
charged colloidal spheres
(top), Van der Waals
attraction (bottom) and their
sum (solid curve), which is
the DLVO interaction
potential
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1.2.2 Double Layer Interaction

A charged colloid is surrounded by a solution with an inhomogeneous distribution
of ions. Co-ions (with the same charge as the colloids) are repelled from the colloid
surface, whereas counterions (with opposite charge) accumulate at the surface. Far
from the colloidal surface the concentrations of the two ion types attain a constant
averaged value. The inhomogeneous layer is termed ‘double layer’, and its width
depends on the ion concentration in the bulk solution: adding more ions screens the
charges on the colloidal surfaces.

When two double layers overlap, a repulsive pair potential develops, which leads
to a repulsive pressure. Dispersed like-charged colloids hence repel each other upon
approach due to screened-Coulomb or double layer repulsion. The length scale over
which this force is operational is set by the Debye screening length λD which, for a
simple 1–1 salt, reads

λD =
√

1

8πλBns
, (1.8)

where ns is the salt number density and λB is the Bjerrum length,

λB = e2

4πε0εrkT
, (1.9)

with e the elementary charge and εr the relative dielectric constant (≈ 80 in water).
The Bjerrum length is the distance between two elementary charges at which their
interaction equals kT . In water at room temperature its value is ≈ 0.7nm. For the
Debye length we can then use the expression λD = 0.3/

√
cs [35], with the salt

concentration cs in mol/L and λD in nm.
The interparticle separation dependence of double layer repulsion is approxi-

mately exponential for a thin double layer (λD � R) [34]

WDR(h) = B
R

λB
exp(−h/λD), (1.10)

which shows that the range of the screened double layer repulsion is λD, which
depends on the salt concentration. The double layer interaction between two like-
charged colloidal particles is represented in Fig. 1.3 (upper dashed curve).

The quantity B can be expressed in terms of the surface charge density σc of the
interacting colloids [34]

B

kT
= 8p2c

(1 + qc)2
, (1.11)

where pc = 2πλDλB |σc/e| and qc = √
1 + p2c , with pc the number of elementary

charges e on a surface area 2πλDλB. Given the fact that |σc| varies roughly between
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0.1 and 2 e·nm−2, the value of pc ranges from 0.1 to 100 and thus B has a typical
value of 0.1–8 kT . The quantity B can also be expressed as a function of the surface
potential ψ0 [34]:

B

kT
= 8

[
tanh

(
eψ0

4kT

)]2
. (1.12)

The surface potential of a charged colloidal particle typically varies from 10 to 100
mV, leading to B values in the same range as given above.

1.2.3 DLVO Interaction

By assuming additivity of the interactions, the total DLVO potential is simply given
by

WDLVO = WVdW + WDR. (1.13)

In Fig. 1.3 the DLVO interaction potential WDLVO is represented alongside its two
contributions. If the maximum of WDLVO is sufficiently high (larger than a few kT ),
flocculation is prevented. Flocculation does occur when the particles get very close
together and reach the so-called primary minimum. This minimum is usually deep
enough for irreversible flocculation.

For a given Van derWaals attraction and particle size the DLVO potential depends
on the ionic strength. The DLVO potential is qualitatively represented in Fig. 1.4,
from (i) towards (iv) by increasing the salt concentration. At low salt concentration
(i) the double layer repulsion dominates, themaximumofWDLVO exceeds several kT ,
and a stable colloidal dispersion is expected. In situation (ii) the salt concentration
is larger but there is still a local maximum that may be significant, preventing the
particles from irreversibly sticking into the primary minimum. A shallow secondary
minimum now manifests itself at large interparticle distances. If this local minimum
is sufficiently deep (i.e. for large particles), weak flocculation can take place. Such
weakly flocculated aggregates can be redispersed by shaking or by lowering the salt
content. Adding still more salt (iii, iv) leads to irreversible aggregation: the Van der
Waals attraction gets dominant and the colloidal dispersion will be unstable. DLVO

Fig.1.4 Illustrative DLVO pair interactions (left) between two charged colloidal spheres (right) in
an electrolyte solution as a function of increasing salt content from (i) → (iv)
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theory is capable of accurately describing early stage aggregation of dilute charged
colloidal spheres for λD � 3nm [39].

Using the surface force apparatus, Israelachvili andAdams [40]measured a repul-
sive force between surfaces in aqueous solution at short separations that could not
be interpreted in terms of DLVO theory. This interaction is due to hydration forces
caused by the ordering of water molecules. Its range is very short, typically below
2nm. For a discussion on the limitations of DLVO theory and possible improvements
see Ref. [41].

In the above descriptions we concentrated on situations where a polar background
solvent was implicitly assumed. In apolar solvents double layer repulsion is difficult
to achieve because dissociation (which leads to charged surface groups) is less likely
to occur, and it then becomes essential to stabilise colloids with polymers. In the first
decades after the establishment of the DLVO theory, most papers on forces between
colloidal particles focused on Van der Waals and double layer interactions. Forces
of other origin, such as polymeric steric stabilisation [24], depletion [42], or effects
of a critical solvent mixture [43], gained interest at a later stage.

1.2.4 Influence of Attached Polymers

Colloidal dispersions can be verywell stabilised by attaching polymers to the particle
surfaces [24]. Here, we consider polymer chains that are in a ‘good solvent’. This
means that the chains are swollen and repel each other. As two colloidal particles
protected with attached polymers approach each other, the local osmotic pressure
increases dramatically due to mutual steric hindrance of the polymer chains on the
particles. This competition between the chains for the same volume leads to a repul-
sive interaction, as was realised by Fischer [44].

Polymers can be attached to surfaces as, for instance, mushrooms, brushes or
adsorbed chains (Fig. 1.5). In the case ofmushrooms and brushes, the (nonadsorbing)
chains are chemically bound to the surface by one chain end. When polymers adsorb
at a surfacemany segments stick and densely pack at the interface.Attached polymers
can contribute to a (significant) repulsive interaction between the particles. Upon

δb

Fig.1.5 Polymers attached at a surface: a mushroom (left), a brush (middle) and a layer of adsorbed
polymer (right)
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Van der Waals

brush repulsion

Fig.1.6 The influence of a brush repulsion on the interaction potential W (h) between two spheres
with Van der Waals attraction

overlap of the attached polymers the osmotic pressure between the surfaces strongly
increases which leads to a repulsive interaction between the particles.

For polymer brushes—chains that are anchored to the surface by an end segment
with a high anchor density—the chains are highly stretched. The Helmholtz (free)
energy of interaction between brushes consists of two terms: an osmotic repulsion
contribution and a stretching factor. The Alexander–De Gennes theory [45–47] con-
siders the repulsive interaction of overlapping brushes of thickness δb (Fig. 1.5) in
a good solvent. This thickness scales as Mσ

1/3
b , where M is the chain length and

σb the anchor density. For h ≤ 2δb the pressure P between two parallel plates with
anchored brushes at separation h reads:

P(h)

kTσ
3/2
b

≈
(
2δb
h

)9/4

−
(

h

2δb

)3/4

. (1.14)

Thefirst positive termon the right-hand side represents the osmotic repulsionbetween
the brushes, and the second negative term originates from the elastic energy gain
upon retraction of chains (less stretching). The repulsion dominates the interaction
for h < δb. As will become clear in Sect. 2.1, the pressure yields the interaction
potential between two plates, from which the interaction between two spheres can
also be derived.

Figure1.6 is a qualitative representation of the effect of adding a polymer brush
to the interaction between two (uncharged) colloidal spheres subject to Van der
Waals attraction. Commonly, one assumes the total interaction is the sum of all pair
interactions:

Wtot =
∑
i

Wi . (1.15)

So, in Fig. 1.6 the total interaction potential is Wtot = WVdW + Wbrush. Without the
anchored polymer chains the particles would coagulate spontaneously since the Van
der Waals attraction is very strong at small values of h. However, upon adding the
polymer brush repulsion, the total interaction (solid curve) is repulsive for a wide
h-range, with no significant attraction left.

The Van der Waals attraction can be reduced by choosing a solvent (mixture)
that allows for refractive index matching of colloid and solvent. For model studies
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Fig. 1.7 Hard sphere (left) and square well or adhesive hard sphere (right) interaction

where one desires hard sphere-like particles, refractive index matching is combined
with attaching short hairs (a thin brush; δb � R) to the colloidal particles. This leads
to absence of effective attractions and only a short-ranged repulsion between the
particles, i.e. we now have a system of hard spheres (imagine submicrometer sized
billiard balls). The pair interaction may then be approximated as

W (h) =
{

∞ h ≤ 0,

0 h > 0,
(1.16)

the hard sphere interaction plotted in Fig. 1.7 (left panel). In the next subsection we
consider the effect of adding nonadsorbing polymers to such a hard sphere dispersion.

When the medium is a poor solvent for the attached polymers a rather different
situation is encountered. The polymer chains then tend to assume collapsed configu-
rations in order tominimise contactwith solventmolecules and the polymer segments
prefer to interact with each other. This results in (short ranged) attraction between
colloidal particles covered with polymer chains in a poor solvent (see Sect. 5.5 in
Ref. [48]). The interaction of such sticky spheres (billiard balls with a thin layer of
honey [49]) is often described in a simple manner using the (square well or) adhesive
hard sphere interaction (see right panel in Fig. 1.7),

W (h) =

⎧⎪⎨
⎪⎩

∞ h ≤ 0,

−ε 0 < h ≤ �,

0 h > �,

(1.17)

where� is the range of the attraction set by the thickness of the polymer layers and ε
is the strength of attraction upon overlap of the polymer layers. For� � R the sticky
sphere model of Baxter [50] can be employed providing simple expressions for the
second osmotic virial coefficient and the equation of state. When the attractions are
sufficiently strong, phase separation or aggregation occurs [51–54].

1.2.5 Depletion Interaction

Consider a room in a restaurant on two different occasions, as sketched in Fig. 1.8. On
regular evenings the staff arranges the tables in a typical dinner set-up. Sometimes
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Fig. 1.8 Left: dinner set-up in the restaurant on a quiet evening. Right: buffet set-up in the same
restaurant after ‘phase separation’. Drawings by D. Frenkel (personal communication)

the room is booked for a cocktail party with many people present. In such a busy
cocktail party the tables are laden with drinks and snacks and the configuration of the
tables is rather different. Obviously, when the number of visitors exceeds a certain
value, it is more efficient to push the tables close to each other and towards the wall
in order to gain more translational freedom for the visitors.

The ‘phase separation’ inFig. 1.8 is driven by entropyonly. The apparent attraction
between the tables originates from purely repulsive people–people, people–table and
table–table interactions: the visitors do not wish to be too close to each other (and
can still fetch a drink from a table). It is, just like depletion, an example of what
prof. Vrij [55,56] referred to as ‘attraction through repulsion’. Below we explain the
origin of the depletion effect, first by considering colloidal hard spheres in a solution
of nonadsorbing polymer.

Suppose colloidal spheres are mixed with nonadsorbing polymers. The loss of
configurational entropy of the polymer chains in the region near the surface results in
negative adsorption. Hence the colloidal particles are surrounded by depletion layers:
zones in which the polymer concentration is lower than in the bulk. The mechanism
that is responsible for the depletion attraction originates from the presence of these
depletion layers.

Consider the depiction of a few colloidal spheres in a polymer solution shown in
Fig. 1.9. Effective depletion layers are indicated by the (dashed) circles around the
spheres. When the depletion layers overlap (lower two spheres) the volume available
for the polymer chains increases. It follows that the free energy of the polymers is
minimised by states inwhich the colloidal spheres are close together. The effect of this
is just as if there were an attractive force between the spheres even though the direct
colloid–colloid and colloid–polymer interactions are both repulsive [42]. For small
depletant concentrations the attraction equals the product of the osmotic pressure
and the overlap volume, indicated by the hatched region between the lower spheres
in Fig. 1.9. The model illustrated above first became clear in the 1950s through the
work of Asakura and Oosawa [57,58], and gained full attention only once Vincent
et al. [59,60] and Vrij [42] started systematic experimental and theoretical work on
colloid–polymer mixtures.

Consider two colloidal spheres eachwith radius R, each surrounded by a depletion
layer with thickness δ. In that case the depletion potential can be calculated from the
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Fig. 1.9 Colloidal spheres in
a polymer solution with
nonadsorbing polymers. The
depletion layers are indicated
by the short dashes. When
there is no overlap of
depletion layers (upper two
spheres) the osmotic
pressure on the spheres due
to the polymers is isotropic.
For overlapping depletion
layers (lower two spheres)
the osmotic pressure on the
spheres is unbalanced; the
excess pressure is indicated
by the arrows

product of P = nbkT , the (ideal) osmotic pressure of depletants with bulk number
density nb, multiplied by Vov, the overlap volume of the depletion layers. Hence, the
Asakura–Oosawa–Vrij (AOV) depletion potential equals [42,57,58]:

Wdep(h) =

⎧⎪⎨
⎪⎩

∞ h < 0,

−PVov(h) 0 ≤ h ≤ 2δ,

0 h ≥ 2δ,

(1.18)

with overlap volume Vov(h),

Vov(h) = π

6
(2δ − h)2(3R + 2δ + h/2). (1.19)

This simple expression is often used for the depletion interaction and will be derived
in more detail in Chap. 2.

The AOV interaction potential Wdep(h) between two hard spheres in a solution
containing free polymers is plotted in Fig. 1.10. The minimum value of the potential
Wdep is achieved when the particles touch (h = 0).

We note that in the original paper of Asakura and Oosawa [57], where Eq. (1.18)
was first derived, the polymers were regarded as pure (infinitely dilute) hard spheres.
Vrij [42,61] achieved the same result by describing the polymer chains as penetrable
hard spheres (PHSs) (see Sect. 2.1). Inspection of Eqs. (1.18) and (1.19) reveals that
the range of the depletion attraction is determined by the size 2δ of the depletant,
whereas the strength of the attraction increases with the osmotic pressure and sub-
sequently, with the depletant concentration. Depletion effects offer the possibility to
independently modify the range and the strength of attraction between colloids. In
dilute polymer solutions, the depletion thickness δ is close to the polymer’s radius
of gyration Rg (Sect. 2.2.1).
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Fig. 1.10 The depletion interaction W (h) between two hard spheres

In amixture of hard spheres and depletants, a phase transition occurs upon exceed-
ing a certain concentration of colloidal spheres and/or depletants. This is the subject
of Chaps. 3 and 4 and 6 and 7 in this book. This is extended tomixtures of anisotropic
hard colloidal particles and depletants in Chaps. 8 to 10.

A key parameter in describing the phase stability of colloid–polymer mixtures is
the size ratio q ,

q = Rg

R
. (1.20)

Throughout, colloid–polymer mixtures are described in terms of the volume frac-
tion of colloids φ and the relative polymer concentration:

φp = nb
n∗
b

= ϕ

ϕ∗ , (1.21)

which is unity at the (polymer coil) overlap concentration and can be regarded as the
‘volume fraction’ of polymer coils (and exceeds unity in the semidilute concentration
regime). Here, nb is the bulk polymer number density and n∗

b is its value at which
the polymer coils overlap. In terms of the volume fraction of polymer segments ϕ
(0 ≤ ϕ ≤ 1), one then uses φp = ϕ/ϕ∗, with ϕ∗ representing the segment volume
fraction where the chains start to overlap:

ϕ∗ = Mvs

vp
, (1.22)

whereM is the number ofmonomers per chain, vs is themonomer (segment) volume,
and vp = (4π/3)R3

g the coil volume. The overlap number density n∗
b follows as

n∗
b = 3/(4πR3

g).
It has actually become standard practice to normalise polymer concentrations in

this way and use ϕ/ϕ∗ (or nb/n∗
b) as the parameter for ‘polymer concentration’. In

terms of the more practically accessible concentration cp (in, e.g. kg/m3 or g/L), the
polymer coil overlap concentration is expressed as

c∗
p = 3Mp

4πR3
gNAv

, (1.23)
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Fig. 1.11 The total interaction potential between two spheres covered with polymer brushes in a
good solvent. The solution contains nonadsorbing polymer chains

where Mp is the polymer’s molar mass and NAv is Avogadro’s number. Note that
c∗
p = cp/φp.

Exercise 1.1. Show that, when using the approximation δ = Rg, the attractive
part of Eq. (1.18) for ideal depletants can be written in normalised quantities
as

Wdep(h)

kT
= −φp

q3

(
q − h

2R

)2 (
3

2
+ q + h

4R

)
.

Hint: For ideal depletants the pressure P in Eq. (1.18) can be rewritten as
Pvp/kT = φp by using φp = nbvp.

Figure1.11 shows the influence of a combined depletion attraction and a brush
repulsion on the total interaction. The presence of brushes reduces the attraction and
the minimum value of the attraction is found at h > 0 [62].

The fact that depletion forces enable the range and strength of attraction to be var-
ied independently is helpful for studying fundamental properties of liquids, as well as
crystallisation and gelation phenomena, using colloidal systems instead of lowmolar
mass substances. Another advantage of colloid–polymermixtures is that colloids can
be investigated using microscopy. Aarts et al. [63] could even detect capillary waves
at the colloidal gas–liquid interface. Observations of wetting phenomena can also be
studied at the particle level [64,65].

1.3 Historical Overview on Depletion

Depletion in colloidal dispersions is a central theme in this book. As we saw in
Sect. 1.2.5 depletion effects in colloidal dispersions are caused by an unbalanced
force. From a physics point of view, the depletion force between colloidal particles
due to nonadsorbing polymer chains or small particles has common features with
any other unbalanced force, whether of a colloidal nature or not. Before we focus
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Fig.1.12 Caspar Schott’s (1602–1666) illustration of the vacuum force demonstration by two teams
of horses attempting to separate the hemispheres

on depletion effects on a mesoscopic level, we first give two classical examples of
unbalanced forces.

1.3.1 Early Interest in Unbalanced Forces

1.3.1.1 The von Guericke Force
Halfway through the 17th century a series of remarkable experiments were per-
formed, initiated by Otto von Guericke. One took place in 1657 at the court of King
FriedrichWilhelm III of Brandenburg in Berlin, Germany. Two hollow copper hemi-
spheres, each with a diameter of 51cm, were joined together and air pumped out to
create a partial vacuum. A team of horses was then harnessed to each hemisphere
(Fig. 1.12). The teams, each pulling with a force of about 1500N each, could not
pull the two joined hemispheres apart, demonstrating the tremendous force of air
pressure. This proved the existence of the nothing we now call a vacuum.

Exercise 1.2. Show that the force on the hemispheres due to air pressure is one
order of magnitude larger than the force that can be produced by 24 horses.

This experiment was the brainchild of scientist, inventor and politician Otto von
Gericke (later spelled von Guericke), who lived between 1602 and 1686. The vac-
uum pump he used was invented by himself in 1650. His book on vacuum [66]
reminds one of the difficulties in understanding vacuum at the time. Von Guericke
abandoned established views and developed an independent vision on vacuum [67].
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The result of this experiment showed that the surrounding air molecules push against
the Magdeburg hemispheres (von Guericke was the mayor of Magdeburg). While
it appears that there is an attractive force that pulls the hemispheres together, the
vacuum in fact results from unbalanced repulsive forces.

Exercise 1.3. Explain why the osmotic pressure of the polymer solution in a
colloid–polymer mixture plays a similar role to air pressure in von Guericke’s
experiment.

1.3.1.2 Le Sage’s Gravitation Theory
In 1690, Nicolas de Fatio (and later in 1748 Georges-Luis Le Sage) proposed a
mechanical theory for the explanation of both Newton’s gravitational force and cohe-
sive forces in materials [68]. This theory assumes the existence of ‘ultramundane
corpuscles’. Streams of such corpuscles are thought to impact on all materials from
all directions. Now, if two bodies of materials are close to one another they can
partially shield each other from the incoming ‘ultramundane corpuscles’; the bod-
ies will be struck by fewer corpuscles from the side of the other body. This mutual
shielding was then supposed to push the bodies together due to the unbalanced force
of the colliding corpuscles. This line of reasoning was first formulated by de Fatio
in a letter to Huygens [69], but Newton also had contact with de Fatio on this matter.
While Huygens, Newton and Leibniz were interested, they never accepted de Fatio’s
explanation as the driving force for gravity.

At a later stage Le Sage published a similar, more refined version of the theory
[70]. He was in contact with some of the greatest physicists and mathematicians
of his time, including Euler and Bernouilli, who found the theory rather specula-
tive. Inconsistencies in the theory were later revealed by, for instance, Laplace, Lord
Kelvin, Lorentz and, for didactic reasons, by Feynman [71] more recently. Occasion-
ally, there is still interest in Le Sage’s theory [72]. In an interesting paper, Rowlinson
[68] drew attention to the fact that the work of Le Sage has a remarkable similarity
to the depletion force.

1.3.2 Experimental Observations on Depletion Before the 1950s

Long before Asakura and Oosawa rationalised the attractive interaction caused by
depletants, the effects of depletion were already noted in various areas of speciali-
sation. In this overview, we first give examples of such studies and try to interpret
them with our current knowledge of depletion forces. Subsequently, we discuss sev-
eral studies that were performed after the work of Asakura and Oosawa, often in
light of the theoretical progress that is being made over the last decades especially.
Although it is nearly impossible to cover all developments within the area of deple-
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Fig. 1.13 Red blood cells in the blood of a pneumonia patient (left), in which rouleaux forma-
tion took place (strong aggregation), compared to weak aggregation in healthy blood (right) [73].
Reprinted with permission from Ref. [73]. Copyright 1929 APS

tion phenomena in physics and chemistry, we aim to give the reader a broad overview
here.

1.3.2.1 Clustering of Red Blood Cells
Red blood cells (RBCs) are biconcave particles and their detailed shape and size
depend on the RBC type. The human RBCmay be considered a disc with a diameter
D = 6.6 μm and a thickness of L = 2 μm, its volume thus being of the order of 102

μm3. The RBCs occupy about 40–50 vol% of our blood.

Exercise 1.4. Demonstrate that stacking all red blood cells in a human being
(having about 5L of blood) in a single column provides an RBC cylinder with
a height that is of the order of the earth’s circumference.

By the 18th century it was already known that RBCs tend to cluster, preferably
with their flat sides facing each other, like a stack of coins [73]. These structures are
commonly denoted as ‘rouleaux’. In the blood of healthy human beings the tendency
of RBCs to aggregate is low. Aggregation is found to be enhanced in pregnancy or a
wide range of illnesses, giving rather pronounced rouleaux (Fig. 1.13). An impressive
review on RBC clustering was written by Fåhraeus [73]. Thysegen [74] provides
another historical review.

Enhanced RBC aggregation can be detected, for instance, by measuring the sedi-
mentation rate. The sedimentation rate varies between 1–3mm per hour for healthy
blood and up to 100mm per hour in the case of severe illnesses. The blood sedi-
mentation test, based on monitoring the aggregation of red blood cells, became a
standard method for detecting illnesses. The relationship between pathological con-
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dition, RBC aggregation and enhanced sedimentation rate has been known for at
least two centuries, as described in Refs. [73–76].

Fåhraeus [73,75] related enhanced aggregation of RBCs longer and stronger
rouleaux to the concentration of the blood serum proteins fibrinogen, globulin and
albumin. The tendency to promote aggregation depends on the type of protein.
Rouleaux formation is most sensitive to increased serum concentrations of fibrino-
gen (molar mass 340kg/mol) compared to β- and γ-globulins (90 and 156kg/mol,
respectively). The globulins in turn lead to RBC aggregation at lower protein con-
centrations than albumin proteins (69kg/mol). Further, it has been shown that adding
several types of macromolecules also promotes rouleaux formation [77]. Asakura
and Oosawa [58] suggested that RBC aggregation might be caused by depletion
forces between the RBCs induced by serum proteins. This is in line with the finding
that the sedimentation rate is more sensitive to larger serum proteins.

Some authors interpret rouleaux formation as being caused by bridging of RBCs
by serum proteins. There is, however, no evidence for protein adsorption onto RBCs.
A study on rouleaux formation in mixtures of human RBCs (D = 6.6 μm) and
rabbit RBCs (D = 7.8 μm) resulted in rouleaux structures that consisted (mainly)
of only a single type of RBC [78]. This can be explained by a depletion effect (the
overlap volume, hence entropy, is maximised if similar RBCs stack onto each other).
However, the formation of mixed aggregates is expected if bridging were to occur;
and since this is not observed, there is little support for the bridging hypothesis [79].
The general picture is that red blood cells tend to cluster at elevated concentrations
of the blood serum proteins, which act as depletants [80,81].

1.3.2.2 Demixing of Biopolymers in Solution
Another manifestation of segregative interactions leading to demixing was reported
by the microbiologist Beijerinck [82] who tried to mix gelatin (denatured protein
coil) with starch (polysaccharide) in aqueous solution in order to prepare new Petri
dish growth media for bacteria. He reported that these biopolymers could not be
mixed; emulsion droplets appeared instead. With current knowledge [83,84] this
can be regarded as an early detection of depletion-induced demixing. Tolstoguzov,
Grinberg and co-workers extensively studied many mixtures of polysaccharides and
proteins and concluded that such mixtures tend to segregate [85–87], unless there
are specific interactions such as opposite charges. They further found that adding salt
decreases themiscibility region in protein/polysaccharidemixtures [85]. It is obvious
that, as well as pure depletion forces, double layer interactions play a role in such
mixtures. The separate liquid phases in demixed protein–polysaccharide mixtures
can sometimes be characterised by a sharp liquid–liquid interface. The interfacial
tension between the coexisting phases in protein–polysaccharide mixtures has been
determined and is of O(μN/m) [88,89], in agreement with Eq.1.24 below.

1.3.2.3 Creaming of Particles in Latex and of Emulsion Droplets
In the beginning of the 20th century, large scale production of latex for rubber
and paint production commenced. The term ‘latex’ is nowadays identified with a
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Fig.1.14 Optical micrographs of a rubber latex dispersion [91]. a 1% suspension without polymer.
b 2min after addition of 0.2% polysaccharide. c 10min after addition of 0.2% polysaccharide. d
Image of the creaming layer. Size of the images are about 130 by 100 μm. Reprinted from Ref. [91]

stable dispersion of polymeric particles in an aqueous medium. In order to lower
transport costs there was a significant interest in concentrating the polymeric latex.
Centrifugation is highly energy consuming, and thus expensive.

Traube [90] showed that adding plant and seaweed polysaccharides led to a phase
separation between an extremely dilute and a very concentrated phase. Since the
particles are lighter than the solvent, the concentrated phase (with volume fraction
0.5 ≤ φ ≤ 0.8) floats on top. The lower phase is clear and hardly contains particles.
Baker [91] and Vester [92] systematically investigated the mechanism that leads to
what they called (enhanced) creaming.

In Fig. 1.14 we show microscopy images of the latex dispersion investigated by
Baker [91]. The images are for a 1% latex dispersion, firstwithout added polymer (A).
Images B and C were taken respectively 2 and 10min after adding 0.3% of polymer
(the polysaccharide tragon seed gum). After polymer addition, Baker reports an
immediate deceleration of Brownian motion adjacent to particle aggregation. After
about 10min particle aggregation discontinues and the aggregates start creaming. The
entire creaming process takes about 1day. Image D was taken in the cream layer.
Upon diluting the cream layer to 1% of latex particles Brownian motion restarts,
suggesting that the flocs segregated into individual particles again. From the work
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Fig. 1.15 Optical micrographs of demixed dispersions of emulsion droplets (black) in a polymer
solution before (left) and after (right) pressing the microscopy slide. Micrograph diameters corre-
spond to 610 μm. Reprinted with permission from Ref. [92]. Copyright 1938 Springer

of Baker [91] it can thus be concluded that the particles aggregate reversibly; upon
dilution the latex particles can be resuspended. This suggests that bridging, which
can also cause creaming [93], is not the driving force for enhanced creaming.

Vester [92] reviewedways to optimise the creaming speed of lattices by using non-
adsorbing polymer chains as depletants. He found that polymer addition can also lead
to formation of short-lived emulsion droplets with diameters ofO(10–100μm) that
are enriched in latex, while the continuous phase is dilute in latex particles. Nowa-
days, this is interpreted as a colloidal gas–liquid phase coexistence. A microscopy
image of the resulting emulsion is given in Fig. 1.15 (left panel). The droplets deform
very easily upon confining the emulsion (right panel Fig. 1.15). This must imply that
the interfacial tension γ is very low, say � 1 mN/m. Indeed, we do expect a small
interfacial tension. The order of magnitude of a surface tension can be estimated
from

γ ≈ kT

d2
, (1.24)

where d is the particle diameter [94]. For molecular systems this yields values for
γ of at least a few mN/m up to hundreds mN/m, which is indeed approximately
the range of measured surface tensions. For particles in the colloidal size domain
with, for instance, d ≈ 30 nm, an interfacial tension of only 1 μN/m is expected at
room temperature. Indeed, this is the order of magnitude of the ultra-low interfacial
tension measured in demixed colloid–polymer mixtures that are in colloidal gas–
liquid equilibrium (see Chap. 5).

Cockbain [95] found that creaming of oil droplets in a surfactant-stabilised oil-in-
water emulsion is enhanced when the surfactant concentration exceeds the critical
micelle concentration. This phenomenon was left unexplained at the time, but thirty
years later Fairhurst et al. [96] made a connection with depletion interaction theories
and suggested that the micelles play a similar role to nonadsorbing polymers or small
colloidal particles in acting as depletants (see Chap. 6).
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1.3.2.4 Precipitation and Isolation of Viruses
Cohen [97] demonstrated that adding less than a percent of heparin to solutions
of rod-like viruses results in the precipitation of the virus particles. The isolated
precipitate phase consists of ‘paracrystals’. The connection Cohen [97] makes with
the work of Bernal and Farkuchen [98] suggests the phase appears liquid crystalline.
This allows viruses to be isolated and concentrated [99,100]. A microscopy image
of clusters of tobacco mosaic virus (TMV) particles in a dispersion with 0.5 wt%
of heparin [97] is shown in Fig. 1.16. In Chap. 8 we consider depletion effects in
colloidal rod dispersions.

1.3.3 1950–1969

The work of Fumio Oosawa (1922–2019) played a crucial role in the development
of the insights into the depletion interaction. After finishing his education in physics
in 1944 [102], Oosawa specialised in statistical mechanics because he wanted to
do some ‘unorthodox physics’ [103]. Oosawa [101], who in the early 1950s was
a young Associate Professor at Nagoya University in Japan, organised a winter
symposium in Nagoya and invited a multidisciplinary group of Japanese scholars,
mainly active in biology. He asked the participants to present work on phenomena in
biological systems where statistical physics could be helpful to understand certain
mechanisms. During the meeting the ‘aggregation’ of particles under the influence
of macromolecules was a re-occurring theme [103]. It was observed, for instance,
in suspensions of red blood cells [77], bacterial cells, soil powder and gum latex
particles, as explained by Professor Oosawa during a symposium in 2014 [104].
During the winter symposium in 1953, professor Tachibana commented that these

Fig. 1.16 Light microscopy
image of TMV paracrystals
upon adding heparin [97].
Size of image: 80 by 60 μm.
Reprinted from Ref. [97]
under the terms of
CC-BY-4.0
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Fig. 1.17 Oosawa (left) and Asakura (right) at Nagoya University in the 1960s [101]. Photograph
courtesy of the family of Professor Fumio Oosawa

similar phenomena might originate from the same physical principle [103]. This
inspired Oosawa to start work with Sho Asakura, then a graduate student, on the
influence of polymers on the interaction between particles.

Soon after, later Noble Prize (1974) winner P.J. Flory met Oosawa at a conference
in Tokyo, organised by professor Yukawa. At this conference Oosawa invited profes-
sor Flory to come to Nagoya University [101]. During this visit Asakura and Oosawa
(Fig. 1.17) reported unpublished theoretical results on two particles immersed in a
solution containing nonadsorbing polymer chains, showing the chains impose an
effective attractive interaction between the particles. The very positive response of
Flory, at that time Associate Editor of J. Chem. Phys., resulted in submission of this
work and lead to a seminal paper, in which Asakura and Oosawa [57] presented a
derivation of the interaction between two particles immersed in a solution of other
nonadsorbing species. The theory of Asakura and Oosawa is the first theoretical
prediction of a depletion force.

The effective attraction is a purely entropic effect; the indirect attraction origi-
nates from purely repulsive interactions. In this short paper Askura and Oosawa [57]
considered four cases. The first three concern the interaction between parallel flat
hard plates mediated by dilute (i) hard spheres, (ii) thin rods and (iii) ideal polymer
chains. The segments of ideal polymer chains have no excluded volume; segments
do not feel other segments. This will be explained in more detail in Sect. 2.2. Further,
they also considered the interaction between hard spheres induced by small dilute
hard spheres.

Not long after the publication of the work of Asakura and Oosawa, Sieglaff
[105] demonstrated that a depletion-induced phase transitionmay occur upon adding
polystyrene to a dispersion ofmicrogel spheres in toluene. This demonstrated that the
attractive depletion force is sufficiently strong to induce a phase separation. Sieglaff
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rationalised his findings in terms of the theory ofAsakura andOosawa. It took several
years before subsequent work was done. This study of Sieglaff was later extended
by Clarke and Vincent [106].

1.3.4 1970–1982

Early systematic experimental studies with respect to phase stability for colloid–
polymer mixtures were performed by Vincent and co-workers [60,107,108]. At ICI
and inBristol, they concentrated onmixtures of colloidal spheres (latex particles) and
nonadsorbing polymers such as polyethylene oxide (PEO). The work started when
Vincent worked at ICI in Slough (1970–1972), where he investigated the origin of
the flocculation of pigment particles in paint dispersions with F. Waite. In the papers
of Vincent et al. [107,109–111] a lot of attention is given to properly qualifying the
demixing phenomena in colloid–polymer mixtures. These experiments were ahead
of a full theoretical understanding of the phase behaviour of colloid–polymer mix-
tures. One of the systems studied was polystyrene spheres with terminally attached
PEO brushes dispersed in mixtures of free PEO and water for a wide range of con-
centrations. The spherical particles were stable in both pure water and pure PEO
melts. However, in mixed solutions of PEO and water (for instance, 50% water and
50% of PEO) a ‘slow flocculation’ of the particles was observed. Themaximum floc-
culation rate was measured and was found to shift to lower PEO concentrations upon
increasing the molar mass. This restabilisation at very high polymer concentrations
(reported in a series of papers [107,109,110,112]) was also found in a dispersion of
grafted silica spheres mixed with polydimethyl siloxane (PDMS) polymer chains.
Only polymer melts that are sufficiently liquid-like allow systems at such high poly-
mer concentrations to be studied because other polymers would be too viscous for a
proper analysis of the phase behaviour.

In the same period, Hachisu et al. [114] investigated aqueous dispersions of neg-
atively charged polystyrene latex particles that undergo a colloidal fluid-to-solid
phase transition upon lowering the salt concentration using dialysis or increasing
the particle concentration. Under conditions where the latex dispersion (particles
with R = 170 nm) is not ordered (fluid-like), Kose and Hachisu [113] added sodium
polyacrylate to polystyrene latex particles (both components are negatively charged)
and observed crystallisation of the colloidal spheres (Fig. 1.18). Since polymers and
particles repel each other, the crystallisation process is probably induced by deple-
tion interaction, although the authors themselves did not explicitlymention depletion.
They do suggest that the ordering is due to ‘some attractive force’.When the polymer
concentration is increased, crystallisation occurs faster (Fig. 1.18, bottom panel).

Theoretical work on depletion interactions and their effects on macroscopic prop-
erties such as phase stability commenced along various routes. First, Vrij [42] stud-
ied the polymer-mediated depletion interaction between hard spheres. He described
the nonadsorbing polymers as PHSs (see Sects. 1.2.5 and 2.1). Vrij [42] referred
to the work of Vester [92], Li-In-On et al. [60] and preliminary experiments at the
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Fig. 1.18 Optical
micrographs showing
mixtures of monodisperse
polystyrene latex particles
with 185mg/L sodium
polyacrylate polymers after
(top) 25min and (middle)
55min; and (bottom) with
370mg/L sodium
polyacrylate after 25min.
Reprinted with permission
from Ref. [113]. Copyright
1976 Elsevier
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Van ’t Hoff Laboratory on micro-emulsion droplets mixed with free polymer [42]
for experimental evidence of depletion effects.

Progress on the quantification of the depletion layer thickness was triggered by
1991 Noble Prize winner De Gennes. In his seminal book [115], De Gennes derived
an expression for the density profile of a semidilute polymer solution near a hard wall
and demonstrated that the depletion thickness equals the correlation length, the length
scale over which the segments are correlated. In dilute polymer solutions (below coil
overlap) it is close to the radius of gyration of the polymer chains. However, in
semidilute solutions (above overlap) the correlation length becomes independent of
the chain length and is a (decreasing) function of the polymer concentration. Hence,
also the depletion thickness decreases with polymer concentration in the semidilute
regime. De Gennes considered the depletion contact potential between two colloidal
hard spheres in a semidilute polymer solution in a good solvent. For this case, where
the only relevant length scales are the sphere radius R and the correlation length ξ,
he derived the following scaling relation for the minimum of the interaction potential
[116]:

Wdep(h = 0)

kT
∼=

⎧⎨
⎩

− R
ξ R � ξ,

−
(
R
ξ

)4/3
R � ξ,

(1.25)

with an unknown prefactor O(1).

Exercise 1.5. What is expected with respect to colloidal stability of large
(R � ξ) and tiny (R � ξ) colloidal spheres in a semidilute polymer solution?

Depletion effects have been studied using mean-field methods since the end of
the 1970s. Insights into polymer physics have increased tremendously through the
development of mean-field theories. The advantage of these theories is that they
simultaneously include excluded volume interactions and give insights into details
of polymer configurations near interfaces. A detailed analytical mean-field treatment
for depletion interaction was made by Joanny et al. [117] who calculated the poly-
mer segment concentration profile between two plates in the semidilute regime, in
agreement with De Gennes’ scaling prediction discussed above.

Using a Flory–Huggins-like mean-field model, Feigin and Napper [32] calculated
the free energy of interaction between two flat platesmediated by nonadsorbing poly-
mers and noted that a repulsive barrier is present for polymer concentrations in the
concentrated regime. The potential at plate contact is, however, still attractive. The
authors suggested that if the repulsive barrier is large enough this might lead to so-
called depletion stabilisation; a colloidal dispersion is destabilised at low polymer
concentrations but restabilised at high concentrations. A conceivable intuitive expla-
nation is kinetic: at high polymer concentrations it is hard to push polymer chains
out of the gap between two particles. The bulk osmotic pressure is very high in a
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concentrated polymer solution. The polymer chains between the particles thus need
to be transported towards a very steep osmotic pressure gradient.

Scheutjens and Fleer [118,119] developed a numerical self-consistent field (SCF)
method that enables the calculation of equilibrium concentration profiles near inter-
faces. This SCF method was applied to depletion effects in [120], showing that the
depletion layer thickness is close to Rg at low polymer concentrations but decreases
with increasing polymer concentration in the semidilute regime. In the concentrated
regime, very close to the melt concentration, the polymer concentration between
two parallel plates oscillates around the bulk polymer concentration. This finding
is supported by Monte Carlo computer simulations of Broukhno et al. [121] The
interaction potential between the plates was also calculated by Scheutjens and Fleer
[120] using SCF. For dilute polymer solutions the range of the potential is close to
2Rg and the depth of the potential increases with increasing solvent quality. When
the volume fraction of polymer segments in the system is 0.1 (a very high polymer
concentration, in practice) a weak repulsive part appears in the interaction poten-
tial, as was also found by Feigin and Napper [32]. This repulsion appears at lower
concentrations for better solvent quality [24,120].

A direct link between theoretical and experimental work on depletion-induced
phase separation of a colloidal dispersion due to nonadsorbing polymers was made
by De Hek and Vrij [61,122]. They mixed sterically stabilised silica dispersions with
polystyrene in cyclohexane and measured the limiting polymer concentration (phase
separation threshold). Commonly, one uses the binodal or spinodal as the experimen-
tal phase boundary. A binodal denotes the condition (compositions, temperature) in
which two or more distinct phases coexist (see Chap. 3). A tie-line connects two
binodal points. A spinodal corresponds to the boundary of absolute instability of a
system to decomposition. At or beyond the spinodal boundary infinitesimally small
fluctuations in composition will lead to phase separation.

De Hek and Vrij [61] used the pair potential of Eq.1.18 to estimate the stability
of colloidal spheres in a polymer solution by calculating the second osmotic virial
coefficient B2:

B2 = 2π
∫ ∞

0
r2(1 − exp[−W (r)/kT ])dr , (1.26)

where we used the centre-to-centre distance r between the spheres, which equals
2R + h. A simple argument was used to estimate the spinodal [61]. For colloid
or polymer concentrations [123] exceeding the spinodal, phase separation occurs
spontaneously. Therefore, at the spinodal

dP

dφ
= 0. (1.27)

The virial expansion for the osmotic pressure P of a colloidal dispersion reads

Pv0

kT
= φ + B∗

2φ2 + · · · . (1.28)
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Fig.1.19 a Photograph of a test tube containing a phase-separated mixture of polystyrene polymer
chains (molar mass: 32.4kg/mol) and sterically stabilised silica spheres (R = 21 nm) in cyclohex-
ane. Initial concentrations: 1wt%of silica spheres and 2.5g/L polystyrene. The concentration below
which no phase separation was found was 17g/L. The two demixed phases are separated by a sharp
interface. Reprinted with permission from Ref. [122]. Copyright 1979 Elsevier. b State diagram of
1 wt % silica spheres (R = 46 nm) in cyclohexane mixed with polystyrene polymer chains varying
in molar mass Mp [61]. The limiting polystyrene concentrations below which no phase separation
occurred are indicated as the filled circles. Hatched region: theoretical limits between which the
spinodal curve is situated. Reprinted with permission from Ref. [61] Copyright 1981 Elsevier

with B∗
2 = B2/v0. Here, v0 is the volume of the colloidal sphere. In the limit of low

φ, Eqs. (1.27) and (1.28) provide

1 + 2B∗
2φsp = 0. (1.29)

This relates the polymer activity (which determines B2) to the colloid volume fraction
φsp at the spinodal. De Hek and Vrij [61] were able to give a good description of
the phase line of mixtures of polystyrene chains and small volume fractions of (hard
sphere like) octadecyl silica spheres dispersed in cyclohexane [122].

Figure1.19 depicts results obtained by de Hek and Vrij [61,122] on a mixture
of octadecyl silica spheres and polystyrene polymers in cyclohexane. Both sepa-
rated phases are fluid. The limiting polymer concentration below which no phase
separation occurs in a solution containing a given amount of silica is plotted versus
the molar mass of the added polymer polystyrene. It was found that less polymer is
required to induce a phase separation when the molar mass is larger. This experimen-
tal trend can be predicted by using the spinodal condition Eq. (1.29), but this is only
a semi-quantitative test because, in fact, formally, one should compare the stability
curve with the binodal, as this denotes the compositions of the coexisting phases
in a demixed dispersion. The spinodal is, however, not too far off from the binodal
and probably gives a good and simple estimate. For the smallest molar mass, the
separated phase was gel-like instead of a fluid. A statistical mechanics calculation of
ideal polymer chains between two walls by De Hek and Vrij [61] demonstrated that
the range of attraction between two flat parallel plates due to ideal polymer chains
is close to 2.25Rg, implying a depletion thickness at each plate of about Rg.

A static light scattering (SLS) contrast variation study on elucidating the negative
adsorption of polystyrene chains next to a silica sphere in cyclohexane solutions was
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Fig. 1.20 Optical micrographs of latex colloids mixed with HEC by Sperry [125–127]. Reprinted
with permission from Ref. [127]. Copyright 1984 Elsevier

described in another paper by de Hek and Vrij [124]. This negative adsorption can
be converted to a depletion thickness, which is approximately the radius of gyration
of polystyrene in cyclohexane. The second virial coefficient of the silica particles
could be determined from the SLS experiments, and its value was shown to become
negative when a sufficient amount of nonadsorbing polystyrene is added, which
implies attraction between the spheres.

By mixing aqueous hydroxyethylcellulose (HEC) with latex, Sperry and co-
workers [125–127] observed phase separation and made a study on the effect of
the structure of the colloid-rich phase as a function of the colloid–polymer size ratio
q = Rg/R. The micrographs in Fig. 1.20 of phase separating mixtures demonstrate
how the morphology of the segregating systems varies upon changing q and polymer
concentration. Unstable systems at large q and not too high polymer concentrations
are characterised by smooth interfaces, implying colloidal gas–liquid coexistence.
For small q , demixed systems are characterised by irregular interfaces that indicate
(colloidal) fluid–solid coexistence. This suggests that the width of the region where
a colloidal liquid is found in colloid–polymer mixtures is limited. We return to this
issue in Sect. 4.3. Irregular interfaces are also detected for q > 1/3when the polymer
concentration is substantially increased.
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1.3.5 1983–1999

The work of Sperry inspired Gast, Hall and Russel to develop a theory which might
explain the experimental phenomena. Gast et al. [128] used thermodynamic pertur-
bation theory (TPT) [129] to derive the free energy of a mixture of colloidal particles
and polymers (described as penetrable hard spheres, PHSs), based on pair-wise addi-
tivity of the interactions between the colloids. This is an approach which is based
upon a perturbation of the free energy of a pure colloidal dispersion due to depletion
forces, with Eq. (1.18) as input. Using equations of state for the hard sphere fluid and
the FCC crystal structure as references, they calculated the phase behaviour from
the (perturbed) free energy. This made it possible to assign the nature (i.e. colloidal
gas, liquid or solid) of the coexisting phases as a function of the size ratio q , the
concentration of the polymers, and the volume fraction of colloids. For small values
of q , say, q = Rg/R < 0.3, increasing the polymer concentration broadens the hard
sphere fluid–solid coexistence region; a (stable) colloidal fluid–solid coexistence is
expected if the polymer chains are significantly smaller than the colloidal spheres
(low q). Inside the unstable regions a (metastable) colloidal gas–liquid branch is
located. For intermediate values of q , the gas–liquid coexistence curve crosses the
fluid–solid curve; and for large q-values, mainly gas–liquid coexistence is found
for φ < 0.49, where φ is the volume fraction of colloids [123]. The results are in
agreement with the findings of Sperry [125–127].

Exercise 1.6.Use theGibbs phase rule andderive howmany coexisting phases
a system can assume when it consists of two components. For a discussion
see Ref. [130].

Experimentally, Gast, Russel and Hall [131] later verified the predicted types of
phase coexistence regions for a model colloid–polymer system. Colloid–polymer
phase diagrams [123] are commonly plotted in terms of the volume fraction of
colloids φ and the relative polymer concentration φp, defined in Eq.1.21. In both
the descriptions by De Hek and Vrij and by Gast, Russel and Hall, the depletion
thickness δ was assumed to be equal to the radius of gyration of the polymers. This
assumption can be rationalised by calculating the density profile of polymer chains
at a surface. This was done by Lépine and Caillé [132], who solved the Edwards
equation for ideal polymer chains near a reflective, attractive and repulsive surface.
Eisenriegler [133] also calculated the density profile of nonadsorbing ideal chains
near a flat surface and from this density profile it follows that δ/Rg = 2/

√
π ≈ 1.13

[134] (see Sect. 2.2). This agreeswith an earlier result derived byCasassa and Tagami
[135] using the end segment distribution at a nonadsorbing flat surface. Later, it was
shown [136] that the depletion layer thickness is independent of the reference point
(for instance, centre of mass, middle segment and end segments) used to describe
the depletion density profile.
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Experimental work on the determination of the depletion layer thickness com-
menced in this period, although these are indirect measurements. The depletion
thickness δ of polystyrene in ethyl acetate at a nonadsorbing glass plate was mea-
sured using an evanescent wave technique by Allain et al. [137]. The value found
for δ was indeed close to the radius of gyration of the polymer. Ausserré et al. [138]
measured the depletion thickness of xanthan (a polysaccharide) in water at a quartz
wall below and above the polymer overlap concentration. In dilute solutions below
overlap, δ was close to the radius of gyration of xanthan, whereas in the semidilute
regime (i.e. above overlap (φp > 1)) it decreases as δ ∼ φ−0.8

p . This is in accordance
with what is expected theoretically (see Sects. 4.3.1 and 4.3.2). Pashley and Nin-
ham [139] succeeded in measuring the depletion potential between mica plates (as
induced by CTAB micelles) using the surface force apparatus.

The polymer density profile of nonadsorbing ideal chains next to a hard sphere for
arbitrary size ratio q was first calculated by Taniguchi et al. [140] and later indepen-
dently by Eisenriegler et al. [141] Eisenriegler also considered the pair interaction
between two colloidal hard spheres for Rg � R [142] and for Rg � R [143], as well
as the interaction between a sphere and a flat wall due to ideal chains [144]. Depletion
of excluded volume polymer chains at a wall and near a sphere was considered by
Hanke et al. [145] One of their results is that the ratio δ/Rg at a flat plate, which
is 1.13 for ideal chains [133,134], is slightly smaller for excluded volume chains
(1.07). The precise value for the depletion thickness is important. From Eq. (1.19)
it follows that Vov scales with δ2 for large colloidal spheres (R � δ) and increases
even more strongly for larger depletion zones.

Inspired by the work of De Gennes [115,116], fundamental work commenced
on colloid–polymer mixtures in which the polymers are relatively large compared
to the colloids. This regime is relevant for mixtures of polymer or polysaccharides
mixed with proteins and is often denoted as the protein limit. The opposite case
(small q) is known as the colloid limit. We distinguish three regimes in colloid–
polymer mixtures (Fig. 1.21): small q (also termed the ‘colloid limit’) of q � 0.5,
‘equal sized’ (0.5 � q � 2) and the large q regime (also termed the ‘protein limit’)
of q � 2.

Odijk [146–149] published a series of papers devoted to the protein limit ξ � R;
he considered semidilute polymer solutions where the correlation length ξ scales as
φ

−3/4
p . He first calculated the density profile of a small colloid in a semidilute poly-

mer solution with ξ � R and found a very simple shape of the density profile that
is independent of ξ and only depends on R [146]. By considering the second virial
coefficient between a large polymer and a tiny colloid, he concluded that phase sepa-
ration is not expected in this case. Thiswas confirmed later byEisenriegler [150],who
from renormalisation group theory found that the second osmotic virial coefficient
of small colloidal spheres, B2, only marginally decreases with increasing polymer
concentration up to the coil overlap concentration above which it increases. Odijk
[147] also considered many-body effects by involving void–void correlations and
statistical geometrical approaches [151]. He concluded that the depletion-induced
interaction between small colloids due to large semidilute polymers levels off to a
maximum attraction near a volume fraction φ ∼ 0.3. To mimic proteins, Odijk [149]
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q < 0.5 q = O(1) q > 2

Fig.1.21 The size ratios in colloid–polymer mixtures in different regimes. Left: the ‘colloid limit’
of relatively small polymer chains.Middle: the equal size regime. Right: the ‘protein limit’ regime
of relatively large polymer chains

and Eisenriegler [152–155] extended the approach of polymer depletion and small
colloidal spheres to colloidal particles with ellipsoidal shape.

A semi-grand canonical treatment for the phase behaviour of colloidal spheres
with nonadsorbing polymers was proposed by Lekkerkerker [156], who developed
‘free volume theory’ (also called ‘osmotic equilibrium theory’, see Chap. 3). The
main difference with TPT [128] is that free volume theory (FVT) accounts for poly-
mer partitioning between the phases and for multiple overlap of depletion layers,
hence avoiding the assumption of pair-wise additivity, which becomes inaccurate
for relatively thick depletion layers. These effects are incorporated through scaled
particle theory (see, for instance, [151] and references therein). The resulting free vol-
ume theory (FVT) phase diagrams calculated by Lekkerkerker et al. [157] revealed
that for q < 0.3 coexisting fluid–solid phases are predicted, whereas a gas–liquid
coexistence is found for q > 0.3 at low colloid volume fraction, as was predicted by
TPT.

A coexisting three-phase colloidal gas–liquid–solid region (not present in TPT
phase diagrams)waspredictedbyFVTforq > 0.3 andgainedmuchattention.Exper-
imental work [158,159] demonstrated that this three-phase region indeed exists.
Both Leal-Calderon [158] and Ilett et al. [159] measured phase diagrams of colloid–
polymermixtures as a function of the size ratio q . The topology of the phase diagrams
corresponds well to FVT predictions, as long as q is below 0.6 (see Chap. 4).

As another example of a three-phase system, photographs of dispersions con-
taining 16 vol% polystyrene latex spheres (with a diameter of 67nm), published by
Faers and Luckham [160], are reproduced in Fig. 1.22. The numbers shown represent
the concentration (in wt%) of the polysaccharide hydroxyethylcellulose (HEC). In
the dispersion with 0.3 wt% of HEC three phases coexist. From top to bottom col-
loidal gas, liquid and solid phases can be recognised. The rigidity of the solid–liquid
interface is demonstrated in the lower photographs where the tubes are tilted. The
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Fig. 1.22 Photograph of a
polystyrene latex dispersion
(16 vol %) in 10 mM NaCl at
pH 7 with (as indicated
in wt %) added
hydroxyethylcellulose
(HEC) studied by Faers and
Luckham [160]. In the lower
photograph the tubes are
tilted, demonstrating the
difference between rigid
colloidal solid–liquid and
fluid colloidal gas–liquid
interfaces for the three-phase
coexistence at 0.3 wt %
HEC. Reprinted with
permission from Ref. [160].
Copyright 1997 American
Chemical Society
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gas–liquid interface flows upon tilting the sample, for the gas–solid interface this
is not the case. Using the theory of Lekkerkerker et al. [157] it is also possible to
calculate the tie-lines along which the system demixes, enabling a comparison of
the theory with experimental phase boundaries. The theory describes the experimen-
tal phase diagrams rather accurately [159] for small q . FVT for colloidal spheres
mixed with PHSs was tested by Meijer and Frenkel [161]. Their Monte Carlo com-
puter simulation results on a dispersion of spheres immersed in a solution of ideal
polymer chains showed that the agreement with the osmotic equilibrium theory of
Lekkerkerker et al. [157] is very good for small values of q .

Faers and Luckham [160] also studied the effect of the amount of polymer grafted
onto the colloid surfaces. Decreasing the amount of grafted polymer increased the
phase separation concentration of polymers at fixed colloid concentration, demon-
strating that it is worthwhile to investigate the effect of the presence of brushes in
combination with nonadsorbing polymers.

Polymers are often added to oil-in-water emulsions in order to impose a certain
emulsion viscosity. However, this may lead to instability problems, as is known in
food emulsions [22,162]. Bibette et al. [163–165] were the first to quantitatively
relate phase transitions in emulsions due to nonadsorbing polymers to depletion-
induced forces. They showed that it is possible to size fractionate an emulsion
with a depletion-induced phase transition. An interesting aspect of (micro) emulsion
droplets is that they are not hard spheres, as assumed in FVT [157]. Several groups
[42,166–168] studied the phase behaviour of droplets in a micro-emulsion mixed
with nonadsorbing polymers. The phase behaviour could be explained by describ-
ing the micro-emulsion itself as a collection of sticky hard spheres rather than pure
hard spheres. The colloid–polymer mixture is then described as a mixture of sticky
spheres mixed with nonadsorbing polymers [166,167]. The phase behaviour for the
colloid limit has been studied extensively by, for instance, Meller and Stavans [169]
for emulsions. The FVT of Lekkerkerker et al. [157] was found to agree well with
these experimental studies. The B2-approach of Vrij [42,61] could explain the phase
line measured for an aqueous mixture of casein micelles and nonadsorbing exocellu-
lar polysaccharides [170]. However, the polymer is often larger (protein limit) or has
a similar size to the spherical droplets in polymer/micro-emulsion mixtures. Then
phase transitions occur near or above the polymer overlap concentrations. Obvi-
ously, the assumption δ = Rg is then no longer correct. For a proper description
of the phase behaviour in this case, the effect of interactions between the polymers
must be taken into account: more accurate descriptions of the depletion thickness
and osmotic pressure as a function of the polymer concentration are needed.

Free volume theory is an approximate approach; therefore, theoreticians worked
on a more formal way of accounting for the influence of depletants on the properties
of colloidal mixtures. The exact procedure of integrating out the degrees of freedom
[171] was applied to a binary hard sphere mixture by Dijkstra, van Roij and Evans
[172]. They presented a method to derive an expression for the effective grand poten-
tial for the large hard spheres by formally integrating out the degrees of freedom of
the small spheres.



1.3 Historical Overview on Depletion 35

For mixtures of hard spheres and PHSs as depletants, integrating out the depletant
was laid out by Dijkstra, Brader and Evans [173], who formally derived the semi-
grand canonical ensemblemixtures of hard spheres and PHSs andmade a connection
to FVT. They showed that for small q < 0.154 only one and two body terms are
needed. Although for larger q three and higher body terms are needed, integrating
out is formally still possible and can be done numerically [174].

Depletion potentials were measured indirectly using scattering techniques [124,
175,176] and methods such as atomic force microscopy [177–179] and total internal
reflection microscopy [180–182] (Sect. 2.6). Work using the surface force apparatus
was also extended (see, for instance, [183–185]). The structure factor of dispersed
colloidal particles is sensitive to the details of the effective pair interactions. In
colloidal dispersions the influence of added nonadsorbing polymers on the colloid
structure factor wasmeasured using neutron scattering bymaking the polymer chains
invisible [175]. A characteristic feature of the structure factor is the upswing at small
wave vectors (see Sect. 2.6.4). Depletion effects were also quantified by measuring
the spin-spin nuclear resonance time. Cosgrove et al. [186] performed such a study
using a dispersion of silica with added sodium polystyrene sulfonate (NaPSS). The
resonance time could be related to the depletion thickness, which decreased with
increasing concentration of NaPSS.

When a colloid–polymer mixture phase separates into a colloid-rich and polymer-
rich phase, an interface appears in between. For a colloidal gas–liquid interface it is
possible to measure the interfacial tension using a number of techniques. The value
of the interfacial tension [187] is interesting since it is related to phase separation
kinetics (see Sect. 4.4). The spinning dropmethodwas successfully used in the past to
determine the interfacial tensions in demixed colloid–polymer mixtures [188,189],
yielding tensions with values of a few μN/m, corroborating the relation between the
interfacial tension expressed in Eq. (1.24). The order of magnitude of the data of De
Hoog and Lekkerkerker [189] were comparable with the theoretical results of Vrij
[187], Van der Schoot [190] and of Brader and Evans [191]. From the results of Chen
et al. [192], it follows that the interfacial tension increases with the distance from
the critical point, in agreement with scaling theory [94]. By analysis of the break-
up of an elongated droplet in a centrifugal field De Hoog and Lekkerkerker [193]
demonstrated that the value of the measured interfacial tension was independent of
the method used. Overall, it can be concluded that the colloidal and the ‘molecular’
gas–liquid interface behave similarly. The difference is that the interfacial tension
between a colloidal liquid and gas is ultra-low.

Systematic experimental studiesweremade onvarious aspects of colloid–polymer
mixtures. The phase behaviour of hard sphere binary asymmetric mixtures gained
attention from theoretical [194,195] and experimental [196,197] points of view (see
Chap. 6). Detailed investigations were published on the phase behaviour [158,159]
ofwell-defined colloid–polymermixtures using hard sphere-like colloidsmixedwith
rather monodisperse flexible polymer chains. Studies also appeared on the role of
depletion effects on the dynamics of colloid–polymer mixtures, such as the diffusion
of colloids [198] or the rheology of colloidal dispersions [199,200] in solutions
containing nonadsorbing polymers.
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Specific effects (such as the presence of polymer brushes [62,160]) affect deple-
tion phenomena, and studies on these themes were also initiated in the 1990s. The
same holds for the influence of charges. Many theories and depletion studies with
model systems are based on hard sphere like colloidal particles. In practice, many sta-
ble dispersions containing spherical colloids consist of particles that are not ‘pseudo-
hard’, but can be characterised by a pair potential containing an additional soft repul-
sive tail. An example is a stable dispersion of charged colloids in a polar solvent
[201]. Here, double layer interactions provide a soft repulsive interaction between
the particles (Sect. 1.2.2).

When charged colloids are dispersed in an aqueous salt solution in the presence of
neutral depletion agents, adjusting the salt concentration influences the stability of the
dispersion [85,202,203]. Grinberg andTolstoguzov [87] presented generalised phase
diagrams of (globular) proteins mixed with neutral nonadsorbing polysaccharides
in aqueous salt solutions. The miscibility or compatibility was shown to increase
when the ionic strength of the solvent was lowered. Patel and Russel [204] studied
the phase behaviour of mixtures of charged colloidal polystyrene latex spheres and
dextran as (neutral) polymer chains, and reported a significant shift of the gas–liquid
binodal curve towards higher polymer concentrations when compared to predictions
for neutral polymer chains mixed with hard spheres.

An early theoretical study on polyelectrolytes as nonadsorbing polymers was
made by Böhmer et al. [205], who used the self-consistent field method of Scheut-
jens and Fleer [24,118–120]. For high salt concentrations, the polymer concentration
dependence of the depletion layer thickness matches with that of an uncharged poly-
mer in solution. Below a salt concentration of 1mol/l, the depletion layer thickness
starts to decreasewith increasing polyelectrolyte concentration at lower polymer con-
centration. At low salt concentrations a significant repulsive barrier in the potential
between two uncharged parallel flat plates was found.

Walz and Sharma [206] proposed a force balance theory on the Derjaguin approx-
imation level for the interaction between two spheres (regarded as hard spheres) dis-
persed in a solvent containing charged macromolecules. The magnitude of the inter-
action potential at contact increases as the Debye length increases or if the charge
density on the large colloidal spheres (same sign as the ‘macromolecules’) increases.
The range of the interaction potential also increases as the Debye length increases.
At higher concentrations of the small particles a repulsive barrier in the interaction
potential curve appears for sufficiently large size ratio of small and large colloid and
sufficient Debye lengths. This might lead to the ‘depletion stabilisation’ that was
also discussed for colloid–polymer mixtures by Napper [207]. In the model of Walz
and Sharma [206], however, the polymers are modelled as charged hard spheres.
It is therefore questionable as to whether this method applies to colloid–polymer
mixtures, for which the polymer–colloid repulsion is soft.

Odijk [148] incorporated the effect of (like) charges on both polymer and colloid in
theory [146] for two small colloidal spheres immersed in a polyelectrolyte solution.
He related the effective depletion radius for small charged spheres, immersed in a
solution with like-charged polyelectrolytes to the Debye length, the effective number
of charges on the protein, the hard sphere radius and the Kuhn length [208].When the
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effective depletion radius becomes larger than the correlation length of the polymer
solution, phase separation due to depletion is expected.

Theoretical work was done on the influence of polydispersity on the depletion
interaction and phase behaviour of colloid–polymer mixtures. Sear and Frenkel
[209] investigated the phase behaviour of a colloid–polymer mixture by treating
the polymers as PHSs using a distribution of polydisperse PHSs. Their calculations
demonstrated that phase separation leads to size fractionation of the PHSs. FVT
was extended to model polydispersity by replacing the monodisperse polymers with
bidisperse polymers by Warren [210]. Warren found that polydispersity enhances
the tendency to phase separate when a bidisperse polymer mixture is compared to
a monodisperse mixture having identical number-averaged molar masses. It fol-
lowed that the location of the binodals of the colloid–bidisperse polymer mixture is
almost identical to that of a colloid–monodisperse polymermixture when theweight-
averaged molar mass of the bidisperse mixture is taken as the monodisperse molar
mass.

1.3.6 2000–2022

Further progresswasmadeonmeasuring depletion forces directlywith high precision
using a wide range of techniques [181,182,211,212]. Using modern advances in
microscopy techniques [213] or total internal reflection microscopy, it is possible
to measure depletion forces [214] and analyse, for instance, the radial distribution
function [215] (see Sect. 2.6). Confocal microscopy allows the potential of mean
force between colloids in colloid–polymer mixtures to be measured via the radial
distribution function, as explored by Royall et al. [213]. These techniques make it
possible to directly test theoretical concepts at the level of the effective depletion-
mediated pair interaction between colloidal particles.

Advances were also made using theoretical methods and computer simulations.
Until the end of the 1990s most theoretical approaches were based on describing
polymer chains as ideal or as PHSs. At the turn of the last century especially, a
wealth of different approaches was proposed to describe colloid–polymer mixtures
in which interactions between polymer segments were accounted for. Essential was
the progress made in Monte Carlo computer simulation studies on depletion effects
[216–235] to test such theories. Below we first discuss some examples of theoretical
developments.

1.3.6.1 Theoretical Equilibrium Approaches

(G)FVT
Despite the success of FVT in predicting the phase diagram of colloid–polymer
mixtures for the colloid limit (small q) (semi-)quantitatively, in the protein limit
(large q) the FVT predictions were far less convincing: it mainly provides useful
qualitative information for large q . Quantitative deviations appear for q > 0.5 when
comparing FVTwithMonte Carlo computer simulations [220,221], theory [236] and
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experiment [159,168,189,198,237–241] with realistic polymers. In short, classical
FVT predicts binodal curves at too-small polymer concentrations for large q (see
Sect. 4.1).

Under conditions where the polymer chains are much larger than the colloidal
particles, such as in dispersions of proteins [242–245], tiny colloids [246–248] or
micro-emulsion droplets [168,240] mixed with large polymers (or polysaccharides),
instability occurs at rather high polymer concentration. In such situations it does not
suffice to stick to the classical Asakura–Oosawa–Vrij description. Van der Schoot
[249] showed that polymer collapse can take place when adding small colloids to a
polymer solution. He derived an expression for the free energy of a polymer solu-
tion in a good solvent in the presence of small colloidal spheres and showed that
adding colloids decreases the conformational entropy of a polymer chain. Effectively,
adding spheres thus turns the solvent quality from good to poor. As a consequence,
a polymer chain is expected to collapse above a certain colloid concentration. This
effect originates from the mutual exclusion of polymer segments and colloidal par-
ticles. Experimental work confirms shrinkage of a polymer chain caused by adding
nanospheres [246–248]. Computer simulations of large polymer chains in a system
with random small obstacles by Wu et al. [250] are in line with polymer shrinkage
due to added nanospheres: the size of the polymers was found to decrease when
small particles are added.

To better describe some of the phenomena mentioned above, FVT has also been
extended to incorporate the effects of interactions between the polymer chains
[251–254] (see Sect. 4.3). This generalised free volume theory (GFVT) includes
the correct dependencies for the depletion thickness and osmotic pressure on the
polymer concentration for interacting chains [255], and gives a good description of
colloid–polymer phase diagrams of model systems up to large q [254]. GFVT is in
(semi)quantitative agreement with experiments and computer simulations [253,254]
for a wide range of q values.

PRISM
Integral equation methods [17] are widely employed to understand structure and
thermodynamics in atomic, colloidal and small molecule fluids, and have been gen-
eralised to treat macromolecular materials in the 1990s. Shaw and Thirumalai [256]
applied the reference interaction site model (RISM) [257,258] to the case of colloids
and combined it with the Edwards model for polymers to explain depletion stabili-
sation effects [32,259,260]: at high polymer concentrations, repulsive contributions
to the pair interactions appear. RISM was later extended to the polymer reference
interaction site model (PRISM), a continuous space liquid state approach that allows
computation of the equilibrium properties of polymeric systems [261].

The PRISM integral equation approach has been generalised to explicitly treat
polymers and their conformational degrees of freedom in order to arrive at micro-
scopic equilibrium theories of the thermodynamics of colloid–polymer dispersions
[262,263]. PRISM enables one to account for the role of particle size and polymer
concentration to quantify the structure and phase stability of dilute and semidilute
dispersions [264] andmelts [265]. Although results on the structural andmicroscopic
properties of colloid–polymermixtures [262,263,266] heavily rely on the accuracyof
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approximate closure relations it can provide an accurate description of, for instance,
the second osmotic virial coefficient of proteins with added nonadsorbing polymer
chains [242].

Predicting complete phase diagrams (including binodals) using PRISM still
requires extreme computational effort. PRISM can be used to predict fluid–fluid
(colloidal gas–liquid) spinodal curves, which are close to binodals near the critical
point. PRISM equilibrium predictions agree well with experiments [267]. The mea-
sured binodals of Ramakrishnan et al. [268] agree well with spinodals computed
with PRISM.

GCM
Several liquid state theories have been developed that are based on effective poten-
tials [269] from which the thermodynamic properties of many-body systems can be
computed. Louis and Bolhuis et al. [216,270–274] developed a Gaussian coremodel
(GCM) to describe interacting polymer chains. In this model, the polymer chains are
replaced with spherical particles with a soft repulsion between them. This model
enables structure, depletion interactions and the full phase behaviour to be studied
(in combination with Monte Carlo computer simulations). Basically, the theory is
a liquid state approach. On the level of the depletion interaction mediated by inter-
acting polymers, Louis and Bolhuis showed that their GCM agrees very well with
Monte Carlo computer simulations [270,274], except for a slight oscillation in the
density profile in the case of Gaussian cores due to their ‘particle’ character. In the
colloid limit GCM predictions for the phase diagram of colloid–polymer mixtures
are similar to those for free volume theory [220]. For larger q-values FVT predicts
phase separation at slightly smaller polymer concentrations compared to the GCM,
although the trends are very similar.

DFT
Classical density functional theory (DFT) [275] is a formal procedure that can be
used to quantify thermodynamic properties of fluids. To apply DFT, approximations
must be made. Fundamental measure theory [276,277] is an accurate approximation
for hard sphere mixtures and permits the study of the interactions in and structure
and phase behaviour of, e.g. colloidal systems [278], colloid–polymermixtures [191,
279,280] and star polymer plus linear polymer mixtures [281].

Within DFT the polymers are commonly treated as PHSs. Oversteegen and Roth
[282] discussed the close analogy and discrepancies between FVT and fundamental
measure theory. For asymmetric additive hard sphere mixtures DFT can be exploited
to study the influence of the degree of repulsive interaction (the ‘additivity’) between
the small spheres and the interaction between the large spheres. From self-avoiding
walk computer simulations, it follows that the degree of additivity of excludedvolume
polymers is very small [283]. DFT also allows the colloidal gas–liquid interface of
a demixed dispersion to be studied [191,284]. This made it possible to evaluate,
for instance, the interfacial tension. For a review on the possibilities of DFT for
studying colloid–colloid and colloid–polymermixtures, we refer to Ref. [285]. These
fundamental DFT studies [286] helped to quantify the effective interactions and
microstructural effects [278] in hard particle mixtures.
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Mortazavifar and Oettel [287] proposed a DFT for the Asakura–Oosawamodel of
colloid–polymer mixtures, describing both fluid and crystal phases. They find good
agreement with available computer simulation studies. Also, they showed that the
phase diagram is fairly sensitive to the specific (non-ideality) approximations within
DFT.

1.3.6.2 Further Insights into the Large Polymer Chain Regime
The equilibrium phase diagram for q � 0.3 is much simpler than for larger q [158–
160,253,288,289]. For small q , the only effect of adding polymer chains to the pure
hard sphere dispersion is the widening of the fluid–solid coexistence region. A gas–
liquid phase transition occurs at larger polymer concentrations above the fluid–solid
phase line and is therefore metastable (see Sect. 3.3.4). It is only above a certain
range of attraction that the (colloidal) gas–liquid phase transition shifts to polymer
concentrations below the fluid–solid coexistence curve. For a specific q value close
to 1/3 the fluid–fluid critical point hits the fluid–solid coexistence curve. This critical
point is known as the critical endpoint and denotes the boundary of stable gas–liquid
phase coexistence. It is rather insensitive to the shape of the interaction potential used
[290].

In the protein limit (q � 2) the phase behaviour is dominated by the gas–liquid
phase transition at low colloid volume fractions φ. Colloidal gas–liquid coexistence
concentrations have been determined using Monte Carlo simulations by Bolhuis,
Meijer and Louis [221]. They studied mixtures of hard spheres and self-avoiding
walk polymer chains consisting of segments with hard sphere interactions. For three
q-values the phase coexistence data are shown in Fig. 1.23. Phase transitions then
take place near and above the polymer overlap concentration (φp ≥ 1). In such cases,
a more detailed description of the physics of polymer solutions is required in order to
describe depletion forces and the resulting phase transitions. Rotenberg et al. [291]
extended TPT to incorporate interactions between the polymer chains. This shifts
the binodal curves for larger q to higher relative polymer concentrations, as was
also predicted using GFVT [251,254]. This is explained in some detail in Sect. 4.3.
Mahynski et al. [292] performed more detailed simulations for large q . They found
that the polymer osmotic pressures at the binodals collapse onto a single curve
for various size ratios, even when far from the critical point. They also studied
details of the structure of the mixture and of the potential of mean force between the
small colloidal spheres in a solution of long polymer chains with excluded volume
interaction [229].

Most of the models for depletion of polymer chains are based upon the assump-
tion that the polymer segments are always much smaller than the colloidal spheres.
Depletion of freely jointed chains near a spherical colloid can also be considered
for arbitrary size of the segment, showing that depletion effects get weaker as the
segments become longer (for a fixed value of the polymer’s radius of gyration)
[293,294]. This is in agreement with work of Paricaud, Varga and Jackson [295]
who used Wertheim perturbation theory.
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Fig. 1.23 Monte Carlo
computer simulation results
for the gas–liquid
coexistences of hard spheres
mixed with excluded volume
polymers for q = 3.86 (◦),
5.58 (×) and 7.78 (�),
redrawn from Bolhuis et al.
[221]. The binodal curves are
drawn to guide the eye

Gas + Liquid
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For large q many-body interactions become increasingly relevant. In the case of
colloid–polymer mixtures, this means that multiple overlap of depletion zones play
an important role in that high q regime. It is interesting to verifywhether the effects of
direct attractive forces can be compared to indirect depletion forces. For several types
of direct attractions it has been shown that at the fluid–fluid (or gas–liquid) critical
point, the B∗

2 ≈ −6 criterion [296] holds. However, in the case of a colloid–polymer
mixture B∗

2 strongly depends on the sphere/depletant size ratio [297], highlighting
the fundamental difference between the depletion-mediated interaction and direct
attractions (see also Santos et al. [298]).

1.3.6.3 Structure of Colloid–polymer Mixtures
As mentioned, scattering techniques are very useful to indirectly measure the
ensemble-averaged structure of colloidal and colloid–polymermixtures, and here we
mention a few further examples of the progress made. Mutch et al. [241] measured
the structure factor of colloids in a polymer solution in the protein limit. Muratov
et al. [299] presented a revised form of the Percus–Yevick approach to describe
the scattering of colloid–polymer mixtures with short-range depletion attraction. An
extensive small-angle neutron scattering (SANS) and small-angle X-ray scattering
(SAXS) study on the static and dynamic properties of silica spheres in semidi-
lute solutions of high molar mass polystyrene in 2-butanone was performed by
Poling-Skutvik et al. [300]. Their investigations revealed physical particle–polymer
coupling on short length scales and long-ranged particle interactions, as well as
sub-diffusive particle dynamics.

Kumar et al. [301] used SANS to study the influence that adding nonadsorbing
polymers to charged silica spheres in an aqueous salt solution has on the structure
factor. They found interesting re-entrant phase behaviour, which is reflected in the
measured structure factors at small wave vectors. Peláez-Fernández et al. [302] used
static light scattering (SLS) to study the effect of nonadsorbing polyelectrolytes on a
dispersion of like-charged colloids. The experimental results for the colloid–colloid
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structure factor revealed that the main structure factor peak moves to higher wave
vectors as the polyelectrolyte concentration increases. The authors interpret this in
terms of an electrostatically enhanced depletion attraction. Later, Mehan et al. [303]
showed that SANS enables measurement of the structure in multi-component (like-
charged) systems.

The influence of the nonadsorbing polymers’ branching on the structure of mix-
tures of hard sphere-like colloids with star polymers (with varying number of arms
but constant radius of gyration) was investigated by Stellbrink et al. [304]. They
measured partial structure factors in mixtures of star polymers with colloids using
SANS. The relative distance to the demixing transition was reflected in a change of
the structure factor at small wave vectors.

Spin-echo SANS (SESANS) is a SANS technique that was developed to probe
length scales from 10nm up to several tens of micrometres [305]. SESANS detects
the polarisation of the neutron beam after scattering. Van Gruijthijsen et al. [306] and
Washington et al. [307] used SESANS to quantify and describe polymer depletion-
mediated structural effects in the dispersions, and showed that they can be interpreted
using depletion forces.VanGruijthijsen et al. [306] also compared SESANS to SAXS
measurements conducted on the same experimental system, and found that similar
structural information can be obtained. While SAXS has the advantage that it also
provides form factors, SESANS can be applied more easily to study larger colloidal
particles.

1.3.6.4 Polydispersity Effects
The particles and polymers in any real experiment have a finite polydispersity. The
influence of polydispersity on depletion interaction and phase behaviour was inves-
tigated by extending existing approaches. Goulding and Hansen [308] computed the
interaction potential between two spheres in a polydisperse bath of PHSs (polydis-
perse PHS model). When the polydispersity is characterised by a standard devia-
tion of up to 30%, there is hardly an effect on the somewhat increased range and
slightly deeper potential between the hard spheres. Above 30% polydispersity the
effects become more significant. The original Asakura–Oosawa theory for two par-
allel plates immersed in a solution of nonadsorbing ideal polymer chains [57] could
be extended to involve polymer size polydispersity [309], and would still provide
analytical expressions for the interaction between the plates. This workwas extended
towards the interaction between two spheres in a solution of polydisperse ideal chains.
It followed that the influence of polydispersity on the interaction is rather weak [309].
Even a polydispersity of 70% (standard deviation) only increases the attraction by
less than 20%.

The phase behaviour of mixtures of monodisperse hard spheres and polydisperse
ideal polymers has been investigated using original FVT [310]. At fixed mean poly-
mer size, polydispersity favours gas–liquid coexistence and delays the onset of fluid–
solid separation. On the other hand, systems with different size polydispersity but the
same mass-averaged polymer chain length have nearly polydispersity-independent
phase diagrams. The influence of polymer polydispersity on the colloidal gas–liquid
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phase coexistence of interacting polymers with spherical colloids is a complicated
issue that has only been investigated using TPT by Paricaud et al. [311].

Nguyen et al. [312] derived an exact analytic expression for the many-body deple-
tion interactions between the colloidal particles in the limit of long nonadsorbing
polydisperse polymer chains. They also showed that depletion interactions in such
systems can be described using mean-field theory.

The effect of particle polydispersity on the phase behaviour of mixtures of poly-
disperse hard spheres and ideal polymers has also been explored [313], also based
on original FVT. Even modest polydispersities (< 10%) can significantly change the
phase diagram topology by introducing a host of new, multiphasic equilibria involv-
ing multiple solid phases. In practice, such multiphasic equilibria may show up as
kinetic effects, preventing the system from reaching equilibrium. The nonequilib-
rium behaviour observed at higher polymer and particle concentrations may partly
be due to this effect. Colloidal gas–liquid phase separation is, however, less sensitive
to polydispersity [310].

1.3.6.5 Interfaces in Demixed Colloid–Polymer Mixtures
Since the 2000s the interface between coexisting phases has gained much more
attention, as it was realised that it has special properties. For instance, more insight
was gained on the ultra-low interfacial tension at the colloidal gas–liquid interface
in demixed dispersions containing colloids and polymers. It became clear that this
ultra-low interfacial tension affects the relevant characteristic length- and timescales
[314]. The capillary length [315] decreases down to the order of micrometres, while
the thermal length can become of the order of (sub)micrometres. This is special
because other length scales (such as particle sizes) get bigger. The typical interface
velocity in such systems is just a few micrometres per second. Inertial terms only
become important at large length- and timescales. By means of confocal scanning
laser microscopy, Aarts et al. [64] studied the influence of the ultra-low interfacial
tension on wetting of colloid–polymer mixtures on a solid surface and on capillary
waves [63] at the interface of a demixed colloid–polymer dispersion [316]. Studies
on the bending rigidity of the colloidal gas–liquid interface in a demixed colloid–
polymer dispersion have also been performed [317]. Interface physics in colloid–
polymer mixtures has received ample attention. See, for instance, [213,231,318–
322]. For more details, see Chap. 5.

1.3.6.6 Nonequilibrium Phenomena in Colloid–Polymer Mixtures
The influence of depletion effects on nonequilibriumphenomena inmulti-component
mixtures [323,324] gained increasing interest from both theoreticians and experi-
mentalists [325]. PRISM enabled calculations of the structural correlations, allowing
the microscopic evaluation of slow colloid dynamics. Interest focused on arrested
states of colloid–polymer mixtures: upon adding a significant amount of deple-
tants the mixtures tend to assume space-spanning structures of aggregated colloidal
particles; hence, gelation or glass formation occurs (see Sect. 4.4 or the reviews
[325,326]).
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The structural relaxation time, formation of glasses and gels, nonlinear rheol-
ogy and delayed gel collapse [327–329] were predicted quantitatively and compared
to experimental results [330,331]. Experimental studies on the rheology of (gel)
networks made of dispersions [332,333] and emulsions [334–336] at high concen-
trations of added nonadsorbing polymers also gained interest. Also the transition
between gelation and glass formation was studied [337]. Wu et al. [338] experi-
mentally studied the colloidal particle dynamics in colloid–polymer mixtures using
polymers with different architectures: linear, subgranular cross-linked and branched
microgels.

The use of relatively small polymeric depletants induced a short-range attrac-
tive interaction with a controlled strength. This enabled various research groups
to study the glass transition and gelation of dense colloidal dispersions. In 2000,
mode-coupling theory (MCT) was applied to predict the slow dynamics of the glass
transition in colloid–polymermixtures [339]. It revealed re-entrance of the repulsive-
to-attractive glass transitions. The theoretical predictions were soon verified experi-
mentally [323,340].

Further progress was stimulated by computer simulation studies on the influence
that depletion attraction has on the structural and dynamic behaviour of colloids.
These include phenomena such as the onset of attractive and repulsive glasses and
the occurrence of re-entrant meltingwhen the range of the depletion attraction is very
small [341,342]. The idea to control the ‘stickiness’ of the interaction by changing
the polymer concentrationwas also studied at lower colloid concentrations providing
insights on colloidal gels [343,344]. These studies gave an explanation of the route
from the glass transition at high densities to gelation of colloidal particles by varying
the concentration of nonadsorbing polymers. Percolation of rod-like colloids through
nonadsorbing polymers also gained interest [226,345].

The interplay of the attractive glass/gel line with phase separation [346] was also
studied. A combination of computer simulations and confocal microscopy experi-
ments showed that the gel line intersects the binodal at high densities, giving rise to a
so-called arrested phase separation [344,347] (see Sect. 4.4). Arrested states induced
by nonadsorbing polymer chains have also been studied extensively in the context
of hard sphere/star polymer [348] or star/star mixtures [349]. The introduction of
soft interactions is found to enrich the phenomenology of glass transitions and the
interplay between the two species [350] compared to binary mixtures of hard spheres
[351].

1.3.6.7 Towards Complexity in Colloid–Depletant Mixtures
Interest in depletion phenomena began to broaden after the turn of the last century
[352,353]. A few selected items are briefly discussed below.

Influence of solvent quality on colloid–polymer mixtures
Although many initial approaches ignored details of the solvent, it became clearer
that solvent quality [354–358] can play an important and sometimes complex [359]
role. Hence, it can be important to properly treat the non-ideality of polymer chains
in solution. As an example, we mention a study by Taylor, Evans and Royall [360]
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on the response to temperature of a well-known model colloid–polymer mixture. At
room temperature they found that the critical value of the second virial coefficient for
the colloidal gas–liquid phase transition for colloidal spheres can be described using
the AOV concept. They could also accurately predict the onset of gelation observed
experimentally. Upon cooling the system, the depletion attraction between colloids
is reduced because the polymer radius of gyration decreases as the �-temperature
is approached. Paradoxically, this raises the ‘effective’ temperature and leads to
‘melting’ of the colloidal gels.

Depletion effects mediated by complex polymer mixtures
Work on less conventional depletants (other than, for instance, simple polymers or
hard spheres) started to appear. Preisler et al. [361] performed SCF calculations
and Monte Carlo computer simulations to analyse the depletion profiles of star-
like and H-shaped polymers in a good solvent at a wall. The influence of polymer
chain stiffness was also studied and it turned out that, at a fixed coil size, stiffer
chains decrease the depletion thickness [293,294,362] for dilute polymer solutions.
In the case of semidilute polymer solutions the depletion thickness goes through a
maximum as a function of chain stiffness [294]. Lim and Denton [363] demonstrated
that polymer shape distributions influence the resulting depletion-induced interaction
potentials between colloidal particles. Depletion of ring polymers in solution next
to hard nonadsorbing walls was also studied [364,365]. The authors found more
pronounced structuring of rings at a nonadsorbing hard surface as compared to linear
chains. This structuring strongly affects the shape of the depletion potential between
two hard walls.

Depletion forces between colloidal particles in a binary polymer blend were stud-
ied by Chervanyov [366], who showed that the relative contributions to the range and
strength of the effective depletion attraction strongly depend on the mass fractions
of the polymer species and their chain length ratio. Interactions between colloidal
particles embedded in a polymer network were considered by Di Michele, Zaccone
and Eiser [367]. They presented a theoretical framework to quantify the attractive
interactions between the particles mediated by such a polymer network. These pre-
dictions agreed with Monte Carlo simulations performed by the authors.

Depletion effects mediated by complex colloids
The depletion forces between colloidal hard spheres mediated by self-assembling
patchy particles were studied by García, Gnan and Zaccarelli [368]. They found that
the depletion interaction is completely attractive and oscillatory. Thismay be relevant
for understanding the behaviour of complex mixtures in crowded environments, or
for targeted self-assembly aimed at building desired superstructures. For an overview
of the use of complex depletants such as rods, platelets and ellipsoids, see the review
by Briscoe [369].

Surfactant micelles can also induce depletion attraction between colloidal par-
ticles [370]. Additionally, use can be made of the temperature dependence of the
shape of self-assembled surfactants. Gratale et al. [371] showed that the strength and
range of the depletion interaction can be tuned via shape anisotropy of the surfactant
micelles. Depletion effects also can be encountered in mixtures of self-assembling
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block copolymers in a selective solvent under the influence of nonadsorbing poly-
mers [372,373]. Thiswork showed that nonadsorbing polymers also induce attraction
between block copolymer micelles.

A promising class of depletants involves a self-assemblingmedium forming either
supramolecular chains [374–376] or clusters [377]. Also interesting are depletants
in a solvent in the vicinity of a critical point [378,379], which provide a connec-
tion between depletion interactions and so-called critical Casimir forces [43,380] in
colloidal dispersions. A solution of depletants near a gas–liquid critical point was
also studied numerically, showing how critical solvent mixture forces can be used
to effectively manipulate colloidal aggregation [381] and percolation [382]. For a
surfactant solution near a fluid–fluid critical point, depletion forces can merge into
critical Casimir forces [352].

Systems such as colloidal spheres with multi-component depletants [383–387]
and dispersions of star polymers (soft colloids) and linear polymers [388,389]
received interest, as well as mixtures of different types of star polymers [390]. Also,
microgel particles as depletants were studied [391]. A full understanding of such
more complex mixtures is a topic of future research.

Non-hard colloids with depletants
Accounting for mixtures of colloidal spheres with a hard-core attractive or repul-
sive Yukawa interactions was studied within FVT [392]. It appeared that additional
direct repulsive interactions between the colloids increased the single-phase stabil-
ity region, whereas additional attractions reduce the stability regions. Rovigatti et al.
[393] investigated the influence of brushes anchored onto the colloidal particles in
colloid–polymer mixtures.

Deposition of colloids via depletion forces
Linse andWennerström [394] reported an interesting theoretical and simulation study
on a mixture of particles interacting with each other and with a flat wall through
a square well attractive potential. They found an interval of attraction strengths
over which surface adsorption of the particles is significant, while bulk instability
through nucleation remains negligible solely due to geometrical effects. In hindsight,
this effect was already demonstrated experimentally by Dinsmore et al. [395] using
mixtures of small and large colloidal spheres at a wall (see Sect. 6.3). Ouhajji et al.
[396] realised the deposition of the silica spheres onto a glass plate mediated by
addingPDMS.Formixtures of indented colloids,Ashton et al. [397] found conditions
at which the particles crystallised at a wall by adding nonadsorbing polymers.

The depletion–adsorption transition
In 2015, Feng et al. [398] published intriguing results on the temperature-dependent
phase stability of an aqueous mixture of relatively large silica spheres mixed with
PEO polymer chains. They found that a reversible transition from depletion-induced
crystallisation to adsorption-mediated bridging flocculation occurs by changing the
temperature. See also the study by Kwon et al. [399] on the temperature dependence
in a similar system. It becomes clear that the classical depletion description in which
it is assumed that the polymer concentration vanishes at the surface of a colloidal
particle does not always suffice. Ouhajji et al. [396] studied dispersions of silica
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spheres in cyclohexane containing nonadsorbing PDMS polymers. They could only
interpret the phase diagram by considering weak depletion effects [400], which is
consistent with earlier force measurements on this system by Wijting, Besseling
and Cohen Stuart [65]. The so-called depletion–adsorption transition (DAT) was
theoretically studied in some detail on the level of pair interactions [401–403] and
complete phase behaviour [402]. The predicted non-monotonic DAT temperature
dependence [401] was confirmed experimentally [404]. Chen et al. [405] and Fantoni
et al. [406] proposed models in which the DAT arises from the interactions with the
solvent molecules.

Charged colloid–polymer mixtures
Insights into mixtures of charged colloids and nonadsorbing (charged) polymers
also developed further. Studies of aqueous mixtures of proteins and nonadsorbing
polymers such as polyethylene glycol (PEG) or (uncharged) polysaccharides yielded
some interesting observations. Finet and Tardieu [202] studied the stability of solu-
tions of the lens protein α-crystallin. Adding an excess of salt to this system does not
destabilise the protein dispersion. It follows that the effective attractions between the
proteins are absent or are very weak in the case of screened charges. Adding PEG,
however, induces significant attractions [202], and results in a shift of the fluid–fluid
(in the protein field also termed liquid–liquid) phase transition to higher temperatures
[407]. Adding excess salt and PEG induces instant phase separation [202]. A simi-
lar synergistic effect of salt and PEG was found in aqueous solutions of (spherical)
bromemosaic virus particles [203] and lysozyme [408]. Adding PEG also influences
protein crystallisation (see Sect. 11.2). Royall, Aarts and Tanaka [409] studied the
influence of double layer repulsion on depletion forces using confocalmicroscopy. In
conclusion, the trend found in experimental studies onmixtures of charged ‘colloids’
and neutral polymers is that themiscibility is, as expected, increased upon decreasing
the salt concentration, i.e. increasing the range of the double layer repulsion.

There still are few theoretical studies on mixtures of colloids with a screened-
Coulomb repulsion mixed with neutral or charged polymer chains. Ferreira et al.
[410] made a PRISM analysis for mixtures of charged colloids and polyelectrolytes
up to the level of the pair interaction and computed gas–liquid spinodal curves from
the colloid–colloid structure factor. Denton and Schmidt [411] proposed a simple
theory yielding the colloidal gas–liquid binodal curve for charged spheresmixedwith
free neutral polymer chains, described as PHSs. Fortini et al. [222] extended free
volume theory to account for a short-ranged soft repulsion between the spherical
colloids, allowing a description of the full phase diagrams. They also performed
Monte Carlo simulations, and the theory was found to agree quite well with the
extended free volume theory. It was found that the colloidal fluid–solid coexistence
is especially sensitive to the screened-Coulomb repulsion.

The work of Fortini et al. [222] was later extended towards highly screened,
charged spheres mixed with interacting polymers [412]. Zhou, van Duijneveldt and
Vincent [413] have shown that generalised free volume theory (GFVT), including
short-ranged soft repulsion, is capable of quantitatively describing the depletion-
induced phase separation in mixtures of charged silica particles and nonadsorbing
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Exercise 1.7. What happens to the miscibility region of a stable colloidal
fluid with added nonadsorbing polymers upon adding a screened double layer
repulsion between the spheres?

polystyrene polymer chains in dimethylformamide (�-solvent conditions). They
varied both the range of the double layer repulsion and the size ratio q .

Stradner et al. [414] and Sedgwick et al. [415] considered mixtures of charged
spherical colloids with a long-ranged double layer repulsion mixed with very short
polymer chains that induce a short-ranged depletion attraction. In such systems small
equilibrium clusters are formed that can be described theoretically [416] or using
Molecular Dynamics computer simulations [417]. The finite cluster size is a result of
a competition between short-ranged depletion attraction and long-ranged repulsion.

Some aspects that could be relevant have not yet been incorporated into the the-
ory for the phase behaviour. A first issue is the effect of gradients in permittivity.
Croze and Cates [418] demonstrated that even the depletion zones caused by neutral
polymers are affected by charged surfaces. The electrical field present between like-
charged surfaces polarise the neutral polymer chains because of their (usually) low
permittivity. Curtis and Lue [419] also showed dielectric discontinuities can be quite
relevant for colloidal dispersions with added depletants and electrolytes in solution.
These effects can enhance polymer depletion and increase the screening of double
layer interactions.

The situation gets more complicated when the free polymers are (like-)charged as
well [420]. Work of Israelachvili, Pincus and others [421] revealed that the addition
of free polyelectrolyte mainly decreases the effective Debye length in aqueous salt
solutions, leading to a decrease in the double layer repulsion. Grillo et al. [422] made
an interesting study on aqueous mixtures of Pluronic F127 surfactants mixed with
hyaluronic acid polyelectrolytes in the semidilute concentration regime. They found
that the surfactant micelles and polyelectrolytes were homogeneously distributed in
salt free solutions. By increasing the ionic strength the micelles start to cluster and
the self-assembly is explained by depletion forces. The salt type is found to play an
important role.

The interactions between charged particles mediated by like-charged polyelec-
trolytes were measured by Moazzami-Gudarzi et al. [423] (see also the review by
Scarratt et al. [424]). The crystallisation of charged colloidal spheres mixed with
like-charged polyelectrolytes was studied by Ioka et al. [425]. They found that the
polyelectrolytes induced depletion forces but simultaneously cause screening of dou-
ble layer forces. Experimental work was also done on binary asymmetric mixtures of
charged colloids by Toyotama et al. [426], revealing a eutectic point. Colloidal probe
atomic force microscopy measurements between large charged colloidal spheres
mediated by small charged colloidal spheres were performed by Ludwig and von
Klitzing et al. [427–429]. They observed an oscillatory force and analysed its wave-
length in detail. The case of nonadsorbing polyelectrolytes near uncharged surfaces
and the relation to the Donnan potential was explored theoretically [430].
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In summary, it seems that at high salt concentrations like charges on polymers
and colloids do not seem to strongly affect the depletion-induced attraction between
colloids. At low ionic strength, however, the situation becomes quite complicated
and detailed theories that enable a computation of the stability of such systems still
have to be developed. For charged multi-component colloidal mixtures a rich phase
behaviour is found. It is clear that there is much work left to be done on the role of
(charged) depletants in (charged) systems before we obtain a complete picture.

1.3.6.8 Depletion Effects and Its Relevance for Biology
Nonadsorbing polymers or colloids can also be used to concentrate bacteria. This
is very useful for water treatments, where one attempts to achieve the formation of
bioflocs of bacteria. Schwarz-Linek et al. [431] studied the addition of nonadsorbing
polymers on mixtures of Escherichia coli bacteria and found that concentration of
these bacteria is possible in this way. Sun et al. [432] used rod-like nanoparticles to
induce phase separation of suspensions containing Pseudomanas aeruginosa bac-
teria. They concluded that rod-shaped nanoparticles are very effective at inducing
phase separation of suspensions containing bacteria. Phase transitions of dispersions
containing rod-like viruses mediated by the addition of nonadsorbing polymers are
discussed in Sect. 8.5.1 and other parts of Chap. 8.

Depletion effects play a role in protein dispersions [243,244] similar to that in
colloidal suspensions (as was made clear above) and can lead to protein aggrega-
tion and phase separation [433] in living matter. As summarised by Sapir and Harries
[434,435], excluded volume effects are thought to be of importance in explaining sev-
eral intracellular processes [436,437] and the appearance ofmembraneless organelles
(MLOs). Hence, the resulting depletion effects that are operational are suggested to
mediate several types of biological processes such as endocytose [438], microtubule
bundling [439], protein dynamics [440–442], transcription and self-organisation of
the molecules of life [443–445]. Crowding of the subcellular environment by macro-
molecules is supposed to mediate conformational switches between active states of
RNA [446], can influence the conformations of DNA [447–449], and may induce
structural transitions in protein-like polymers [450,451]. Quantifying the effects of
entropic forces in biology remains a virgin area for additional research. See also the
brief illustration on macromolecular crowding in Sect. 11.1.

1.3.6.9 Anisotropic Colloids and Depletion Effects
In this overview on the history of depletion in colloidal dispersions we have mostly
focused on mixtures of colloidal spheres and nonadsorbing polymers, which also
received much attention. At the beginning of the 21st century, colloid synthesis
evolved to such a degree [452–456] that it became possible tomake colloidal particles
of a wide range of shapes [457–461]. This, and the fact that anisotropic shapes occur
in nature, has triggered experimental, theoretical and computer simulation studies
on mixtures of non-spherical colloids in the presence of nonadsorbing polymers, and
on binary colloidal mixtures containing anisotropic particles. Hence, insights have
been obtained into the phase behaviour ofmixtures containing, for instance, colloidal
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Fig. 1.24 Illustration of the depletion zones around and overlap volumes between (i) spheres, (ii)
and (iii) rods, and (iv) and (v) cubes with fixed particle volume, mediated by depletants that induce
a fixed depletion thickness (indicated by the dashes). Reprinted with permission from Ref. [488].
Copyright 2017 Elsevier

rods [130,462–469], platelets [469–477], dendrimers [478], rocks (colloidal particles
with an irregular surface) [479], boards [480], ‘golf-balls’ [481], ellipsoids [482] and
cubes [483–485] with added polymers.

In Chaps. 8–10, the focus is on the phase behaviour of anisotropic colloidal
particles and the influence of nonadsorbing polymers. An interesting feature of non-
spherical hard colloidal particles [486] is that they can exhibit directionality purely
based on (entropic) excluded volume interactions [452,487], because flat faces tend
to align. The interplay between orientational and excluded volume entropy enables
(multiple) liquid-crystalline phases to occur. The addition of depletants can mediate
entropic patchiness of anisotropic colloidal particles [488].

In Fig. 1.24, overlap volumes are indicated for a few colloidal particles of different
shapes. For isotropic spheres, the overlap volume reaches a maximum value as the
spheres touch, see (i). For anisotropic particles, the overlap volume depends on
their orientation. When comparing the overlap volumes in Fig. 1.24(ii) and (iii) it
becomes clear that the overlap volume is maximised for rods as the particles align
with their largest surface areas close to each other. Hence, aligned rod configurations
are induced by the depletion effect. For cubes the overlap volume is maximised when
two (flat) edges are aligned (see Fig. 1.24(iv) and (v)). This illustrates that particles
tend to align due to the addition of depletants. As we shall see, the variation of
particle shape, and the strength and range of depletion attraction yield a wide variety
of self-assembled structures.

Besides studying the effects of nonadsorbing polymers as depletants, it is also of
interest to treat colloids themselves as depletants when added to a dispersion of larger
or different colloids (see Chaps. 6 and 7). Studies of depletion effects in colloidal
dispersions reveal that mixing more complex particle shapes leads to increasingly
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exotic phase behaviour. Examples include mixtures of rods and platelets [489–492],
rods and spheres [467,492–497] (see Chap. 7), platelets and spheres [498–508],
rods and cubes [509] and bidisperse platelet mixtures [510–513]. Xie et al. [514]
showed that mixing colloidal rods with surfactant micelles can lead to phase states
inwhich the rods assume orientationally ordered nematic and smectic-likemembrane
superstructures.

Van der Schoot [515,516] theoretically considered the interactions between hard
spheres immersed in a dispersion of hard rods in the nematic phase state, and also
studied their self-assembly [516]. Further, nonequilibrium phenomena are also quite
relevant in such systems [226,517]. Aggregationwas found to occur in dispersions of
spherical colloidal particles and worm-like micelles, leading to transient gels [518].

Depletion effects in dispersions of more complex shapes have also attracted atten-
tion. Krüger et al. [519] derived expressions for the depletion force between two
arbitrarily shaped large convex colloidal particles immersed in a suspension of small
spherical particles. Damasceno et al. [520] studied the thermodynamic self-assembly
of a family of truncated tetrahedra, and reported several atomic crystal isostructures
as the polyhedron shape varies from tetrahedral to octahedral. The self-assembled
crystal structures can be understood as a tendency for polyhedra tomaximise face-to-
face alignment, which can be generalised as directional entropic forces. Interestingly,
the self-assembled structures differ from the densest packing.

Although we cover several examples of mixtures of anisotropic particles mixed
with (mainly polymeric) depletants inChaps. 8 and 10, it is noted that binarymixtures
of anisotropic colloids have also been investigated. Nakato et al. [521] studied pure
titanate platelets (D = 7.1 μm, L = 0.75nm). They observed an isotropic–nematic
phase transition at very small volume fractionsφI = 3.7 · 10−5 andφN = 1.9 · 10−3.
The large width of the transition region indicates that the platelets are quite poly-
disperse. Upon adding small laponite platelets (D = 30nm, L = 1nm), Nakato et al.
[512] observed both biphasic I–N and triphasic N1–N2–I equilibria. This triphasic
region is observed for extremely small laponite volume fractions between 1.6 · 10−7

and 3.6 · 10−6. For higher laponite concentrations the depletion-induced attraction
between the large platelets becomes so strong that the dispersion flocculates.

Free volume theory for binary platelets [513] confirms the observed equilib-
rium phase transitions. The calculations reveal that the biphasic regime (with-
out added laponite) lies between titanate volume fractions φI = 5.8 · 10−4 and
φN = 8.4 · 10−4, so in between the observed experimental values. The triphasic
triangle region lies between laponite volume fractions of 4 · 10−7 and 2 · 10−6, close
to the experimental volume fractions.

1.4 Outline

In this chapter we provided an introduction to colloidal interactions, a historical per-
spective on early observations, and a qualitative understanding of the basic depletion
effects. Further, an overviewwas provided of the important developments in the field
of the depletion interaction and the resulting phase behaviour of colloidal dispersions.
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In Chap. 2 we address the fundamentals of depletion interactions, including pair
potentials and the effects of anisotropic depletants. The focus will be on small deple-
tant concentrations which allow simple treatments using both the force method and
the adsorptionmethod to arrive at depletion potentials. The basics of phase behaviour
in colloidal dispersions with added depletants are set out in Chap. 3. This is followed
in Chap. 4 by extending the model to also include a more detailed description of the
polymer physics involved so that it can be applied to mixtures of spherical colloids
and polymers. Experimental phase diagrams of well-defined colloid–polymer mix-
tures are discussed and compared to theories for colloid–polymer mixtures. Phase
separation kinetics and nonequilibrium states in colloid–polymermixtures are treated
as well. Chapter 5 concerns the properties of the interface that appears between coex-
isting colloidal gas and colloidal liquid phases, induced by nonadsorbing polymers.
Chapter 6 deals with the phase behaviour of binary colloidal sphere mixtures in the
absence of nonadsorbing polymer; and we will discuss the effect of adding small
rod-like colloids to a suspension with colloidal spheres in Chap. 7.

Rod-like colloids are considered in Chap. 8, first without polymer: the physics
of the isotropic to nematic phase transition is discussed in some detail, followed
by a treatment of charged rods. Next, polymer-induced depletion effects for rod-like
colloids are discussed.At the end of the chapter it is shownhowhighly ordered phases
(smectic and solid-like) can be treated, and the richness of the phase behaviour of
rod–polymer mixtures is revealed. In Chap. 9 mixtures of platelets and depletants are
discussed, and mixtures of cube-like colloids with added nonadsorbing polymers are
discussed in Chap. 10. These anisotropic colloids have gained increasing attention in
more recent years. Treatments of the equilibrium phase states of pure hard platelets
involve the isotropic, nematic and columnar phase states, and lead to intriguing phase
behaviour. Cube-like colloids are dispersions containing particles with superball-like
shapes. Adding nonadsorbing polymers to such systems can promote the formation
of ordered, simple, cubic crystalline structures. Throughout, the concepts will be
illustrated by experimental and computer simulation results.

In Chap. 11 we highlight manifestations of depletion effects in more complex
systems, in particular in biology and technology. This book ends with an Epilogue
(Chap. 12), with reflections and an outlook on the possible areas where extensions
of the current knowledge of depletion phenomena are needed.
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2Depletion Interaction

In this chapter, we consider the depletion interaction between two flat plates and
between two spherical colloidal particles for different depletants (polymers, small
colloidal spheres, rods and plates). First of all, we focus on the depletion interac-
tion due to a somewhat hypothetical model depletant—the penetrable hard sphere
(PHS)—to mimic a (ideal) polymer molecule. This model, implicitly introduced by
Asakura and Oosawa [1] and considered in detail by Vrij [2], is characterised by the
fact that the spheres freely overlap each other but act as hard spheres with diameter
σ when interacting with a wall or a colloidal particle. The thermodynamic proper-
ties of a system of hard spheres with added PHSs have been considered by Widom
and Rowlinson [3], and provided much of the inspiration for the theory of phase
behaviour developed in Chap. 3.

The depletion potential is a potential of mean force and, following Onsager [4,5],
the system is considered at a given chemical potential of the solvent (and other
solution components). As such, the relevant pressure exerted by the depletants is
the osmotic pressure. Two methods are used to derive interactions between parti-
cles mediated by different types of depletants: the adsorption method and the force
method.

2.1 Depletion Interaction Due to Penetrable Hard Spheres

2.1.1 Depletion Interaction BetweenTwo Flat Plates

Interaction Potential BetweenTwo Flat Plates Using the ForceMethod
The force per unit area K (h) between two parallel plates separated by a distance h,
is the difference between the osmotic pressure Pi inside the plates and the outside
pressure Po

© The Author(s) 2024
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Lecture Notes in Physics 1026, https://doi.org/10.1007/978-3-031-52131-7_2
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K = Pi − Po. (2.1)

Since the PHSs behave thermodynamically ideally, the osmotic pressure outside the
plates is given by the van ’t Hoff law

Po = nbkT ,

where nb is the bulk number density of the PHS. When the plate separation h (see
Fig. 2.1) is equal to or larger than the diameter σ of the PHSs the osmotic pressure
inside the plates is the same as outside:

Pi = Po = nbkT .

On the other hand, when the plate separation is less than the diameter of the PHSs,
no particles can enter the gap and

Pi = 0.

This means that

K (h) =
{

−nbkT h < σ,

0 h ≥ σ.
(2.2)

This is the classical result derived by Asakura and Oosawa [1].
Since K = −dW/dh, integration from ∞ to h yields the interaction potential

W (h) per unit area between the plates

W (h) =
{

−nbkT (σ − h) h < σ,

0 h ≥ σ.
(2.3)

Fig. 2.1 Schematic picture
of two parallel flat plates in
the presence of penetrable
hard spheres (dashed circles)
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Interaction Potential BetweenTwo Flat Plates Using the Extended Gibbs
Adsorption Equation
An alternative and insightful way to obtain the interaction potential is from the
extended Gibbs adsorption equation [6–8]. The natural thermodynamic potential to
describe the system depicted in Fig. 2.2 is the grand potential Ω(T , V , μ, h)

Ω = F − μN , (2.4)

where F = F(T , V , N , h) is the Helmholtz (free) energy, N the number of PHSs in
the system and μ their chemical potential. At constant temperature and volume, we
have dF = μdN − K Adh, so dΩ is given by

dΩ = −K Adh − Ndμ, (2.5)

where K is again the force per unit area between the plates and A is the area of the
plates.

From cross-differentiating Eq. (2.5), we obtain(
∂K

∂μ

)
h

= 1

A

(
∂N

∂h

)
μ

. (2.6)

Combining this with

K = −
(

∂W

∂h

)
μ

, (2.7)

we obtain

−
(

∂

∂h

(
∂W

∂μ

)
h

)
μ

= 1

A

(
∂N

∂h

)
μ

. (2.8)

Fig. 2.2 Illustration of the
(depletion) force between
two plates in the system of
interest (I) at a given
chemical potential of the
depletant in the reservoir (II).
The system is connected to
the reservoir through a
hypothetical membrane (M)
that allows permeation of
depletant

ΙΙ

Ι

K

M

μ

h
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Since the depletion potential W vanishes at infinite separation for all values of the
chemical potential μ of the depletion agent, integration over h gives

−
(

∂W

∂μ

)
h

= N (h) − N (∞)

A
, (2.9)

where N (h) is the number of PHSs in the system when the plates are at separation
h and N (∞) is that at infinite separation. The right-hand side of Eq. (2.9) can be
conveniently written in terms of the surface adsorption

−
(

∂W

∂μ

)
h

= Γ (h) − Γ (∞), (2.10)

where [9]

Γ (h) =
∫ h

0
[n(x) − nb]dx, (2.11)

and

Γ (∞) = 2Γsingle wall

= 2
∫ ∞

0
[n(x) − nb]dx . (2.12)

Note that, in Eq. (2.12), n(x) refers to the PHS concentration profile near a single
wall, whereas, in Eq. (2.11), n(x) is the profile between two walls. Equation (2.10)
is the extension of the Gibbs adsorption equation for a single surface to the case of
two surfaces at finite separation [6–8]. Integration of Eq. (2.10) gives

W (h) = −
∫ μ

−∞
[Γ (h) − Γ (∞)]dμ. (2.13)

The zone which is excluded for depletants is termed the depletion layer thickness
or depletion thickness δ. When the surface of a spherical depletant particle touches
a hard object it cannot get closer. Therefore, the centre of the spherical depletant is
at least one radius away from this hard object. Hence, the depletion thickness then
equals the particle radius. The depletion thickness of PHSs is therefore σ/2, and
A[Γ (h) − Γ (∞)] equals the overlap volume A(σ − h) times nb (see Fig. 2.3), so
that

Γ (h) − Γ (∞) =
{
nb(σ − h) h < σ,

0 h ≥ σ.
(2.14)

The chemical potential of the PHSs is

μ = kT ln nb. (2.15)
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Fig. 2.3 The overlap volume
(hatched area) of depletion
layers due to PHSs between
two parallel flat plates equals
A(σ − h)

Inserting Eqs. (2.14) and (2.15) into Eq. (2.13) yields (again) the interaction potential
given by Eq. (2.3). The conceptual advantage of the calculation with the extended
Gibbs adsorption equation is that it provides a direct link between the depletion of
particles with the depletion potential, which is frequently highly illuminating. The
method also offers advantages to obtain physically motivated approximate expres-
sions for the depletion interaction where an exact calculation is not possible.

2.1.2 Depletion Interaction BetweenTwo Spheres

Interaction Potential BetweenTwo Spheres Using the ForceMethod
When the depletion zones with thickness σ/2 around spherical colloidal particles
with radius R start to overlap, i.e., when the distance r between the centres of the
colloidal particles is smaller than 2R + σ = 2Rd, a net force arises between the
colloidal particles. For convenience, aswas used byOdijk [10], we define an effective
depletion radius Rd as

Rd = R + σ/2. (2.16)

The (attractive) force originates from an uncompensated (osmotic) pressure due to
the depletion of PHSs from the gap between the colloidal particles. This is depicted
in Fig. 2.4, from which we immediately deduce that the uncompensated pressure
acts on the surface between θ = 0 and θ0 = arccos(r/2Rd).

For obvious symmetry reasons, only the component along the line connecting the
centres of the colloidal spheres contributes to the total force. For the angle θ, this
component is P cos θ, where the pressure is P = nbkT . The surface on which this
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Fig. 2.4 Two hard spheres in
the presence of penetrable
hard spheres (PHSs) as
depletants. The PHSs impose
an unbalanced pressure P
between the hard spheres
resulting in an attractive
force between them. The
overlap volume of depletion
layers (hatched) has the
shape of a lens with width
σ − h and height 2Rd sin θ0

Pθ0

θ0

r
R

σ/2

σ

h

force acts between θ and θ + dθ equals 2πR2
d sin θ dθ. The total force between the

colloidal spheres is obtained by integration over θ from 0 to θ0

Ks(r)

nbkT
= −2π(R + σ/2)2

∫ θ0

0
sin θ cos θ dθ

=
{

−πR2
d[1 − (r/2Rd)

2] 2R ≤ r < 2Rd

0 r ≥ 2Rd.
(2.17)

This result was also obtained by Asakura and Oosawa [1]. The minus sign in the
right-hand side of Eq. (2.17) implies that the force is attractive.

Exercise 2.1. Show that Eq. (2.17) can also be written as the pressure multi-
plied by the area of the overlap of the depletion zones (see Fig. 2.4).

The depletion potential is now obtained by integration of the depletion force (Eq.
(2.17))

Ws(r) =
∫ 2Rd

r
Ks(r

′)dr ′ (2.18)

=
{

−nbkT Vov(r) 2R ≤ r < 2Rd

0 r ≥ 2Rd
(2.19)

with

Vov(r) = 4π

3
R3
d

[
1 − 3

4

r

Rd
+ 1

16

(
r

Rd

)3]
(2.20a)

= 2π

3
(Rd − r/2)2(2Rd + r/2) (2.20b)

Vov(h) = π

6
(σ − h)2(3R + σ + h/2) (2.20c)
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This result of Eq. (2.20a), in which r is the variable, was first obtained by Vrij
[2]. Equation (2.20c), where the variable is h = r − 2R, was already given without
explicit derivation in Eq. (1.19). Both Eqs. (2.20a) and (2.20c) are frequently used in
the literature. Equation (2.20b) provides an intermediate step between the two forms.
Note thatWs(r) in Eq. (2.19) is equal to pressure times the overlap volume Vov. The
reason for this simple form will become clearer after consideration of the interaction
between two spheres using the extended Gibbs equation. In the limit that σ/2 � R,
the force Eq. (2.17) and potential Eq. (2.19) between the spheres take very simple
forms:

Ks(h)

nbkT
= −πR(σ − h) (2.21)

and
Ws(h)

nbkT
= −πR

1

2
(σ − h)2, (2.22)

for separations h = r − 2R smaller than σ.

Exercise 2.2. Derive Eqs. (2.21) and (2.22) from Eqs. (2.17) and (2.19).

Interaction Potential BetweenTwo Spheres From the Extended Gibbs
Adsorption Equation
Applying exactly the same line of reasoning as for the derivation of the extended
Gibbs adsorption equation for two flat plates (see Eq. (2.9)), we now obtain

−
(

∂Ws

∂μ

)
= N (r) − N (∞), (2.23)

where N (r) is the number of PHSs in the system when the colloidal spheres are
at centre-to-centre separation r and N (∞) that at infinite separation. Clearly, the
difference between N (r) and N (∞) is caused by the overlap of the depletion zones

N (r) − N (∞) =
{
nbVov(r) 2R ≤ r < 2Rd

0 r ≥ 2Rd
(2.24)

with Vov defined in Eq. (2.20). Integration of Eq. (2.23) with Eqs. (2.24) and (2.15)
immediately leads to the interaction potential of Eq. (2.19). This route to the inter-
action potential makes clear why the overlap volume of the depletion zones appears.
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2.1.3 Depletion Interaction Between a Sphere and a Plate

The force method and the extended Gibbs adsorption equation can also be applied
to obtain the depletion interaction between a sphere and a flat plate. For the Gibbs
adsorption route, we (again) use

−
(

∂Wsp

∂μ

)
= N (h) − N (∞), (2.25)

where N (h) is now the number of PHSs in the system when the colloidal sphere is
at a separation h from the plate, and N (∞) is that at infinite separation. Again, the
difference between N (h) and N (∞) is caused by the overlap of the depletion zones,
now of the sphere and of the plate (see Fig. 2.5)

N (h) − N (∞)

nb
= Vov(h) (2.26)

=
{

1
3π(σ − h)2(3R + σ

2 + h) 0 ≤ h < σ

0 h ≥ σ.
(2.27)

Integration of Eq. (2.25) now leads to

Wsp(h)

nbkT
=
{

− 1
3π(σ − h)2

(
3R + σ

2 + h
)

0 ≤ h < σ

0 h ≥ σ.
(2.28)

For R � σ, Eq. (2.28) simplifies to

Wsp(h)

nbkT
= −πR(σ − h)2 0 ≤ h < σ, (2.29)

which, obviously, is twice Eq. (2.22).

Fig. 2.5 Illustration of the
overlap volume (hatched) of
depletion layers between a
hard wall and a hard sphere

R
σ/2

σ

σ/2
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2.1.4 Derjaguin Approximation

Some of the above results also follow directly from the so-called Derjaguin approxi-
mation. Derjaguin [11] showed that, for any type of interaction, there exists a simple
(approximate) relation for the force between curved objects and the interaction poten-
tial between two flat plates. In the Derjaguin approximation, the spherical surface is
replaced by a collection of flat rings. Consider two spheres with radius R at a centre-
to-centre distance r = 2R + h. The distance H between the sphere surfaces at a dis-
tance z from the line joining the centres is H = h + 2�, where (R − �)2 + z2 = R2

(Fig. 2.6a).When the range of interaction is short it is sufficient to consider only small
values of h/R or z/R (Fig. 2.6b). For z � R, we can write to a good approxima-
tion � = z2/2R. Hence, H = h + z2/R and thus, dH = (2z/R)dz. The interaction
between two spheres can now be written as the sum (integral) of the interactions of
flat rings with radius z and surface 2πzdz at a distance H from each other (Fig. 2.6b).
Assuming that the interaction is sufficiently short-ranged, the contribution of rings
with high values of H may be neglected, and thus the integration may be extended
to z = ∞. For the interaction energy between two spheres, we obtain

Ws(h) =
∫ ∞

0
W (H)2πzdz

= πR
∫ ∞

h
W (H)dH , (2.30)

or

Ws(h) = πR
∫ ∞

h
W (h′)dh′, (2.31)

Δ Δh

R Rh

R

R

− Δ H

z

(a)

R Rh

z

dz H

(b)

Fig. 2.6 a Relevant length scales for describing the interaction force between two big spheres and
b the Derjaguin approximation of a
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and hence

Ks(h) = −∂Ws(h)

∂h
= πRW (h). (2.32)

Here,W (h) is the interaction potential (energy per unit area) between two flat plates
at distance h. Clearly this approximate relationship between the force for spheres and
the interaction potential for plates is more accurate the larger the radius of the spheres
is compared to the range of the interaction. In this chapter, we shall frequently use
this Derjaguin approximation. It is a useful tool that is very accurate under the right
conditions (see above), but one has to be careful and be aware of its limitations.

With respect to the depletion interaction, the Derjaguin approximation becomes
accurate when considering a depletion agent that is small compared to the radius of
the colloidal spheres. As an example, we apply the Derjaguin approximation to the
depletion interaction potential between plates W (h) given by Eq. (2.3). It follows
that insertion of Eq. (2.3) into Eq. (2.31) correctly yields Eq. (2.22) as a result
of the depletion interaction between the two spheres. Further using the Derjaguin
approximation Eq. (2.32) with Eq. (2.3) for W (h) matches with the full result of
Eq. (2.21) for σ/2 � R.

One can also apply the Derjaguin approximation to the interaction between a
sphere and a flat plate. One then obtains

Ksp(h) = 2πRW (h). (2.33)

This is a useful relationship as it allows one to obtain the interaction potential
between two parallel plates from the measured force between a sphere and a wall
(see Sect. 2.6).

Exercise 2.3. Derive equation Eq. (2.33).

From Eq. (2.33) it follows that

Wsp(h) = 2πR
∫ ∞

h
W (h′)dh′. (2.34)

For the case of the PHS as depletion agent, this leads to

Wsp(h) =
{

−nbkTπR(σ − h)2 0 ≤ h < σ,

0 h ≥ σ,
(2.35)

for the interaction between a sphere and a plate. Its derivation is now much simpler
than that of Eq. (2.29).
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2.2 Depletion Interaction Due to Ideal Polymers

2.2.1 Depletion Interaction BetweenTwo Flat Plates

Interaction Potential BetweenTwo Flat Plates Using the ForceMethod
The simplestmodel to describe polymers is the ideal-chainmodel. For books on poly-
mer physics where all the relevant background material can be found, see Refs. [12–
21]. In this model, the polymer consists of M subunits, each with a fixed bond length
b, and their orientation is completely independent of the orientation and positions of
the previous monomers, even to the extent that two different monomers can occupy
the same position in space: there is no excluded volume. This model plays the same
role in polymer physics as an ideal gas in molecular physics. It allows the polymer
chain to be described as a (Gaussian) randomwalk ofM steps, as depicted in Fig. 2.7.

The average value 〈R〉 of the end-to-end vector R joining one end of the polymer
to the other is zero, as ‘negative’ steps have the same probability as ‘positive’ ones.
Mathematically, the probability of the end-to-end vector being R is the same as it
being −R so that, for symmetry reasons, the two contributions cancel on average. A
straightforward calculation (see any of the references [12–15,18,20,21]) shows that
〈R2〉, the average of the square of R, is given by

〈R2〉 = Mb2. (2.36)

This quantity is a measure of the size of the polymer chain. We see that the size of
the ideal polymer chain, of the order b

√
M , is much smaller than the total unfolded

contour length bM of the polymer.
Another commonly used and convenient quantity to describe the size of a polymer

is the radius of gyration Rg, the root-mean-square of the average monomer position
from the centre of mass [21], which is

R2
g = 1

6
Mb2. (2.37)

The result Rg = b
√
M/6 holds for sufficiently long Gaussian chains in the bulk

solution.

Fig. 2.7 Sketch of a random
walk chain consisting of
monomers with length b. For
any given walk, the
end-to-end vector R =∑ ri

b

r1
r2

R

rM
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Fig. 2.8 An ideal chain
confined between two
parallel flat plates

We now consider an ideal Gaussian chain confined between two (large) flat plates
with area A at a plate separation h (Fig. 2.8). For the computation of segment density
profiles in polymer solutions near interfaces, one can use the fact that there is a close
analogy between the diffusion of a Brownian particle and the flight of a randomwalk
[22,23]. A diffusion-like equation can be derived to evaluate the partition function
of polymer chains. Given the boundary condition, this ‘diffusion’ equation can be
solved. The partition function z(h) of one confined chain is given by [1,15,24–26]:

z(h) = Vχ(h), (2.38)

where V = Ah is the volume of the system and χ(h) the partition coefficient

χ(h) = 8

π2

∑
n=1,3,5,...

1

n2
exp

(
−n2π2R2

g

h2

)
. (2.39)

Note that, since ∑
n=1,3,5,...

1

n2
= π2

8
, (2.40)

clearly

0 ≤ χ(h) ≤ 1. (2.41)

Since the ideal chains do not interact, the partition function for N confined chains
can be written as

Z(h) = z(h)N

N ! . (2.43)
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Exercise 2.4. Show that Eq. (2.39) can be approximated as [27]:

χ(h) =
⎧⎨
⎩

8
π2 e

−π2R2
g/h

2
h � 8Rg√

π
,

1 − 4Rg

h
√

π
h � 8Rg√

π
.

(2.42)

Hint: for the large h limit, first write χ(x) � χ(x = 0) + x
(
dχ
dx

)
x=0

with

x = Rg/h. Make use of Eq. (2.40) and introduce a new dummy variable
using n = 2 j + 1 with j = 0, 1, 2, 3, . . . ,∞ and replace the summation by
integration in the derivative.

The Helmholtz energy is given by

F(h) = −kT ln Z(h); (2.44)

hence, the result

F(h) = NkT

[
ln

(
N

V

)
− 1 − lnχ(h)

]
(2.45)

is obtained after insertion of Eq. (2.43). This free energy can be written as

F(h) = Funconfined − T�S(h), (2.46)

where �S(h) is the entropy of confinement:

�S(h) = N�s(h) = Nk lnχ(h). (2.47)

From Eq. (2.41) it follows that the confinement entropy is negative, as expected,
because confinement leads to a decrease of the entropy. From the free energy given
in Eq. (2.45), we obtain

Pi = −
(

∂F

∂V

)
= nikT

[
1 + h

χ

∂χ

∂h

]
(2.48)

for the pressure of the chains inside the plates, where ni = (N/V )i is the number
density of the ideal chains between the plates. The first term nikT corresponds to the
van ’t Hoff law. Likewise, the pressure of the ideal chains outside the plates is given
by

Po = nbkT , (2.49)



80 2 Depletion Interaction

Exercise 2.5.Derive Eq. (2.50) by using the equality of the chemical potential
of the ideal chains inside and outside of the plates μi = μo.

where nb is the bulk number density of the polymer chains. Using Einstein’s fluctu-
ation theory [28,29] it immediately follows that

ni = nbe
�s/k

= nbχ. (2.50)

Combining Eqs. (2.1) and (2.48)–(2.50), we find

K (h) = Pi − Po

= −nbkT

[
1 − χ − h

∂χ

∂h

]
(2.51)

for the force per unit area K (h) between the plates. The attraction due to the osmotic
effect is given by−nbkT (1 − χ), whereas nbkT h∂χ/∂h is the repulsive contribution
due to confinement of polymer chains by the plates. Also this result was first derived
by Asakura and Oosawa [1]. Integration of Eq. (2.51) yields the interaction potential
per unit area W (h) between the plates [30]

W (h) = −nbkT

[
4Rg√

π
− h + hχ(h)

]
. (2.52)

Here, we have used

lim
h→∞[h − hχ(h)] = 4Rg√

π
(2.53)

according to Eq. (2.42). Comparing Eq. (2.52) with Eq. (2.3)—the interaction poten-
tial betweenflat plates due toPHSs—wefind that the contact potentials (h = 0)match
if we take σ = 4Rg/

√
π = 2.26Rg. The two potentials are plotted in Fig. 2.9. For

small h, where χ(h) is negligible, the two potentials coincide: this is in the region
0 < h < 3Rg/2. For h > 2Rg, the two potentials deviate because the discontinuous
behaviour of Eq. (2.3) is replaced by the smooth crossover of Eq. (2.52). In the transi-
tion region, ideal polymers have a longer range of attraction than PHSs. Eisenriegler
[31] has shown that Eq. (2.52) is identical to Eq. (2.3) (with σ = 4Rg/

√
π) up to and

including terms of order h4.
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Fig. 2.9 Depletion potential
W (h) as a function of
inter-plate distance h
between two parallel flat
plates caused by
nonadsorbing ideal chains
(solid curve). The dotted
lines give W (h) according to
Eq. (2.3) with σ = 4Rg/

√
π

Interaction Potential BetweenTwo Flat Plates From the Extended Gibbs
Equation
From Eqs. (2.11) and (2.50) it follows that

Γ (h) = [ni(h) − nb] h = nbh[χ(h) − 1] (2.54)

and hence, in view of Eq. (2.53)

Γ (∞) = −nb
4Rg√

π
. (2.55)

Substituting Eqs. (2.54) and (2.55) in Eq. (2.13), and using the fact that ideal chains
show ideal thermodynamic behaviour, i.e.,

μ = kT ln nb, (2.56)

we again obtain the result given byEq. (2.52) for the interaction potential per unit area
W (h) between two plates.While the above thermodynamic route to the calculation of
the adsorption is very efficient (as thermodynamics always is!), it is instructive (and
useful for future reference) to consider the calculation ofΓ starting from the polymer
segment concentration profile ϕ(x) near a single flat plate (with bulk concentration
ϕb) and between two flat plates. Eisenriegler [32] (and later Marques and Joanny
[33]) calculated the polymer concentration near one flat plate for ideal Gaussian
(M � 1) chains and found the following expression for the relative polymer segment
concentration f (x) = ϕ(x)/ϕb:

f (x) = 2ψ(z) − ψ(2z), (2.57)

with

ψ(z) = erf(z) + 2z√
π
e−z2 − 2z2 erfc(z), (2.58)
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where z is defined as x/(2Rg) and x is the distance from the surface. The (Gauss)
error function erf(y) is defined as

erf(y) = 2√
π

∫ y

0
e−t2dt, (2.59)

and the complimentary error function erfc(y) = 1 − erf(y).
One can characterise the negative adsorption by the depletion layer thickness δ,

which is defined as

δ =
∫ ∞

0
dx(1 − f (x)). (2.60)

For the case of ideal polymer chains near a flat plate with the profile Eq. (2.57), we
find

δ = 2Rg√
π

. (2.61)

This is in full agreement with Eq. (2.55) as Γ (∞) = 2Γsingle wall = −nb2δ.

Exercise 2.6.Derive δ = 2Rg/
√

π for ideal chains starting from its definition
in Eq. (2.60) and by using the profile Eq. (2.57).

A simple approximation [30,34] for the rather involved Eq. (2.57) is

f (x) = tanh2
( x

δ

)
, (2.62)

with δ given by Eq. (2.61).
Figure 2.10 depicts the concentration profile of an ideal polymer near a flat wall

and its replacement by a step profile with width δ = 2Rg/
√

π (dashed). The sim-
ple approximation of Eq. (2.62) reproduces the exact result to within an accuracy
of 1%.

Exercise 2.7. Show that the profile f (x) = tanh2(x/δ) has a depletion thick-
ness δ.

For the concentration profile between two flat plates separated by a distance h,
the following product function approximation has been proposed [30]

ϕ(x) = f (x) f (h − x). (2.63)

In Eq. (2.63),ϕ(x) is the polymer segment concentration between the plates and f (x)
and f (h − x) are the individual one plate profiles given by Eq. (2.57) or, more simply
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Fig. 2.10 Relative segment
concentration of ideal chain
segments from Eq. (2.57) as
a function of the distance
from a flat plate (solid
curve). Dashed lines
represent the step function
profile and the dotted curve
is the approximation of Eq.
(2.62)

Fig. 2.11 Segment
concentrations between two
flat plates. Monte Carlo
simulations with ideal chains
of 100 segments for
h/Rg = 24.5 (◦), 5.88 (�)
and 3.42 (�) are compared
with Eq. (2.63) as solid
curves

by Eq. (2.62). The concentration near a single plate, say plate 1, can be expressed by
a Boltzmann factor such as f (x) = exp[−Wwall(x)/kT ], where Wwall(x) is the free
energy giving rise to the profile. For the second plate located at a distance h, we can
then write f (h − x) = c(h − x)/nbM = exp[−Wwall(h − x)/kT ].

Subsequently, the product function Eq. (2.63) follows from the superposition
approximation:

Wwall, tot(x) = Wwall(x) + Wwall(h − x), (2.64)

which is expected to work well for sufficiently large h/Rg. This is indeed supported
by computer simulations [30], see the comparison in Fig. 2.11. For h/Rg < 3, the
product function overestimates the segment concentration between the plates. In such
narrow slits, the configurations of an ideal chain are then affected bybothwalls,which
is not accounted for by the superposition approximation.While the relative deviation
of the production function is largest for small plate separation h, for these distances
Γ (h) → 0 and, hence, the absolute error is small. The resulting adsorption is plotted
in Fig. 2.12 (dashed curve). The exact result from Eq. (2.54) (with Eq. (2.39) for
χ(h)) is plotted as the solid curve. We therefore conclude that, overall, the product



84 2 Depletion Interaction

Fig. 2.12 (Negative)
adsorption of ideal chains
between two walls as a
function of the distance
between the walls. The exact
result is represented by the
solid curve. The product
function approximation is
represented by the dashed
curve

function gives a good prediction for the adsorption, and we will use it to calculate
the depletion interaction between two spheres due to ideal polymers by using the
extended Gibbs adsorption equation.

2.2.2 Interaction BetweenTwo Spheres

Interaction BetweenTwo Spheres From the Derjaguin Approximation
Using the Derjaguin approximation Eq. (2.31), the interaction potential between two
spheres Ws(h) can be obtained from the interaction potential per unit area W (h)

between two flat plates (Eq. (2.52)). The result for q = 0.01 is plotted in Fig. 2.13.
Eisenriegler [31] obtained the following analytical expression:

Ws(h) = −nbkT RR2
g

(
4π ln 2 − 4

√
π

h

Rg
+ π

2

h2

R2
g

)
(2.65)

for small values of h valid up to and including terms of order h4. This equation
matches the numerical results for R/Rg = 100 presented in Fig. 2.13 very closely
for h < (3/2)Rg, see Refs. [30,31].

Comparing Eq. (2.22) for PHSs and Eq. (2.65) for ideal chains reveals that we
match the contact potentials for

σ = √8 ln(2)Rg. (2.66)

The result σ = 2.35Rg agrees closely with the value σ = 4Rg/
√

π = 2.26Rg for
flat plates (within 5%). Hence, in the limit R � Rg ideal polymers behave almost
as PHSs with a diameter σ ≈ 2Rg, just as for ideal chains between flat plates. In the
next section, we will see that this picture changes when R � Rg.
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Fig. 2.13 Interaction
potential between two big
hard spheres as a function of
the closest distance between
the surfaces of the spheres

Interaction Potential BetweenTwo Spheres From the Extended Gibbs
Equation
The limitation of the Derjaguin approximation is that it only provides reliable results
for R ≥ Rg. To obtain results for the interaction potential between spheres for arbi-
trary q = Rg/R, we use the extended Gibbs adsorption equation. Taniguchi et al.
[35] and, independently, Eisenriegler et al. [36] found the concentration profile of
Gaussian ideal polymer chains around a single hard sphere with radius R, which
reads

fs(x) =
( x
R

)2 + 2
( x
R

)
ψ(z) + f (x)( x

R + 1
)2 , (2.67)

where z again equals x/2Rg and x is now the distance from the surface of the sphere.
The functions f (x) and ψ(z) are defined in Eqs. (2.57) and (2.58). A simpler, yet
accurate, form of Eq. (2.67) was first presented by Fleer et al. [34]:

fs(x) =
( x

R + tanh(x/δ)
x
R + 1

)2
. (2.68)

For various ratios of q = Rg/R, we plotted the profiles fs(x) in Fig. 2.14. For
R � Rg, the Odijk [37] result

fs(x) =
(

x

x + R

)2
(2.69)

is recovered, which is independent of the polymer length scale.
For large hard sphere radii (q = 0.1), we see that the sphere profile approaches

that of a flat plate. However, for Rg/R = 1 the depletion layer thickness becomes
significantly smaller than 2Rg/

√
π and it further decreases with increasing q .
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Fig. 2.14 Relative ideal
chain segment
concentrations at a wall and
at a sphere for q = 0.1,
q = 1 and q = 10 according
to Eq. (2.67). With
increasing q the profile shifts
closer to the surface

fs (x)

Exercise 2.8. (a) Show that, in the limit R � Rg, the expression in Eq. (2.67)
for the profile around spheres becomes equal to Eq. (2.57) for the profile at a
flat plate.
(b)Give a physical argument as towhy the concentration profile shifts towards
the particle surface when Rg/R increases.

Starting from Eq. (2.67), we can obtain an analytical expression for the depletion
thickness around a sphere δs, which is now defined by

4π

3

[
(R + δs)

3 − R3] =
∫ ∞

0
4π(R + x)2 (1 − fs(x)) dx . (2.70)

After carrying out the integration of the right-hand side of Eq. (2.70), we obtain
[38,39]

δs

Rg
=
[(

1 + 6q√
π

+ 3q2
)1/3

− 1

]
/q. (2.71)

Note that, in the limit q → 0, Eq. (2.71) yields, as expected, the flat plate result
δs/Rg = 2/

√
π. The result in Eq. (2.71) holds for Gaussian ideal chains, implying

that the segment size b is smaller than all other length scales, Rg and R. For freely
jointed ideal chains, the depletion thickness also depends on the size ratio b/R for
R � 50b [40]. The q-dependence of the depletion thickness of Eq. (2.71) is plotted
in Fig. 2.15.

Such curvature dependence of the depletion thickness of ideal polymer chains
around a sphere also exists for ideal polymer chains around a spherocylinder (‘rod’),
which is relevant for Chap. 8. The depletion thickness of an ideal polymer around a
cylinder requires a numerical calculation (see Ref. [41]). For practical purposes, an
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Fig. 2.15 Depletion
thickness (normalised with
Rg) of ideal chains at a
sphere (dashed curve) and a
spherocylinder (solid curve)
as a function of the size ratio
q = Rg/R (sphere) or
q = 2Rg/D
(spherocylinder). Data points
are exact numerical results.
Full curve follows Eq.
(2.72). For comparison, the
flat wall case is given as the
dotted line

Exercise 2.9. (a) Show that, in the limit R � Rg (and hence R � δs), Eq.
(2.71) for δs reduces to the flat plate result (Eq. (2.61)) for δ. The result for
the relative depletion thickness δ/Rg as a function of the size ratio q = Rg/R
is plotted in Fig. 2.15.
(b) Carry out the integration in Eq. (2.70) and show that the result for δ is
given by Eq. (2.71).

empirical expression was given that describes the numerical data with an accuracy
within a per cent for q = 2Rg/D values up to 100 [41],

δ

Rg
=
(
1 + 4√

π
q − k1q1.6 + k2q1.77

)1/2 − 1

q
, (2.72)

with the constants k1 = 0.62133 and k2 = 1.50338. In Fig. 2.15 the depletion thick-
ness around a cylinder as a function of q is plotted and compared to the flat wall and
sphere result. The data points are the numerical results, the curve follows Eq. (2.72).
It follows that the depletion thickness around a cylinder (rod) is of the order of the
polymer’s radius of gyration for q < 10.

In Sect. 2.2.1, it was shown that the product function, Eq. (2.63), describes the
polymer concentration profile between two flat plates quite well. Here, we apply the
product function ansatz to calculate the concentration profile around two spheres.
We assume that the local polymer concentration ns(r) in every point P (see Fig.
2.16) outside the spheres is given by

ns(r)
nb

= fs(x1) fs(x2), (2.73)

where fs(xi ) is the polymer concentration profile around a sphere given by Eq. (2.67)
with xi denoting the closest distance to the surface of the sphere.
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Fig. 2.16 The geometry of
two spheres separated by a
distance h

1

2

h

R

x1 P

x2

The interaction between two spheres can nowbe calculated fromEq. (2.23), which
for ideal chains becomes

Ws(h)

kT
= N (∞) − N (h), (2.74)

where N (h) and N (∞) are the number of polymer molecules in the systemwhen the
colloidal particles are at a distance h (Fig. 2.16) and infinitely far apart, respectively.
The quantity N (h) can be calculated numerically from

N (h) =
∫

drns(r) (2.75)

using the profile function Eq. (2.73), and obviously

N (∞) = nb

(
V − 2

4π

3
(R + δs)

3
)

.

The result for q = 0.01 is plotted in Fig. 2.17a (dashed curve). We normalised the
interaction curve bydividingby the absolute value at contact. The depth of the interac-
tion at contact can be computed numerically and we findWs(0)/nbkT ≈ −8.0RR2

g.
It can be compared to the result that follows from Eq. (2.65): Ws(0)/nbkT =
−4πRR2

g ln(2) ≈ −8.7RR2
g, which is close. A plot of the results for different values

of the size ratio q is shown in Fig. 2.17b.
We observe that the range of the interaction becomes smaller with decreasing

colloid radius R in agreement with the decrease of the depletion thickness δs with
decreasing colloid radius. In fact, by replacingσ/2 in Eq. (2.18) by δs (Eq. (2.71)), we
obtain interaction curves in good agreement with the results presented in Fig. 2.17b
obtained from the extended Gibbs adsorption equation using the product function
(Eq. (2.73)).
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Fig. 2.17 Depletion
potential between two
spheres as a function of their
closest distance. a Size ratio
R/Rg = 100; dashed curve:
Eq. (2.74) using the
Derjaguin limit result Eq.
(2.73); solid curve: Eq.
(2.65). b Four different size
ratios: 1/q = R/Rg = 10
(solid), 3 (dashed), 1
(dotted-dashed) and 0.3
(dotted) calculated using Eq.
(2.74)

(a)

(b)

This brings us to the conclusion that, as far as the depletion interaction is con-
cerned, ideal polymer chains can be replaced (to a good approximation) by PHSs
with a diameter σ = 2δs, where the depletion thickness δs now depends on the size
ratio q = Rg/R. The ideal chain description sufficiently describes depletion effects
in dilute polymer solutions. In Chap. 4, we shall see that, for polymers with excluded
volume, the depletion thickness not only depends on the size ration q but also on
the polymer concentration (see Refs. [39,42–44]). Also, the (osmotic) pressure is no
longer given by the ideal (van ’t Hoff) expression. Both features significantly affect
depletion effects.
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2.3 Depletion Interaction Due to Colloidal Hard Spheres

2.3.1 Concentration Profiles Near a HardWall and BetweenTwo
HardWalls

We now consider the depletion interaction due to (small) colloidal hard spheres
with diameter σ. At very low concentrations, where we may neglect the interaction
between the spheres so that the system can regarded as thermodynamically ideal,
the results for the depletion interaction are identical to those for PHSs. At higher
concentrations—say, at volume fractions larger than a few per cent—the interactions
between the spheres cannot be neglected. This has two important consequences for
the depletion interaction. First of all, the pressure and chemical potential are no longer
given by the ideal expressions. The corrections to ideal behaviour can be written in
terms of the virial series (see textbooks on statistical thermodynamics, e.g., Hill [45]
or Widom [46]):

P

nbkT
= 1 + B2nb + · · · (2.76)

μ

kT
= ln nb + 2B2nb + · · · (2.77)

Now, nb is the bulk concentration of (small) hard spheres. The quantity B2 is the
second osmotic virial coefficient

B2 = 2πσ3

3
= 4v0, (2.78)

where v0 = πσ3/6 is the volume of a hard sphere. Secondly, the interactions between
the particles among themselves and with a wall leads to a concentration profile near
the wall. Obviously, in a layer at the wall with thickness σ/2 no centres of the hard
spheres can penetrate. In the case of PHSs, the concentration takes on the bulk value
nb outside the depletion layer. However, in the case of hard spheres the interactions
lead to an effective attraction between a sphere and the wall and the concentration
profile at distance x = σ/2 + y from the wall can be written as

n(x) = nb exp [−Wwall(x)/kT ] , (2.79)

where Wwall(x) is the effective interaction between the hard sphere and the wall. In
fact, this is the potential of mean force between the sphere and the wall due to the
other hard spheres. To first order in density, we can write

Wwall(x) = −nbkT ν(y), (2.80)

where ν(y) is the overlap volume of the depletion zone around the sphere and the
depletion layer of the wall depicted in Fig. 2.18,

ν(y) = π

3

(
2σ3 − 3σ2y + y3

)
0 ≤ y ≤ σ. (2.81)
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Fig. 2.18 Overlap volume
(hatched) between a hard
wall and a hard sphere

σ/2

σ/2

σ/2

x

or

nbν(y) = φ

(
4 − 6

y

σ
+ 2

y3

σ3

)
0 ≤ y ≤ σ. (2.82)

Here, φ = nbπσ3/6 is the volume fraction of the (small) spheres [47].
The profile n(x) can be obtained from Eqs. (2.79) to (2.81):

n(x)

nb
=
{
0 0 ≤ x < σ/2,

1 + nbν(y) σ/2 ≤ x ≤ 3σ/2.
(2.83)

This profile of hard spheres at a single wall to order n2b is depicted in Fig. 2.19.
We see that, in addition to the depletion layer, there is an ‘accumulation’ layer,

where n(x) > nb. The hard spheres located close to the depletion layer tend to ‘push’
one another into the layer next to the excluded depletion layer, and this leads to the
accumulation. The concentration profile at a single wall to order n3b was calculated by
Fisher [48]. This accumulation layer has important consequences for the depletion
interaction.

For the calculation of the depletion interaction due to hard spheres, we need the
concentration profile between two confining walls. This problem was treated analyt-
ically by Glandt [49] and by Antonchenko et al. [50] using Monte Carlo computer
simulations. Like for a single wall, we present the calculation of the concentration
profile between two confining walls to order n2b. For h < σ, no spheres can penetrate
between the walls and hence, the concentration is zero. For σ ≤ h ≤ 3σ, the deple-
tion zone of a sphere may overlap simultaneously with the depletion zones of both
walls (Fig. 2.20) and we can write
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Fig. 2.19 Density profile n(x) of hard spheres with φ = 0.1 as a function of the distance from the
wall x (Eq. (2.83))

Fig. 2.20 A sphere between
two walls. Hatched areas
indicate the overlap of the
depletion zones of the hard
spheres and the hard walls

σ/2

σ/2

σ/2 σ/2
h
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Fig. 2.21 Density profile of hard spheres between two hard walls for h = 7σ/4 and φ = 0.1

n(x)

nb
= 1 + nbν(y) + nbν(h − σ − y) 0 ≤ y ≤ h − σ, (2.84)

with nbν defined in Eq. (2.82).
The profile of hard spheres between two confining walls to order n2b for σ ≤ h ≤

2σ is depicted in Fig. 2.21.
For h > 3σ, there is never simultaneous overlap of the depletion layer of a sphere

with the depletion layers of the confining walls; as a result, there is no depletion-
induced interaction.

2.3.2 Depletion Interaction BetweenTwo Flat Plates

Interaction Potential BetweenTwo Flat Plates From the ForceMethod
We follow the work of Mao et al. [51]. The same results as presented here were
obtained earlier by Walz and Sharma [52] using a somewhat different method. The
starting point for our treatment is a result by Henderson [53] that the force per unit
area between two parallel hard plates immersed in a suspension of hard spheres is
given by

K = Pi − Po = kT (ni − no), (2.85)

where ni and no are the contact densities of the hard spheres inside and outside the
plates. The contact density is the ensemble-averaged density at the surface. Equation
(2.85) can be explained as follows: the particle velocities are separable degrees of
freedom, and therefore always obey the Maxwell–Boltzmann distribution. The force
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per unit area on a hard plate is therefore given rigorously by elementary kinetic theory
as [54]

P = n∗kT , (2.86)

where n∗ is the number density of particles at a distance corresponding to the point of
impact (the position at which a particle hits the surface). This is, of course, the contact
density. For Po, n∗ = no and for Pi, n∗ = ni. This argument applies whenever there
is a hard interaction between the particles and the plate [54]. The generality of Eq.
(2.85) will also be exploited in Sects. 2.4 and 2.5, where we consider the depletion
interaction due to hard rods and hard discs.

Up to order n2b, we find from Eq. (2.83) that

Po
kT

= no = nb[1 + nbν(0)] (2.87)

= nb

[
1 + nb

2πσ3

3

]
, (2.88)

or, in terms of φ,

Pov0
kT

= φ + 4φ2. (2.89)

This is in agreement with the virial series in Eq. (2.76) using the second virial
coefficient from Eq. (2.78). Between the plates we find

Pi
kT

=

⎧⎪⎨
⎪⎩
0 0 ≤ h < σ,

nb [1 + nbν(0) + nbν(h − σ)] σ ≤ h < 2σ,

nb[1 + nbν(0)] h ≥ 2σ.

(2.90)

Hence,

K (h)

nbkT
=

⎧⎪⎨
⎪⎩

−1 − 4φ 0 ≤ h < σ,

φ
[
4 − 6λ + 2λ3

]
σ ≤ h < 2σ,

0 h ≥ 2σ,

(2.91)

where λ = (h − σ)/σ, which runs from 0 at h = σ to 1 at h = 2σ.
The depletion force of Eq. (2.91) depicted in Fig. 2.22 jumps from negative

(attractive) at h = σ− to positive (repulsive) at h = σ+. The key idea behind the
origin of the repulsive part of the depletion force is that, for small λ, the mutual
repulsion of spheres is substantially reduced due to the fact that the excluded volumes
of the spheres are hidden behind the depletion zones of the walls. In the limit h =
σ+, the spheres behave effectively thermodynamically ideal. To match the chemical
potential (Eq. (2.77)) of the spheres in the bulk, the number density inside the gap
must be

ni = nb [1 + 2B2nb] , (2.92)
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Fig.2.22 Depletion force between two hard plates due to small hard spheres (φ = 0.1), calculated
using Eq. (2.91)

and hence, for h = σ+

Pi = kT nb[1 + 2B2nb], (2.93)

giving rise to a maximum repulsive depletion force

Kmax(h = σ+) = Pi − Po
= 4kT nbφ. (2.94)

Exercise 2.10. Derive Eq. (2.92).

Integrating the force, Eq. (2.91) yields the interaction potential per unit areaW (h)

between the plates

W (h)

kT nb
=

⎧⎪⎨
⎪⎩

σ
(
λ + 3

2φ + 4λφ
)

0 ≤ h < σ,

σφ
( 3
2 − 4λ + 3λ2 − 1

2λ
4
)

σ ≤ h < 2σ,

0 h ≥ 2σ.

(2.95)

In Fig. 2.23, we present the interaction potential, which has a significant attraction
at small separation distance h, but also has a repulsive part of the potential.
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Fig. 2.23 Interaction potential between two hard plates due to small hard spheres (φ = 0.1) from
Eq. (2.91)

Exercise 2.11. (a) Explain why the force K has a discontinuity at h = σ,
whereas the interaction potential W is continuous at that point.
(b) Why is the interaction potential still repulsive for h just below σ, while
the force is attractive?

Interaction Potential BetweenTwo Flat Plates From the Extended Gibbs
Equation
From the depletion layer with thickness σ/2 and concentration profile of Eq. (2.83)
it follows that the adsorption on a single plate is given by

Γsingle wall = −σ

2
nb + n2b

∫ σ

0
ν(x)dx

= −σ

2
nb + n2b

π

4
σ4. (2.96)

Hence,

Γ (∞) = 2Γsingle wall

= −σnb + n2b
π

2
σ4

= σnb(3φ − 1). (2.97)

For two confining walls, it is clear that, for h < σ, no spheres can penetrate the gap
between the walls. Hence,

Γ (h) = −nbh 0 ≤ h < σ. (2.98)
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Using the concentration profile Eq. (2.84), we obtain the following for σ ≤ h < 2σ:

Γ (h) = −σnb + n2b

∫ h−σ

0
[ν(x) + ν(h − σ − x)] dx

= −σnb + 2π

3
n2bσ

4
[
2λ − 3

2
λ2 + 1

4
λ4
]

(2.99)

or
Γ (h)

nbσ
= φ

[
8λ − 6λ2 + λ4]− 1. (2.100)

For h ≥ 2σ,

Γ (h) = Γ (∞). (2.101)

Combining Eqs. (2.97)–(2.101) gives

Γ (h) − Γ (∞)

nbσ
=

⎧⎪⎨
⎪⎩
1 − h

σ − 3φ 0 ≤ h < σ,

−φ
[
3 − 8λ + 6λ2 − λ4

]
σ ≤ h < 2σ,

0 h ≥ 2σ.

(2.102)

Taking into account that the chemical potential is now given by Eq. (2.77), we obtain
from Eq. (2.13)

W (h) = −kT
∫ nb

0
[Γ (h) − Γ (∞)]

[
1

nb
+ 2B2

]
dnb. (2.103)

Substituting Eq. (2.102) in Eq. (2.103) after some algebra yields Eq. (2.95). Note
that, in all cases considered so far (PHSs, polymers), the quantity [Γ (h) − Γ (∞)]
was always positive (or zero) for all values for h. Here, we see that [Γ (h) − Γ (∞)]
is negative for a certain range of h values due to accumulation effects in the con-
centration profiles. This leads to a positive interaction energy, as is clear from Eq.
(2.103).

Such a repulsive contribution to the depletion interaction originates from excluded
volume interactions between the depletants; in the case of ideal polymers and PHSs
it is absent. Therefore, one might also expect accumulation effects when consider-
ing interacting polymers. From Monte Carlo simulation studies [55] and numerical
self-consistent field computations [56,57], it follows that interacting polymers do
contribute to repulsive depletion interactions but with a strength of the repulsion that
is nearly imperceptible. Nonadsorbing polymers contribute to an extremely weak
repulsion at high polymer concentration [55,57]. This repulsion is more pronounced
when hard spheres are the depletants, as we have seen. However, polydispersity sup-
presses this repulsive interaction [58]. Hence, it is expected that the weak repulsion
mediated by polymer chains as depletants is even more dampened due to polydis-
persity.
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2.3.3 Depletion Interaction BetweenTwo (Big) Spheres

Using the Derjaguin approximation (Eq. (2.31)), we obtain the interaction between
two big spheres due to the small spheres by integration:

Ws(h) = πR
∫ 2σ

h
W (h′)dh′. (2.104)

Using Eq. (2.95) for the interaction potential per unit area in Eq. (2.104), we obtain

Ws(h)

kT
=

⎧⎪⎨
⎪⎩

− R
σ

[
3φλ2 − φ2

( 12
5 − 9λ − 12λ2

)]
0 ≤ h < σ,

Rφ2

5σ

[
12 − 45λ + 60λ2 − 30λ3 + 3λ5

]
σ ≤ h < 2σ,

0 h ≥ 2σ,

(2.105)

which has a positive maximum value of

Ws,max

kT
= 12R

5σ
φ2 at h = σ

(
1 − 3

2
φ

)
, (2.106)

and a minimum value at contact

Ws,min

kT
= −3

R

σ

(
φ + 1

5
φ2
)

. (2.107)

In Fig. 2.24, we present the interaction potential between spheres (valid up to n2b
or, equivalently, up to φ2). In [51], results are obtained for the interaction valid up to
n3b, including a comparison with Monte Carlo computer simulation results of Biben
et al. [59]. These results are reproduced in Fig. 2.25.

Fig.2.24 Depletion potential between two hard spheres (R = 5σ) mediated by small hard spheres
with φ = 0.1
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Fig. 2.25 A comparison of the calculations of Mao et al. [51] with the computer simulations of
Biben et al. [59] for φ = π/15 and q = 0.1. Reprinted with permission from Ref. [51]. Copyright
1995 Elsevier

Exercise 2.12. (a) Derive the interaction potential between spheres (Eq.
(2.105)) from the extended Gibbs adsorption equation in the limit R � σ
(as is implicit when using the Derjaguin approximation).
(b) Show that Eq. (2.105) in the limit of first order in φ equals Eq. (2.22).

Mao [58] also considered the interaction between two spheres in a bath of poly-
disperse small hard spheres using the Derjaguin approximation. The accumulation
effects due to nonadsorbing small hard spheres become much less pronounced with
increasing polydispersity. Goulding and Hansen [60] used DFT theory to investigate
the case of depletion due to small hard spheres. Their findings correlate with Mao’s
analytical results but also show thatMao’s Derjaguin approximation already deviates
from the DFT result for a size ratio of 5.

2.4 Depletion Interaction Due to Colloidal Hard Rods

Asakura and Oosawa [1,61] already recognised that rod-like macromolecules are
very efficient depletion agents. In retrospect, the observations of Fåhraeus [62] (that
the rod-like protein fibrinogen has, on a weight basis, the strongest effect on the
aggregation of red blood cells) can be understood on the basis of its high efficiency as
a depletion agent associated with its rod-like shape. Here, we consider the interaction
caused by rod-like colloids as depletants and focus on a simple case: infinitely thin
hard rods of length L . These rods have no excluded volume with respect to each
other and hence, behave thermodynamically ideally.
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2.4.1 Depletion Interaction BetweenTwo Flat Plates

Interaction Potential BetweenTwo Flat Plates Using the ForceMethod
As we are dealing with hard plates and a hard wall, we can again use Eq. (2.85) to
calculate the force. The contact densities arise this time by considering the angles of
the rods as a function of distance from the wall that leads to contact of an end point
with the wall. First of all to make contact with the wall, the distance of the centre
of the rod from the wall should be smaller than L/2. At a distance from the wall
x < L/2, the angle that leads to contact is given by

θx = arccos
x

L/2
(2.108)

(see Fig. 2.26). Outside the confining walls x runs from L/2 to 0. Hence, θx runs
from 0 to π/2, so using spherical coordinates, we obtain

no = nb

∫ π/2

0
sin θ dθ = nb (2.109)

giving

Po = nbkT . (2.110)

This result could have beenwritten down at once as infinitely thin rods behave ideally.
Between two confining walls separated by a distance h < L , the second wall

prevents contact configurations with the first wall for distances x ≥ h/2. Hence,

ni = nb

∫ π/2

θh/2

sin θ dθ =
{
nb

h
L 0 ≤ h ≤ L,

nb h > L.
(2.111)

From this result, and applying Eq. (2.86), it follows that

Pi =
{
nbkT

h
L 0 ≤ h ≤ L,

nbkT h > L.
(2.112)

Fig. 2.26 Hard rod at a
(hard) wall (left) and
confined between two walls
(right)

L/2

L/2

θ x
x
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By combining Eqs. (2.110) and (2.112), we obtain the following for the force [1]:

K (h) = Pi − Po (2.113)

=
{

−nbkT [1 − h/L] 0 ≤ h ≤ L,

0 h > L.
(2.114)

Integration of the force in Eq. (2.113) yields the interaction potential per unit area
W (h) between the plates

W (h) =
{

− 1
2nbkT

(L−h)2

L 0 ≤ h ≤ L,

0 h > L.
(2.115)

This result was first obtained by Asakura and Oosawa [61] (see also Auvray [63]).
Mao et al. [64,65] considered the depletion interaction due to long thin rods with a
finite diameter D. Then the system is no longer ideal and the interaction potential
contains higher order terms in nb. Like in the case of hard spheres, the interactions
between the rods themselves and with the wall result in the accumulation of rods at
the wall, which in turn leads to a repulsive contribution to the depletion interaction.
Further details can be found in the papers by Mao et al. [64,65].

Interaction Potential BetweenTwo Flat Plates From the Extended Gibbs
Equation
The concentration profile of the rods near a wall also follows by considering the
allowed angles. The angles ranging from θx (defined by Eq. (2.108)) to π/2 are
allowed for a rod at a distance x < L/2 from a single wall (Fig. 2.26). Hence, the
density profile is given by

n(x) = nb

∫ π/2

θx

sin θ dθ = nb
x

L/2
, (2.116)

and is shown in Fig. 2.27. This provides an adsorbed amount at one wall

Γsingle wall =
∫ L/2

0
[n(x) − nb] dx = −nbL/4, (2.117)

and thus

Γ (∞) = 2Γsingle wall = −nbL/2. (2.118)

For two confining walls separated by a distance h < L , the density profile is given
by

n(x) =
{
nb

x
L/2 0 ≤ x ≤ h/2,

nb
h−x
L/2 h/2 ≤ x ≤ h.

(2.119)
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Fig. 2.27 Density profile of hard rods at a hard wall

Fig. 2.28 Density of hard rods between two hard walls for h = 4L/5

This rod density profile between twowalls is shown in Fig. 2.28 for h = 0.8L . Hence,

Γ (h)

∫ h

0
[n(x) − nb] dx =

{
nb
[
h2
2L − h

]
0 ≤ h ≤ L,

−nb
L
2 h > L.

(2.120)

Consequently,

Γ (h) − Γ (∞) =
{
nb

[L−h]2

2L 0 ≤ h ≤ L,

0 h > L.
(2.121)
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Combining Eqs. (2.121) and (2.13) and carrying out the integration immediately
results in the interaction potential of Eq. (2.115) when taking into account that
μ = kT ln nb (ideal behaviour). For the calculation and simulation of concentra-
tion profiles at walls of rods of finite thickness and the evaluation of the resulting
depletion interaction to higher orders of nb, we refer to Mao et al. [66].

2.4.2 Interaction BetweenTwo (Big) Colloidal Spheres Using the
Derjaguin Approximation

Using the Derjaguin approximation (Eq. (2.31)), we obtain the interaction between
two big spheres with radius R � L by integration

Ws(h) = πR
∫ L

h
W (h′)dh′. (2.122)

Using Eq. (2.115) for the interaction potential per unit area in the above integration,
we obtain for 0 ≤ h ≤ L

Ws(h) = −nbkTπR
(L − h)3

6L
. (2.123)

This expression for the interaction potential is also valid to order nb for long thin
rods with a finite diameter D, and we can then write Eq. (2.123) in the form

Ws(h) = −2

3
kTφ

R

D

L

D

(
1 − h

L

)3
, (2.124)

where

φ = nb
π

4
LD2 (2.125)

is the volume fraction of the rods. Comparing this expression for the depletion inter-
action between two big spheres with that for small spheres as depletant (Eq. (2.105))
for low φ reveals that the factor L/D, which is usually significantly larger than unity,
is an important difference. Take as an example R = 1 µm, L = 200 nm and D = 10
nm. Then the factor

R

D

L

D
= 2000, (2.126)

which implies that, for a volume fraction of rods as low as 0.1%, the depletion
interaction will already be of order kT . For small colloidal spheres with σ = 10 nm,
this would require a volume fraction of about 1%. The higher order terms calculated
by Mao et al. [65] result (as in the case of small spheres as a depletion agent) in a
repulsive barrier in the depletion interaction.
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Above, we used the Derjaguin approximation. It is noted that Yaman et al. [67,68]
directly computed the depletion interaction between two hard spheres mediated by
an ideal gas of infinitely thin rods numerically. This method was extended by Lang
[69] to calculate the depletion interaction mediated by polydisperse rods.

2.5 Depletion Interaction Due to Thin Colloidal Hard Discs

Thin colloidal hard discs provide another example of an anisometric colloidal particle
that acts as an efficient depletion agent. The depletion interaction mediated by discs
was first considered by Piech and Walz [70]. At the end of this section, where we
compare spheres, rods and discs as depletion agents, we will see that the disc is
intermediate in efficiency for inducing depletion attraction between spheres and
rods. Here, we consider discs of diameter D and thickness L (Eq. (2.29)). Notice
that, for the simplest case (i.e., infinitely thin hard discs), the excluded volume of the
discs with respect to each other is non-zero, and only in the limit of the concentration
going to zero will the discs behave thermodynamically ideally. We restrict ourselves
to this limiting case.

2.5.1 Depletion Interaction BetweenTwo Flat Plates

Interaction Potential BetweenTwo Flat Plates From the ForceMethod
We again use Eq. (2.85) as the starting point for the calculation of the force between
two parallel flat plates. To make contact with the wall, he distance of the centre of
the discs from the wall should be smaller than D/2. At a distance from the wall
x < D/2 (Fig. 2.29), the angle between the normal of the disc and the normal of the
wall that leads to contact is now given by

Fig. 2.29 Discs at a hard
wall. The grey area
represents the thickness L

θ x

x
D/2

D/2 θx



2.5 Depletion Interaction Due to Thin Colloidal Hard Discs 105

θx = arcsin

(
x

D/2

)
. (2.127)

Outside the confining walls, x runs from 0 to D/2. The contact density no follows
as

no = nb

∫ π/2

0
sin θ dθ = nb (2.128)

and Eq. (2.86) is again found:

Po = nbkT .

Between two confining walls separated by a distance h < D, the second wall
prevents contact configurations with the first wall for distances x ≥ h/2. Hence,

ni = nb

∫ θh/2

0
sin θ dθ =

{
nb
[
1 −√1 − (h/D)2

]
0 ≤ h ≤ D,

nb h > D,

and hence,

Pi =
{
nbkT

[
1 −√1 − (h/D)2

]
0 ≤ h ≤ D,

nbkT h > D.

This leads to the following expression for the force between the plates:

K (h) = Pi − Po (2.129)

=
{

−nbkT
√
1 − (h/D)2 0 ≤ h ≤ D

0 h > D.
(2.130)

Integration of the force Eq. (2.129) yields the interaction potential per unit areaW (h)

between the plates

W (h) = −nbkT
D

2

⎡
⎣π

2
− h

D

√
1 −

(
h

D

)2
− arcsin

(
h

D

)⎤⎦ . (2.131)

Exercise 2.13. Derive the interaction potential Eq. (2.131) from the force,
Eq. (2.130).



106 2 Depletion Interaction

Interaction Potential BetweenTwo Flat Plates From the Extended Gibbs
Equation
The concentration profile of the discs near a wall can also be found by considering
the allowed angles [63]. For a disc at a distance x < D/2 from a single wall, the
angles ranging from 0 to θx (defined by Eq. (2.127)) are allowed (Fig. 2.29). Hence,

n(x) = nb

∫ θx

0
sin θ dθ = nb

⎡
⎣1 −

√
1 −

(
x

D/2

)2⎤⎦ , (2.132)

which is shown in Fig. 2.30. Hence,

Γsingle wall =
∫ D/2

0
[n(x) − nb] dx = −nbD

π

8

and thus,

Γ (∞) = 2Γsingle wall = −nbD
π

4
. (2.133)

For two confining walls separated by a distance h < D

n(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
nb

[
1 −

√
1 −

(
x

D/2

)2]
0 ≤ x ≤ h

2 ,

nb

[
1 −

√
1 −

(
h−x
D/2

)2]
h
2 ≤ x ≤ h,

(2.134)

Fig. 2.30 Density profile of hard platelets at a hard wall from Eq. (2.132)
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Fig. 2.31 Density profile of
hard discs between two walls
for h = 4D/5

shown in Fig. 2.31. Hence,

Γ (h) =
∫ h

0
[n(x) − nb] dx (2.135)

=
⎧⎨
⎩−nb

D
2

[( h
D

)√
1 − ( hD )2 + 1

2 arcsin
( h
D

)]
0 ≤ h ≤ D

nbD
π
4 h > D

(2.136)

By combining Eqs. (2.133) and (2.136), we obtain the following result for 0 ≤ h ≤
D:

Γ (h) − Γ (∞) = nb
D

2

⎡
⎣π

2
−
(
h

D

)√
1 −

(
h

D

)2
− arcsin

(
h

D

)⎤⎦ . (2.137)

CombiningEqs. (2.137) and (2.13) and carryingout the integrationwithμ = kT ln nb
once again yields the interaction potential of Eq. (2.131).

2.5.2 Interaction BetweenTwo (Big) Colloidal Spheres Using the
Derjaguin Approximation

Combining the interaction potential per unit area (Eq. (2.131)) and the Derjaguin
approximation (Eq. (2.31)) yields

Ws(h) = −nbkT
π

3
RD2

×
⎡
⎣−3

4
π
h

D
+ 3

2

h

D
arcsin

(
h

D

)
+
(
1 + 1

2

(
h

D

)2)√
1 −

(
h

D

)2⎤⎦ .

(2.138)
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This result obtained for infinitely thin discs will presumably also be valid for discs
with finite thickness L to the lowest order in nb (although such a calculation has not
been carried out), and we can then write Eq. (2.138) in the form

Ws(h) = −4

3
kTφ

R

L

×
⎡
⎣−3

4
π
h

D
+ 3

2

h

D
arcsin

(
h

D

)
+
(
1 + 1

2

(
h

D

)2)√
1 −

(
h

D

)2⎤⎦ ,

(2.139)

where the disc volume fraction is given by

φ = nb
π

4
LD2. (2.140)

For thin discs, L is small so R/L is large. Assume R = 1μm, D = 200 nm and L = 1
nm then R/L = 1000 implies that, for volume fractions φ of the discs of 0.1%, the
depletion interaction is already of the order kT.

Comparison of the depletion potentials due to spheres (Eq. (2.105)), rods (Eq.
(2.124)), discs (Eq. (2.138)) and ideal polymers (Eq. (2.65)) reveals that to the lowest
order in the depletant density they all can be written in the general form

Ws(h) = −nbkT RC�2 f

(
h

�

)
, (2.141)

where � is the characteristic length scale of the depletion agent, the prefactor C
determines the depth of the potential and the function f sets the distance dependence
normalised such that f (0) = 1 and f (1) = 0. This is summarised in Table 2.1.

Because higher order h/Rg terms are not available for the ideal chain result, the
f (1) = 0 limit can not be accessed. The functions f for ideal chains (small h),
spheres, rods and plates are presented in Fig. 2.32. It is clear that the dependence
on the interparticle separation f (h/�) is similar for greatly different depletants. The
results for the depletion interaction between big spheres discussed here are based
on the Derjaguin approximation valid for R � � (� = σ, L , D for spheres, rods and
discs). An analysis of the accuracy of the Derjaguin approximation for depletion

Table 2.1 Characteristic parameters for C , � and f in Eq. (2.141)

Depletion agent C � f

Sphere π/2 σ (1 − h/�)2

Rod π/6 L (1 − h/�)3

Disc π/3 D 3
2

( h
�

)
arcsin

( h
�

)− 3
4π
( h

�

)+(
1 + 1

2

( h
�

)2)√
1 − ( h

�

)2
Ideal polymer π/2 Rg

√
8 ln 2

[
1 −

√
8

π ln 2 (h/�) + (h/�)2 + · · ·
]
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Fig. 2.32 Plot of the
function f in Eq. (2.141) for
rods (dotted), discs
(dashed-dotted), spheres
(solid) and ideal chains
(dashed), see Table 2.1

potentials is presented in Ref. [71]. Using the Derjaguin approximation to analyse
the depletion potential between large spheres leads to an underestimation of the inter-
action potential mediated by small spheres, a surprisingly accurate description for
discs, and an overestimation for rod-like depletion agents. For an in-depth statistical
mechanical analysis of theDerjaguin approximation applied to depletion interactions
in colloidal fluids, we refer to the work of Henderson [53].

2.6 Measurements of Depletion Interactions

In this section, we summarise experimental methods that enable (depletion) inter-
action potentials between particles to be measured [72–77]. We distinguish pair
interactions (Sects. 2.6.1–2.6.3) and many-body interactions (Sect. 2.6.4). The lat-
ter can be measured indirectly using scattering techniques or microscopy, whereas
direct methods are available to measure the former. Common instruments for inves-
tigating such pair interactions are the surface force apparatus (SFA) [78], optical
tweezers [79,80], atomic force microscopy (AFM) [81] and total internal reflection
microscopy (TIRM) [82,83].

The SFAwas the first method that enabled the forces between particles to be mea-
sured. It was developed by Tabor and Winterton [84] for two cylindrical surfaces in
air or vacuum. An upgrade of the apparatus enabling measurements in liquids was
constructed by Israelachvili andAdams [85,86].An advantage of SFA is the high spa-
tial resolution of 0.1 nm when using molecularly smooth mica sheets; SFA is mainly
used for model surfaces. Unfortunately, the force resolution is low (O(10−8 N)) and
the contact area between the surfaces needs to be very large (O(1 mm2)). Overall,
it turned out SFA is less suitable for measuring depletion forces, and we therefore
restrict ourselves to discussing AFM, TIRM and optical tweezers. Below we pro-
vide a brief introduction of these techniques. A few arbitrarily chosen experimental
examples of potentials in the presence of depletants are given as illustrations.
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The effective pair interactions measured with these techniques are the direct pair
interactions between two colloidal particles plus the interactions mediated by the
depletants. In practice, depletants are polydisperse, for which theoretical results are
sometimes available. Expressions are available in literature for the interaction poten-
tial between hard spheres in the presence of polydisperse PHSs [60], polydisperse
ideal chains [87], polydisperse hard spheres [58] and polydisperse thin rods [69].

2.6.1 Atomic Force Microscope

The atomic forcemicroscope (AFM)was designed for high-resolution surface topog-
raphy analysis. The basic measuring principle is sketched in Fig. 2.33. A sample is
scanned by a sharp tip attached to a sensitive cantilever spring via a piezoelectric
positioner. Forces on the tip lead to spring deflection, which is detected optically
[88]. Topographic images of the sample are obtained by plotting the deflection of
the cantilever as a function of the sample position. Alternatively, a feedback loop
can be used to fix the spring deflection, and response of the piezoelectric positioner
generates the image [81]. The pair interactions between a colloidal sphere and a
surface by free depletants can be studied with a colloidal probe particle attached to
the cantilever tip [89].

Interactions between a spherical colloid and a wall can be measured by bringing
probe and substrate together and monitoring the cantilever deflection as a function
of the interparticle distance. The photodetector voltage versus piezo position curve
can be converted into a force–distance curve. The force acting on the cantilever is
a result of the deflection of the cantilever and its known spring constant. The zero

Fig. 2.33 Representation of
an atomic force microscope.
The sample of interest is
placed on the piezoelectric
scanner and a laser is
reflected off the upper side of
the cantilever and guided to a
split photo detector. In this
way, vertical and horizontal
deflection signals can be
measured. A well-defined
colloidal particle can be
glued to the tip of the
cantilever to measure the
force between that particle
and the surface
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force is defined by the deflection of the cantilever as the colloidal probe is far from
the surface of the substrate. To obtain the force–distance dependence on an absolute
scale, the zero distance (i.e., where the colloid touches thewall) has to be determined.
Commonly, the zero distance is obtained from the force curve itself and not through
an independent method [81].

In practice, the position where the motion of the probe complies with the piezo
movement defines the point of zero distance. Force–distance curves recorded with
AFM depend on the specific geometry of the probe and the surface. Usually, the
interaction is displayed as the force divided by the radius of the colloidal sphere, R,
in units N/m. The Derjaguin approximation relates this quantity to the interaction
potential per unit area between equivalent flat surfaces at a given separation distance
(Eq. (2.33)).

Since AFM is widely used for imaging, the technology is well-developed. Due
to its high lateral resolution of ∼1 nm, nanoparticles can be used and material inho-
mogeneities can be mapped and imaged. The small contact areas (∼10 nm2) reduce
the probability of experimental artifacts due to surface contamination and roughness
[81]. The high spatial resolution capability makes AFM a complementary approach
to the SFA, which has been used to measure interfacial forces between proximal
surfaces over areas on the order of ∼1 mm2. Moreover, the force resolution of AFM
is a couple of orders of magnitude better than that of the SFA.

The determination of the zero separation distance using AFM remains a compli-
cated issue in some cases. This often makes it difficult to fully quantify depletion
interactions. The achievable force sensitivity is limited when compared to TIRM.
This makes AFM suitable only for measuring strong depletion forces.

In Fig. 2.34, we show the measured force oscillating between a silicon wafer
and a silica sphere (radius R = 2.2µm) that is attached to a cantilever spring in the
presence of Ludox silica spheres with a radius of 11 nm [90]. The volume fraction
of the Ludox spheres was 1.5%. The effective volume fraction is much larger due to
repulsive double layer interactions.

2.6.2 Total Internal ReflectionMicroscopy

The interaction potentials between a single colloidal particle and a wall can be
obtained using evanescent field scattering in total internal reflection microscopy
(TIRM) [75,82,83]. The fluctuations of the separation distance resulting from ther-
mal motion can be directly detected from the scattered intensity. In a typical TIRM
set-up, a laser beam is directed via a prism to the glass/solution interface as shown
in Fig. 2.35, with an incident angle that is chosen such that total reflection occurs.

The electric field of the laser beam penetrates the interface and causes an evanes-
cent wave, the amplitude of which decays exponentially along the normal to the
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Fig.2.34 Interaction potential derived from force measurements between a flat silica surface and a
silica sphere (R = 2.2µm) in the presence of 1.5 vol% Ludox spheres (radius 11 nm) as depletants
at pH 5.6. The ionic strength was 0.76 mM. Data replotted from Piech andWalz [90]. Curve guides
the eye

Fig. 2.35 Sketch of a TIRM
set-up. Whenever the
incident angle is larger than
the critical angle, the
incident beam is totally
reflected at the glass–fluid
interface and an evanescent
wave penetrates into the
fluid. A colloidal particle
located close to the surface
will scatter light from the
evanescent wave, which is
collected by a
photomultiplier and provides
the probability density of
separation distances between
the particle and the wall. A
CCD camera is used to
image the field of view
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interface. A single colloidal sphere in the field of gravity that interacts with this
evanescent wave will scatter light depending on its position h, as in [91]

Is(h) = I (h = 0) exp[−h/], (2.142)

where  is the penetration depth of the evanescent wave. A photomultiplier is used
to monitor the time dependence of the scattered intensity, with a resolution in the
millisecond range.A sufficient number of data points allows a histogramof intensities
to be converted to the probability density distribution010of the intensity. ThroughEq.
(2.142), the intensity histogram can be converted to a probability density distribution
(pdf) of separation distances. Using Boltzmann’s law ln[pdf(h)] ∼ −U (h)/kT , this
pdf provides the potential energyU (h). Usually, a charged sphere is used with a size
of the order of aµm. The solvent is often an aqueous salt solution. In this way, double
layer repulsion between particle and a like-charged surface counterbalances gravity,
enabling the particle to fluctuate near the wall. From U (h) the bare pair depletion
potential can be found by subtraction of double layer repulsion and gravity.

Exercise 2.14.Why does the scattered intensity caused by a colloid decrease
with increasing distance from the surface?

An optical trap can be set up to prevent the colloidal particle from moving out
of the microscope’s observation area. For this purpose, a second laser beam has to
be focused directly at the particle. It is recommended to use p-polarised light and a
penetration depth below 150 nm.

The major advantages of using TIRM over AFM and SFA to study depletion
potentials [92] are its outstanding force sensitivity and its non-invasive nature. With
TIRM, it is possible to investigate the interactions of a single, freely moving, Brow-
nian particle. This method enables measurements of forces as small as 10−14 N. The
reason for this high sensitivity is the use of a molecular gauge for energy kT instead
of a mechanical gauge for the force determined by a spring constant, as is used in
AFM and SFA [83].

TIRM is less suited for measuring strong depletion potentials.When the repulsion
between the particle and the wall is bigger than 5kT the pdf for finding the particle
in this range becomes virtually zero. Therefore, the error in determining pdf(h)

becomes very large. If the attraction between the sphere and the wall becomes too
strong, the intensity histogram becomes narrower than the range set by the electronic
noise of the photomultiplier [83].

An example of a pair potential measured using TIRM is given in Fig. 2.36.
The data measured are wall–sphere potentials between a flat silica surface and a
polystyrene sphere (R = 1.85µm) in the presence of nonadsorbing polydisperse,
charged boehmite rods (averaged length L = 200 nm) [93]. The range of the poten-
tial is obviously close to the length of the rods. The volume fraction of the rods is
0.09%.
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Fig.2.36 Interaction potential between a flat silica surface and a polystyrene sphere (R = 1.85µm)
mediated by polydisperse boehmite rods (0.09 vol%)with averaged length of 200 nm. Data replotted
from Helden et al. [93]

2.6.3 Optical Tweezers

Around 1970, it was found that laser radiation forces can be used to trap and manipu-
late small dielectric particles [94]. A laser beam can push a particle towards the centre
of the beam, provided the particle has a higher refractive index than the surround-
ing medium. Thus, optical tweezers can pick up and manipulate colloidal particles;
experts nowadays can even spell your name with colloidal particles by using a single
optical tweezer. This technique found a broad application in biology as well as in col-
loid science [95,96]. Figure 2.37 illustrates a typical optical tweezer arrangement.
The laser beam is tightly focused by the microscope’s objective lens, which also
makes it possible to image trapped particles with a camera. Optical tweezers can be
configured using multiple beams to trap many particles simultaneously. This can be
implemented in the following manner: firstly, a single beam is used to rapidly scan
two or more trap positions. Next, the beam is split at an early stage in the optical cir-
cuit to produce two separate light paths that are then recombined before entering the
microscope. Finally, computer-generated holograms are used to generate multiple
beams simultaneously.

Boltzmann’s law is used to find the interaction potential between the trapped par-
ticles using the measured probability density as a function of separation distance.
Position detection results either from particle tracking via video microscopy or back
focal plane interferometry [80]. Accurate video microscopy requires the acquisition
of bright field or fluorescence images from the microscope [97]. Particle centre sepa-
rations can then be determined with a sub-pixel resolution through image-processing
operations [97]. A spatial resolution of ∼10 nm can be achieved. Back focal plane
interferometry enables the spatial resolution to be reduced to ∼1 nm.
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Fig. 2.37 A simple diagram
of optical tweezers. The
microscope objective lens
enables the laser beam to be
tightly focused and trapped
particles to be imaged

A major advantage of optical tweezers is that the detected forces range between
10−13 and 10−10 N. Like TIRM, optical tweezers enable colloidal interactions to
be studied in a non-invasive manner. When optical tweezers are used with TIRM
the interaction potentials between two colloidal particles can be measured, whereas
TIRM and AFM are restricted to wall–particle potentials. The main problems that
can arise when taking measurements with optical tweezers is that the results are
susceptible to misinterpretation due to image processing problems [98,99].

The pair interaction between two silica spheres in the presence of rather monodis-
perse, nonadsorbingDNA chainsmeasured by using optical tweezers [100] is plotted
in Fig. 2.38. Data are given for three DNA concentrations beyond the coil overlap
concentration indicated in the plot. For a theoretical quantification of these data, see
Ref. [43].
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Fig. 2.38 The interaction
potential between two silica
spheres (R = 0.63µm)
mediated by DNA chains
(Rg = 0.50µm). Data
replotted from Ref. [100].
The DNA concentrations are
indicated in the plot

2.6.4 Scattering andMicroscopy

One of the manifestations of depletion effects in a colloidal dispersion is that its
fluid structure is affected by the presence of nonadsorbing depletants (for instance,
polymer chains). This is reflected in the radial distribution function g(r)—the local
concentration of particle centres from a distance r to a fixed particle centre. Statistical
mechanics links g(r) to the potential of mean force Wmf [101],

Wmf(r) = −kT ln g(r). (2.143)

For a dilute colloidal dispersion, g(r) = exp[−W (r)/kT ], where W (r) is the pair
interaction. The quantity g(r) can be measured using confocal laser scanning
microscopy. This method performs quantitative three-dimensional real space mea-
surements of the positions of the (fluorescently labelled) colloidal particles. Analysis
of the positions of the particles yields g(r). This means that confocal microscopy
enables indirect measurement of both the potential of mean force and (using a dilute
dispersion) the pair interaction in a mixture of colloids and depletants. Royall et al.
[102] have performed such a study in a colloid–polymer mixture with free polymers
as depletants.

Scattering techniques allow the structure factor S(Q) to bemeasured as a function
of the wave vector Q of colloidal dispersions, defined as

Q = 4π

λm
sin

(
θs

2

)
. (2.144)

Here, λm is the wavelength of radiation through the medium and θs the scattering
angle. Statistical mechanics relates the structure factor S(Q) to the radial distribution
function g(r) [103]:

S(Q) = 1 + φ

v0

∫ ∞

0
4πr2[g(r) − 1] sin Qr

Qr
dr . (2.145)
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Hence, via Eq. (2.143), Eq. (2.145) reveals that S(Q) contains the potential of mean
force in the long wavelength limit (Q → 0).

In the case of a colloid–depletant mixture, in which the depletant is made ‘invis-
ible’ by contrast matching, the scattered intensity I (Q) reads

I (Q) ∼ φP(Q)S(Q), (2.146)

where P(Q) is the particle scattering form factor. The proportionality constant is
the squared particle scattering amplitude. The structure factor then follows from Eq.
(2.146) as

S(Q) = I (Q)

I0(Q)

φ0

φ
, (2.147)

where φ0 is the volume fraction of a very dilute dispersion and I0(Q) is its scattered
intensity. Here, the fact was used that S(Q) equals unity in a very dilute dispersion.

Following an early light scattering study of de Hek and Vrij [104], Ye et al. [105]
made a small-angle neutron scattering (SANS) study on dispersions of CaCO3 parti-
cles (effective hard sphere radius R = 4.85 nm) stabilised by alkylbenzene sulfonate
to which polyethylene propylene (PEP) copolymers (Rg = 8.3 nm) were added.
SANS allows contrast matching so that the structure factors of the free polymers and
the colloids can be measured independently (see Refs. [106,107] for a theoretical
analysis). Further, SANS is much less sensitive to the multiple scattering problems
encountered in light scattering.

In Fig. 2.39, a few representative measured structure factors S(Q) of colloidal
spheres at a colloid volume fraction φ = 0.086 are plotted at various PEP concentra-
tions. Clearly, themeasured structure factor increases upon addingmore free polymer
at Q < 0.2 nm−1, corresponding to an increase of the attraction between the col-
loids. This increase of S(Q) at small Q has also been found in a few other studies
[108–110]. Mutch et al. [110] showed that it is possible to rescale structure factors
at high q (relatively large polymers) to obtain a universal S(Q) behaviour. PRISM
[111,112] would be quite useful in quantifying these experimental data.

Fig. 2.39 Measured
colloidal structure factor
S(Q) of colloid–PEP
mixtures (R = 4.85 nm,
q = R/Rg = 1.7) at 17.5
wt% of colloids
(corresponding to
φ = 0.086), and at polymer
concentrations of 3.8 (+),
23.3 (◦) and 65.2 g/L (�).
Data replotted from
Ref. [105]. Curves are drawn
to guide the eye
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Static and dynamic light scattering can also be used on colloid–polymer mixtures
to quantify the spinodal, defined at 1/S(Q → 0) ≡ 0 using extrapolation [108].
When the attraction becomes very strong, the structure factor diverges at small
Q and the dispersion starts to decompose. This demixing will be considered in
Sect. 4.4.

Exercise 2.15.Why does 1/S(Q → 0) ≡ 0 correspond to the spinodal?Hint:
check Eq. (1.27).
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3PhaseTransitions ofHard Sphere–
DepletantMixtures—TheBasics

Phase transitions are the result of the physical properties of a collection of particles
and depend on their interactions. In Chap.2, we focused on two-body interactions.
As we shall see, depletion interactions are usually not pair-wise additive. There-
fore, the prediction of phase transitions of particles with depletion interaction is
not straightforward. A description of the thermodynamic properties of the pure col-
loidal dispersion is required as a starting point. Here, the colloid–atom analogy,
recognised by Einstein and exploited by Perrin in his classical experiments, is very
useful. Subsequently, we explain the basics of the free volume theory for the phase
behaviour of colloid–depletant systems. In this chapter, we only treat the simplest
type of depletant—the penetrable hard sphere (PHS).

3.1 Introduction:The Colloid–AtomAnalogy

In his seminal 1905 paper on Brownian motion, Einstein [1] recognised and used the
fact that colloidal particles in a suspension obey the same statistical thermodynam-
ics as atoms in an assembly of atoms. A well-known example of this colloid–atom
analogy is the striking similarity between the ideal gas law for the pressure of a
dilute gas and the van ’t Hoff law for the osmotic pressure of a dilute suspension.
The colloid–atom analogy was exploited by Perrin [2] with simple, yet brilliant,
experiments. Using an ordinary light microscope, Perrin verified that the equilib-
rium concentration of colloidal particles in a dilute suspension in the gravitational
field varies exponentially with height. By applying Boltzmann’s law to this height
distribution, he was able to determine the Boltzmann constant k and Avogadro’s
number NAv. For this work Perrin received the 1926 Nobel Prize for Physics.

The colloid–atom analogy can also be applied to interacting systems. The direct
interaction potentials between atoms then have to be replaced by the potential ofmean
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force between the dispersed colloidal particles. In the calculation of the potential
of mean force, one takes a statistical average over all possible configurations of
the solvent components. In the previous chapter, we treated the calculation of the
potential ofmean force due to dissolved nonadsorbing polymers and (small) colloidal
particles.

The concept ‘potential of mean force’ was used by Onsager [3] in his theory for
the isotropic–nematic phase transition in suspensions of rod-like particles. Since the
1980s, the field of phase transitions in colloidal suspensions has developed tremen-
dously. The fact that the potential of mean force can be varied both in range and depth
has given rise to new and fascinating phase behaviour in colloidal suspensions [4].
In particular, sterically stabilised colloidal spheres with interactions close to those
between hard spheres [5] have received much attention.

The phase behaviour of such colloidal suspensions should be nearly the same as
those of the hypothetical hard-sphere atomic system.Kirkwood [6] stated that when a
hard sphere system is gradually compressed, the systemwill showa transition towards
a state of long-range order long before close packing is reached. In 1957, Wood and
Jacobson [7] and Alder and Wainwright [8] showed by computer simulations that
systems of purely repulsive hard spheres indeed exhibit a well-defined fluid–crystal
transition. It took some timebefore thefluid–crystal transition of hard spheres became
widely accepted. There is no exact proof that the transition occurs. Its existence has
been inferred from numerical simulations or from approximate theories as treated in
this chapter. However, this transition has been observed in hard-sphere-like colloidal
suspensions [9].

The hard sphere fluid–crystal transition plays an important role as a reference
point in the development of theories for the liquid and solid states and their phase
behaviour [10].We consider it in some detail in the next section. For hard spheres, the
phase behaviour is relatively simple as there is no gas–liquid (GL) coexistence. After
that we discuss the phase behaviour under the influence of the attraction caused by the
depletion interaction; then a GL transition can occur. We illustrate the enrichment of
the phase behaviour in the somewhat hypothetical system consisting of hard spheres
and PHSs.

3.2 The Hard-Sphere Fluid–Crystal Transition

Following the work of Wood and Jacobson [7] and Alder and Wainwright [8], the
location of the hard sphere fluid–crystal transition was determined from computer
simulations by Hoover and Ree [11]. They found that the volume fractions of the
coexisting fluid ( f ) and face-centred cubic crystal (s) are given byφf = v0n = 0.494
and φs = v0n = 0.545 [12] at a coexistence pressure Pv0/kT = 6.12. The quantity
v0 is the volume of a colloidal particle, so here v0 = (4π/3)R3, with R the radius
of the hard sphere, is the hard sphere volume. As in Chap.2, n = N/V refers to the
number density of N particles in a volume V .
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Fig. 3.1 The pressure of
hard spheres. Shown are
(solid curves) the
Carnahan–Starling
expression (Eq. (3.1)) for a
fluid (φ ≤ 0.494), the cell
model result (Eq. (3.13)) for
an FCC crystal (φ ≥ 0.545)
and (•) Monte Carlo
computer simulation results
[14]. Fluid–solid coexistence
is also indicated from (dotted
line) theory (see Sect. 3.2.3)
and (◦) simulations [11]

We present a simple theoretical treatment of the hard-sphere fluid–crystal transi-
tion thatwill also serve as a reference framework for our treatment of phase transitions
in a system of colloids with depletion attraction.

3.2.1 Hard-Sphere Fluid

The Carnahan–Starling equation of state [13] is a useful expression to describe a
fluid of hard spheres. It can be written in terms of the dimensionless pressure ˜Pf as

˜Pf = Pv0

kT
= φ + φ2 + φ3 − φ4

(1 − φ)3
. (3.1)

In Fig. 3.1, we compare the pressure given by the Carnahan–Starling equation of
state (Eq. (3.1)) up to φ � 0.5 with computer simulations. We see that Eq. (3.1) is
very accurate.

A ‘simple’ way to derive this equation of state is to start from the virial expansion
of the pressure [15],

P

nkT
= 1 +

∑

i=2

Bin
i−1, (3.2)

and use the fact that, to a good approximation, the virial coefficients can be written
as [13]

Bi

vi−1
0

= (i − 1)(i + 2). (3.3)

With Eq. (3.2), this yields Eq. (3.1). For hard spheres, it is possible to calculate
exact values of B2–B4 and to perform numerical calculations for B5 and beyond
using statistical mechanics [16]. In Table3.1, we compare exact virial coefficients
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Table 3.1 Comparison between the state-of-the-art values [17] and the Carnahan–Starling equation
of state [13] for the virial coefficients of hard spheres. The virial coefficients B2 to B10 are normalised
by the particle volume as Bi/v

i−1
0

i Bi/v
i−1
0

Actual Eq. (3.3)

2 4 4

3 10 10

4 18.36 18

5 28.22 28

6 39.82 40

7 53.34 54

8 68.53 70

9 85.81 88

10 105.8 108

Exercise 3.1. Show that the summation on the right-hand side of Eq. (3.2)
with Eq. (3.3) for the virial coefficients indeed leads to the equation of state
of Eq. (3.1)

(B2, B3, B4) and those of numerically high accuracy [17] (B5, . . . , B10) with the
approximation given by Eq. (3.3).

From the Gibbs–Duhem relation SdT − V dP + Ndμ = 0, we can calculate the
chemical potential from the pressure (Eq. (A.12)). For constant temperature T , this
relation may be written as

dP = ndμ = φ

v0
dμ (3.4)

so that μ follows as:

μ = kT ln

(

Λ3

v0

)

+ v0

∫ φ

0

1

φ′
dP

dφ′ dφ
′, (3.5)

where dP/dφ can be calculated from Eq. (3.1) for a fluid of hard spheres. The first
(constant) term follows from the ideal gas reference state [16]; Λ is the de Broglie
wavelength Λ = h/

√
2πmckT , with the colloid mass mc and Planck’s constant h.

The result for the chemical potential of a hard sphere in a fluid with volume fraction
of hard spheres φ is

μf

kT
= ln

(

Λ3

v0

)

+ ln φ + (8 − 9φ + 3φ2)φ

(1 − φ)3
. (3.6)
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After simplification and defining the dimensionless chemical potential μ̃ = μ/kT
the simpler form

μ̃f = ln

(

Λ3

v0

)

+ ln φ + 3 − φ

(1 − φ)3
− 3 (3.7)

is obtained. Finally, using the standard thermodynamic result ˜P = φμ̃ − ˜F
(Appendix A), the resulting canonical free energy of the pure hard-sphere dispersion
of a fluid is

˜F = φ ln

(

φΛ3

v0

)

− φ + 4φ2 − 3φ3

(1 − φ)2
. (3.8)

Here, we have introduced the normalised Helmholtz energy ˜F = Fv0/kT V . The
first two terms on the right-hand side of Eq. (3.8) are the ideal contribution, while the
last hard-sphere interaction term originates from the Carnahan–Starling equation of
state [13].

3.2.2 Hard-Sphere Crystal

To obtain the thermodynamic functions of the hard-sphere crystal we use the cell
model of Lennard-Jones and Devonshire [18]. The idea of the cell model is that a
given particle moves in a free volume v∗ set by its neighbours which are located on
their lattice positions (see Fig. 3.2). Then the partition function Q takes the form

Q = (v∗)N

Λ3N . (3.9)

The ‘exact’ free volumes have a complicated geometry [19], but here we will use the
simple approximation of the inscribed sphere. This yields

v∗ = 4π

3
(r − 2R)3, (3.10)

Fig. 3.2 The free volume of
a hard sphere (hatched area)
in the cage of its nearest
neighbours in the
approximation of the
inscribed sphere. The
hatched area identifies the
available volume for the
centre of the central sphere
and has a radius r − 2R

r

R

r2R
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where r is the centre-to-centre distance between the nearest neighbours. Using the
relations

n
π

6
(2R)3 = φ

and

n
π

6
r3 = φcp,

where φcp = π/3
√
2 � 0.74 is the volume fraction at close packing, the free volume

can be written as

v∗ = 8v0

[

(

φcp

φ

)1/3

− 1

]3

.

We now obtain for the free energy

F = −kT ln Q (3.11)

= NkT

{

ln

(

27Λ3

8v0

)

− 3 ln

[(

φcp

φ

)

− 1

]}

. (3.12)

In writing down Eq. (3.12), we used the approximation

(

φcp

φ

)1/3

− 1 � 1

3

(

φcp

φ
− 1

)

.

Using the standard thermodynamic relations

P = −
(

∂F

∂V

)

N ,T
,

μ =
(

∂F

∂N

)

V ,T
,

we obtain

˜Ps = 3φ

1 − φ/φcp
, (3.13)

μ̃s = ln
Λ3

v0
+ ln

[

27

8(φcp)3

]

+ 3 ln

[

φ

1 − (φ/φcp)

]

+ 3

1 − (φ/φcp)
. (3.14)

The pressure given by Eq. (3.13) can be compared to computer simulation data (e.g.,
[20]) and turns out to be highly accurate, as can be seen in Fig. 3.1 (for φ � 0.55).
The constant on the right-hand side

ln

[

27

8(φcp)3

]

= 2.1178
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Fig. 3.3 A hard-sphere fluid (left) and hard spheres with ‘crystalline’ order (right); free volume
entropy drives freezing

is quite close to 2.1306,which can be abstracted from the computer simulation results
of Frenkel and Ladd [21]. The full free energy expression for the hard-sphere solid
phase is

˜F = φ ln

(

Λ3

v0

)

+ 2.1178φ + 3φ ln

(

φ

1 − φ/φcp

)

. (3.15)

3.2.3 Fluid–Crystal Coexistence

Solving the coexistence conditions (Appendix A)

˜Pf(φf) = ˜Ps(φs) (3.16a)

μ̃f(φf) = μ̃s(φs) (3.16b)

yields coexisting volume fractions φf = 0.491, φs = 0.541 and a coexistence pres-
sure ˜P = 6.01. These values are indeed very close to the computer simulation results
(see the comparison in Fig. 3.1).

The equilibrium configuration of hard spheres is the one that maximises the
entropy of the system. At low densities, the configurations of maximum entropy
correspond to disordered arrangements. As the density increases, the number of dis-
ordered arrangements is severely reduced due to the inefficiency of ‘packing’ them
into the fixed volume. Then, crystalline arrangements lead to amore efficient packing
and make more arrangements possible. This is schematically depicted in Fig. 3.3.

Hence, the thermodynamic stability of the hard sphere crystal can be ‘explained’
on a purely entropic basis. Since the 1950s, the fluid–crystal transition has been
observed in suspensions of monodisperse repulsive colloidal particles [22–24]. Par-
ticularly, the work on sterically stabilised silica particles [25] and sterically stabilised
PMMA particles [9] has served as a reference point. Figure3.4a, b illustrate the
phase behaviour of dispersed PMMA colloids as studied by Pusey and van Megen
[9]. Above a volume fraction φ = 0.58, these authors observed an amorphous glassy
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Fig.3.4 a Dispersions with hard-sphere-like PMMA spheres at volume fractions around the fluid–
solid phase transition [9]. Reprinted with permission from Ref. [9]. Copyright 1986 Nature. High-
quality image kindly provided by P.N. Pusey. b The states of these dispersions; the labels a–i refer
to the samples from left to right in (a). The abscissa indicates the measured volume fraction of
PMMA cores, which is smaller than the effective volume fraction of hard spheres that includes the
short stabilising brushes

phase that did not crystallise over several months as well as the fluid–crystal transi-
tion. The explanation for this phenomenon is that, for these high-volume fractions,
the particles become so tightly trapped or caged by their neighbours that they are
unable to move far enough to nucleate crystallisation. Instead, long-lived metastable
states called colloidal glasses are obtained. We return to glasses in Sect. 4.4.2.



3.3 Free Volume Theory of Hard Spheres and Depletants 129

In practice, colloids are polydisperse. Computer simulations show that crystalli-
sation of hard spheres does not occur above a polydispersity of 11.8% in diameter
[26]. Pusey [27] suggested that the maximum polydispersity, in terms of the relative
standard deviation σmax, depends on the close packing and melting volume fractions
φcp and φm, respectively,

σmax =
(

φcp

φm

)1/3

− 1. (3.17)

For hard spheres withφcp = 0.74 andφm = 0.545, Eq. (3.17) provides σmax = 0.11,
so 11%. To keep the description simple, we further focus on monodisperse hard
spheres.

Exercise 3.2. Rationalise Eq. (3.17).

3.3 FreeVolumeTheory of Hard Spheres and Depletants

3.3.1 System

Several theories have been developed that enable calculations of phase transitions in
systems with depletion interactions. An important successful treatment accounting
for depletion interactions in a many-body system [28,29] is thermodynamic pertur-
bation theory ([16], or see Chap.6 in Ref. [15]). In this classical approach, depletion
effects can be treated as a perturbation to the hard-sphere free energy, as was done
by Gast, Hall and Russel [28]. Their important work predicted that, for a sufficient
depletant concentration, the depletion interaction leads to a phase diagram with sta-
ble colloidal gas, liquid and solid phases for δ/R ≥ 0.3. For small depletants with
δ/R ≤ 0.3 only colloidal fluid and solid phases are thermodynamically stable, and
the gas–liquid transition is meta-stable. Although implementation of this theory is
straightforward, it has the drawback that it does not account for depletant partitioning
over the coexisting phases.

A theory that accounts for depletant partitioning over the coexisting phases was
developed in the early 1990s [30,31], which nowadays is commonly referred to as
free volume theory (FVT) [32]. This theory is based on the osmotic equilibrium
between a (hypothetical) depletant and the colloid–depletant system. The depletants
were simplified as PHSs. A pictorial representation is given in Fig. 3.5.

This theory has the advantage that the depletant concentrations in the coexisting
phases follow directly from the (semi-)grand potential that describes the colloid–
depletant system. As illustrated in Fig. 3.6, the system tries to arrange itself such as
to provide a large free volume for the depletant. This (entropic) physical origin of the
phase transitions induced by depletion interactions is incorporated into the theory in
a natural way.
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Fig. 3.5 A system (right)
that contains colloids and
penetrable hard spheres
(PHSs) in osmotic
equilibrium with a reservoir
(left) only consisting of
PHSs. A hypothetical
membrane that allows
permeation of solvent and
PHSs but not of colloids is
indicated by the dashed line.
Solvent is considered as
‘background’

Fig. 3.6 Illustration of the
free volume Vfree: it is the
unshaded volume not
occupied by the colloids and
(partially overlapping)
depletion layers

In FVT, the multiple overlap of depletion zones with thickness δ is taken into
account (see Fig. 3.7). Multiple overlap occurs for

δ

R
>

2√
3

− 1 � 0.15,

where three depletion zones start to overlap (Fig. 3.7). Only for δ/R < 0.15 is a
colloid–depletant mixture pair-wise additive. This has a considerable influence on
the topology of the phase diagram [33]. Multiple overlap of depletion layers widens
the liquid window, which is the parameter range with phase transitions that include
a stable liquid, in comparison with a pair-wise additive system [32].

Exercise 3.3. Show that multiple overlap only occurs for δ/R > 2/
√
3 − 1.
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Fig. 3.7 Three hard spheres surrounded by depletion layers (hatched areas). When the depletion
layers are thin (left) there is no multiple overlap of depletion layers; the system is pair-wise additive.
For thicker depletion layers (right), multiple overlap of depletion layers occurs and depends onmore
than two-body contributions. The lowest value for δ/R, wheremultiple overlap occurs, follows from
considering the triangle formed by the three particle centres; its edge is 2R + h at particle separation
h. Multiple overlap starts when the centre of the triangle is a distance R + δ from the corners

3.3.2 Thermodynamics

The starting point of FVT is the calculation of the semi-grand potential describing
the system of Nc colloidal spheres mixed with Nd depletants as depicted in Fig. 3.5.

Ω(Nc, V , T , μd) = F(Nc, Nd, V , T ) − μdNd. (3.18)

Using the thermodynamic relationship

(

∂Ω

∂μd

)

Nc,V ,T
= −Nd, (3.19)

we can write

Ω(Nc, V , T , μd) = F0(Nc, V , T ) −
∫ μd

−∞
Nd(μ

′
d)dμ

′
d. (3.20)

Here, F0(Nc, V , T ) is the free energy of the colloidal particle system without added
depletant as given by Eq. (3.8) (fluid) or Eq. (3.15) (solid).

The key step now is the calculation of the number of depletants in the colloid–
depletant system as a function of the chemical potentialμd imposed by the depletants
in the reservoir. In the calculations presented below, we model the colloidal particles
as hard spheres with diameter 2R, and the depletants by PHSs with diameter σ.

For the calculation of Nd, we make use of the Widom insertion theorem [34],
according to which the chemical potential of the depletants in the hard sphere–
depletant system can be written as

μd = μ0
d + kT ln

Nd

〈Vfree〉 . (3.21)
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Here, μ0
d is the reference chemical potential of the depletants and 〈Vfree〉 is the

ensemble-averaged free volume for the depletants in the system of hard spheres,
illustrated in Fig. 3.6.

The chemical potential of the ideal depletants in the reservoir is simply

μd = μ0
d + kT ln nRd , (3.22)

where nRd is the number density of the depletants in the reservoir. By equating the
depletant chemical potentials Eqs. (3.21) and (3.22), we obtain

Nd = nRd 〈Vfree〉. (3.23)

The average free volume obviously depends not only on the volume fraction of the
hard spheres in the system but also on the chemical potential of the depletants. The
activity of the depletants affects the average configuration of the hard spheres. We
now make the key approximation to replace 〈Vfree〉 by the free volume in the pure
hard sphere dispersion 〈Vfree〉0:

Nd ≈ nRd 〈Vfree〉0. (3.24)

This expression is correct in the limit of low depletant activity but is only an approxi-
mation for higher depletant concentrations. Substituting the approximationEq. (3.24)
in Eq. (3.20) and using the Gibbs–Duhem relation (Eq. (A.12)),

nRd dμd = dPR, (3.25)

gives

Ω(Nc, V , T , μd) = F0(Nc, V , T ) − PR〈Vfree〉0, (3.26)

where PR = nRd kT is the (osmotic) pressure of the depletants in the reservoir. It is
noted that this expression was formally derived by Dijkstra, Brader and Evans [35].

As we have expressions for the free energy of the hard-sphere system (both in
the fluid and solid state, see Sect. 3.2 and for the pressure of the reservoir, the only
remaining quantity to calculate is 〈Vfree〉0. If we also replace 〈Vfree〉 in Eq. (3.21)
with the free volume in the pure hard sphere dispersion 〈Vfree〉0 we obtain:

μd = μ0
d + kT ln

Nd

〈Vfree〉0 . (3.27)

But we can also write the chemical potential μd as

μd = μ0
d + kT ln

Nd

V
+ W , (3.28)

where W is the reversible work required for inserting the depletant in the hard
sphere dispersion. Combining Eqs. (3.27) and (3.28), we find for the free volume
fraction α:

α = 〈Vfree〉0
V

= e−W/kT . (3.29)
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3.3.3 Scaled Particle Theory

An expression for thework of insertionW can be obtained from scaled particle theory
(SPT) [36]. SPT was developed to derive expressions for the chemical potential and
pressure of hard sphere fluids by relating them to the reversible work needed to insert
an additional particle in the system. This work W is calculated by scaling the size
of the sphere to be inserted: the size of the scaled particle is λσ, with λ being the
scaling parameter.

In the limit λ → 0, the inserted sphere approaches a point particle. In this limiting
case, it is very unlikely that the depletion layers overlap. The free volume fraction
in this limit can therefore be written as

α = V − Nc
π
6 (2R + λσ)3

V

= 1 − nc
π

6
(2R + λσ)3.

It then follows from Eq. (3.29) that

W = −kT ln
[

1 − nc
π

6
(2R + λσ)3

]

for λ � 1. (3.30)

In the opposite limit λ � 1, when the size of the inserted scaled particle is very
large, W (to a good approximation) is equal to the volume work needed to create a
cavity π

6 (λσ)3 and is given by

W = π

6
(λσ)3P for λ � 1, (3.31)

where P is the (osmotic) pressure of the hard-sphere dispersion.
In SPT, the above two limiting cases are connected by expanding W as a series

in λ:

W (λ) = W (0) +
(

∂W

∂λ

)

λ=0
λ + 1

2

(

∂2 W

∂λ2

)

λ=0
λ2 + π

6
(λσ)3P. (3.32)

This yields

W (λ = 1)

kT
= − ln[1 − φ] + 3qφ

1 − φ
+ 1

2

[

6q2φ

1 − φ
+ 9q2φ2

(1 − φ)2

]

+
π
6 q

3(2R)3P

kT
,

(3.33)
where q is the size ratio between the depletant with diameter σ and the hard sphere
with diameter 2R

q = σ

2R
. (3.34)
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As was the original objective of SPT [36], the pressure P of the pure hard sphere
system can be obtained from the reversible work of inserting an identical sphere
(q = 1)

W

kT
= − ln[1 − φ] + 6φ

1 − φ
+ 9φ2

2(1 − φ)2
+ π(2R)3P

6kT
, (3.35)

to obtain the chemical potential of the hard spheres

μc = μ0
c + kT ln

Nc

V
+ W . (3.36)

Applying the Gibbs–Duhem relation (Eq. (A.12))

∂P

∂nc
= nc

∂μc

∂nc
,

one obtains

Pv0

kT
= φ + φ2 + φ3

(1 − φ)3
, (3.37)

which is the famous SPT expression for the pressure of a hard sphere fluid [36]. This
preceded the slightly more accurate Carnahan–Starling equation Eq. (3.1), which
contains an additional term φ4.

Inserting Eq. (3.37) into Eq. (3.33) and using Eq. (3.29) yields

α = (1 − φ) exp [−Q] , (3.38)

where

Q = ay + by2 + cy3, (3.39a)

a = 3q + 3q2 + q3 = (1 + q)3 − 1, (3.39b)

b = 9

2
q2 + 3q3, (3.39c)

c = 3q3, (3.39d)

y = φ

1 − φ
. (3.39e)

In Fig. 3.8, we present a comparison of the free volume fraction predicted by SPT
(Eq. (3.38)) and computer simulations [37] on hard sphere–PHSmixtures for q = 0.5
as a function of φ. As can be seen, the agreement is very good. We now have all the
ingredients to compile the semi-grand potential Ω given by Eq. (3.26).
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Fig. 3.8 Free volume
fraction for penetrable hard
spheres in a hard sphere
dispersion for
q = σ/2R = 0.5 as a
function of the hard-sphere
concentration. Data points
are redrawn from Meijer
[37]. Curve is the SPT
prediction, Eq. (3.38)

From Ω (given by Eq. (3.26)), the pressure and chemical potential of the hard
spheres in the hard sphere–depletant system at given μd are obtained

P = −
(

∂Ω

∂V

)

Nc,T ,μd

= P0 + PR
(

α − nc
∂α

∂nc

)

, (3.40)

μc =
(

∂Ω

∂Nc

)

V ,T ,μd

= μ0
c − PR ∂α

∂nc
. (3.41)

For non-interacting depletants, PR is simply given by van ’t Hoff’s law PR = nRd kT
or

˜PR = PRv0

kT
= nRd vdq

−3 = φR
d q

−3, (3.42)

withφR
d = nRd vd the relative reservoir depletant concentration,where vd = π

6σ3 is the
volume of a depletant sphere [12]. As PHSs can, by definition, freely interpenetrate
each other, it is common to define the overlap condition via n∗vd = 1, i.e., at n∗ =
1/vd the spheres fill the available space. Hence, φd also denotes the concentration
of PHSs relative to the overlap or, more briefly, their volume fraction.

3.3.4 Phase Diagrams

We can now calculate the phase behaviour of a system of hard spheres and depletants
(Appendix A) by solving the coexistence equations for a phase I in equilibrium with
a phase II

μI
c(n

I
c, μd) = μII

c (nIIc , μd), (3.43a)

P I(nIc, μd) = P II(nIIc ,μd). (3.43b)
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Fig.3.9 The dimensionless semi-grand potential ˜Ω as a function of volume fraction φ. Schematic
view of the common tangent construction (straight lines) to determine the phase coexistence in
mixtures of colloidal hard spheres and PHSs. (i): gas–liquid coexistence, (ii): fluid–solid coexis-
tence, (iii): gas–liquid–solid triple coexistence, and (iv): fluid–solid coexistence near a metastable
gas–liquid coexistence (dashed lines represent the common tangent construction for this case)

For numerical computations of phase coexistence, it is convenient to work with
dimensionless quantities. The dimensionless version of Eq. (3.26), the free volume
expression for the grand potential, is

˜Ω = ˜F0 − α˜PR, (3.44)

where ˜Ω = Ωv0/kT V .
In Fig. 3.9, the semi-grandpotential is presented as a function of the colloid volume

fraction for a given depletant reservoir concentration and size ratio q . In this figure,
thin straight lines are drawn, which denote a so-called common tangent construction.
This allows (graphical) determination of conditions where phases coexist. The first
criterion for two coexisting binodal compositions is equality of the slope because it
corresponds to the chemical potential (Appendix A):

μ̃c =
(

∂˜�

∂φ

)

T ,V ,μ̃d

. (3.45)

Equality of the chemical potential of the depletants is ensured by the reservoir,
which has a fixed depletant concentration. Therefore, when two compositions can be
connected through a common tangent, the binodal points are found. As the pressure
is given by

˜P = φμ̃c − ˜Ω, (3.46)
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the extrapolation of the common tangent to φ = 0 corresponds to the total pressure
−˜P of the system.

Four possible scenarios are considered in Fig. 3.9. Scenario (i) corresponds to the
possibility of gas–liquid coexistence, which follows from ˜Ω(φ) with ˜F0(φ) for the
colloidal fluid state. In situation (ii) ˜Ω(φ) is given for both the fluid state and for the
solid state and the common tangent shows the compositions where fluid and solid
coexist. A combination of (i) and (ii) is possible under conditions where the curve for
the fluid state shows an instability itself and the gas and liquid compositions coexist
with a solid phase as exemplified by situation (iii). Finally, situation (iv) refers to
an instability of the fluid state within the concentration region where fluid and solid
coexist. Here, the values for the chemical potential of the colloidal particles are
larger for gas–liquid coexistence than for fluid–solid coexistence, as follows from
the slopes; as a consequence, the gas–liquid coexistence is metastable. The binodal
compositions for each polymer concentration can be found in this manner, and full-
phase diagrams can be constructed.

For non-interacting depletants such as PHSs μ’s and P’s in Eqs. (3.43a) and
(3.43b) can be written such that binodal colloid concentrations follow from solving
one equation in a single unknown [32]. We rewrite Eqs. (3.40) and (3.41) as

μ̃ = μ̃0 + ˜PRg(φ), (3.47)

˜P = ˜P0 + ˜PRh(φ), (3.48)

where g = −∂α/∂φ and h = α + gφ. The functions g and h may be written as

g(φ) = e−Q(φ)[1 + (1 + y)(a + 2by + 3cy2)] (3.49)

and

h(φ) = e−Q(φ)(1 + ay + 2by2 + 3cy3). (3.50)

The gas–liquid binodal can be solved from the second and third parts of

˜PR = μ̃0
f (φl) − μ̃0

f (φg)

g(φg) − g(φl)
=

˜P0
f (φl) − ˜P0

f (φg)

h(φg) − h(φl)
, (3.51)

where μ̃0
f and ˜P0

f are only a function of φ (see Eqs. (3.1) and (3.7)). Hence, Eq. (3.51)
gives a unique correlation forφl(φg) at givenq: for somevalue ofφg,within the region
of φg values where a colloidal gas coexists with a colloidal liquid, the corresponding
value ofφl follows from the second equality of Eq. (3.51). The corresponding binodal
depletant reservoir pressure ˜PR then follows from the first equality.

Exercise 3.4. Derive Eqs. (3.49) to (3.51).
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Similarly, the fluid–solid binodal can be obtained from

˜PR = μ̃0
s (φs) − μ̃0

f (φf)

g(φf) − gφs)
=

˜P0
s (φs) − ˜P0

f (φf)

h(φf) − h(φs)
, (3.52)

where again μ̃0
f is given by Eq. (3.7) and ˜P0

f by Eq. (3.1); these are the fluid contri-
butions. For the solid phase ˜P0

s (φ) and μ̃0
s (φ) are given by Eqs. (3.13) and (3.14).

Triple points have equal pressures and chemical potentials simultaneously for
colloidal gas, liquid and solid phases. At the triple point, Eqs. (3.51) and (3.52) are
connected through equal values for ˜PR and, in principle, form a set of four equations
fromwhich the four coordinates of the triple point (φg, φl,φs, ˜PR) follow. However,
for the present PHS system the problem can be reduced to solving one equation with
one unknown [32].

For large q (q ≥ 0.6), the triple point can be approximated easily from Eqs. (3.47)
and (3.48). It can be observed that the fluid–solid coexistence of the triple point occurs
at very similar colloid concentrations as the pure hard sphere phase transition. For
large q values, Eqs. (3.47) and (3.48) can be written as μ̃f = μ̃0

f = μ̃0
s and ˜Pf =

˜P0
f = ˜P0

s because g(φ) and h(φ) vanish for large q . In the coexisting colloidal gas
phase the colloid concentration is then extremely small, such that ˜Pg = ˜PR since
h(φ) → 1. This implies that ˜PR = ˜P0

f = ˜P0
s = 6.01 at the triple point. Hence, for

large q , the fluid–solid coexistence of the triple point occurs at nearly the same colloid
concentrations as for the pure hard-sphere phase transition. The relative depletant
concentration at the triple point now follows as φR

d � ˜PRq3 = 6.01q3. As can be
seen in Figs. 3.10 and 3.11 (q = 1.0 and 0.6, respectively) this is rather accurate.

The critical point can also be found as one equationwith one unknown. For details,
we refer the reader to Ref. [32]. The same applies to the critical endpoint (CEP),
which corresponds to the q value where CP and TP coincide; it is the lowest q where
a stable liquid is possible. See the extended discussions on liquid windows with
relation to the CEP in Refs. [32,33].

In Fig. 3.10, we present phase diagrams for q = 0.1, q = 0.4 and q = 1.0. As was
already found by Gast, Hall and Russel [28], for q = 0.1, there is only a fluid–crystal
transition. For φd = 0, the demixing gap is 0.491 < φ < 0.541 (see Sect. 3.2.3).
With increasing depletant concentration, this gapwidens. For the phase diagramwith
q = 0.4, both a critical point (CP) and triple point (TP) are present, analogous to those
found in simple atomic systems. At high depletant concentrations in the reservoir
(above TP), a very dilute fluid (colloidal gas) coexists with a highly concentrated
colloidal solid. A colloidal gas (dilute fluid) coexists with a colloidal liquid (more
concentrated fluid) between TP and CP. At high packing fractions below the triple
line, a colloidal liquid coexists with a colloidal solid phase. Increasing the depletant
activity now plays a role similar to lowering the temperature in atomic systems.
For larger q (see q = 1.0) the qualitative picture remains the same, while the liquid
window expands. As expected, in the absence of depletant only the fluid–solid phase
transition of a pure hard sphere dispersion remains.
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Fig. 3.10 Free volume theory predictions for the phase diagrams for hard spheres as depletants
following Lekkerkerker et al. [31]. The diagrams are for q = 0.1 (left), q = 0.4 (middle) and
q = 1.0 (right). The top row of diagrams have depletant reservoir concentrations φR

d as ordinates,
and the bottom row of diagrams are in system depletant concentrations. Triple lines and triangles
are indicated as thick lines. Triple point is indicated by “TP”; critical point is indicated by “CP”
and an asterisk. A few representative tie-lines are plotted as thin lines

In the top diagrams of Fig. 3.10, the ordinate axis is the depletant concentration
in the reservoir. The depletant concentrations in the system of coexisting phases can
be obtained by using the relation

Nd

V
= − 1

V

(

∂Ω

∂μd

)

Nc,V ,T
= αnRd

or

φd = αφR
d .

Coexisting phases of course have the sameμd and hence the same nRd . However, since
the volume fractions of hard spheres and, subsequently, the free volume fractions α
can be substantially different in the coexisting phases, the depletant concentration nd
in the two (or three) phases is not the same, so the tie-lines are no longer horizontal.
This is illustrated in the bottom diagrams of Fig. 3.10: now the ordinate axis gives the
relative ‘internal’ or system concentrations φd. A few selected tie-lines are drawn
to give an impression of depletant partitioning over the phases. Interestingly, the
horizontal triple line in the presentation of the phase diagram at constant chemical
potentialμd (field-density representation) is nowconverted into a three-phase triangle
system representation. It should be noted that within this triangle, the composition
of the three coexisting phases is constant; merely their relative volumes change.

As discussed in Sect. 3.2.3, the free volume theory is approximate in the sense that
〈Vfree〉 is replaced by 〈Vfree〉0. To get an idea of the accuracy of the phase diagrams
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Fig. 3.11 Comparison of
(curves) free volume theory
with (�) Monte Carlo
computer simulations [38]
for q = 0.6; (�) theoretical
critical point is also indicated

calculated with free volume theory, we compare the results for q = 0.6 in Fig. 3.11
with computer simulations [38]. The agreement is very good, given the fact that the
free volume theory is approximate. Also for q = 0.1–1.0 [38] and large q values [39]
the agreement with simulations is striking.

In this chapter,wehave presented the free volume theory for hard sphere–depletant
systems, and focused on the simplest possible case of hard sphere–PHS mixtures.
In the next chapters, we will extend the free volume theory to more realistic situa-
tions (Chapter 4, hard spheres and polymers; Chap.6, large and small hard spheres;
Chap.7, hard spheres and hard rod-like colloids; Chap.8, hard rods and depletants;
Chap.9, hard platelets and depletants; Chap.10, hard superballs (cubes) and deple-
tants). We will also compare the results with experiments and computer simulations.
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4Phase Separation andLong-Lived
Metastable States in Colloid–Polymer
Mixtures

When a dispersion containing spherical colloids is mixed with a polymer solution
two kinds of instabilities can occur, as depicted in Fig. 4.1: (1) bridging floccula-
tion caused by adsorbing polymer chains or (2) unmixing driven by the depletion
force. The type of instability encountered depends on whether or not the polymers
adsorb onto the colloidal surfaces. When nonadsorbing polymers are added, deple-
tion forces lead to demixing (situation ‘2’), which is the main topic of this book.
Polymer adsorption, however, occurs when the contact between the colloid surface
and the polymer segments is energetically favourable to such a degree that the loss
of configurational entropy is compensated [1]. When the amount of adsorbing poly-
mer in the system is insufficient to fully cover all of the available surface area on
the colloidal particles, so-called ‘bridging flocculation’ occurs [2]. Some polymers
then attach to more than one particle, leading to aggregates or complexes (Fig. 4.1)
that tend to sediment when they are large (situation ‘1’). Characteristic of this type
of flocculation is that both colloids and polymers are concentrated in one part of a
container. When all particle surfaces are saturated with adsorbed polymers in a good
solvent (Fig. 4.2), the particle interactions are effectively repulsive because dense
polymer layers overlap upon close approach giving rise to steric repulsion. This
kinetically stabilises the dispersion (see Chap.10 in Ref. [1]).

In Chap.1, we saw that many systematic depletion studies were performed on
mixtures of spherical colloids and nonadsorbing or free polymers. The reason is
obvious: spherical colloids can be prepared in a relatively controlled way (rather
monodisperse, hard-sphere like) and so are of industrial and fundamental relevance,
and polymers are ubiquitous and efficient depletants. As a result, these compounds
are often mixed in product formulations.

We stress that any study on colloid–polymer mixtures should be preceded by
an analysis of whether the polymers adsorb or not. For instance, an analysis of the
composition of the two phases can be used to verify whether depletion interaction is

© The Author(s) 2024
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Fig. 4.1 Types of instability
that occur after mixing a
colloidal dispersion with a
polymer solution. When
adsorption occurs and the
polymer concentration is
low, bridging between
different colloidal particles
can induce flocculation (1).
When the polymer chains do
not adsorb, depletion leads to
the partitioning of colloids
and polymers over different
phases (2)

Fig. 4.2 Colloidal particles
that are sterically stabilised
through polymer adsorption

responsible for demixing. Polymer adsorption also increases the friction coefficient
of colloidal particles. Therefore, using the Stokes friction coefficient f = 6πηeffRh
[3] leads to a larger observed hydrodynamic radius Rh. This can be measured, for
instance, by sedimentation or dynamic light scattering [4,5]. The typical adsorbed
amount at saturation Γ is ∼ 1 mg·m−2 [1].
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Exercise 4.1. Verify that the polymer concentration cp (in mass per volume)
required to fully cover all spheres with radii R in a dispersion with volume
fraction φ can be expressed as

cp = 3φΓ

R
.

Hint: assume that all added polymers adsorb.

When the colloidal particles are completely covered with adsorbing polymer,
adding more polymer gives rise to excess polymer in the bulk solution, which is
thus not adsorbed. This nonadsorbing polymer may lead to depletion interaction as
well [6,7]. Here, depletion effects are weaker for two reasons. Firstly, more polymer
is required before depletion-induced instability of the dispersion occurs because
polymer is first consumed in order to cover the particles [1]. Secondly, the depletion
interaction is weak due to the soft repulsion between the adsorbed polymer layers.
It is known that depletion effects between such soft surfaces are rather small [1,8].

When polymer depletion occurs near hard surfaces, exceeding a certain poly-
mer concentration may lead to phase separation: a polymer-enriched phase coexists
with a colloidal particle-enriched phase (Fig. 4.1). In Chap.3, we introduced the
phase behaviour of hard spheres mixed with penetrable hard spheres (PHSs). This
provides a starting point for describing the phase behaviour of colloid–polymer mix-
tures. In Sect. 4.1, we show that the PHS description is adequate for mixtures in the
colloid-limit of small size ratio q = Rg/R, with Rg denoting the polymer’s radius
of gyration. In this limit, the polymer chains are smaller than the particle radius
of the colloidal spheres. In Sect. 4.2, we treat the modifications for the case that the
polymers are treated as ideal chains. More advanced treatments that account for non-
ideal behaviour of depletion thickness and osmotic pressure for interacting polymer
chains also enable intermediate and large q situations to be described. This is the
topic of Sect. 4.3. We also pay attention to nonequilibrium phenomena, ranging from
polymer depletion-induced phase separation kinetics to colloidal (transient) gel and
glass formation. Such effects are of significant practical relevance and are discussed
in Sect. 4.4.

4.1 Experimental State Diagrams of Model Colloid–Polymer
Mixtures

Well-defined colloids with a lyophilic surface coating and a steep repulsive inter-
action have been developed in several laboratories. Dispersions of such colloidal
particles in appropriate solvents can be approximated as hard-sphere fluids (or solids
above some concentration). Spherical silica particles in cyclohexane [9–11], inwhich
the particles were made lyophilic by covering the surface with a layer of terminally
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anchored octadecyl chains, are a primary example of such a model dispersion. In this
system, the refractive indices of silica (1.45) and cyclohexane (1.42) are close, so
light scattering effects are minimised and the van der Waals attraction between the
particles is small. Cyclohexane was chosen since it is a good solvent for octadecyl
chains. The surface layers of two encountering particles then repel each other ster-
ically (see Sect. 1.2.4). This results in a fairly steep pseudo-hard-sphere interaction
that can be described by

W (r) =
{∞ r ≤ 2Reff

0 r > 2Reff,
(4.1)

where r is the centre-to-centre distance between the spheres (= 2Reff + h) (see also
the discussion near Sect. 1.16). Here, Reff is the effective hard-sphere radius: the
sphere radius plus the thickness of the terminally anchored chains.

Another interesting model system is a dispersion of polymethylmethacrylate
(PMMA) particles that are sterically stabilised with poly-12-hydroxy stearic acid
in solvents such as decalin, sometimes mixed with tetralin in order to match solvent
and particle refractive indices. Early synthesis of and studieswith these particleswere
performed in Bristol [12,13]. These systems exhibit fluid to solid phase transitions
when the particle volume fraction exceeds about 0.5 [14].

Well-defined dispersions of hard-sphere-like PMMA colloids and nonadsorbing
polymers were extensively studied in Edinburgh [15,16]. These PMMA particles
can be synthesised with a size dispersity below 5%, and behave almost like perfect
hard spheres [17,18] see Sect. 3.2.

Polystyrene (PS) is one of the well-studied random coil polymers used in combi-
nation with PMMA spheres. PS can be synthesised with polydispersities as small as
Mw/Mn ≈ 1.02,with Mn and Mw as the number- andweight-averagedmolarmasses,
respectively. The physical properties of PS in solution have been characterised in a
wide range of solvents [19]. Optical tweezer experiments [20] on a pair of PMMA
spheres in a PS solution were consistent with the presence of depletion layers of PS
surrounding the spheres. Also, DLS measurements showed that adsorption does not
occur [4]. Hence, the model system of PMMA with PS offers an excellent tool for
studying the phase behaviour of hard spheres mixed with free polymers [16].

In Fig. 4.3 state diagrams are plotted that were measured by Poon et al. [15,21] for
three size ratios q = Rg/R = 0.08, 0.57 and 1. Here,φp is the polymer concentration
relative to overlap (Eq. 1.21). At φ < 0.49 and low polymer concentrations the
mixtures appear as single-state fluid phases. At zero polymer content, the hard-
sphere fluid–crystal phase transition is found when the colloids occupy about half of
the volume. Upon addition of polymer the fluid–crystal coexistence region expands
for q = 0.08; then a colloidal fluid at smaller volume fraction coexists with a denser
colloidal crystal. Slanted tie-lines were observed that indicate polymer partitioning
over the two phases [15]. These findings are consistent with predictions in Chap.3
for hard spheres mixed with PHSs [22] for small q . For larger q values (q � 0.3),
a critical point appears in the phase diagram, identifying the onset of the gas–liquid
coexistence region. This is observed in the phase diagrams for q = 0.57 and q = 1 in
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Fig. 4.3 State diagrams of
colloid–polymer mixtures
for q = 0.08 (top), q = 0.57
(middle) and q = 1.0
(bottom). Experimental data:
PMMA spheres mixed with
polystyrene polymers in
cis-decalin [15,21]. Curves
depict free volume theory
calculations [22], with δ =
Rg. For high q a triple
triangle (hatched) is
predicted by the theory



148 4 Phase Separation and Long-Lived Metastable…

Fig. 4.3 and is also found for larger q values [23–27]. Large q implies a long-ranged
attraction. For colloidal gas–liquid phase separation, the degree of partitioning over
the two phases depends on how far the system is from the critical point.

The absence of a liquid state in phase diagrams for a collection of particles with
short-ranged attractions is a general finding [28,29], for which Pusey and Poon gave
the following simple physical argument [16,30]: consider a close-packed crystal
φ ≈ 0.74 of adhesive hard spheres that have a mutual attraction (Fig. 4.4). Upon
adding solvent, the crystalline structure expands in volume. Below φ = 0.545 (the
volume of the close-packed crystal has expanded by about 1/3), the point of loss of
rigidity is attained and a fluid state becomes possible. Liquid configurations require
that the particles attract one another with sufficient strength as they are moving.
For weak attraction (weaker than the attraction at the critical point), thermal energy
overcomes this attraction and a liquid state is impossible. For stronger attractions
(exceeding the critical value), the state depends on the range of attraction.

For short-ranged attractions, the particles are directly out of their range of attrac-
tion, and so a low-density gas is the most stable situation upon dilution. Gas–liquid
equilibria are then metastable (Fig. 3.9(iv), see also the discussion of Fig. 11.4). It
has been shown that such ‘hidden’ gas–liquid coexistence regions have an impact on
dynamics and phase separation kinetics, and play a role in crystallisation phenomena
[31–35]. Fortini et al. [36] studied the relationship between equilibrium and nonequi-
librium phase diagrams of a system of hard spheres with a short-ranged attraction
using Monte Carlo and Brownian Dynamics simulations. They found that crystalli-
sation is enhanced for attractions that are sufficiently strong to enter the metastable
gas–liquid binodal. Then formation of a dense liquid is observed, followed by nucle-

Fig. 4.4 The expansion of a
close-packed colloidal
crystal phase (1) towards (2),
at the melting volume
fraction (∼ 0.55). Where
there is a long-range
attraction with appropriate
strength, a colloidal liquid
(3) is the stable state after
melting (i). For a
short-ranged attraction after
melting (ii) a colloidal gas
(4) is more favourable upon
further expansion

expansion ~ 1/3

(i) (ii)

1

2

3
4
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ation of the crystallites within the dense fluid. Only at larger colloid concentrations is
a percolating network structure due to an arrested gas–liquid phase separation found.

For sufficiently long-ranged attraction, the particles still attract one another at the
loss of rigidity point, so a liquid state is then possible. In colloid–polymer mixtures,
there is no direct attraction between the colloidal particles but the attraction enters
through repulsion. Attraction is caused by the overlap of depletion layers rather than
through direct pair interactions. For q > 0.15, multiple overlap of depletion layers
occurs (Fig. 3.7), which is expected to promote the occurrence of a colloidal liquid.
The critical point at which the range of attraction is just sufficient enough for a
stable liquid state is termed the critical end point (CEP) [29]. For a shorter range
of attraction, no critical point borders a stable fluid phase. Theory and computer
simulations point out that the CEP generally corresponds to a range of attraction
close to 1/3 of the particle diameter [29].

Exercise 4.2.What does it take to make a stable liquid?

We now return to Fig. 4.3 and focus on the state diagrams for q = 0.57 and
q = 1. Adding polymer leads to gas–liquid coexistence as discussed, followed by
a region where a gas–liquid–crystal equilibrium (◦) is found. For q = 0.57, this
three-phase coexistence region corresponds roughly to the theoretical prediction of
the free volume theory (FVT) as outlined in Chap.3, with PHSs playing the role of
the polymer chains. Above the three-phase coexistence region, a gas–crystal binodal
is found, which is also predicted by FVT.

At even higher polymer concentrations crystallisation does not occur anymore,
while dense solid sediments of particles can be seen [15]. This nonequilibrium
behaviour is also found for q = 0.08 at high polymer concentrations where
(metastable) gel or glassy states are observed. A colloidal glass refers to a state where
the particles are topologically trapped (‘caged’) by their neighbours. The term gel is
identified as a disordered arrested state which does not flow but exhibits solid-like
rheological properties such as a significant value for the elastic shear modulus [37].
We return to these nonequilibrium states of colloid–polymer mixtures in Sect. 4.4.

In Fig. 4.3, we also plot the (equilibrium) binodals by using the FVT outlined
in Chap.3 for hard spheres mixed with PHSs with diameters of 2Rg. Qualitatively,
the phase diagram topology is quite well predicted. For q = 0.08, only equilibrium
fluid, crystal and fluid–crystal regions are found and predicted. For both q = 0.57
and q = 1, the phase diagram contains fluid, gas, liquid, and crystalline (equilibrium)
phases. In the different unmixing regions, one now finds gas–liquid coexistence with
a critical point, a three-phase gas–liquid–crystal, and gas–crystal coexistences. The
observed q-dependence of the phase diagram topology outlined above is not limited
to the PMMAmodel system. Similar findings were reported for the phase behaviour
of polystyrene latex spheres mixed with hydroxy-ethyl cellulose in water [38,39]
(see also Refs. [40,41] for other examples).

Next, we make a more quantitative comparison between theory and experiment.
We observe in Fig. 4.3 that the quantitative agreement between FVT and the experi-
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mental data becomes less upon increasing q . For q = 0.08, the fluid–crystal binodal
is in nearly quantitative agreement with the experimental results with a slight, nearly
imperceptible overestimation of the binodal.

For q = 0.57, the data are in fair agreement with the FVT predictions (middle
panel of Fig. 4.3). The triple region lies somewhat above the experimental data,
especially at low φ, and the FVT gas–liquid binodal curve lies slightly below the
experimental binodal. Hence, the width of the gas–liquid coexistence region is over-
estimated. The reason for this lies in the fact that, whereas, for q = 0.08, the relevant
polymer concentrations are φp < 0.3, for q = 0.57, the polymer concentrations are
significantly larger and are much closer to the overlap concentration. This means that
one has to take into account the excluded volume interactions between the polymer
chains: regarding them as PHSs only suffices for small q where φp is small too.

For q = 1.0 (lower panel of Fig. 4.3) classical FVT also fails in a quantitative
sense. The gas–liquid binodal predicted by FVT now lies far below the experimental
phase boundary. Also, the predicted triple region (with φp reaching ≈ 6, see also
Fig. 3.10) largely exceeds the experimental one. In Sect. 4.3, we generalise FVT by
incorporating polymeric interactions between the polymer chains and compare these
results to the experimental equilibrium phase diagrams for q = 0.57 and 1.0.

To summarise, theory and experiment clearly demonstrate that the types of phase
equilibria encountered in unmixed colloid–polymer mixtures are rather sensitive to
the size ratio q . For sufficiently large q (� 0.3), a colloidal gas–liquid phase sepa-
ration is encountered. For q � 0.4, the simple model of hard sphere–PHS mixtures
fails to accurately describe the phase behaviour of well-defined hard-sphere colloid–
polymer mixtures. For large q-values (q � 0.6), it is essential to improve the simple
description of polymer chains as PHSs.

4.2 Phase Behaviour of Colloid–Ideal Polymer Mixtures

The first step in taking into account more appropriate polymer physics (as opposed to
the simple description of PHSs) is to consider the polymers as ideal chains. This can
be evaluated by incorporating the depletion thickness of nonadsorbing ideal chains
near a colloidal hard sphere into free volume theory.

In Chap.2, an analytical expression (Eq. (2.71)) was derived for the depletion
thickness around a sphere that is due to ideal polymer chains:

δs

R
=

(
1 + 6q√

π
+ 3q2

)1/3

− 1. (4.2)

It was plotted in Fig. 2.15with a slightly different representation. Figure 2.15 showed
that the depletion thickness, normalised as δs/Rg, dropswith increasing q . For q < 1,
the depletion thickness is close to or larger than Rg, but not much: the maximum
is 2Rg/

√
π ≈ 1.13Rg in the limit q → 0. For q � 1, the depletion thickness gets

significantly smaller than Rg. In Fig. 4.5, δs is normalised with the sphere radius R
and plotted as a function of q .
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Fig. 4.5 The depletion
thickness around a sphere as
a function of the
polymer-to-sphere size ratio
q. Solid curve: ideal polymer
chains, Eq. (4.2); dashed
line: penetrable hard sphere
approach, δs = Rg; dotted
curve: the approximation
δs/R = 0.938q0.9, see
Eq.4.25

s

Fig. 4.6 Osmotic
equilibrium between a
reservoir containing polymer
chains and a colloid–polymer
system where, as an
example, a colloidal gas is in
equilibrium with a colloidal
liquid

We now incorporate the correct depletion thickness into the free volume theory
that was presented in Sect. 3.3. We consider the osmotic equilibrium between a
polymer solution (reservoir) and the colloid–polymer mixture (system) of interest
(Fig. 4.6). The general expression for the semi-grand potential for Nc hard spheres
mixed with interacting polymers as depletants (see Eq. (3.20)), is

Ω(Nc, V , T ,μp) = F0(Nc, V , T ) +
∫ μR

p

−∞
∂Ω

∂μR′
p

dμR′
p , (4.3)

with F0 the free energy of the pure hard-sphere dispersion and μR
p the chemical

potential of the polymer chains. Just as in Chap.3 (see also Appendix A), we define
the dimensionless free energies, chemical potential and pressure:

F̃0 = F0v0

V kT
, Ω̃ = Ωv0

V kT
, μ̃ = μ

kT
, P̃ = Pv0

kT
.
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We drop the explicit dependencies (Nc, V , T , μp) in Eq. (4.3) and arrive at

Ω̃ = F̃0 −
∫ φR

p

0
α

(
∂ P̃R

∂φR′
p

)
dφR′

p , (4.4)

using the free volume theory approximations discussed inChap.3. For ideal polymers
P̃R = φR

p q−3 and α is independent of φp we arrive at

Ω̃ = F̃0 − αφR
p q−3, (4.5)

an expression similar to Eq. (3.44).

Exercise 4.3. Starting from Eq. (3.18), derive Eq. (4.4) by using ∂Ω/∂μp =
−Np, the Gibbs–Duhem relation dμR

p = (vp/φ
R
p )dPR, and P̃R = PRv0/kT .

For the free volume fraction α, we recall Eq. (3.38),

α = (1 − φ) exp[−ay − by2 − cy3], (4.6)

with

y = φ

1 − φ

and revised definitions of a, b and c:

a = 3
δs

R
+ 3

(
δs

R

)2

+
(

δs

R

)3

, (4.7a)

b = 9

2

(
δs

R

)2

+ 3

(
δs

R

)3

, (4.7b)

c = 3

(
δs

R

)3

. (4.7c)

Inserting Eq. (4.2) into Eq. (4.6) gives the corrected free volume fraction in a
mixture of ideal chains and colloidal spheres. Inspection of the gas–liquid coexistence
binodals for q = 1 and smaller q reveals that replacing PHSs with ideal chains does
not give significant differences. It follows from Fig. 4.5 and the detailed comparison
in [42] that this corrected description for q > 1 does affect the phase diagram. For
such high q values, however, it becomes essential to account for interactions between
the polymer segments, whereby δ becomes a function of the polymer concentration
and the osmotic pressure is no longer ideal.
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Exercise 4.4. At low colloid volume fractions φ, why does replacing PHSs
with ideal chains result in a polymer concentration shift upwards of the gas–
liquid binodals for large q?

4.3 Mixtures of Spheres and Interacting Polymer Mixtures

In this section we consider the phase behaviour of dispersions containing spherical
colloidal spheres and interacting polymer chains in a common solvent. For small
polymer-to-colloid size ratios (q � 0.4) the relevant part of the phase diagram lies
below the polymer overlap concentration (φR

p < 1). There is then no need to account
for interactions between the polymers in order to provide a proper description of
the phase diagram, and it is still sufficient [42] to approximate the polymer-induced
osmotic pressure by the ideal gas law as assumed within free volume theory [22].
However, forq � 0.4 the polymer concentrations atwhich phase transitions occur are
of the order of and above the polymer overlap concentration. In that case, interactions
between the polymer segments should be accounted for.

Here we will extend FVT to incorporate the correct expressions for the (polymer
concentration-dependent) depletion thickness and osmotic pressure, resulting in so-
called generalised free volume theory (GFVT). Equation (4.4) for the semi-grand
potential is still valid in GFVT: it does not, as yet, contain any assumption about
the physical properties of the depletants or the colloids. But now we need to specify
the quantities α and P̃R for interacting polymers, so we need the osmotic pressure
and depletion thickness (that determines α, see Eqs. (4.6) and (4.7)). These will be
considered in Sects. 4.3.2 and 4.3.3. First, we start in Sect. 4.3.1 with some basics on
the physics of polymer solutions in the dilute and semidilute concentration regimes.

4.3.1 Characteristic Length Scales in Polymer Solutions

In Sect. 2.2 we considered the concept of ghost or ideal chains. The segments of
such chains do not feel each other. Here, we consider excluded volume interactions
between the segments. Throughout Sect. 4.3 we consider two limiting cases of inter-
acting polymer chains: the excluded volume limit (good solvent) and the Θ-solvent
situation. The good solvent condition refers to the situation where the segments of
the polymer chains effectively repel other segments so that chains in a good solvent
will swell due to excluded volume interactions.

When the solvent-mediated attraction between the segments exactly compensates
for the (hard-core) excluded volume effect the polymer chains behave quasi-ideally
for dilute polymer solutions. This situation is commonly referred to as theΘ-solvent
condition.

The physical properties of the polymer solution depend on concentration under
both good and Θ-solvent conditions. The characteristic length scale is the correla-
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b ca

Fig. 4.7 Depiction of the various concentration regimes in polymer solutions, a dilute (φp < 1), b
near overlap (φp ≈ 1), c semidilute (φp > 1)

tion length ξ, the length scale over which the polymer segments show a correlated
behaviour. In the dilute concentration regime this is the radius of gyration of the
coils, which depends on chain length M but not on concentration. Beyond the over-
lap concentration of polymer coils the correlation length decreases with increasing
polymer concentration and is independent of M . Figure4.7 shows the various poly-
mer concentration regimes.

4.3.1.1 Dilute Polymer Concentration
For long chains, the following scaling relationship holds [43]:

Rg ∼ Mν, (4.8)

with

ν =
{ 1

2 Θ-solvent,
0.588 good solvent,

(4.9)

where the scaling exponent ν is known as the Flory exponent. In a Θ-solvent the
chains are ideal, so Rg is proportional to

√
M . Then we have,

Rg = b

√
M

6
, (4.10)

where b is the segment size. For a good solvent, the exponent ν follows from Renor-
malisation Group Theory (RGT) [44].

For shorter chains an approximate expression for any solvency may be derived
using the Flory excluded volume parameter v, which is unity when the segments
experience hard-core repulsion, and vanishes in the case of a Θ-solvent. Based on
Flory’s result [43] for the expansion coefficient, the coil size can be written as [41],

Rg = 0.31bM1/2
[
1 +

√
1 + 6.5vM1/2

]0.352
, (4.11)
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wherewe adjusted the Flory scaling exponent 2/5 in the last factor to 0.352 to achieve
the correct scaling behaviour [44] of Eq.4.9.

Exercise 4.5. Show that Eq.4.11 reduces to the scaling limits of Eqs. (4.8)
and (4.9) for M 
 1.

4.3.1.2 Semidilute Polymer Solutions
Above the polymer overlap concentration we enter the semidilute regime (Fig. 4.7c).
In the dilute regime (Fig. 4.7a), each polymer coil occupies a volume vp = (4π/3)R3

g.
When vpnb becomes unity the solution is completely filled with polymer coils
(Fig. 4.7b). For vpnb > 1 the chains overlap. Therefore, overlap in terms of the num-
ber density is defined as n∗

b = 1/vp. It is convenient to define a relative polymer
concentration:

φp = vpnb = ϕ

ϕ∗ , (4.12)

which is unity at the overlap concentration (see also Eq. 1.21). Here,ϕ is the polymer
segment volume fraction, often used in polymer physics. Using this polymer segment
volume fraction ϕ = nbMvs the overlap volume fraction ϕ∗ follows as

ϕ∗ = M
vs

vp
, (4.13)

with vs denoting the volume of a segment. Next, the relationship between correla-
tion length and polymer concentration is considered. Below overlap (ϕ < ϕ∗) the
correlation length ξ is the coil size Rg, which depends only on M (and solvency).
Above overlap (ϕ > ϕ∗) we have the famous De Gennes scaling law [45]:

ξ ∼ ϕ−γ, (4.14)

which does not depend on chain length. The De Gennnes scaling exponent γ is given
by

γ =
{
1 Θ-solvent,
0.77 good solvent.

(4.15)

Near the overlap concentration we have ξ ≈ Rg and ϕ ≈ ϕ∗, so Rg ∼ (ϕ∗)−γ .
Consequently,

ξ

Rg
∼ φ−γ

p . (4.16)



156 4 Phase Separation and Long-Lived Metastable…

Since ϕ∗ ∼ M/vp ∼ R1/ν−3
g (see Eqs. (4.8) and (4.13)) and ϕ∗ ∼ R−1/γ

g , we have
the following general relationship between the Flory and De Gennes exponents:

1

γ
+ 1

ν
= 3. (4.17)

To incorporate the crossover from dilute to the semidilute polymer solutions,
Fleer et al. [46] derived approximate but accurate expressions for the polymer
concentration-dependent depletion thickness δ and osmotic pressure P . They did
this by interpolating between the exactly known dilute limit and scaling relations at
semidilute polymer solutions. These interpolations are discussed in Sect. 4.3.2 (δ)
and Sect. 4.3.3 (P).

4.3.2 Depletion Thickness

4.3.2.1 Concentration Profile at a HardWall
In the semidilute limit, De Gennes [45] made a mean-field analysis of the polymer
concentration at a nonadsorbing hard wall. He used the Ground State Approximation
(GSA) to approximate the Edwards equation [47–51] for polymer trajectories in
an external field. The GSA basically simplifies chains in the sense that the spatial
distribution of the segments is assumed to be independent of the ranking number
of the segments: there is no difference between, for instance, end segments and
middle segments of the chains. The GSA is especially powerful in the semidilute
concentration regime [52]. The GSA concentration profile for the volume fraction
of segments ϕ(x) is simple:

f (x) = ϕ(x)

ϕb
= tanh2

(
x

ξ

)
, (4.18)

where ϕ(x) is the local polymer segment concentration, ϕb its value in the bulk and
x the distance from the colloidal surface.

Exercise 4.6. Rationalise the shape of the profile f (x) = tanh2(x/ξ) from
the van der Waals density profile at a gas–liquid interface. Hint: use the
relationship between the order parameter and the density profile (see also
Chap.5).

Applying Eq. (2.60),

δ =
∫ ∞

0
dx [1 − f (x)],

results in δ = ξ. It follows that the correlation length sets the length scale over which
polymer segments are depleted from the wall. Beyond a distance of the correlation
length from a colloidal surface the segments are ‘unaware’ of a nonadsorbing surface.
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Fig. 4.8 Segment density
profiles ϕ(x) as a function of
the distance from a flat wall
x for various descriptions
(data points) of the
nonadsorbing polymer
chains compared to the tanh2

profile (solid curve) of
Eq.4.19: ideal chains (�,
[53]), mean-field chains (◦,
[50]) and excluded volume
chains (�, [54])

The expressions for the density profiles may be substantially more involved than
a simple tanh2 profile for other cases (e.g., depleted dilute ideal or excluded volume
chains, semidilute chains with fluctuation effects). Surprisingly,

f (x) = tanh2
( x

δ

)
(4.19)

turns out to be very accurate, in general [50,53], as long as the correct depletion
thickness δ is inserted (Fig. 4.8).

4.3.2.2 Depletion Thickness at a HardWall
For ideal chains (or dilute chains in a Θ-solvent, see Eqs. (2.57) and (2.60)), the
depletion thickness at a hard wall equals δ0 = 2Rg

√
π ≈ 1.13Rg [53,55], where the

subscript 0 now refers to the dilute (ideal) limit.
A general expression for dilute polymer solutions is

δ0 = pRg with p ≈
{
1.13 Θ-solvent,
1.07 good solvent.

(4.20)

The good solvent result was derived by Hanke, Dietrich and Eisenriegler [56] using
RGT.

As we have seen, the De Gennes result for the semidilute limit provides δ = ξ.
A GSA analysis of mean-field polymer chains in a slit [50] enables the dilute and
semidilute limits to be combined, and provides a very simple and accurate relation-
ship:

δ−2 = δ−2
0 + ξ−2. (4.21)

This result was derived from a mean-field treatment, where the semidilute scaling
behaviour is ξ ∼ φ−1

p (Θ-solvent) or ξ ∼ φ
−1/2
p (good solvent). The scaling expo-

nent −1 is valid for chains in a Θ-solvent but −1/2 is incorrect for good solvent
conditions. Expression (4.21) can, however, be generalised to include the correct
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scaling exponents by inserting the correct scaling from Eq.4.16 with Eq.4.15 with
the appropriate numerical prefactor into Eq.4.21. The result is [46]:

(
δ0

δ

)2

= 1 + βφ2γ
p , (4.22)

with

β =
{

6.02 Θ-solvent
3.95 good solvent

.

For a Θ-solvent with γ = 1 Eq.4.22 is in quantitative agreement with numerical
self-consistent field results. For a good solvent with γ = 0.77 Eq.4.22 compares
favourably with computer simulation results [46].

4.3.2.3 Depletion Thickness Around a Hard Sphere
Converting the depletion thickness δ at a hard wall to its value δs around a hard
sphere is a geometrical issue. In Sect. 2.2.2 we saw that the concentration profile of
ideal polymer chains around a sphere gives Eq. (2.71), which can be rewritten in the
form:

δs

R
=

[
1 + 3

δ

R
+ 3π

4

(
δ

R

)2
]1/3

− 1. (4.23)

For dilute chains in the excluded volume limit the following expansion has been
found:

δs

R
=

[
1 + C1

δ

R
+ C2

(
δ

R

)2

+ C3

(
δ

R

)3

+ . . .

]1/3

− 1, (4.24)

with the flat wall result C1 = 3. The curvature terms C2 ≈ 2.273 (which is close to
3π/4 ≈ 2.356) andC3 ≈ −0.0975were computed usingRGT [56]. Although higher
order Ci terms are yet unknown, it is clear that the curvature effects for excluded
volume and ideal chains in Eqs. (4.23) and (4.24) are rather similar.

These expressions for δs/R can be easily approximated as the simple accurate
power-laws [41]:

δ0,s

R
=

{
0.938q0.9 Θ-solvent,
0.865q0.88 good solvent.

(4.25)

These power-laws hold for a wide range of q-values [41] (see, for instance,
Fig. 4.5). In combination with the concentration dependence Eq.4.22, this approxi-
mation leads to

δs

R
=

⎧⎪⎨
⎪⎩
0.938

(
q−2 + 6.02q−2φ2

p

)−0.45
Θ-solvent,

0.865
(

q−2 + 3.95q−2φ1.54
p

)−0.44
good solvent,

(4.26)
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Fig. 4.9 Depletion thickness (solid curves) for three size ratios as indicated, and osmotic pressure
(dashed curve) of polymer chains in the excluded volume limit as a function of the relative polymer
concentration

expressing the concentration- and curvature-dependence of the depletion thickness
around a sphere in a solution with interacting polymers under Θ-solvent and good
solvent conditions. For the good solvent situation, the depletion thickness is plotted
in Fig. 4.9 for three q-values.

4.3.3 Osmotic Pressure of Polymer Solutions

In the limit of dilute polymer solutions, the osmotic pressure is given by the ideal
Van ’t Hoff law Pid = nbkT (see Sect. 2.2). For the osmotic pressure of non-ideal
polymers in solution one can write down a general virial series:

P

nbkT
= 1 + A2nb + A3n2

b + · · · , (4.27)

where A2 and A3 are the second and third osmotic virial coefficients. Note that
we use Bi for colloids (see, for instance, Eq. (1.26), Sects. 2.3.1 and 3.2.1) and Ai

for polymers. The second virial coefficient is proportional to the effective excluded
volume per polymer segment: A2 ∼ v. In the good solvent limit (where v = 1), this
excluded volume equals the physical volume of a segment, so A2 attains a finite
positive value. In a poor solvent A2 < 0. For polymer chains in a Θ-solvent, the
excluded volume of a segment is exactly compensated by the attractions between
the segments and A2 ≡ 0; in a Θ-solvent, van ’t Hoff’s law P = nbkT holds up to
quadratic order in nb. Higher-order virial coefficients A3 and beyond are non-zero;
so, for higher polymer concentrations, deviations from ideal behaviour are also found
in a Θ-solvent.

Perturbation expansions in terms of the excluded volume in principle yield the
second and higher order osmotic virial coefficients [44,57]. This procedure becomes
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rather cumbersome for A4 and higher-order coefficients and established scaling expo-
nents [45] for the semidilute polymer concentration regime can not be reproduced in
a virial expansion, as could have been expected as this is also true for simple fluids.

In fact, in the semidilute case, the picture is simple; the chains overlap to such a
degree that the characteristic length scale is determined by the correlation length ξ
rather than the coil size set by the chain length M . The corresponding volume ξ3 is
denoted as a blob. The osmotic pressure can then be viewed upon as an ideal gas of
blobs, so Psd ∼ ξ−3, with the number of blobs ∼ ξ−3. Therefore, the scaling result
becomes Psd/kT ∼ φ

3γ
p .

A convenient expression that enables description of both the dilute and semidilute
polymer concentration regimes follows from a simple additivity rule: P = Pid + Psd.
This additivity follows from the Flory–Huggins theory [43] for a Θ-solvent but
appears to be an excellent approximation for good solvents as well [46]. This leads
to the following expression for the ratio P/Pid:

P

Pid
= Pvp

φpkT
= 1 + ζφ3γ−1

p , (4.28)

with

ζ =
{
4.10 Θ-solvent,
1.62 good solvent.

(4.29)

UnderΘ-solvent conditions Flory–Huggins theory reproduces Eq.4.28. The numer-
ical coefficient ζ follows from Flory–Huggins theory for aΘ-solvent and from RGT
for a good solvent. Equation4.29 turns out to be extremely accurate when compared
with experimental and computer simulation data [46]. The result for a good solvent
is plotted in Fig. 4.9.

The osmotic compressibility that we need in Eq. (4.4) now follows straightfor-
wardly:

∂(Pvp/kT )

∂φp
= 1 + 3γζφ3γ−1

p (4.30)

=
{
1 + 12.3φ2

p Θ-solvent,
1 + 3.73φ1.31

p good solvent.
(4.31)

Exercise 4.7. Derive Eq.4.30 from Eqs. (4.28), (4.29) and (4.15).
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4.3.4 Generalised FreeVolumeTheory Phase Behaviour

Below, we summarise the results for the osmotic pressure and depletion thickness,
which are inserted into the Generalised Free Volume Theory (GFVT) expressions.
Subsequently, we consider the implications for the phase behaviour.

4.3.4.1 GFVT Ingredients;Θ-solvent
For polymer chains in a Θ-solvent the scaling exponent γ takes the mean-field value
γ = 1. The polymer concentration derivative of the reduced osmotic pressure follows
from Eq.4.30 as

q3 ∂ P̃

∂φp
= 1 + 12.3φ2

p, (4.32)

and the ratio between the depletion thickness and the colloid radius is

δs

R
= 0.938

⎛
⎝ q√

1 + 6.02φ2
p

⎞
⎠

0.9

. (4.33)

Equation (4.33) follows directly from Eq.4.26.

4.3.4.2 GFVT Ingredients for Polymers in a Good Solvent
TheDeGennes scaling exponent γ equals 0.77 under good solvent conditions. There-
fore, from Eq.4.30 we have

q3 ∂ P̃

∂φp
= 1 + 3.73φ1.31

p , (4.34)

and from Eq.4.26 we have

δs

R
= 0.865

⎛
⎝ q√

1 + 3.95φ1.54
p

⎞
⎠

0.88

. (4.35)

Note that, in contrast with classical FVT [22], ∂ P̃/∂φp and δs/R in Eqs. (4.32) and
(4.35) now depend on the polymer concentration φp.

In Fig. 4.10 we compare the free volume fraction α calculated from Eq. (4.6),
in the good solvent limit with δs/R in Eq. (4.7) from Eq. (4.35), with Monte Carlo
simulation results of Fortini et al. [58] for q = 1.05 along the binodal gas liquid
curve. Except for some deviation at large colloid volume fractions the agreement is
excellent.
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Fig. 4.10 Free volume fraction α as a function of colloid volume fraction for q = 1.05. GFVT
(curve) compared to Monte Carlo computer simulations (data points) [58]

4.3.4.3 GFVT Phase Diagrams
We can now compute the phase diagrams for hard spheres with interacting polymers
using the general expression Eq. (4.4) and its ingredients by computing the chemical
potential μ̃ = (∂Ω̃/∂φ) and total pressure P̃ = −∂(Ω̃/φ)/∂(1/φ) = φμ̃ − Ω̃ ,

μ̃ = μ̃0 +
∫ φR

p

0
g

(
∂ P̃R

∂φR′
p

)
dφR′

p , (4.36)

P̃ = P̃0 +
∫ φR

p

0
h

(
∂ P̃R

∂φR′
p

)
dφR′

p . (4.37)

Here, g and h are given by Eqs. (3.49) and (3.50), with a, b and c defined in Eq. (4.7.
Coexistence curves then follow from Eqs. (3.43a) and (3.43b).

In Fig. 4.11, we compare gas–liquid coexistence curves from GFVT in the good
solvent limit with Monte Carlo simulation results of Bolhuis et al. [59] for q = 0.67
and 1.05. These simulations were performed using hard spheres mixed with polymer
chains with hard core excluded volume between the segments. It is clear GFVT is
capable of predicting the location of the phase boundaries reasonably well.

The critical end points for Θ-solvent and good solvent conditions are rather close
to the one for PHSs [41,60]:

qcep =
⎧⎨
⎩
0.328 penetrable hard spheres
0.337 Θ-solvent
0.388 good solvent

(4.38)

We turn back to Fig. 4.3 and make a comparison of the experimental phase diagrams
with GFVT under good solvent conditions. We show again the experimental data
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Fig.4.11 Phase diagram (colloidal gas–liquid equilibria) for hard spheres (in terms of their volume
fraction φ) mixed with interacting polymers (in terms of their relative concentration φp) in a good
solvent. Monte Carlo simulations (◦) [59] for q = 0.67 (left) and q = 1.05 (right) are compared
to GFVT predictions (curves; critical point: •)

Fig. 4.12 State diagrams of colloid–polymer mixtures for q = 0.57 (left) and q = 1.0 (right) as
in Fig. 4.3, but now compared to theoretical GFVT predictions (curves) from Fleer and Tuinier
[41]. The experimental data (see key) is from a system of PMMA spheres mixed with polystyrene
polymers in cis-decalin [15,21]

in Fig. 4.12 and inserted GFVT predictions (good solvent) for the binodals as the
curves and the triple triangle as filled region.
GFVT is capable of accurately describing the experimental equilibrium phase dia-
grams for q = 0.57 and q = 1, and constitutes a major improvement with respect to
FVT for q > 0.5. GFVT proves to be very useful, especially for q = 1, since FVT
completely fails to quantitatively describe the phase diagram here.

For q = 0.57, the triple point composition of the colloidal liquid that coexists
with a colloidal gas and crystal was determined byMoussaïd et al. [30]. In Table4.1,
we compare these data with FVT and GFVT predictions. The experimental colloid
volume fraction and polymer concentration clearly deviate significantly from FVT.
In particular, the polymer concentration of the coexisting colloidal liquid phase is
about 30 times larger than the prediction using classical FVT. GFVT gives a much
better prediction of the composition, especially if the polymers are assumed to be in
a good solvent.
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Table 4.1 Liquid composition at the triple point for q = 0.57

φ φp

FVT 0.489 0.0037

GFVT Θ 0.470 0.048

GFVT good 0.452 0.108

experiment 0.444 0.1

0.67

0.86

1.4

Fig. 4.13 Comparison of experimental gas–liquid coexistence binodals (data) compared to GFVT
(curves; critical point: •). Left: spherical colloids mixed with polymer chains in a Θ-solvent for
q = 0.84 (�, [24]), 1.4 (�, [25]) and 2.2 (×, [25]). Right: colloidal spheres mixed with polymers
in a good solvent for q = 0.67 (�, [24]), 0.86 (�, [62]) and 1.4 (+, [24])

One might think GFVT is only useful for describing the phase diagrams of well-
defined experimental hard-sphere–random coil systems (such as PMMA with PS)
or phase equilibria from computer simulations. GFVT, however, also helps to give
reasonable predictions for many other colloid–nonadsorbing polymer mixtures [41].
In Fig. 4.13 we compare GFVT binodals for gas–liquid coexistence with experimen-
tal data on colloid–polymer mixtures under Θ- (left panel) and good solvent (right
panel) conditions. The order of magnitude of the predicted binodals is accurate in all
cases. Sometimes, the agreement is nearly quantitative. Aspects that give deviations
are related to polymer chain length dispersity and the non-hard-sphere character of
the colloidal particles. The colloids may, for instance, be somewhat sticky, or they
may repel one another to some extent due to anchored brushes that are not very short,
or due to repulsive double layer interactions. In principle, it is possible to include
these effects into GFVT [61] but we shall not consider this here.

Exercise 4.8. In what directions will gas–liquid binodals and fluid–solid bin-
odals at low φ shift when there is an additional weak short-ranged double
layer repulsion between the spheres?
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4.3.4.4 Scaling Behaviour in the Semidilute Regime
We now consider the large q-limit of mixtures containing long polymer chains and
relatively small colloidal spheres. This is the regime where φR

p along the binodals
exceeds unity; so at the binodal, we have semidilute polymer solutions. The charac-
teristic length scale in semidilute polymer solutions is ξ, which scales as in Eq.4.16,
ξ/Rg ∼ φ

−γ
p . For colloid–polymermixtures this expression can be rewritten in terms

of ξ/R = qξ/Rg to become

φpq−1/γ ∼
(

ξ

R

)−1/γ

. (4.39)

It is important to note that ξ is independent of Rg. This implies that the right-hand
side of Eq.4.39 is independent of q . Therefore, φpq−1/γ is also independent of q ,
yielding

φp ∼ q1/γ . (4.40)

For large q values, it is therefore efficient to introduce a parameter Y as a rescaled
polymer concentration:

Y = φpq−1/γ . (4.41)

In the large q-limit Y is a constant (independent of q). It follows that φp = Y q1/γ

diverges as q1/γ = q1.3 for large q under good solvent conditions. This predicted
q1.3 scaling [60] of large q binodals is corroborated by simulation [63] and experi-
ment [64,65], as demonstrated in Fig. 4.14. In the plot on the left, we show rescaled
computer simulation data for the gas–liquid binodal [63] for hard spheres mixed with
polymer chains in the good solvent limit (long chains consisting of hard spherical
segments). The data are binodal points from Fig. 1.23 for q > 3. In the rescaled form
they collapse onto a universal curve. Clearly, in the colloid limit, where Y depends
on q , this scaling does not apply.

In the right-hand plot in Fig. 4.14, we show experimental data [64,65] for the
gas–liquid coexistence for two large q values. Also, these data collapse onto a single
curve after rescaling according to Eq. (4.41). Hence, this predicted q1.3 scaling is
corroborated by both simulations and experiments.

The parameter Y is a convenient normalised polymer concentration, which has
the important property of becoming independent of the size ratio q in the high
q limit [41,60], where the polymer concentrations along the binodals are in the
semidilute regime. The Y values along the binodals always remain of order unity.
Then δ = ξ ∼ ϕ−γ [45], which does not depend on Rg. Hence, δ/R does not depend
on q = Rg/R, and δ/R reaches a constant, q-independent level.

Analytical approximations for the phase behaviour of colloid–polymer mixtures
can be found in [41], providing simple, approximate yet reasonably accurate descrip-
tions of equilibrium phase diagrams. Using Y instead of φp turns all phase diagrams
to more universal ones with a polymer concentration variable that is always of order
unity for the relevant characteristic parts of the phase behaviour.
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Fig. 4.14 Scaling of (left) Monte Carlo computer simulation results (see Fig. 1.23) for q = 3.86
(◦), 5.58 (×) and 7.78 (�) by Bolhuis [63], and experimental results (right) on micro-emulsion
droplets mixed with free polyisoprene polymer chains (q = 10 (�) and q = 16 (	)) by Mutch
et al. [64,65] for the gas–liquid coexistence in the protein limit regime

4.4 Phase Separation Kinetics and Long-LivedMetastable
States in Colloid–PolymerMixtures

So far, we have considered the equilibrium phase behaviour in colloidal suspensions
that results fromdepletion interactions. Fascinating phase behaviour can be observed,
such as a metastable colloidal gas–liquid phase separation and a three-phase gas–
liquid–crystal region. This is because the range and strength of the depletion inter-
actions in colloidal suspensions can be readily tuned, as opposed to those in atomic
and molecular systems. The predictions of phase diagrams are, however, not always
realised.

Systems often become trapped in metastable nonequilibrium gel and glass states.
In several cases, experiments reveal that the states of the mixtures strongly depend
on the starting position in the phase diagram; and discrepancies between predictions
and actual observations are due to the intricacies of the dynamics of phase transitions.
In this section, we briefly consider the phase separation process and the nonequi-
librium states in colloid–polymer mixtures. Taking advantage of the (large) length
scales and (long) time scales involved allows us to reveal some of the secrets of
the complex pathways involved in the formation of gels and glasses. The discussion
below is organised into two parts. First, Sect. 4.4.1 covers systems with a size ratio
of the polymer-to-colloid size q larger than 0.3; and secondly, Sect. 4.4.2 focuses
on situations where q is smaller than 0.3 (relatively large colloidal spheres). For
a comprehensive overview of the topics treated in this section, see the review by
Poon [66].
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4.4.1 q > 0.3

Quantitative predictions of demixing kinetics in colloid–polymer mixtures are fairly
complicated; but frequently, insight on demixing mechanisms [67] can be obtained
by careful inspection of the equilibrium phase diagrams of colloid–polymer mix-
tures. The equilibrium phase diagram for q > 0.3 (as follows from (G)FVT) is
summarised in Fig. 4.15. In the absence of polymer, only a fluid–crystal phase coex-
istence is found; for φ < 0.49 colloids are in a fluid phase. As φp is increased, this
fluid becomes unstable above a certain concentration. Then, phase separation occurs
towards colloidal gas–liquid coexistence. At high φp, a colloidal gas coexists with
a colloidal crystal. Following Gibbs’ phase rule, there must be a three-phase gas–
liquid–crystal coexistence region in between, which is indeed predicted and observed
experimentally.

4.4.1.1 Gas–Liquid Demixing
We first focus on the phase separation in the (colloidal) gas–(colloidal) liquid region.
Above the spinodal curve, long wavelength fluctuations in colloid or polymer con-
centration lower the Helmholtz energy. After a quench in this unstable two-phase
region, spontaneous long wavelength density fluctuations are no longer stable with
respect to a homogeneous distribution. Concentration fluctuations with large wave-
lengths have a stronger thermodynamic driving force, whereas the diffusion process
is faster for short wavelengths. This competition, which results in a ‘fastest grow-
ing mode’, is characteristic of spinodal decomposition, and can be described using
Cahn–Hilliard theory [68–71]. For a didactic account of the Cahn–Hilliard theory
of spinodal decomposition in colloidal dispersions, see Chap.9 of Ref. [72] or see
Ref. [73].

The time and length scales involved in colloidal systems allow the relevant phe-
nomena to be probed by small-angle light scattering and optical microscopy [23,74].
In Fig. 4.16 (left panel), we plot the measured scattered intensity I (Q) during the

Fig. 4.15 Overview of the
phase behaviour of a
colloid–polymer mixture for
large q. Full curves are
binodals. The different phase
states are indicated. The
critical point is indicated by
the filled circle
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Fig.4.16 Left: scattered intensity I (Q) as a function of the scatteringwave vector Q of an unmixing
dispersion of whey protein colloids (R ≈ 27 nm) mixed with exocellular polysaccharides (Rg = 86
nm; q = 3.2). The time (in minutes) after mixing is indicated. Right: Characteristic length scale
Λ = 2π/Qm obtained from the I (Q) curves as a function of time. The diffusive growth Eq.4.42
and viscous hydrodynamic growth Eq.4.43 scaling regimes are indicated as straight lines. Data
replotted from Ref. [23]

unmixing of a dispersion of whey protein colloids (R = 27 nm) mixed with polysac-
charides (Rg = 86 nm), so q ≈ 3. The overall values of the scattered intensity
increase with time, which implies that larger structures are being formed. At each
time frame the scattered intensity passes through a maximum as a function of Q.
The quantity Qm denotes the scattering wave factor at this maximum intensity. The
value of Qm decreases with time, corroborating an increase of the characteristic
length scale Λ = 2π/Qm. In Fig. 4.16 (right panel) we present this length scale Λ

as a function of time. Two regimes can be distinguished in this figure:

Λ ∼ t1/3 (4.42)

and

Λ ∼ t . (4.43)

These two time scales are characteristic of the diffusive growth (Eq.4.42) and viscous
hydrodynamic growth (Eq.4.43) regimes in spinodal decomposition [75].

As indicated above, the phase separation process can also be studied using opti-
cal microscopy as has been done by Verhaegh et al. [74]. They observed spinodal
decomposition in a well-defined model colloid–polymer mixture of silica spheres
in cyclohexane with dissolved polydimethyl siloxane chains of q ≈ 1, and found
similar results to those plotted in Fig. 4.16. Their findings agree with the scenario
described above and the characteristic length scale Λ follows the regimes of Eqs.
(4.42) and (4.43).

The spinodal decomposition can be studiedmore directly using confocal scanning
laser microscopy (CSLM). Aarts et al. [76] studied the phase separation kinetics of
a PMMA colloid–PS mixture in decalin with q = 0.56. Typical spinodal structures
that coarsen in time are shown in Fig. 4.17.
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Fig. 4.17 CSLM images (each side is 1400 µm) of a phase-separating mixture of polystyrene
polymers and fluorescently labelled PMMA spheres, exhibiting the typical spinodal structure. The
images correspond to t = 3 s (left), 11 s (middle) and 22s (right) after homogenisation. Images
kindly provided by D.G.A.L. Aarts. See also the movies in the SI of Ref. [76]

4.4.1.2 Demixing in the Three-Phase Region
We now consider the phase separation process in the three-phase colloidal gas–
liquid–crystal region. This case has been analysed experimentally and theoretically
in great detail by Poon et al. [77–79]. By consideration of the free energy landscape,
they were able to distinguish several pathways for this phase separation process. The
pathways were shown to depend on the location of the starting position in the three-
phase region. In the central section of the three-phase triangle in Fig. 4.15, Poon et
al. predicted and observed the scenario presented in Fig. 4.18.

Initially, the sample is a colloidal fluid (i) that phase separates into a polymer-rich
colloidal gas and a colloidal liquid that is dilute in polymer (ii). This gas–liquid
coexistence, however, is metastable. Soon after the formation of a (sharp) gas–liquid
interface, ‘flashes’ of light appear from the liquid (lower) phase (iii). These flashes
are caused by homogeneously nucleating and growing crystallites. Subsequently, the
crystallites sink to the bottom, giving rise to the final gas–liquid–crystal coexistence
(iv). This is a classic example of a multi-step kinetic pathway.

Fluid

Gas

Liquid

Gas

Crystal

i ii iii iv

t

Liquid

Fig. 4.18 Time evolution of phase separation kinetics in the three-phase region as observed by
Poon et al. [77]
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4.4.1.3 Gas–crystal Phase Transition and Nonequilibrium States
Finally, we consider the large q situation at high polymer concentrations. Gas–crystal
phase equilibriawere observed (Fig. 4.12) above the three-phase region over a narrow
polymer concentration regime [15,21]. A kinetically arrested (gel-like) nonequilib-
rium state with no visible crystallites appeared for higher polymer concentrations.
The appearance of a particle gel can be explained as follows. When the depletion
attraction becomes sufficiently strong the colloidal particles stick irreversibly and
form a space-spanning network. In such cases, the phase separation process will not
reach its equilibrium state but rather a nonequilibrium gel-like state is encountered.
This has beenwell-studied for small q (see Sect. 4.4.2) but its appearance for q > 0.3
has not received much attention yet.

In summary, the observed state diagram for large q is sketched in Fig. 4.19. The
only difference with the equilibrium phase diagram presented in Fig. 4.15 is that
at high polymer concentrations φp (or large depletion attraction) a nonequilibrium
gel-like state is observed [23,80]. At φ ≈ 0.58 there is a glassy state. The influence
of a depletion attraction on colloidal glasses has not yet been studied systematically
for high q .

4.4.2 q < 0.3

Atfirst sight, the equilibriumphase diagramat lowq (depicted in Fig. 4.20) appears to
be dull when compared to the phase diagram for q > 0.3 in Fig. 4.15. However, while
for large q the predictions of the equilibrium phase diagram are generally realised,
for small q nonequilibrium and metastable states dominate in large regions of the
state diagram. A premonition that the pathways involved in the phase separation for
small q can be intricate is provided by the presence of a metastable gas–liquid phase
separation in the fluid–crystal domain of the phase diagram.

Fig. 4.19 State diagram of a
colloid–polymer mixture for
large q. The different
observed equilibrium and
long-lived nonequilibrium
phase states are indicated.
The critical point is indicated
by the filled circle

Fluid

Gas + Liquid

Gas + Crystal

Gas + Liquid + Crystal

Fluid + Crystal

Crystal

Gel
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Fig. 4.20 Equilibrium phase
diagram of a
colloid–polymer mixture for
small q. The solid curve is
the fluid–solid coexistence
curve; the dashed curve is
the metastable gas–liquid
coexistence region

metastable 
Gas + Liquid

Fluid
Crystal

Fluid + Crystal

In order to sample these intricacies, we consider the phase separation pathways
upon increasing the polymer concentration at three colloid volume fractions: low
colloid volume fractions (φ � 0.05), intermediate volume fractions (0.05 � φ �
0.4), and high volume fractions (φ � 0.4).

4.4.2.1 Low ColloidVolume Fractions
De Hoog et al. [81] studied the phase behaviour of a mixture containing sterically
stabilised fluorescent PMMA spheres (R ≈ 600nm) and PS polymer chains (Mp ≈
2000kg/mol) in a mixed solvent consisting of tetralin, cis-decalin and carbon tetra-
chloride. In this solvent mixture, the PMMA spheres are nearly refractive index
matched, which enables fluorescence confocal scanning light microscopy (CSLM)
measurements to be taken deep into the sample. This solvent mixture has the addi-
tional advantage that the density difference with the PMMA spheres is small to such
a degree that significant sedimentation of PMMA particles only becomes apparent
after months. The radius of gyration of the polymers was determined to be 46nm.
Hence, q = 0.08 and the polymer overlap concentration of the PS chains was esti-
mated to be 8 g/L. The colloid–polymermixturewas studied at a fixed colloid volume
fraction of φ ≈ 0.02 and PS concentrations up to 10g/L, i.e., just above the overlap
concentration. From Eq. (2.65) the contact potential follows as

Wdep = W (r = 2R) = −3 ln(2)
φp

q
kT . (4.44)

Hence, the investigated polymer concentrations imply strengths of the attraction up to
25kT . De Hoog et al. observed four characteristic scenarios, and the polymer con-
centration determines which scenario is observed. The corresponding concentration
regimes (A)–(D) are identified in Fig. 4.21.

Regime (A) is the one-phase fluid region, whereas regimes (B–D) are in the two-
phase region. Representative micrographs of the structures found in these regions
are given in Fig. 4.22. These were all taken at t  400 τB, where τB = R2/Ds
is the Brownian time scale, Ds is the self-diffusion coefficient, and R is the sphere
radius. In the narrow region (B), the formation of nucleation clusters can be observed
(Fig. 4.22). These clusters eventually sediment and form a colloidal crystal. In this
regime, just across the fluid–crystal binodal, the contact potentials areWdep ≈ −5kT .
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Fig. 4.21 State diagram for
the q = 0.08
colloid–polymer mixture
investigated by De Hoog
et al. [81]. The different
regions A–D are indicated in
the plot. The PS
concentration is plotted on
the ordinate versus the
colloid concentration on the
abscissa. Reprinted with
permission from Ref. [81].
Copyright 2001 American
Physical Society (APS)

In region (C), centred at about 2 g/L (corresponding to Wdep ≈ −6.5kT ), aggregates
are formed from single particles, followed by growth of the clusters via subsequent
aggregation. These clusters are dense but not crystalline. The sediment formed is
dense but no crystallinity is observed. Above 3.3g/L in region (D), which corre-
sponds to Wdep < −10kT , aggregation is also observed; but here, the clusters have
a more ramified or elongated string-like shape. The sediment formed is dilute and
gets denser within a few days. Figure4.23 shows xy-scans after one or several days
of the different regions (A)–(D) indicated in Fig. 4.21.

4.4.2.2 Intermediate ColloidVolume Fractions
For intermediate colloid volume fractions (0.05 � φ � 0.4), gel formation is
observed at sufficiently high polymer concentrations. Here, we consider the sedimen-
tation of these gels under gravity. In [82–85] it was demonstrated that the settling
behaviours at low intermediate colloid volume fractions (0.05 � φ � 0.2) and at
high intermediate colloid volume fractions (0.2 � φ � 0.4) are distinctly different.
The drastic change in settling kinetics takes place over a fairly narrow concentration
range.

Low Intermediate Volloid Volume Fractions

As an example of gel collapse at low intermediate concentrations we consider the
work of Poon, Pirie and Pusey [86]. They studied a similar system to De Hoog
et al. [81]—this time with PMMA particles (R = 238nm) and PS polymers (Mp =
370kg/mol). We focus on their experiments carried out at a colloid volume fraction
φ ≈ 0.1. Just like De Hoog et al., they observed four regimes. A colloidal fluid was
observed at low concentration. Across the phase boundary, a narrow concentration
regime of equilibrium fluid–crystal phase behaviour was found.
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Fig. 4.22 CSLM images taken after mixing colloids and polymer at four concentrations [81] at a
colloid volume fraction of 2 vol %. Polymer concentrations were (a): 1.2g/L (region A), (b): 1.7g/L
(region B), (c): 2.1g/L (region C) and (d): 8.1g/L (region D). The image size represents 100 µm
by 100 µm. These images were taken at t ≈ 400τB. Reprinted with permission from Ref. [81].
Copyright 2001 APS

At higher concentrations, they observed a spinodal-like small-angle light scatter-
ing pattern in the region where De Hoog et al. observed aggregation. While at first
surprising, Rouw et al. [87] had already noted in the late 1980s that the computer
simulations of colloidal aggregation phenomena by Ziff [88] appear to show a long-
wavelength spinodal-like modulation of the aggregate density. This perception was
turned into a quantitative framework byCarpineti andGiglio [89], who proved exper-
imentally that colloidal aggregation exhibits the same features as spinodal decom-
position, be it that the scaled structure factor S̃(Q/Qm, t) is now described by

S̃(Q/Qm, t) = Qm(t)−d f̃ (Q/Qm), (4.45)

where f̃ (Q/Qm) is a time-independent scaling function. For ordinary spinodal
decomposition d = 3; while for aggregating systems, Eq. (4.45) holds if we take
d = df , where df is the fractal dimension of the aggregates. Poon et al. [86] showed
that the small-angle light scattering data of their depletion-induced aggregating sys-
tem are described by Eq. 4.45 with a value of d that depends on the polymer con-
centration, i.e., on the strength of the depletion interaction. With increasing strength
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Fig. 4.23 CSLM images of
PMMA colloid–PS polymer
mixtures taken at different
periods of time, as indicated
below each image. The
images show xy scans at
φ ≈ 0.02. From top to
bottom: regime D, polymer
concentration cp = 8.1g/L;
regime C, cp = 2.1g/L;
regime B, cp = 1.7g/L;
regime A, cp = 1.2g/L;
regime A, cp = 0g/L. The
particles have a radius of
approximately 600nm.
Reprinted with permission
from Ref. [81]. Copyright
2001 APS
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of the depletion interaction, the fractal dimension decreases from df = 3 (dense clus-
ters) to df = 1.7 (ramified clusters) (Fig. 4.24), which is in agreement with the visual
observations of De Hoog et al. [81].

For still higher polymer concentrations Poon et al. [86] observed the formation
of a transient gel. Such a particle gel is characterised by a rapid collapse of its
structure followed by a delay period where no significant sedimentation occurs. This
delay time can range from seconds to many months, depending upon the strength of
the gel.
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Fig. 4.24 Fractal dimension
df inside a gel of aggregated
PMMA spheres and PS
polymer chains (q = 0.08)
as a function of the estimated
depletion attraction at
contact. Data replotted from
Ref. [86]

Fig. 4.25 Sketch of a
gelation formed by arrested
spinodal phase separation. A
space-spanning network of
colloidal spheres is
aggregated through depletion
of nonadsorbing polymer
chains. Drawing inspired by
Verhaegh et al. [90]

Verhaegh et al. [90,91] studied transient gelation with a combination of small-
angle light scattering, light microscopy and confocal scanning laser microscopy in
a system of sterically stabilised silica spheres mixed with PDMS polymer chains
in cyclohexane at colloid volume fractions of φ ≈ 0.1. Early time small-angle light
scattering curves show a peak at Qm which shifts in time to smaller values and
increases slightly in intensity. This indicates the presence of a coarsening bicon-
tinuous structure (Fig. 4.25). Alternating dark and bright domains observed in light
microscopy confirm the existence of this bicontinuous network of colloid-rich and
colloid-poor domains. A slight coarsening of the domains was detected, along with
an increased contrast. After this initial stage, which only lasts a few seconds, the shift
in the light scattering peak is arrested. Also, the speckle fluctuations are arrested in
time, implying that the system now has a gel character. The above observations sug-
gest that gelation results from a spinodal gas–liquid (also termed fluid–fluid) phase
separation, which is arrested at some intermediate stage and leaves the system in
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Fig. 4.26 CSLM images of a mixture of fluorescent silica spheres (R = 115 nm) and PDMS
polymers (Rg = 23 nm) in cyclohexane. The images taken are mixtures with φ = 0.125, φp = 1.23
(85g/L PDMS) during gel lifetimes t = 230 s (a), 240s (b), 250s (c) and 260s (d). The vertical
bar corresponds to 50 µm. Reprinted with permission from Ref. [91]. Copyright 1999 Elsevier

a ‘frozen’ state of microphase separation [90,92,93]. Polymer depletion-mediated
gelation of conducting colloidal particles can significantly enhance the conductivity
due to interparticle electron tunneling [94,95].

From CSLM analysis [91], it appears that the internal structure of the particle
network becomes disrupted by the formation of fractures (Fig. 4.26). The number of
fractures increases with time, as is in agreement with an increase of scattered light
in the forward direction. This increase of the number of fractures weakens the gel
strength until the elastic modulus becomes so small that, in the end, the gel collapses
under gravity.

Using dark-field microscopy, Starrs et al. [82] studied this delayed sedimentation
in a colloid–polymer mixture of PMMA spheres and PS polymers in tetralin and
cis-decalin) with R = 186 nm and Rg = 17 nm, respectively (q ≈ 0.1). The time
evolution of the sedimentation height is shown in Fig. 4.27 for a colloid volume
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Fig.4.27 Left: Sedimentation profile of PMMA spheres (R = 186 nm; φ = 0.2) mixed with 5g/L
PSpolymers (Rg = 17nm) in a tetralin/cis-decalin solventmixture. Initial sample height is 24.5mm.
Right: Corresponding dark-field images of the structures observed during time evolution of the
transient gel. Reprinted with permission from Ref. [82]. Copyright 2002 IOP Publishing, Ltd

Fig. 4.28 Computer simulation snapshots (a–h) of the gel during sedimentation as a function
of diffusion time t̂ = R2/Ds for a gel with particle depletion attraction at contact of 5kT and
gravitational Peclet number Pe = (4π/3)R4Δρg/kT = 0.1 [96]. Image kindly provided by R.
Zia

fraction of 0.20 and PS concentration of 5g/L. Note the brightening of the sample
during the delay period from (i) to (ii). After a delay time of about 460min the gel
collapses.

Padmanabhan and Zia [96] studied the three stages of gel collapse by computer
simulation and obtained the results plotted in Fig. 4.28 for a particle interaction of 5
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(a) gel
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(b) gel
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(c) gel
collapse
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Fig. 4.29 The demixing process observed in a sample containing a colloid–polymer mixture at
high polymer concentrations for q < 0.3. The corresponding light scattering patterns are indicated
as well. a gel formation ‘birth’, b gel life-time ‘life’, c gel collapse ‘death’, d macroscopic phase
separation. Drawing inspired by Verhaegh et al. [90]

kT and gravitational Peclet number of 0.1. Here again, we clearly see three stages:
an induction period, fast collapse, and slow compaction.

The experimental results of Verhaegh et al. [91] suggest that it is possible to
distinguish four stages in the evolution of a transient gel: birth, life (during which
the gel ages), collapse, and finally macroscopic two-phase separation (Fig. 4.29).

The lifetime of the transient gel is determined by the strength of the depletion
interaction and the colloid concentration, and plays a role in many practical systems.
For example, in salad dressing, which is an oil-in-water emulsion, the depletion
flocculation of the oil droplets induced by the addition of a polysaccharide such as
xanthan leads to the formation of a particle network [97,98]. The yield stress of
this network (in the sense of food science) ‘stabilises’ the dressing, i.e., prevents
creaming. Buscall et al. [99] proposed a simple theory to rationalise collapse times
for the delayed sedimentation of weakly aggregated colloidal gels.
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Fig. 4.30 Sedimentation profile of PMMA spheres (R = 186 nm; φ = 0.35) mixed with 7g/L PS
polymers (Mp = 6.0 · 105 g/mol and Rg = 21 nm) dispersed in cis-decalin. Blue dotted curves:
stretched exponential fits to the slow sedimentation h(t) = [exp(t/τ )]ß with exponent ß = 0.12.
The quantity τ is characteristic time scale of the sedimentation process. The inset shows the double
logarithmic form of the main plot. Reprinted from Ref. [85] under the terms of CC-BY-3.0

High Intermediate Colloid Volume Fractions

Starrs et al. [82], Secchi et al. [84], andHarich et al. [85] all observed that at high inter-
mediate colloid volume fractions (0.2 � φ � 0.4) the settling behaviour is distinctly
different from that at low intermediate colloid volume fractions (0.05 � φ � 0.2).

In this case, the gels, after a quiescent period, compress smoothly without any
sign of the “catastrophic” collapse observed for the gels at lower colloid concen-
tration, which exhibit characteristic compression kinetics. The time evolution of the
gel height h follows a stretched exponential h(t) = exp(t/τ )ß, as is illustrated in
Fig. 4.30 from Harich et al. [85].

The gels at low intermediate concentrations are referred to as ‘collapsing gels’
based on their settling behaviour; and the gels at high intermediate concentrations
are referred to as ‘creeping gels’ [84] when in a system with a very small density
difference (Δρ = 0.063g/cm3) between the colloidal particles (casein micelles) and
the solvent (the aqueous solution).

For aqueous mixtures of casein micelles and poly(ethylene oxide) (PEO), Mah-
moudi and Stradner [100] presented a state diagram that includes various equilibrium
and nonequilibrium phase states that were discussed in Fig. 4.31. The phase states
they observed are homogeneous fluid, fluid–fluid phase separation, rapidly collapsing
gels, delayed collapsing gels, and stable gels.

4.4.2.3 High ColloidVolume Fractions
We now focus on colloid volume fractions above the fluid–crystal phase transition.
As discussed in Sect. 3.2.3, Pusey and van Megen [14] observed that, above a vol-
ume fraction of about 0.58, suspensions of hard-sphere like PMMA particles do not
crystallise over several months. The explanation for this phenomenon is that parti-
cles become increasingly tightly caged by their neighbours as the volume fraction
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Fig. 4.31 Redrawn state diagram of mixtures of casein micelles (in volume fractions along the
abscissa) and poly(ethylene oxide) (normalised by the overlap concentration along the ordinate)
in aqueous 0.1 M NaCl solutions. The size ratio q ≈ 0.31. Symbols: (◦) homogeneous fluid, (+)
fluid–fluid phase separation, (�) rapidly collapsing gels, (	) delayed collapsing gels, and (�) stable
gels; dotted curve: experimental phase boundary. Data replotted from Ref. [100]

increases. For sufficiently high volume fractions, this caging reaches such a degree
that the particles are unable to move far enough to nucleate crystallisation and the
system is termed glassy. Mode coupling theory (MCT) [101] supports the existence
of such a glass transition. Also further experimental results on hard-sphere colloidal
glasses [102] have been successfully interpreted with MCT [103].

Ilett et al. [15] observed that adding 1–2g/L PS (Mp = 390 kg/mol, Rg = 18 nm)
to a concentrated (φ ≈ 0.6) suspension of sterically stabilised PMMA colloids (R =
217 nm and hence, q = 0.08) leads to crystallisation of an initially glassy suspension.
At higher polymer concentrations (above 3g/L) the system again becomes kinetically
arrested. Systems composed of hard spheres with short-range attraction display two
glass states: one referred to as ‘repulsive glass’ (no or very weak attraction), and
one referred to as ‘attractive glass’ (strong attraction), with a metastable fluid (weak
attraction) in between. These two types of glasses were subsequently predicted by
MCT [104–106] and confirmed experimentally by Pham et al. [107] and Eckert and
Bartsch [108].

A simple physical picture of the repulsive and attractive glass and the metastable
fluid was given by Poon [109] and by Pusey [110], and is depicted in Fig. 4.32.
The first interpretation of the attractive glass given in Fig. 4.32 has been refined by
Zaccarelli and Poon [111] and Royall, Williams and Tanaka [112]. Zaccarelli and
Poon [111] studied the interplay between bonding and caging by examining the long-
time dependence of the single particle mean-squared displacement using molecular
dynamics simulations. From this, they found that each particle is indeed trapped
by bonds with a particular set of neighbours. However, these bonds break after a
certain time and bonds reform with a different set of neighbours. Royall, Williams
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Fig. 4.32 The influence of
(short-ranged) attraction on
the glassy state. a Repulsive
glass. This corresponds to
the situation where
attractions are absent or very
weak. There is significant
free volume in the cage, but
the particle cannot escape
this cage. b Metastable fluid
that may crystallise. Adding
a weak attraction leads to
particles clustering in the
cage. Now, holes open up
and particles can escape.
c Attractive glass. Upon
further increasing the
attraction an attractive glass
is formed. The attraction is
now so strong that particles
are tightly bound, so a cage
is again formed

increasing
attraction

(a)

(b)

(c)

and Tanaka [112] see hints from both experiments and simulations of the attractive
glass transition, but it is ultimately superseded by a dense gel.

The observed overall state diagram is shown in Fig. 4.33. It is intriguing and
challenging that the depletion force, which allows independent control of the range
and strength of the attraction, opens up new ways of structuring soft matter. It can
lead to phase transitions as well as to long-lived metastable states.

Fig. 4.33 Observed state
diagram of a
colloid–polymer mixture for
small q

Fluid + Crystal

Aggregation

Gel

Dense Gel
Attractive Glass
/ Dense Gel

Repulsive
Glass

Crystal
Fluid



182 4 Phase Separation and Long-Lived Metastable…

References

1. Fleer, G.J., Cohen Stuart, M.A., Scheutjens, J.M.H.M., Cosgrove, T., Vincent, B.: Polymers
at Interfaces. Chapman and Hall, New York (1993)

2. Pelssers, E.G.M., Cohen Stuart, M.A., Fleer, G.J.: J. Chem. Soc. Faraday Trans. 86, 1355
(1990)

3. Hoogendam,C.W., Peters, J.C.W., Tuinier, R., deKeizer,A., CohenStuart,M.A., Bijsterbosch,
B.H.: J. Colloid Interface Sci. 207, 309 (1998)

4. Golz, P.M.: Dynamics of colloids in polymer solutions. Ph.D. thesis, University of Edinburgh
(1999)

5. Gögelein, C., Nägele, G., Buitenhuis, J., Tuinier, R., Dhont, J.K.G.: J. Chem. Phys. 130,
204905 (2009)

6. McFarlane, N.L., Wagner, N.J., Kaler, E.W., Lynch, M.L.: Langmuir 26, 13823 (2010)
7. McFarlane, N.L., Wagner, N.J., Kaler, E.W., Lynch, M.L.: Langmuir 26, 6262 (2010)
8. Wijmans, C.M., Zhulina, E.B., Fleer, G.J.: Macromolecules 27, 3238 (1994)
9. Van Helden, A.K., Jansen, J.W., Vrij, A.: J. Colloid Interface Sci. 81, 354 (1981)

10. de Kruif, C.G., Rouw, P.W., Jansen, J.W., Vrij, A.: J. Phys. Colloques 46, C3 (1985)
11. de Kruif, C.G., Briels, R.P., May, A.: Langmuir 4, 668 (1988)
12. Antl, L., Goodwin, J.W., Hill, R.D., Ottewill, R.H., Owens, S.M., Papworth, S., Waters, J.A.:

Colloids Surf. 17, 67 (1986)
13. Bartlett, P., Ottewill, R.H., Pusey, P.N.: J. Chem. Phys. 93, 1299 (1990)
14. Pusey, P.N., Van Megen, W.: Nature 320, 340 (1986)
15. Ilett, S.M., Orrock, A., Poon, W.C.K., Pusey, P.N.: Phys. Rev. E 51, 1344 (1995)
16. Poon, W.C.K., Phys, J.: Condens. Matter 14, R859 (2002)
17. Castello, B.A.L., Luckham, P.F., Tadros, T.F.: Langmuir 8, 464 (1992)
18. Royall, C.P., Charbonneau, P., Dijkstra, M., Russo, J., Smallenburg, F., Speck, T., Valeriani,

C.: (2023). https://doi.org/10.48550/arXiv.2305.02452
19. Berry, C.G.: J. Phys. Chem. 44, 1550 (1966)
20. Starrs, L., Bartlett, P.: Faraday Disc. 51, 123 (2003)
21. Tuinier, R., Smith, P.A., Poon, W.C.K., Egelhaaf, S.U., Aarts, D.G.A.L., Lekkerkerker,

H.N.W., Fleer, G.J.: Europhys. Lett. 82, 68002 (2008)
22. Lekkerkerker, H.N.W., Poon, W.C.K., Pusey, P.N., Stroobants, A., Warren, P.B.: Europhys.

Lett. 20, 559 (1992)
23. Tuinier, R., Dhont, J.K.G., de Kruif, C.G.: Langmuir 16, 1497 (2000)
24. Ramakrishnan, S., Fuchs,M., Schweizer, K.S., Zukoski, C.F.: J. Chem. Phys. 116, 2201 (2002)
25. Lynch, I., Cornen, S., Piculell, L.: J. Phys. Chem. B 108, 5443 (2004)
26. Hennequin, Y., Evens, M., Quezada Angulo, C.M., Van Duijneveldt, J.S.: J. Chem. Phys. 123,

054906 (2005)
27. Zhang, Z.X., van Duijneveldt, J.S.: Langmuir 22, 63 (2006)
28. Tejero, C.F., Daanoun, A., Lekkerkerker, H.N.W., Baus, M.: Phys. Rev. Lett. 73, 752 (1994)
29. Fleer, G.J., Tuinier, R.: Physica A 379, 52 (2007)
30. Moussaïd, A., Poon, W.C.K., Pusey, P.N., Soliva, M.F.: Phys. Rev. Lett. 82, 225 (1999)
31. Thomson, J.A., Schurtenberger, P., Thurston, G.M., Benedek, G.B.: Proc. Natl. Acad. Sci. 84,

7079 (1987)
32. Ten Wolde, P.R., Frenkel, D.: Science 277, 1975 (1997)
33. Haas, C., Drenth, J.: J. Cryst. Growth 196, 388 (1999)
34. Auer, S., Frenkel, D.: Nature 409, 1020 (2001)
35. Sear, R.: J. Chem. Phys. 114, 3170 (2001)
36. Fortini, A., Sanz, E., Dijkstra, M.: Phys. Rev. E 78, 041402 (2008)
37. Zaccarelli, E.: J. Phys.: Condens. Matter 19, 323101 (2007)
38. Leal-Calderon, F., Bibette, J., Biais, J.: Europhys. Lett. 23, 653 (1993)
39. Faers, M.A., Luckham, P.F.: Langmuir 13, 2922 (1997)
40. Tuinier, R., Rieger, J., de Kruif, C.G.: Adv. Colloid Interface Sci. 103, 1 (2003)

https://doi.org/10.48550/arXiv.2305.02452


References 183

41. Fleer, G.J., Tuinier, R.: Adv. Colloid Interface Sci. 143, 1 (2008)
42. Aarts, D.G.A.L., Tuinier, R., Lekkerkerker, H.N.W., Phys, J.: Condens.Matter 14, 7551 (2002)
43. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, New York (1953)
44. Schäfer, L.: Excluded Volume Effects in Polymer Solutions (Springer, Heidelberg, 1999)
45. DeGennes, P.G.: ScalingConcepts in Polymer Physics. CornellUniversity Press, Ithaca (1979)
46. Fleer, G.J., Skvortsov, A.M., Tuinier, R.: Macromol. Theory Sim. 16, 531 (2007)
47. Edwards, S.F.: Proc. Phys. Soc. 85, 613 (1965)
48. Edwards, S.F., Freed, K.F.: J. Phys. A 2, 145 (1969)
49. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Clarendon Press, Oxford (1986)
50. Fleer, G.J., Skvortsov, A.M., Tuinier, R.: Macromolecules 36, 7857 (2003)
51. Surve, M., Pryamitsyn, V., Ganesan, V.: J. Chem. Phys. 122, 154901 (2005)
52. Joanny, J.F., Leibler, L., De Gennes, P.G.: J. Polymer Sci.: Polym. Phys. 17, 1073 (1979)
53. Tuinier, R., Vliegenthart, G.A., Lekkerkerker, H.N.W.: J. Chem. Phys. 113, 10768 (2000)
54. Bolhuis, P.G., Louis, A.A., Hansen, J.P., Meijer, E.J.: J. Chem. Phys. 114, 4296 (2001)
55. Eisenriegler, E.: J. Chem. Phys. 79, 1052 (1983)
56. Hanke, A., Eisenriegler, E., Dietrich, S.: Phys. Rev. E 59, 6853 (1999)
57. Yamakawa, H.: Modern Theory of Polymer Solutions. Harper and Row, New York (1971)
58. Fortini, A., Bolhuis, P.G., Dijkstra, M.: J. Chem. Phys. 128, 024904 (2008)
59. Bolhuis, P.G., Louis, A.A., Hansen, J.P.: Phys. Rev. Lett. 89, 128302 (2002)
60. Fleer, G.J., Tuinier, R.: Phys. Rev. E 76, 041802 (2007)
61. Gögelein, C., Tuinier, R.: Eur. Phys. J. E. 27, 171 (2008)
62. Tuinier, R., de Kruif, C.G.: J. Chem. Phys. 110, 9296 (1999)
63. Bolhuis, P.G., Meijer, E.J., Louis, A.A.: Phys. Rev. Lett. 90, 068304 (2003)
64. Mutch, K.J., van Duijneveldt, J.S., Eastoe, J., Grillo, I., Heenan, R.K.: Langmuir 25, 3944

(2009)
65. Mutch, K.J., van Duijneveldt, J.S., Eastoe, J., Grillo, I., Heenan, R.K.: Langmuir 26, 1630

(2010)
66. Poon, W.C.K.: Curr. Opin. Colloid Interface Sci. 3, 593 (1998)
67. Anderson, V.J., Lekkerkerker, H.N.W.: Nature 416, 811 (2002)
68. Cahn, J.W., Hillard, J.E.: J. Chem. Phys. 28, 258 (1958)
69. Cahn, J.W., Hillard, J.E.: J. Chem. Phys. 31, 688 (1959)
70. Cahn, J.W.: Acta Metall. 9, 795 (1961)
71. Cahn, J.W.: J. Chem. Phys. 42, 93 (1965)
72. Dhont, J.K.G.: An Introduction to Dynamics of Colloids. Elsevier, Amsterdam (1996)
73. Verhaegh,N.A.M., Lekkerkerker, H.N.W.: The physics of complex systems. In:Mallamace, F.,

Stanley, H. (eds.), Proceedings of the International School of Physics “Enrico Fermi” Course
CXXXIV. IOS Press, Amsterdam (1997)

74. Verhaegh, N.A.M., van Duijneveldt, J.S., Dhont, J.K.G., Lekkerkerker, H.N.W.: Physica A
230, 409 (1996)

75. Siggia, E.D.: Phys. Rev. A 20, 595 (1979)
76. Aarts, D.G.A.L., Dullens, R.P.A., Lekkerkerker, H.N.W.: New J. Phys. 7, 40 (2005)
77. Poon, W.C.K., Renth, F., Evans, R.M.L., Fairhurst, D.J., Cates, M.E., Pusey, P.N.: Phys. Rev.

Lett. 83, 1239 (1999)
78. Renth, F., Poon, W.C.K., Evans, R.M.L.: Phys. Rev. E 64, 031402 (2001)
79. Evans, R.M.L., Poon, W.C.K., Renth, F.: Phys. Rev. E 64, 031403 (2001)
80. Smith, P.A., Egelhaaf, S.U., Poon, W.C.K.: Personal Communication. Springer (2008)
81. de Hoog, E.H.A., Kegel, W.K., van Blaaderen, A., Lekkerkerker, H.N.W.: Phys. Rev. E 64,

021497 (2001)
82. Starrs, L., Poon, W.C.K., Hibberd, D.J., Robins, M.M.: J. Phys.: Condens. Matter 14, 2485

(2002)
83. Huh, J.Y., Lynch, M.L., Furst, E.M.: Phys. Rev. E 76, 051409 (2007)
84. Secchi, E., Buzzaccaro, S., Piazza, R.: Soft Matter 10, 5296 (2014)
85. Harich, R., Blythe, T.W., Hermes, M., Zaccarelli, E., Sederman, A.J., Gladden, L.F., Poon,

W.C.K.: Soft Matter 12, 4300 (2016)



184 4 Phase Separation and Long-Lived Metastable…

86. Poon, W.C.K., Pirie, A.D., Pusey, P.N.: Faraday Disc. 101, 65 (1995)
87. Rouw, P.W., Woutersen, A.T.J.M., Ackerson, B.J., de Kruif, C.G.: Physica A 56, 876 (1989)
88. Ziff, R.M.: In: Family, F., Landau, D.P. (eds.) Kinetics of Aggregation and Gelation, p. 191.

Elsevier, Amsterdam (1984)
89. Carpineti, M., Giglio, M.: Phys. Rev. Lett. 68, 3327 (1992)
90. Verhaegh, N.A.M., Asnaghi, D., Lekkerkerker, H.N.W., Giglio, M., Cipelletti, L.: Physica A

242, 104 (1997)
91. Verhaegh, N.A.M., Asnaghi, D., Lekkerkerker, H.N.W.: Physica A 264, 64 (1999)
92. Miller, C.A., Miller, D.D.: Colloids Surf. 16, 219 (1985)
93. Lu, P.J., Zaccarelli, E., Ciulla, F., Schofield, A., Sciortino, F., Weitz, D.A.: Nature 453, 499

(2008)
94. Nigro, B., Grimaldi, C., Ryser, P., Varrato, F., Foffi, G., Lu, P.J.: Phys. Rev. E 87, 062312

(2013)
95. Guillemeney, L., Lermusiaux, L., Landaburu, G.,Wagnon, B., Abécassis, B.: Commun. Chem.

5, 7 (2022)
96. Padmanabhan, P., Zia, R.: Soft Matter 14, 3265 (2018)
97. Parker, A., Gunning, P.A., Ng, K., Robbins, M.M.: Food Hydrocolloids 9, 333 (1995)
98. Tuinier, R., de Kruif, C.G.: J. Colloid Interface Sci. 218, 201 (1999)
99. Buscall, R., Choudhury, T.H., Faers, M.A., Goodwin, J.W., Luckham, P.A., Partridge, S.J.:

Soft Matter 5, 1345 (2009)
100. Mahmoudi, N., Stradner, A.: J. Phys. Chem. B 119, 15522 (2015)
101. Bengtzelius, U., Götze, W., Sjölander, A.: J. Phys. C 17, 5915 (1984)
102. Pusey, P.N., van Megen, W.: Phys. Rev. Lett. 59, 2083 (1987)
103. Götze, W.: J. Phys.: Condens. Matter 11, A1 (1999)
104. Bergenholtz, J., Fuchs, M.: Phys. Rev. E 59, 5706 (1999)
105. Fabbian, L., Götze, W., Sciortino, F., Tartaglia, P., Thiery, F.: Phys. Rev. E 59, R1347 (1999)
106. Fabbian, L., Latz, A., Schilling, R., Sciortino, F., Tartaglia, P., Theis, C.: Phys. Rev. E 60, 5768

(1999)
107. Pham, K.N., Puertas, A.M., Bergenholtz, J., Egelhaaf, S.U., Moussaïd, A., Pusey, P.N.,

Schofield, A.B., Cates, M.E., Fuchs, M., Poon, W.C.K.: Science 296, 104 (2002)
108. Eckert, T., Bartsch, E.: Phys. Rev. Lett. 89, 125701 (2002)
109. Poon, W.C.K.: Mater. Res. Bull. 96 (2004)
110. Pusey, P.N.: Lecture at the 7th Liquid Matter Conference (Lund, Sweden, 27 June–1 July

2008)
111. Zaccarelli, E., Poon, W.C.K.: Proc. Natl. Acad. Sci. 106, 15203 (2009)
112. Royall, C.P., Williams, S.R., Tanaka, H.: J. Chem. Phys. 148, 044501 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


5The Interface inDemixed
Colloid–PolymerDispersions

In Chaps. 3 and 4, the focus was on theory and experiments related to the phase
behaviour of mixtures containing colloidal spheres and nonadsorbing polymers. As
we have seen, when the polymer coils are sufficiently large relative to the colloidal
spheres, a colloidal gas–liquid (fluid–fluid) phase separation may occur. The two
phases that appear differ in composition. One phase is a dilute colloidal fluid (a
colloidal ‘gas’) dispersed in a concentrated polymer solution. This phase coexists
with a concentrated colloidal fluid (a colloidal ‘liquid’) dispersed in a dilute polymer
solution. Besides the phase behaviour, the properties of the interface between such
coexisting phases have gained interest [1–10]. The interface can be characterised by
a number of quantities, such as the interfacial tension and the interfacial thickness.
Perrin’s atom–colloid analogy suggests similarities with the molecular gas–liquid
interface. However, as we will see, there are also differences driven by the vastly
different length scales of the systems.

As discussed in Sect. 1.3.2, we expect the interfacial tension in demixed colloid–
polymer systems to be ultra low. Its magnitude can be estimated from [11]

γ ≈ kT

d2
, (5.1)

where d is the particle diameter. For simple molecular systems, where d is less than
roughly a nanometer, this yields values for the surface tension γ of about 10–100
mN/m [12], which agrees well with experimental results. For the colloidal domain,
interfacial tensions are predicted to be orders of magnitude smaller; for instance, for
particles of d = 100 nm an interfacial tension of about 0.4 µN/m is predicted. As
we shall see, this is indeed the order of magnitude of the tension of the colloidal
gas–liquid interface that is found in experiments and theory.

In Sect. 5.1, we focus on experiments that have been conducted to measure the
interfacial tension. Subsequently, a theoretical approach is presented in Sect. 5.2 that
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enables one to predict the interfacial tension. This is accompanied by a quantifica-
tion of the thickness of the interface, which will be compared with experiments. In
Sect. 5.3, we show that the ultra-low tension gives rise to an interfacial roughness due
to thermal fluctuations, which can be observed visually. The implications of these
aspects for the hydrodynamics of droplet coalescence are also discussed.

5.1 Interfacial TensionMeasurements

Although various approaches to determine interfacial tensions exist, such as the
Wilhelmy plate, theDuNoüy ring or the pendant drop techniques [13], these common
methods generally do not allow (accurate) measurement of the ultra-low tensions
occurring in demixed colloid–polymer mixtures. Here, we highlight two methods
that have been used successfully in the past to measure these interfacial tensions: the
spinning drop and the interfacial profile methods.

5.1.1 The Spinning DropMethod

In the spinning drop method [14,15], a droplet of the phase with the lowest density
(usually the colloidal gas phase) is suspended in the phase with the highest density
(usually the colloidal liquid phase) in a tube (Fig. 5.1). When spinning this tube
around its axis, the elongation of this droplet induced by centrifugal forces is balanced
by interfacial forces. As shown below, it is possible to quantify the interfacial tension
using this force balance from an analysis of the droplet deformation.

When the length L of the droplet is significantly larger than its diameter D,
the droplet geometry approaches the so-called Vonnegut limit [14]. In this case,
the balance between centrifugal and interfacial forces can be quantified as follows:
consider two points (C) and (D) located at a distance D/2 from the axis of rotation, as

Fig. 5.1 Measurement of the
tension of the colloidal
gas–liquid interface using
spinning drop measurements.
A droplet of the colloidal gas
phase with the indicated
dimensions is dispersed in
the colloidal liquid phase.
The system is composed of
stearyl silica spheres in
cyclohexane (d = 26 nm)
with poly(dimethylsiloxane)
(q ≈ 1.1). Parts reproduced
with permission from
Ref. [16]. Copyright 2008
Springer

2 mm

L

(A) (B)

(D)(C)

ω

0.5 mm

colloidal liquid phase

colloidal gas phase
a D
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depicted in Fig. 5.1. Formechanical equilibrium, the pressure at these twopointsmust
be equal: P(C) = P(D). These pressures P(C) and P(D) are related to the pressures at
points (A) and (B) that lie on the axis of rotation. The pressure at (C) is the pressure at
(A) plus a contribution by the centrifugal pressure, P(C) = P(A) + 1

8ρLω2D2, where
ω is the angular velocity and ρL is the mass density of the liquid phase. Similarly,
the pressure at point (D) is the pressure at (B) plus the centrifugal pressureminus the
Laplace pressure due to the cylindrically shaped interface at this position; as such,
P(D) = P(B) + 1

8ρGω2D2 − 2γ
D , where ρG is the mass density of the colloidal gas

phase. In turn, the pressure at point (B) is the pressure at point (A) plus the Laplace
pressure due to the curvature of the spherically shaped end-cap of the droplet, which
has a radius a, so that P(B) = P(A) + 2γ

a . It can be shown that, in the Vonnegut limit,
a = 1

3D (see, for instance, Chap.1 of Ref. [13]). Combining these ingredients, we
find [14,15]

γ = Δρω2D3

32
, (5.2)

where the mass density difference Δρ ≡ ρL − ρG. This Vonnegut limit is accurate
when L � 4D [14]; a more general expression by Princen et al. [15] is available that
also works for less elongated droplets, for which a is a function of the droplet aspect
ratio L/D.

Exercise 5.1. Derive Eq. (5.2) based on the conditions for mechanical equi-
librium, centrifugal pressure and Laplace pressure, as outlined in the text.

The spinning drop method was applied to measure the tension of colloidal gas–
liquid interfaces by Vliegenthart and Lekkerkerker [17] in 1997. Two years later,
more systematic experiments were carried out by deHoog and Lekkerkerker [18] and
Chen et al. [3]. De Hoog and Lekkerkerker studied a system composed of sterically
stabilised silica spheres (with diameter d = 26 nm ± 19%) dispersed in cyclohexane
and mixed with poly(dimethylsiloxane) (PDMS, Rg = 14nm), and found values
between approximately 3.0 and 4.5 µN/m depending on the colloid and polymer
volume fractions (Table5.1). Chen et al. studied a similar systemwith slightly smaller
silica spheres (d = 20.2 nm ± 8%) mixed with PDMS in cyclohexane, especially
focused on a wide range of polymer concentrations. They found values ranging from
about 0.6 to 17 µN/m, close to and far from the critical point,, respectively. These
values are remarkably close to those predicted by the crude estimate of Eq. (5.1)
(6 and 10µN/m, respectively), provided the system is sufficiently far from the critical
point.
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Table 5.1 Measurements of the colloidal gas–liquid interfacial tension by de Hoog and
Lekkerkerker [18] for a system comprising sterically stabilised silica spheres with d = 26 nm ±
19% dispersed in cyclohexane with poly(dimethylsiloxane) (Rg = 14nm; q = 1.1). Note that φ and
φp indicate the overall colloid volume fraction and relative polymer concentration cp/c∗

p , respec-
tively

sample φ φp Δρ (kg/m3) γ (µN/m)

A 0.246 1.016 175 3.0 ± 0.7

B 0.264 1.132 240 3.8 ± 0.6

C 0.268 1.189 256 3.2 ± 0.2

D 0.283 1.133 268 4.2 ± 0.4

E 0.301 1.143 291 4.5 ± 0.5

Exercise 5.2.Based on Eq. (5.2), show that interfacial tensions of the order of
micronewtons per metre are indeed experimentally measurable for droplets
with a diameter of the order of hundreds of micrometres and ω of the order
of 100 rad/s.

5.1.2 TheMeniscus Method

Another method used to measure ultra-low interfacial tensions is analysing the shape
of the interface, knownas ameniscus, near a vertical surface. Far from this surface, the
interface is macroscopically horizontal as gravity dominates. Near the wall, however,
interfacial effects start to dominate as the interfacemust meet the wall under a certain
contact angle, set by the interfacial tension between the two bulk phases and between
each of the bulk phases and the surface. As a result, the interface deforms over a
certain length scale (Fig. 5.2). This length scale is known as the capillary length
and quantifies the balance of gravitational and interfacial forces; it can be found
by analysing the shape of the meniscus. Aarts et al. [19] presented the first such
measurements for a colloidal gas–liquid interface in the early 2000s. The capillary
length is defined as

�c ≡
√

γ

Δρg
, (5.3)

where Δρ again is the mass density difference between the two phases and g is the
gravitational acceleration.

The balance between the gravitational pressure on one hand and the Laplace pres-
sure due to the deformation of the interface on the other hand can be mathematically
expressed as

− Δρgz(y) = γ

Rc(y)
, (5.4)
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where z(y) is the height of the interface at a vertical distance y from the wall and
Rc(y) is the radius of curvature at that position. Here, we define z(y) such that it is
zero far from the wall (y → ∞), where the interface is flat. The minus sign on the
left-hand side signifies that the gravitational contribution to pressure decreases with
increasing height.

From geometrical arguments, it can be shown that the radius of curvature can be
expressed as

1

Rc(y)
= −z′′(y)

[1 + z′(y)2]3/2 , (5.5)

where z′(y) and z′′(y) represent the first and second derivatives of z(y) with respect
to y. The minus sign on the right-hand side is due to the convention that an interface
that is curved towards the dense bottom phase has a positive radius of curvature.
Combining with Eqs. (5.3) and (5.4) gives

z(y) = �2c
z′′(y)

[1 + z′(y)2]3/2 , (5.6)

which can be integrated once to yield

1

2
z2 = −�2c

(
1√

1 + z′2
− 1

)
, (5.7)

where the term −1 between the parentheses is an integration constant that follows
from the boundary condition that z′(y → ∞) = 0. In turn, this can be rearranged to
give

dz

dy
= −

√√√√√
⎛
⎝ 1

1 − z2

2�2c

⎞
⎠

2

− 1. (5.8)

Unfortunately, this differential equation needs to be solved numerically for z(y).
However, its inverse,

dy

dz
= −

⎡
⎢⎣

⎛
⎝ 1

1 − z2

2�2c

⎞
⎠

2

− 1

⎤
⎥⎦

−1/2

, (5.9)

can be solved analytically. The result is [20]:

y(z)

�c
= acosh

(
2�c
z

)
− acosh

(
2�c
h

)
−

√
4 − z2

�2c
+

√
4 − h2

�2c
. (5.10)
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Fig. 5.2 Measurement of the tension of a colloidal gas–liquid interface through analysis of the
meniscus shape near a vertical wall. a Macroscopic observation of a sample with a width of 1cm;
bmicrograph of an area of 0.706mm × 0.528mm; c interfacial profiles fitted to Eq. (5.10). Repro-
duced with permission from Ref. [19]. Copyright 2003 IOP Publishing, Ltd. [19]

Here, h = z(y = 0) is the contact height (i.e., the elevation of the interface at the
wall), which is given by h2 = 2�2c(1 − sin θ), where θ is the contact angle.

The physical interpretation of the capillary length �c becomes clearer if one
considers the shape of the profile somewhat away from the wall, where the slope
|z′(y)| 	 1. Then Eq. (5.5) may be approximated as 1/Rc(y) = −z′′(y), and Eq.
(5.6) takes the form z′′(y) = z/�2c . As a result, z(y) can now explicitly be approxi-
mated as

z(y) = z0 exp(−y/�c), (5.11)

where z0 is a numerical pre-factor. Thus, it follows that the capillary length can be
seen as a transverse (lateral) correlation length.

Exercise 5.3. Make a plot of Eqs. (5.10) and (5.11) for a contact angle of
θ = 0◦. What is the y/�c-range of validity of Eq. (5.11)? Estimate the value
of z0. How is the validity of the approximation affected if the contact angle
is increased towards 90◦?

As we have seen, γ is quite small for colloidal systems; as such, �c is typically a
few orders of magnitude smaller than for molecular systems. The consequence is that
perturbations of the interface decay over a short distance, which makes the interface
seem flat even close to a wall, as shown in Fig. 5.2a.

However, on a scale of tens ofmicrometres themeniscus is still present (Fig. 5.2b).
Using microscopic observations on an appropriate model system, Aarts et al. [19]
were able to apply this approach for the first time on a demixed colloid–polymer
system. The system was the same as that described for the spinning drop method,
composed of sterically stabilised silica spheres (d = 26 nm ± 19%) dispersed in
cyclohexane, to which PDMS with Rg = 14 nm was added. Their fits of the experi-
mentally observed menisci are shown in Fig. 5.2c and the results are summarised in
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Table 5.2 Measurements of the colloidal gas–liquid interfacial tension by Aarts et al. [19] for a
system comprising sterically stabilised silica spheres with d = 26 nm ± 19% dispersed in cyclo-
hexane with poly(dimethylsiloxane) (Rg = 14nm; q = 1.1). The state points I–IV correspond to
those in Fig. 5.2

Sample φ φp Δρ (kg/m3) �c (µm) γ (µN/m)

I 0.254 1.94 320 32.9 3.38

II 0.217 1.66 256 26.5 1.76

III 0.208 1.59 233 16.0 0.58

IV 0.197 1.50 197 – –

Table5.2, showing tensions that are approximately the same as those obtained via
the spinning drop method.

5.2 Prediction of Interfacial Properties Using FreeVolume
Theory

In this section, we will focus on predicting properties of colloidal gas–liquid inter-
faces based on (G)FVT; in particular, we will treat the interfacial tension and inter-
facial width. It should be stressed that other useful approaches, such as density
functional theory (DFT) [21–23], provide additional detailed microscopic informa-
tion. Given the scope of the previous chapters, here we focus mainly on FVT and its
extensions. We first discuss the interfacial tension and, subsequently, the interfacial
width. Predictions of both these quantities are compared to experiments.

5.2.1 Interfacial Tension

It is possible to extend free volume theory, which usually focuses on the bulk phase
behaviour, in such a way that it predicts some properties of interfaces too. This can
be done by supplementing the bulk free energy by an additional interfacial term that
is proportional to gradients in concentration. This approach was pioneered by van
der Waals for molecular systems as early as 1893 [24]. In 2004, Aarts et al. [25]
applied the van der Waals approach to FVT for describing the colloidal gas–liquid
interface. Here, we will not go into significant theoretical detail; instead, the focus
will be on the general principle. For a translation of van der Waals’ original work,
see Ref. [26]; for a modern account of van derWaals’ theory, see Chap.3 of the book
of Rowlinson and Widom [11].

The van der Waals approach starts by defining a function w(φ), which expresses
the variation of the free energy per unit volume in the direction perpendicular to the
interface, as a function of the local colloid volume fraction φ(z). It is convenient
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to work with a dimensionless version of this function, w̃(φ) = wv0/(kT ), which is
defined as [11,24]

w̃(φ) = Ω̃(φ) − φμ̃coex + Π̃coex, (5.12)

with Ω̃ = Ωv0/(kT V ) a dimensionless version of the semi-grand potential com-
mon in (G)FVT. Additionally, μ̃coex = μ/kT is the colloid chemical potential and
Π̃coex = Πv0/(kT ) is the osmotic pressure under the conditions of the two-phase
coexistence; these should be computed beforehand using the phase diagram. This
definition ensures that w̃(φ) = 0 if φ equals either of the two coexisting colloid
volume fractions, and that it is larger than zero otherwise.

Van der Waals showed that, following this approach, the interfacial tension may
be calculated immediately: prior knowledge of the volume fraction profiles φ(z) is
not needed. The interfacial tension can be calculated from w̃(φ) according to

γ = 2

(
6

π

)3/2 kT

d2

∫ φl

φg

√
m̃w̃(φ)dφ, (5.13)

where φg and φl are the coexisting colloid volume fractions of the colloidal gas and
liquid phases, respectively. Notice that the prefactor contains the term kT /d2, which
was the simple estimation for the magnitude of the interfacial tension introduced in
Eq. (5.1). The integral contains a coefficient m̃, which dictates how much the system
(dis)likes deviations from the bulk composition and which is related to the interac-
tions between the colloids. (For simplicity, we use the dimensionless m̃, defined as
m̃ = m/(kT d5)wherem is the dimensionful quantity.) Effectively, m̃ quantifies how
particles are affected by being inside a concentration gradient at an interface, having
fewer interactions on one side than on the other. Mathematically, m̃ is related to the
direct correlation function c(̃r), which quantifies the direct interactions between two
colloidal spheres in the Ornstein–Zernike equation (i.e., excluding the influence of
a third colloid), and is related to the probability of finding two particles at a certain
distance. The parameter m̃ is the second moment of this direct correlation function:

m̃ = π

3

∫ ∞

0
c(̃r )̃r4d̃r . (5.14)

Here, r̃ ≡ r/d is the normalised centre-to-centre distance between two colloidal
spheres.

In the case of long-ranged interactions, which are typical for colloidal gas–liquid
coexistence, the mean-spherical approximation can be accurate [25,27,28], which
entails c(̃r) = −W (̃r)/kT for r̃ ≥ 1, where the depletion pair potential W (̃r) reads

W (̃r)

kT
= −

∫ φR
d

0
dφR

d
′
(

∂Π̃R
d

∂φR
d

′

)
Voverlap

vd
, (5.15)
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Fig.5.3 Tension of the colloidal gas–liquid interface as calculated using (G)FVT for penetrable hard
spheres, polymers inΘ-solvent and polymers in good solvent (q = 1.1), compared tomeasurements
on a system of stearyl silica spheres in cyclohexane (d = 26 nm)mixedwith poly(dimethylsiloxane)
(points) by Aarts et al. [19]

where Voverlap/vd is the overlap volume of depletion zones on two spheres normalised
by the volume of the depletants. It is given by

Voverlap
vd

= q−3(1 + q∗ − r̃)2
(
1 + q∗ + r̃

2

)
, (5.16)

for 1 ≤ r̃ ≤ 1 + q∗ (it is zero otherwise). The parameter q∗ = 2δs/d denotes the
actual size of the depletion zones under the conditions at hand, whereas q = 2Rg/d
has its usual meaning.

With these ingredients, the interfacial tension may be computed for the various
(G)FVT flavours that have been discussed in the preceding chapters, i.e., the pen-
etrable hard sphere (PHS) model and the Θ- and good-solvent conditions for the
interacting polymers model. Figure5.3 shows the interfacial tension as a function of
the colloidal liquid–gas volume fraction difference Δφ = φl − φg. The quantity Δφ
is a useful measure to quantify how strongly a system is phase separated, i.e., how
far it is from the critical point, because it often can be measured quite accurately
experimentally and is by definition zero at the critical point.

The calculations are compared to results by Aarts et al. [19], again for a system
comprising sterically stabilised silica and PDMS in cyclohexane (a good solvent for
PDMS). The results show that the precise polymer model being used strongly affects
the magnitude of the calculated interfacial tension; when an appropriate model is
used, a good description of experimental results appears to be possible. Using both a
van der Waals approach and a DFT approach, Moncho-Jordá et al. [5,29] have also
noted a similar decrease of the interfacial tension when taking into account polymer
interactions in their theoretical predictions.

The (too) high interfacial tensions predicted by the PHSmodel can be understood
from the phase diagrams, which are shown in Fig. 5.4. These reveal that, compared
to the other two models, the PHS description has a triple point that is located at
substantially higher polymer reservoir volume fractions. In the interacting polymer
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Fig. 5.4 Phase diagrams (a) and (b) are calculated using (G)FVT for penetrable hard spheres,
polymers in a Θ solvent and polymers in a good solvent (q = 1.1). c Phase diagram of sterically
stabilised silica spheres in cyclohexane (d = 29.4 ± 2.2 nm) mixed with poly(dimethylsiloxane)
(Rg ≈ 16.4 nm, 117 kDa), shown for qualitative comparison only. Some data was replotted from
Ref. [30]

description, the depletion thickness is reduced upon increasing polymer concen-
tration (see Sect. 4.3), which disfavours a stable colloidal liquid phase at elevated
polymer concentrations. This effect is not part of the PHS description, thus yielding
a much higher triple point, especially at relatively large q .

The location of the triple point for PHSs at highφR
p implies that large values ofΔφ

also occur at high polymer reservoir concentrations. In turn, this means that strong
attractions are operational between the colloidal spheres and that the factor m̃ is also
large. Therefore, the PHS description predicts significantly larger interfacial tensions
than the interacting polymermodels. This once again stresses the importance of being
careful in selecting an appropriate polymer model to describe experimental results
on colloid–polymer mixtures.

5.2.2 Interfacial Density Profiles

Through the van der Waals approach interfacial density profiles (or volume fraction
profiles) may also be computed. This enables a subsequent quantification of the
width of such interfaces. In the spirit of the van der Waals approach, the colloid
density profile φ(z)may be found by (numerically) solving the following differential
equation:

− w̃[φ(̃z)] + 6

π
m̃

(
dφ(̃z)

d̃z

)2

= 0, (5.17)

or, in dimensionful quantities,

− w[n(z)] + m

(
dn(z)

dz

)2

= 0. (5.18)

Here, z̃ = z/d denotes the distance perpendicular to the interface. Note the appear-
ance of the factor m̃, which links the strength of the depletion interaction to the
broadness of the interface. It follows that small values of m̃ favour sharper inter-
faces, and larger values favour broader interfaces. It should be stressed that it is the
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Fig.5.5 Colloid density profiles of the gas–liquid interface for q = 1.1 for penetrable hard spheres
(left), polymers in Θ-solvent, (middle) and polymers in good solvent (right). The dashed curves
are fits to the error function Eq. (5.20) to extract a measure for the interfacial width

combination of w̃ and m̃ that determines the actual width of the interface: without
the contribution of m̃, profiles would be infinitely sharp; without the contribution of
w̃, profiles would be infinitely wide.

In Fig. 5.5,we show the colloid density profiles (solid curves) as calculated forq =
1.1, where z < 0 denotes the colloidal liquid phase and z > 0 denotes the colloidal
gas phase. Note that the definition of z = 0 is arbitrary; here, we have opted to
define z = 0 such that φ(z = 0) is exactly the average of φg and φl. These density
profiles have been computed for the PHS model (left panel), and the Θ (middle)
and good (right) solvent scenarios for the interacting polymers description. In each
case, the polymer reservoir volume fraction was chosen to obtain (approximately)
the indicated colloid density differences Δφ. Qualitatively, it is already evident that,
far from the critical point, the density profiles have a width comparable to the colloid
diameter except for the PHSmodel: the large value of m̃ starts to dominate over w̃ far
from the critical point and disfavours strong gradients. Closer to the critical point the
width significantly increases. Also, it appears that for the same Δφ value there are
differences between the ensuing density profiles for the various depletant models.

Before turning towards a more quantitative interpretation of the density profiles,
it is worth mentioning that, in principle, one could use the colloid density profiles to
also compute the polymer density profiles by employing an appropriate expression
for the free volume fraction α. It is to be expected that the profiles are qualitatively
similar.We are, however, not aware of any experimental data on such polymer density
profiles and, therefore, we do not go into further detail on this aspect.

Direct measurements of the full colloid density profiles φ(z) have also proven
challenging. Experiments have been conducted that do not directly assess the full
shape of φ(z) but still shed light on the broadness [30,31]. The question is, however,
how to assign a (unique) thickness to profiles such as those in Fig. 5.5. The answer
is, in fact, that there are various ways to do this and, indeed, different experimental
approaches may probe different measures for the interfacial width. Therefore, let
us first focus on a number of ways in which the width of φ(z) can be quantified
mathematically.
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Table 5.3 Parameters obtained by fitting Eq. (5.20) to the profiles in Fig. 5.5

Δφ herf/d

PHS Θ good

0.1 1.83 3.01 3.02

0.2 1.26 1.49 1.49

0.3 1.11 0.95 0.98

0.4 2.23 0.68 0.70

0.5 6.90 0.51 0.50

A measure for the interfacial broadness is the so-called 10–90% width, here
denoted as h10–90, which can be found by finding the positions z10 and z90 in the
profiles for which the condition holds that φ(z10) = φg + 0.1Δφ and φ(z90) = φg +
0.9Δφ, where h10–90 = |z10 − z90|. The advantage of this approach is that it does
not make assumptions about the shape of φ(z) [32].

Onemay also fit the profileφ(z) to a given function and quantify thewidth through
the resulting fitting parameters. For instance, close to the critical point in mean-field
theories, φ(z) is exactly described by a tanh profile [33], which may be expressed as

φ(z) = φg + 1

2
Δφ

[
1 + tanh

(
z

htanh

)]
, (5.19)

which has a width given by htanh [34]. It can be shown that the 10–90% width of
such a profile is about h10–90 ≈ 2.2htanh.

A similar fit function that can be convenient is the cumulative normal distribution,
given by

φ(z) = φg + 1

2
Δφ

[
1 + erf

(
1√
2

z

herf

)]
, (5.20)

where thewidth herf is in fact the standard deviation of the distribution. The broadness
of this profile can also be expressed in terms of a 10–90% width, h10–90 ≈ 2.6herf .
The tanh and erf profiles are qualitatively very similar in shape, and their widths
are approximately related as htanh ≈ 1.2herf . As such, one can see that although the
interfacial width can be quantified in various ways, the resulting measures are, in
fact, closely related. In Fig. 5.5, the density profiles are fitted to Eq. (5.20) (grey
dashed curves); the fit results are being shown in Table5.3.

We now turn our attention to the few experiments that have been devoted to
this topic. De Hoog et al. [31] carried out a pioneering ellipsometric study on a
colloidal gas–liquid interface for sterically stabilised silica with d = 26 nm ± 19%
in cyclohexane,mixedwith PDMS (q ≈ 1.1). For a specific sample, which according
to the phase diagram in their work has Δφ ≈ 0.3, they could obtain a value for
the interfacial width. In their analysis, a tanh profile was assumed, which yielded
htanh = 5.2 nm. Such a value for the interfacial width implies herf/d ≈ 0.17 (see also
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Table 5.4 Overview of measurements by de Hoog et al. [31] and Vis et al. [30] of the width of
colloidal gas–liquid interfaces

φ cp (g/L) Δφ herf/d

De Hoog et al.
[31]

0.21 28.3 ∼ 0.3 0.17

Vis et al. [30] ∼ 0.06 19.9 0.20 0.96 ± 0.02

∼ 0.06 20.1 0.23 0.76 ± 0.04

∼ 0.06 22.9 0.31 0.66 ± 0.03

∼ 0.06 25.8 0.31 0.66 ± 0.01

∼ 0.06 28.7 0.50 0.42 ± 0.02

∼ 0.06 31.5 0.52 0.36 ± 0.01

Fig. 5.6 Comparison of the
interfacial width normalised
to a particle diameter as
predicted by (G)FVT
(curves, [30]) and measured
using X-ray reflectometry
(◦, [30]) and ellipsometry
(�, [31]) for systems
comprising sterically
stabilised silica spheres
mixed with
poly(dimethlysiloxane) in
cyclohexane (q = 1.1)
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Table5.4), and that the interface is quite a bit sharper than expected, when compared
to the ‘good solvent’ scenario in Table5.3.

More recently, Vis et al. [30] characterised the interfacial structure of a sim-
ilar system of sterically stabilised silica (d = 29.4 ± 2.2 nm) mixed with PDMS
(Rg ≈ 16.4 nm) in cyclohexane (q = 1.1, good solvent conditions) using X-ray
reflectometry. The measured phase diagram for that system is shown in Fig. 5.4
(right panel). In the analysis, it was assumed that the interface followed a cumulative
normal distribution, i.e., Eq. (5.20). The results are summarised in Table5.4.

A graphical overview of the (G)FVT predictions and the experiments by de Hoog
et al. [31] and Vis et al. [30] is given in Fig. 5.6. Overall, the agreement between the
latter experiments and the predictions by GFVT (the interacting polymer descrip-
tion) is quite good; the polymer solvency conditions have minimal influence on the
theoretically predicted width. In comparison, the experiments by de Hoog et al. [31]
seem to find a relatively narrow interface.

In terms of the phase behaviour, we have seen that the PHS model mostly resem-
bles the Θ-solvent model (Fig. 5.4) in the vicinity of the critical point. For the inter-
facial width, also the good solvent model gives quite similar results to the other
two descriptions. However, atΔφ � 0.3, the PHSmodel starts to display unphysical
behaviour in the form of a strongly increasing width. This again has to do with the



198 5 The Interface in Demixed Colloid–Polymer Dispersions

high polymer concentration of the triple point: the resulting large values of m̃ yield
broader interfaces through Eq. (5.17). Such behaviour is not expected for actual
colloid–polymer mixtures, showing that accounting for the influence of polymer
physics on (interfacial) properties is essential.

Finally, it should be remarked that several authors [22,23,29,35] have reported on
DFT calculations that show the presence of oscillations in the colloid density profiles
on the colloidal liquid side, especially near the triple point. The simple square gradient
van der Waals approach discussed here cannot reproduce such features. However,
the work of Moncho-Jordá et al. [29] suggests that these oscillations are only present
in case polymers are described as PHSs, and disappear due to a lowering of the
triple point when taking polymer interactions into account. On the other hand, DFT
computations of Bryk [23] do predict oscillatory density profiles when the polymers
are described as freely jointed tangentially bondedhard-sphere chains. In practice, the
presence of capillary waves, which will be discussed in the next section, may further
hinder the observation of such oscillations. Therefore, whether these oscillations can
be observed in an experimental colloid–polymer mixture remains an open question.

5.3 Some Dynamic Properties of the Colloidal Gas–Liquid
Interface

5.3.1 Thermal CapillaryWaves

In the previous section it was shown that gas–liquid interfaces in general, and those
of colloid–polymer mixtures in particular, are not infinitely sharp but have a finite
width, even though,macroscopically, they appear to be sharp.Macroscopically, these
interfaces also appear to be flat far from any (solid) surfaces. However, the thermal
energy unavoidably distorts the local interface position on a more microscopic level,
leading to a corrugated or rough interface on the colloidal length scale.

These fluctuations in the position of the interface are known as thermally excited
capillary waves, or (thermal) capillary waves in short. They have been predicted
for molecular systems by von Smoluchowski in 1908 [36], and were theoretically
quantified byMandelstam a few years later [37]. Since then, their existence has been
confirmed for molecular liquids with light, neutrons and X-rays [38,39].

The mean-squared interfacial roughness due to thermal fluctuations is given
approximately by

〈h2〉 ∼ kT

γ
= L2

T. (5.21)

The thermal length LT ≡ √
kT /γ for a molecular gas–liquid interface with an inter-

facial tension of 50 mN/m is of the order of 0.3nm and cannot be visually observed
directly. However, in the case of coexisting colloid–polymer mixtures the interfacial
tension can easily reach values as low as 50 nN/m. For these values, the thermal
length becomes about 0.3 µm and can be quantified using optical techniques.
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Table 5.5 Characteristic magnitudes for molecular and colloidal systems (assuming colloids of
about d = 0.3 µm)

Molecular Colloidal

Interfacial tension γ 50 mN/m 50 nN/m

Density difference Δρ 1000kg/m3 100kg/m3

Viscosity η 1 mPas 10 mPas

Capillary length
�c = √

γ/(gΔρ)

2mm 7 µm

Thermal length LT = √
kT /γ 0.3nm 0.3 µm

Capillary velocity vc = γ/η 50m/s 5 µm/s

Correlation time τ = �c/vc 50 µs 1.5 s

Another important interfacial aspect that dictates whether these fluctuations may
be observed visually is their dynamics. In the viscous hydrodynamic regime, this is
governed by the balance between interfacial tension and viscous forces. The typical
velocity can be estimated from the quasi-static Stokes equation:

∇P = η∇2v, (5.22)

where P is the pressure, η is the viscosity and v is the velocity. The capillary pressure
P is proportional to γ/L , with γ the interfacial tension and L a typical length scale.
Additionally, the gradient terms (∇) scale as 1/L . This leads to the definition of the
so-called capillary velocity,

vc = γ

η
. (5.23)

A correlation time τ can be defined as the time it takes for capillary waves travelling
at a velocity vc to travel the capillary length �c:

τ = �c

vc
. (5.24)

In Table5.5, we have collected the characteristic magnitudes of various rele-
vant interfacial quantities for a molecular and a colloidal system. From this table,
it becomes clear that, for colloidal systems, not only the magnitude of the thermal
capillary waves can be brought into reach of optical techniques but also their veloc-
ity and correlation time become accessible through relatively standard microscopy
approaches.

A study was performed by Aarts et al. [40], who made a direct visual observation
of thermal capillary waves. They used fluorescent PMMA colloidal spheres with
d = 142 nmdispersed in decalin, towhichpolystyrene chainswith Rg = 44 nmwere
added (q = 0.6). The measured phase diagram is shown in Fig. 5.7. The system was
further studied using confocal laser scanning microscopy on the state points labelled
I–V.
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Fig. 5.7 Phase diagram of the system studied by Aarts et al. [40] composed of PMMA colloidal
spheres (d = 142 nm) dispersed in decalin, mixed with polystyrene polymers with Rg = 44 nm
(q = 0.6). Samples in a single-phase fluid state (×) and in two-phase gas–liquid coexistence (◦)
are indicated, together with the state points (•) of Figs. 5.8 and Table5.6. Reprinted with permission
from Ref. [40]. Copyright 2004 American Association for the Advancement of Science (AAAS)

Confocal micrographs of the interface at various state points are shown in Fig. 5.8.
It is clear that the height of the fluctuations increases closer to the critical point,
where the interfacial tension is lower. From the confocal data, the static and dynamic
height correlation functions can be determined, which in turn can be used to obtain
the interfacial tension. In this way, Aarts et al. found that the interfacial tension of
these state points decreases from about 100 nN/m (state point I) to about 1 nN/m
(state point V) (see Table5.6). For a more detailed discussion of these correlation
functions, the reader is referred to Ref. [40].

5.3.2 Droplet Coalescence

The process of droplet coalescence is frequently observed in everyday life.Whenever
two liquid drops, or a liquid drop and bulk liquid, come into contact, coalescence
may occur. Coalescence is favourable since it reduces the total interfacial area and
is driven by interfacial tension. The phenomenon has been studied at least since
the nineteenth century [41]. The breakup of free-surface flows under the influence
of surface tension (e.g., the breakup of a liquid jet) has witnessed renewed interest
[42]. Notably, significant progress has been made in the study of the hydrodynamic
singularities that occur in these problems [43]. In the case of droplet coalescence,
three stages may be identified, as illustrated in Fig. 5.9: first the liquid film between
two interfaces drains. Subsequently, this film spontaneously ruptures in a single spot,
and finally, this spot (‘neck’) grows.

As we have seen in Table5.5, the capillary velocity for colloidal systems is of the
order of micrometres per second, whereas in molecular systems it is tens of metres
per second. This has implications for the coalescence of droplets and can be seen
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Fig.5.8 Observation of thermal capillary waves at the colloidal gas–liquid interface at state points
I, III, IV and V (top to bottom), as defined in Fig. 5.7. The size of the area displayed in each image
is 17.5 µm × 85 µm. The yellow points indicate the position of the interface. Reprinted with
permission from Ref. [40]. Copyright 2004 AAAS

Table 5.6 Interfacial tension for the state points denoted in the phase diagram of Fig. 5.7. Data
taken from Ref. [40]

State point φ φp γ (nN/m)

I 0.105 0.654 100.8 ± 1.9

II 0.093 0.576 34 ± 5

III 0.091 0.566 18.2 ± 0.3

IV 0.086 0.534 3.6 ± 0.4

V 0.084 0.522 � 1

through the Reynolds number

Re = ρvL/η, (5.25)

where v is the characteristic velocity and L the characteristic length. For Re larger
than∼ 1 inertial effects start to dominate. We can assume that v ∼ vc = γ/η; hence,
Re ∼ ργL/η2. Thus, due to the ultra-low interfacial tensions of colloidal systems,
it is evident that the viscous hydrodynamic regime Re < 1 is significantly expanded
compared to molecular systems when droplet coalescence is concerned.
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Fig. 5.9 Representation of the various stages of droplet coalescence. Reprinted with permission
from Ref. [16]. Copyright Springer Nature 2008

Fig. 5.10 Observation of the various stages of droplet coalescence. t = −19 s and −5 s: film
drainage; 0 s: film rupture; 4 s: growth of the neck. The scale bar denotes 5 µm. Reprinted with
permission from Ref. [40]. Copyright 2004 AAAS

Due to the slow-down of interfacial dynamics in phase-separated colloid–polymer
mixtures, it is possible to observe the process of droplet coalescence visually in great
detail, as is shown in Fig. 5.10 [40]. This allows for amore complete understanding of
the hydrodynamics of droplet coalescence [44]. For instance, theBrownian interfacial
fluctuations can be analysed microscopically to quantify the stochastic nature of the
film rupture [45].
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Exercise 5.4. Inertia becomes important if the Reynolds number (Eq. (5.25))
becomes larger than∼ 1. For v = vc, we can estimate this happens for length
scales larger than L0 and time scales larger than t0:

L > L0 = η2

ργ
and t > t0 = η3

ργ2 . (5.26)

(A)Calculate L0 and t0 formolecular and colloidal systems using the values in
Table5.5. Is it realistic to observe viscous coalescence in ordinary molecular
liquids?
(B)Aarts et al. [44] observedviscous coalescence in siliconoilwithη = 1 Pa s
and γ = 20 mN/m. What are L0 and t0 for this system? What aspect makes
the viscous regime observable in this system, and how is that different from
colloidal systems?

To conclude, the ultra-low tensions of the interfaces in demixed colloid–polymer
systems predicted by Eq. (5.1) have indeed been experimentally observed. We have
seen in this chapter that this leads to new and important findings, such as the direct
visual observation of capillary waves and the low Reynolds regime in droplet coa-
lescence.
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6PhaseBehaviour of Colloidal Binary
Hard SphereMixtures

6.1 Introduction to Binary Mixtures of Hard Spheres

In the previous chapters we considered the effect of added nonadsorbing polymers
on the phase behaviour (Chap.4) and interface (Chap.5) appearing in suspensions of
spherical colloids. The depletion effect is also operational in other types of mixtures,
such as binary mixtures composed of large and small (hard) spheres where two big
spheres in a sea of small spheres are brought together (Fig. 6.1). As the big spheres
get close, the smaller spheres can no longer enter the gap between the big ones. The
small particles then push the big spheres together.

The addition of nonadsorbing small hard spheres to a dispersion of big hard
spheres can be treated within free volume theory (FVT) [1–3]. Original FVT treat-
ments [1,2] were limited to a specific range of sufficiently asymmetric hard sphere
mixtures, say, 0.05 � q � 0.2, with q = d2/d1. For larger q values, binary colloidal
crystalsAB2 andAB13 (consisting of large colloidsAwith diameter d1 and small col-
loids Bwith diameter d2) have been observed in the size range 0.425 ≤ d2/d1 ≤ 0.60
(AB2) and 0.485 ≤ d2/d1 ≤ 0.62 (AB13) [4–6], and larger size ratios [7–9]. The sit-
uation gets even more complex in the case of binary mixtures of charged spheres
[10,11]. Such structures cannot easily be treated within FVT.

The added small colloids may be of a similar colloid shape (i.e. spheres) or a
different shape such as rod-like colloids, as will be discussed in Chap.7. The focus
in this chapter is on rather asymmetric binary hard sphere mixtures, i.e. q � 0.2,
although extensions towards larger q values are possible [3]. In Sect. 6.2 two free
volume theory approaches are outlined and compared to computer simulation results,
followed by comparisons with experiments in Sect. 6.3.

© The Author(s) 2024
H. N. W. Lekkerkerker, R. Tuinier, M. Vis, Colloids and the Depletion Interaction,
Lecture Notes in Physics 1026, https://doi.org/10.1007/978-3-031-52131-7_6
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Fig. 6.1 Illustration of the depletion effect in a mixture of two big hard spheres and small hard
spheres in 2D. As the big spheres approach each other the small spheres are no longer able to enter
the gap between them. As a consequence, the small spheres impose an effective attractive force
between the big spheres

6.2 FreeVolumeTheory for Binary Hard Sphere Mixtures

In 1964 Lebowitz and Rowlinson [12] showed that within the Percus–Yevick treat-
ment of hard sphere fluids [13], binary hard sphere mixtures are completely miscible
for all concentrations and size ratios. This proof was later extended by Vrij [14] to
hard sphere mixtures with an arbitrary number of components. Until 1990, it was
generally accepted that hard sphere mixtures do not phase separate into two fluid
phases. In 1991 Biben and Hansen [15] showed, on the basis of a thermodynamically
self-consistent theory, that dense binary mixtures of hard spheres with diameters d1
and d2 with a size ratio q � 0.2 show a spinodal instability, while phase separation
into two fluid phases was not predicted.

Two years later Lekkerkerker and Stroobants [1], guided by their work on colloid–
polymer mixtures [16], conjectured that the addition of small hard colloidal spheres
will lead to a fluid–solid phase separation, preempting a metastable gas–liquid phase
separation that includes a spinodal instability. Such metastable gas–liquid phase
transitions for polymer–colloid mixtures have already been discussed in Chap.4. In
1999 this conjecture of a metastable gas–liquid phase coexistence was confirmed by
computer simulations of Dijkstra, van Roij and Evans [17].

Exercise 6.1. The effective depletion interaction mediated by hard spheres
compared to penetrable hard spheres (PHSs) was discussed in Sects. 2.1 and
2.3. Based upon the difference between these interactions, why can one expect
that the physical properties of a binary hard sphere mixture are more complex
than those of hard sphere–PHS mixtures?
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The physical origin of phase separation in highly asymmetric hard sphere mix-
tures is the depletion interaction, similar to what we encountered in Chaps. 3 and 4.
Throughout this chapter we refer to small hard spheres in the reservoir (R) as the
depletants. The free volume treatment given in Chap.3 for mixtures of hard spheres
and PHSs can be extended to the case of (highly) asymmetric hard sphere mixtures
[1,2]. Here, we first present themost straightforward extension possible [1], followed
by the more rigorous approach [18] of Opdam et al. [3].

6.2.1 Simple FVT Extension for a Binary Hard SphereMixture

The osmotic equilibrium system considered is depicted in Fig. 6.2. We assume the
depletion layers are equal to the radii of the small hard spheres. As discussed in
Chap.3, the semi-grand potential of a system with volume V and temperature T of
a mixture of N1 colloidal particles and N2 depletants with chemical potential μ2 can
be obtained by applying the exact expression Eq. (3.20) to this case:

Ω(N1, V , T , μ2) = F0(N1, V , T ) −
∫ μ2

−∞
N2(μ

′
2)dμ

′
2. (6.1)

Here, F0(N1, V , T ) is the Helmholtz energy of the pure system of hard colloidal
particles 1, while Ω(N1, V , T ,μ2) is the grand potential of a mixture of N1 hard
spheres 1 and N2 hard spheres 2 in a volume V at given chemical potential of the
depletant hard spheres 2.

Fig. 6.2 Osmotic
equilibrium system for a
dispersion of big and small
hard spheres in the system in
equilibrium with a reservoir
that consists of a small hard
sphere dispersion. The
semi-permeable membrane
(dashes) allows permeation
of small hard spheres but is
impermeable to the big hard
spheres. The shells indicate
the excluded volume
surrounding the particles for
the centres of the small hard
spheres. Reprinted with
permission from Ref. [3].
Copyright AIP Publishing
2021

Reservoir

System
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Using the Widom insertion theorem [19] (see Sect. 3.3.2), the chemical potential
of small hard spheres 2 in the system can be written as

μ2 = μ0
2 + kT ln

N2

〈Vfree(N1, N2)〉 , (6.2)

where 〈Vfree(N1, N2)〉 is the ensemble-averaged free volume for the small hard
spheres 2 in the system, containing hard spheres 1 and hard spheres 2.

For the reservoir,

μ2 = μ0
2 + kT ln

NR
2

〈Vfree(NR
2 )〉 , (6.3)

with 〈Vfree(NR
2 )〉 the ensemble-averaged free volume for the small hard spheres 2 in

the reservoir of hard spheres 2.
By equating the chemical potentials of component 2 in the system (6.2) and in

the reservoir (6.3), we obtain

N2 = NR
2

〈Vfree(N1, N2)〉
〈Vfree(NR

2 )〉 . (6.4)

We now make the following approximations:

〈Vfree(N1, N2)〉
〈Vfree(NR

2 )〉 ≈ 〈Vfree(N1)〉
V R ≈ 〈Vfree〉0

V R , (6.5)

where 〈Vfree〉0 is the undistorted free volume of an added small hard sphere in the
system of N1 large hard spheres in a volume V . The first approximation implies that
the free volume available for hard spheres 2 in the reservoir, 〈Vfree(NR

2 )〉, equals the
total reservoir volume VR. Secondly, the free volume available for hard spheres 2 in
the system, 〈Vfree(N1, N2)〉, is assumed to only depend on the number of hard spheres
1, so it equals 〈Vfree(N1)〉. The third approximation says that the configurations of
the hard spheres 1 are not affected by the hard spheres 2.

Combination of Eqs. (6.4) and (6.5) results in

N2 = nR2 〈Vfree〉0, (6.6)

with nR2 = NR
2 /VR. Insertion of the Gibbs–Duhem equation (see Eq. (A.12)),

nR2 dμ2 = dPR, (6.7)

into Eq. (6.1) now leads to the following simple expression for the semi-grand poten-
tial of the asymmetric hard sphere mixture:

Ω(N1, V , T ,μ2) = F0(N1, V , T ) − PR〈Vfree〉0, (6.8)
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with PR as the pressure of the small hard spheres in the reservoir. The quantity
〈Vfree〉0 can now be approximated by the same expression as the free volume of an
added PHS (Eq. (3.38)),

〈Vfree〉0 = αV . (6.9)

For the free volume fraction α, one can use expression Eq. (3.38):

α = (1 − φ) exp
[
(−ay − by2 − cy3)

]
, (6.10)

with

a = 3q + 3q2 + q3

b = 9
2q

2 + 3q3

c = 3q3,
(6.11)

and

y = φ1

1 − φ1
, (6.12)

with φ1 = n1v1 = n1πd31/6 denoting the volume fraction of the large spheres. The
volume of a hard sphere 1 is defined as v1.

In dimensionless form, Eq. (6.8) can be written as

Ω̃ = F̃0 − α

q3
P̃R, (6.13)

with Ω̃ = Ωv1/(kT V ), F̃0 = F0v1/(kT V ) and kT P̃R = PRv2, with v2 the volume
of hard sphere 2. Basically, we account for the hard interactions between the small
spheres via PR. For the pressure PR in the reservoir (which for the case of PHSs is
given by the ideal gas law) we now use the SPT expression Eq. (3.37),

PR

nR2 kT
= 1 + φR

2 + (φR
2 )2

(1 − φR
2 )3

. (6.14)

Here, nR is the number density of small hard spheres in the reservoir and φR =
nRv2 = nRπd32/6 the volume fraction of the small spheres in the reservoir. Hence
we can rewrite Eq. (6.14) as

P̃R = φR
2 + (φR

2 )2 + (φR
2 )3

(1 − φR
2 )3

. (6.15)

We now have all the ingredients that make up the semi-grand potential (Eq. (6.8))
of the asymmetric hard spheremixture. From itweobtain the pressure of the system P
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and the chemical potentialμ1 of the large hard spheres using standard thermodynamic
relations:

P = −
(

∂Ω

∂V

)
N1,T ,μ2

= P0 + PR
(

α − n1
∂α

∂n1

)
, (6.16)

and

μ1 =
(

∂Ω

∂N1

)
V ,T ,μ2

= μ0
1 − PR ∂α

∂n1
, (6.17)

where P0 and μ0
1 are the pressure and chemical potential of the pure (big) hard

sphere system (for which we use the expressions derived in Chap.3). The dimen-
sionless forms of Eqs. (6.16) and (6.17) are given in Eqs. (3.45) and (3.46). We can
now calculate the phase behaviour of the asymmetric hard sphere mixture from the
coexistence equations

μI
1(n

I
1, μ2) = μII

1 (nII1 , μ2) (6.18)

and

P I(nI1, μ2) = P II(nII1 ,μ2). (6.19)

Analogously to Eqs. (3.47) and (3.48), the expressions for μ and P can be simplified
to

μ̃ = μ̃0 + P̃R g(φ1) (6.20)

and

P̃ = P̃0 + P̃R h(φ1). (6.21)

The fluid–solid binodal can be obtained from

P̃R = μ̃s(φ1,s) − μ̃ f (φ1, f )

g(φ1, f ) − g(φ1,s)
= P̃s(φ1,s) − P̃ f (φ1, f )

h(φ1, f ) − h(φ1,s)
. (6.22)

From an experimental point of view, we are interested in phase diagrams in the
(φ1, φ2) representation. By using the relation

n2 = − 1

V

(
∂Ω

∂μ2

)
N1,V ,T

= αnR2 ,

or

φ2 = αφR
2 ,

we can directly convert the (φ1, φR
2 ) phase diagram to the (φ1, φ2) representation.

In Fig. 6.3 we give the results for q = 0.05, 0.1 and 0.2. The Monte Carlo computer
simulation results of Dijkstra et al. [17] have been added to the figure for comparison.
The agreement is reasonable, although not as good as the agreement between FVT
and computer simulations for the hard sphere–PHS system. For low q , the FVT
predictions actually start to deviate quite significantly, as we shall see in Fig. 6.8. A
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Fig. 6.3 Phase diagrams of big hard sphere–small hard sphere mixtures. Data points are redrawn
Monte Carlo simulation results [17] guided by grey curves. Phase diagrams are given for q =
0.05 (a, d), q = 0.1 (b, e) and q = 0.2 (c, f) in the reservoir representation (a–c) and the system
representation (d–f). The black curves show the phase coexistence concentrations predicted by FVT
using the approach of [1]. Phase regions are indicated in (a–c): the fluid phase (F), the solid phase
(S), the fluid–solid coexistence region (F+S) and the isostructural solid–solid coexistence region
(S+S)

qualitative difference also is that computer simulations reveal solid–solid equilibria
at high φ1 for small q , which are not predicted by FVT.

Note that for the small size ratios, for which the FVT of asymmetric hard sphere
mixtures is applicable, gas–liquid demixing (also predicted by FVT, not shown) is
metastable with respect to the fluid–solid transition. The presence of this metastable
phase does, however, affect the physical properties of the mixtures. Similar to mix-
tures of colloidal hard spheres and nonadsorbing polymers [20–22], asymmetric
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hard sphere mixtures display interesting gel and glass states that are supposed to be
connected with the metastable gas–liquid phase transition [23,24].

It follows that the simple predictions of this free volume theory approach are rea-
sonable, but become especially inaccurate at small q . This is mainly due to the fact
that the expression for the free volume fraction (Eq. (6.10)) already deviates some-
what from computer simulations. This is shown in Fig. 6.4a, in which the predictions
of Eq. (6.10) (dashed) are compared to computer simulation results (data points) by
Dijkstra et al. [17].

The description of hard spheres as depletants has been accounted for in a limited
manner for a number of aspects. Ideally, one would like to:

• Account for the fact that the configurations of the big hard spheres are distorted
by the small hard spheres,

• Describe the free volume fraction in the solid since it fundamentally differs from
that in a fluid phase, and

• Incorporate excluded volume interactions between the hard depletants in both
reservoir and system.

The last aspect also accounts for accumulation effects, leading to repulsive contribu-
tions to the depletion interaction as we saw in Sect. 2.3, which are not incorporated
in the theory described above. Parts of these improvements were incorporated by
Opdam et al. [3] and are discussed next.

6.2.2 Rigorous FVT Approach for a Binary Hard SphereMixture

Consider again the osmotic equilibrium system depicted in Fig. 6.2. Careful inspec-
tion of this sketch and comparison with Fig. 3.5 shows that the small hard sphere
depletants in Fig. 6.2 now also have a hard-core excluded volume interaction with
each other. This implies that the FVT treatment should be adapted not only in the
sense that the depletant osmotic pressure is larger than that given byVan‘t Hoff’s law,
but also one would like to account for the excluded volume interactions between the
hard sphere depletants. These hard-core interactions influence the thermodynamic
properties already in the reservoir. This affects the free volume fraction of small hard
spheres in both reservoir and system.

We therefore return to the general expression for the semi-grand potential
(Eq. (6.1)) and focus on Eq. (6.4). Using the definitions φ2 = N2v2/V , φR

2 =
NR
2 v2/VR,α(φ1, φ2) = 〈Vfree(N1, N2)〉/V andαR(φR

2 ) = 〈Vfree(NR
2 )〉/VR, the fol-

lowing implicit expressions [3] are obtained for the fluid phase:

φ2 = φR
2

αf(φ1,φ2)

αR(φR
2 )

, (6.23)
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and for the solid phase:

φ2 = φR
2

αs(φ1, φ2)

αR(φR
2 )

. (6.24)

The free volume fractionsαR in Eqs. (6.23) and (6.24) are no longer unity andαf and
αs depend on the volume fractions of both the small hard sphere depletants φ2 and of
large hard sphere φ1. The volume fraction of depletants in the system φ2, in coexis-
tence with the reservoir with a certain depletant volume fraction φR

2 , can be found by
solving Eq. (6.23) and/or (depending on the phase states involved) Eq. (6.24). Substi-
tuting Eqs. (6.23) and (6.24) into the definition of the semi-grand potential given by
Eq. (6.1) and applying the Gibbs–Duhem relation (see Appendix A.2) finally yields
expressions for the semi-grand potential of a binary hard sphere mixture. For the
fluid phase it yields

Ω̃f = F̃0,f −
φR
2∫

0

αf

αR

(
∂ P̃R

∂φR′
2

)
dφR′

2 , (6.25)

and for the solid phase it gives

Ω̃s = F̃0,s −
φR
2∫

0

αs

αR

(
∂ P̃R

∂φR′
2

)
dφR′

2 , (6.26)

where the dimensionless quantities from Appendix A are applied and the integration
variable dμ′

d in Eq. (6.1) is changed to the volume fraction of depletants in the
reservoir dφR′

2 using the Gibbs–Duhem relation.
The free volume fraction for depletants in the reservoir αR can be evaluated using

the steps taken in Sect. 3.3.3. First, we apply Eq. (3.29) to relate αR to the work of
inserting a hard sphere into a hard sphere dispersion in the reservoir WR:

αR = e−WR/kT . (6.27)

For WR Eq. (3.35) is used:

WR

kT
= − ln[1 − φ2] + 6φ2

1 − φ2
+ 9φ2

2

2(1 − φ2)2
+ πd32 P

6kT
. (6.28)

One could take Eq. (3.37) for P , but we follow Opdam et al. [3] and use the more
accurate Carnahan–Starling equation (Eq. (3.1)).

Next, expressions for the free volume fraction of hard sphere depletants in the
binary system for both the fluid and solid phases are presented. The free volume
fraction in the fluid phase of a binary hard sphere mixture can be determined using
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the work for depletant insertion in a binary mixture given by SPT [25] (see also
Chaps. 3 and 4), resulting in

αf = exp−
[
ln

(
1

1 − φ1 − φ2

)
+ 3qφ1 + 3φ2

1 − φ1 − φ2

+ 1

2

{
6q2φ1 + 6φ2

1 − φ1 − φ2
+

(
3qφ1 + 3φ2

1 − φ1 − φ2

)2
}

+ q3 P̃

]
, (6.29)

where P̃ is the osmotic pressure of the binary mixture of hard spheres. It is possible
to use an SPT result for P̃ [25]; however, we again follow [3] and use an expression
for P̃ given by the Boublík–Mansoori–Carnahan–Starling–Leland equation of state
for binary hard sphere mixtures [26,27]:

P̃ = φ1 + φ2/q3

1 − φ1 − φ2
+ 3

φ2
1 + φ1φ2/q + φ1φ2/q2 + φ2

2/q
3

(1 − φ1 − φ2)2

+ (3 − φ1 − φ2)

(
φ3
1 + 3φ2

1φ2/q + 3φ1φ
2
2/q

2 + φ3
2/q

3

(1 − φ1 − φ2)3

)
.

(6.30)

Exercise 6.2. Think of arguments to explain why inclusion of excluded vol-
ume interaction in the reservoir increases φ2 in the system at fixed φR

2 .

The above approach cannot be followed for the solid phase since the osmotic
pressure of a hard sphere solid containing smaller hard spheres is not known. The
free volume fraction in the solid phase is approximated here by considering an FCC
crystal of the larger spheres and assuming that the small spheres behave as a fluid in
the free space left by the large spheres, which is valid for highly asymmetric binary
spheremixtures [17,28] with q � 0.2.With this assumption, the free volume fraction
αs can be approximated by a product of the free volume fraction of the hard sphere
solid and the free volume fraction in the small sphere fluid that surrounds the larger
spheres. This yields

αs(q, φ1, φ2) = αs(q,φ1) αf(q = 1, φ†
2), (6.31)

where φ†
2 = φ2/(1 − φ1) is the effective volume fraction of the small spheres in the

space that is not occupied by large spheres, andαs(q,φ1) is given by the free volume
fraction in the solid phase, which can be determined using geometrical arguments
[29]. It reads

αs =

⎧⎪⎨
⎪⎩
1 − φ1 ṽ0exc for φ1 < φ∗

1

1 − φ1 ṽ∗
exc for φ∗

1 ≤ φ1 < 23/2 φ∗
1

0 otherwise.

(6.32)
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It is assumed that the centres of the spherical colloids are perfectly located on the FCC
lattice points, where φ∗

1 = φ
cp
1 / ṽ0exc denotes the volume fraction of large spheres

above which the depletion zones overlap, with ṽ0exc = (1 + q)3. Furthermore, the
normalised excluded volume ṽ∗

exc in Eq. (6.32) is given by

ṽ∗
exc = ṽ0exc − 6

⎡
⎣1 + q −

(
φ
cp
1

φ1

) 1
3
⎤
⎦
2 ⎡
⎣1 + q + 1

2

(
φ
cp
1

φ1

) 1
3
⎤
⎦ . (6.33)

Equation (6.32) formally only holds for small q , since it assumes there is no multiple
overlap of depletion zones.

Furthermore, this expression for the free volume fraction in the solid does not
accurately account for the overlap between the depletion zones of large and small
spheres. To take this overlap into account one can assume that

αf(q,φ1,φ2) = αf(q,φ1) αf(q = 1,φ†
2). (6.34)

Combining Eqs. (6.34) and (6.31) gives

αs(q,φ1, φ2) = αs(q, φ1)
αf(q, φ1, φ2)

αf(q,φ1)
. (6.35)

In Fig. 6.4a the predicted volume fraction of hard sphere depletants in the system
φ2 is plotted as a function of the reservoir volume fraction φR

2 for the fluid phase,
given by α/αR (solid curves). The dashed curves are predictions using Eq. (6.10),
derived for hard spheres mixed with PHS depletants (Eq. (3.38)). Also shown in
Fig. 6.4 are computer simulation data (symbols) by Dijkstra et al. [17]. It is clear that
inclusion of excluded volume interactions between the hard sphere depletants in the
reservoir gives a more accurate description of the computer simulation data.

In Fig. 6.4b the hard sphere depletant volume fraction in the system φ2 is plotted
as a function of the reservoir volume fraction φR

2 for the solid phase. As mentioned
above, this relation is given by the ratio α/αR. Also shown in Fig. 6.4b is the predic-
tion from the original simple FVT extension (dashed) and the computer simulation
data (symbols) by Dijkstra et al. [17]. The results from the rigorous FVT approach
follow the simulation data remarkably well, which confirms the validity of the equa-
tions obtained for the free volume fractions in the fluid phase and the solid phase
given by Eqs. (6.29) and (6.35).

All elements required to calculate the semi-grand potentials given in Eqs. (6.25
and (6.26) are now available. This enables one to compute the phase behaviour for
binary mixtures of hard spheres by using the standard thermodynamics relations
given in Appendix A and by solving Eqs. (6.18) and (6.19).

Predicted phase diagrams are shown in Fig. 6.5 for binary hard sphere mixtures
with size ratios q = 0.05, 0.1 and 0.2 using the theory outlined in this subsection.
The free volume fraction in the solid phase of the binary mixture is described using
Eq. (6.35). For q = 0.05 and q = 0.1, the free volume fraction of the one-component
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Fig. 6.4 Volume fraction of small spheres in the system φ2 versus their reservoir volume fraction
φR
2 . a Fluid phase for q = 0.1. Solid curves are the result of Eqs. (6.23) and (6.29); symbols denote

data from Monte Carlo simulations by Dijkstra et al. [17] for φ1 = 0.1 (˛, 0.2 (�), 0.3 (�) and 0.5
(•). b Solid phase for φ1 = 0.74. Solid curves are from Eqs. (6.24) and (6.35); symbols are from
Monte Carlo simulations by Dijkstra et al. [17] for q = 0.05 (�) and 0.1 (◦). In both panels, the
dashed curves are for penetrable hard spheres (Eq. (6.10) for fluid and Eq. (6.32) for solid)

solid αs given by Eq. (6.32) is used. Multiple overlap of depletion zones is possible
for q = 0.2 at high densities (for details see Ref. [3]). It is noted that the phase
diagram for q = 0.2 determined with Eq. (6.32) showed no significant difference
from the phase diagram calculated with the numerically computed α, which is most
likely due to the fact that the deviations between both methods are quite small for
this size ratio (see Ref. [3]).

A comparison of the theoretical phase diagrams and phase coexistence data
obtained from direct coexistence simulations fromDijkstra, Van Roij and Evans [17]
for both the reservoir and the system depletant representation is shown in Fig. 6.5.

Exercise 6.3. Compared to using PHSs as depletants one could expect the
phase-transition concentrations could shift to either higher or to smaller deple-
tant concentrations. Give an argument for both based upon the depletion
potentials provided in Sects. 2.1 and 2.3.

The theoretical binodals calculated using rigorous FVT are in semi-quantitative
agreementwith the computer simulation results. The binodals shift to lower depletant
concentrations when the size ratio q becomes smaller and an isostructural solid–
solid coexistence region appears at high hard sphere densities and at low values of
q . The solid–solid coexistence region in the theoretical phase diagram is metastable
for q = 0.1, whereas a small stable isostructural solid–solid coexistence region was
found in simulations. For q = 0.2 there is a slight underestimation of the fluid branch
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Fig. 6.5 Phase diagrams of binary hard sphere mixtures as in Fig. 6.3 for q’s as indicated in the
reservoir representation (a–c) and the system representation (d–f). The black curves show the
binodals determined with rigorous FVT, dashed curves indicate metastable phase coexistence, and
the grey data points are the results of direct coexistence simulations from Dijkstra et al. [17]. The
grey lines guide the eye. For q = 0.05 and q = 0.1, Eq. (6.35) was used for αs, and a numerical
procedure was used for q = 0.2 [3]. Phase regions are indicated in (a–c): the fluid phase (F), the
solid phase (S), the fluid–solid coexistence region (F+S) and the isostructural solid–solid coexistence
region (S+S)

of the binodal compared to the simulation data. The agreement of the phase diagrams
obtainedwith theFVTpresentedherewith simulations [17] andprevious perturbation
and DFT studies [30,31] indicates that the excluded volume of the depletants is
now more accurately taken into account and FVT can be accurately applied to hard
depletants.
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6.3 Phase Behaviour of Mixed Suspensions of Large and Small
Spherical Colloids

6.3.1 Phase Separation in Binary Mixtures Differing Only in
Diameter

Sanyal et al. [32] and Van Duijneveldt [33] were the first to present experimental
evidence for phase separation in binodal suspensions of colloidal spheres with a large
size difference. Since then, several studies [11,34–38] have appeared that present
experimental phase diagrams for mixed suspensions of large and small colloids. It
should be noted, however, that experimental model systems of mixtures in which
both types of spherical colloidal particles are hard sphere-like do not (yet) exist, as
far as we are aware.

In Fig. 6.6 we give the experimental phase diagram for q 
 0.1 by Imhof and
Dhont [36], which is compared to free volume theory and Monte Carlo computer
simulations. Rigorous FVT predictions (curves) and computer simulations (open
symbols) overestimate the depletion activity of the small spheres at the binodal
as compared to the experiments (closed symbols). The difference might be caused
by charges on the colloidal particles in the experimental system not accounted for
theoretically. Additional double layer repulsion does shift theoretical FVT binodals
for fluid–solid coexistence at small q upwards [39].

Kaplan et al. [34] and Dinsmore et al. [35] observed crystallites at the sample
walls at volume fractions of the small spheres significantly below the value required
for the fluid–solid transition in the bulk (Fig. 6.7). This is a manifestation of the
stronger depletion interaction between a colloidal sphere and a wall than the deple-
tion interaction between two spheres (as was discussed in Chap.2). This effect was
also demonstrated using micrometre-sized silica spheres dispersed in cyclohexane
in contact with hydrophobised silica substrates under the influence of nonadsorbing
polymers by Ouhajji et al. [40] using confocal microscopy. A theoretical treatment
for the wall phase behaviour based on the semi-grand potential of an adsorbed layer

Fig. 6.6 Fluid–solid
coexistence curves
established from experiments
(�, guided by dotted lines)
with sterically stabilised
silica spheres of q 
 0.1
dispersed in DMF with 10−2

M LiCl [36]. Monte Carlo
simulations [17] (�) and
rigorous FVT [3] (solid
curves) for q = 0.1 predict
phase transitions at lower φ2
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Fig.6.7 Optical micrographs of polystyrene spheres (d1 = 0.8 µm) at a glass wall a without small
spheres; b and c have small spheres of d2 = 70 nm added of φ2 = 0.08 and φ2 = 0.16, respectively.
The volume fraction of big spheresφ1 = 0.02. Reprintedwith permission fromRef. [41]. Copyright
1997 IOP Publishing, Ltd

of colloids has been given by Poon and Warren [2]. Comparison with experiment
[41] shows that this treatment also overestimates the depletion effect of the small
spheres.

6.3.2 Mixtures of Latex Particles andMicelles

In 1980, Yoshimura, Takano and Hachisu [42] reported a fluid–solid phase separa-
tion in a dispersion of polystyrene latex (d1 = 510 nm) spheres mixed non-ionic sur-
factant polyoxyethylene alkyl phenylether at KCl concentrations above 0.05 mol/l.
Under these conditions the surfactants form spherical micelles. At a surfactant con-
centration of 2 wt% an iridescent bottom phase appeared, which increased in amount
upon further increase of the surfactant concentration. At the same time, the latex
concentration in the top phase decreased. The formation of colloidal crystals in the
bottom phase, which causes the iridescence, could be confirmed by direct visual
observation in the microscope.

A few years later, Ma [43] recognised that the origin of the phase separation is
the depletion interaction between the latex particles caused by the micelles. Piazza
and Di Pietro [44] have done quantitative measurements on the depletion-induced
phase separation in mixtures of latex particles and micelles. In Fig. 6.8 we give
their results for a mixture of colloidal polytetrafluoro-ethylene spheres with diam-
eter d1 = 220 nm and the non-ionic surfactant Triton X100 which forms globular
micelles with diameters d2 = 6–8nm. In Fig. 6.8 we compare these experimental
results (closed symbols) with the fluid binodal branch predicted from FVT. The sim-
ple FVT extension described in Sect. 6.2.1 is given as the dotted curve, while the
rigorous FVT approach that explicitly includes excluded volume interactions in the
reservoir presented in Sect. 6.2.2 is given as the solid curve. Computer simulations
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Fig. 6.8 Phase diagram for
asymmetric colloidal sphere
mixtures for q = 0.033. Data
points are experimental
results from Piazza and Di
Pietro [44], dotted curve is
the simple FVT approach
[1], solid curve is the
rigorous FVT prediction [3]
and the dashed curve
represents Monte Carlo
computer simulation results
by Dijkstra et al. [17]

[17] are presented as the dashed curve. Clearly, rigorous FVT is close to both com-
puter simulations and experiments for q = 0.033. Piazza et al. [45] have also shown
that the fluid–solid phase transition induced by micellar depletants can be exploited
to perform an efficient size fractionation of latex particles.

As early as 1952, Cockbain [46] observed the reversible aggregation and creaming
of soap stabilised oil-in-water emulsion droplets at soap concentrations greater than
the critical micelle concentration. Fairhurst et al. [47] suggested that this reversible
aggregation and creaming arises from the depletion interaction between the oil
droplets caused by the soap micelles. Quantitative measurements on depletion-
induced phase separation by micelles were performed by Bibette and co-workers
on silicone oil-in-water emulsions stabilised by sodium dodecylsulfate (SDS) [48].
Since the depletants now are charged it is more complicated to formulate simple
models to quantify the effects, but similar phase diagrams to that in Fig. 6.8 have
been measured. For small size ratios q < 0.03 it is clear from experiments that the
phase-transition points shift to lower depletant volume fractions. This is also pre-
dicted by rigorous FVT but not by classical FVT. In conclusion, rigorous FVT [3]
is in good agreement with computer simulations and is more accurate than simple
FVT.
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7PhaseBehaviour of Colloidal Hard
SpheresMixedwithHardRod-Like
Colloids

7.1 Introduction

In Sect. 2.4, it was shown that, when compared to other types of depletants, rod-like
colloids give rise to a strong depletion interaction at low concentration (Eq. 2.124).
As a result, it is also expected that even adding a small amount of rods to a dispersion
of colloidal spheres has a significant effect on the phase behaviour.

The high efficiency of using rods as depletants was addressed at an early stage by
Asakura and Oosawa [1] in a theoretical study, and experimental studies have indeed
demonstrated this. Vliegenthart et al. [2], Koenderink et al. [3] and Oversteegen
et al. [4] studied mixtures of boehmite rods and silica spheres and observed phase
separation in a colloidal fluid coexisting with a sphere-rich crystal-like solid phase
at low rod concentrations. Yasarawan and Van Duijneveldt [5] found that mixtures
of clay-rods and silica spheres tend to phase separate at low rod concentrations, but
appear in an arrested state instead.

A colloidal rod-like model system that has been investigated in detail is fd-virus
[6–8]. These are semi-flexible, have a length-over-diameter aspect ratio ≈ 130 and
are charge stabilised at values of pH > 4.2 due to the negative surface charge of
the coat proteins [9]. Filamentous fd-virus has been used to mediate an attraction
between single spherical particles and a fixed wall, and to determine the correspond-
ing depletion potential [10–12]. The equilibrium phase behaviour of mixtures of
fd-virus and polystyrene spheres has been investigated by Adams et al. [13] for
various sphere–rod size ratios, obtained by using spheres with different radii.

Guu et al. [14] studied the effect of the rod thickness on the phase behaviour
of fd-virus and polystyrene spheres by varying the ionic strength, which affects the
effective rod thickness. Guu et al. observed a transition from a single isotropic phase
to an isostructural fluid/fluid coexistence upon increasing the fd-virus concentration.
More details of this virus and other rod-like viruses will be discussed in Chap. 8.

© The Author(s) 2024
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In this chapter, we present an FVT approach for mixtures of hard spheres and
hard rods. In these hard sphere–hard rod mixtures, the depletion interaction leads to
interesting phase transitions, similar to what was discussed in Chaps. 3, 4 and 6. It
will be demonstrated that FVT (correctly) captures the above-mentioned pronounced
depletion effect caused by rod-like particles. It is noted that there are also useful
alternative theoretical approaches [15–20], but we restrict ourselves to the simple,
yet insightful FVT treatments. As in the previous chapter, we first focus on a simple
FVT extension (Sect. 7.2) and compare these with experiments (Sect. 7.3). Finally,
we discuss a more rigorous FVT approach (Sect. 7.4), in which excluded volume
interactions between hard rod depletants are explicitly considered.

7.2 FreeVolumeTheory for Sphere–RodMixtures: Simple
Extension

Again we start from an osmotic equilibrium, where the reservoir now contains col-
loidal rods and the system contains colloidal spheres and rods. The osmotic equi-
librium system considered is depicted in a schematic way in Fig. 7.1. The system
contains N1 number of hard spheres, each having a volume v1 = πd3/6. F0 is the
free energy of the hard-sphere system without added rods, and 〈Vfree〉0 is the undis-
torted free volume available for an added rod in the system of N1 hard spheres in a
volume V . For the semi-grand potential for the system represented in Fig. 7.1, we
obtain

Ω(N1, V , T , μ2) = F0(N1, V , T ) − PR〈Vfree〉0 (7.1)

by following the same steps as in Sect. 6.2.1 (see the derivation of (Eq. 6.8), the only
difference being that component 2 now refers to the rod-like depletants and μ2 is the
chemical potential of the N2 hard rods imposed by the (hypothetical) reservoir). In
(Eq. 7.1), PR is the pressure of the hard rods in the reservoir. The rods are modelled

Fig. 7.1 Osmotic
equilibrium system as in
Fig. 6.2 but with rods
replacing the small hard
spheres

Reservoir System
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as hard spherocylinders (consisting of cylinders of diameter D and length L , capped
with two hemispheres) with volume v2 given by

v2 = π

6
D3 + π

4
LD2. (7.2)

Equation (7.1) is a reasonable application for thin rods, for which phase transitions
occur at very low rod volume fractions. At low rod concentrations, the excluded
volume interactions between the rods hardly affect the free volume fraction.

Since we are now dealing with hard rods as the depletion agent, both the pressure
in the reservoir and the free volume differ from the case of (penetrable or hard)
spheres as depletion agent. Both quantities can be calculated conveniently using
SPT [21].

7.2.1 FreeVolume Fraction

For the free volume, we again start from expression (Eq. 3.28):

α = 〈Vfree〉0
V

= e−W/kT , (7.3)

where W is now the reversible work to insert a rod in the hard-sphere system. As
explained in Sect. 3.3, this work can be calculated by expanding the particle to be
inserted from zero to its final size. As mentioned, the rods are described as hard
spherocylinders. In the case of a spherocyclinder, the expansion can be described
in terms of a scaling parameter λ for the length and ν for the diameter, so the
scaled particle has a length λL and diameter νD. In the limit λ, ν → 0, the inserted
spherocyclinder approaches a point particle. In this limiting case, it is very unlikely
that excluded volumes of a sphere and scaled spherocylinder overlap. So,

W (λ, ν)

kT
= − ln[1 − n1vexcl(λ, ν)] (λ, ν → 0), (7.4)

where vexcl(λ, ν) is the excluded volume (Fig. 7.2) of the added scaled hard sphero-
cylinder and a hard sphere with diameter d = 2R:

vexcl(λ, ν) = π

6
(d + νD)3 + π

4
λL(d + νD)2, (7.5)

For large values of the scaling parameters λ and ν, the work required to insert an
additional spherocylinder is just the work to create the volume of the scaled particle
against the pressure P of the hard-sphere fluid:

W (λ, ν) =
(π

6
ν3D3 + π

4
ν2D2λL

)
P (λ, ν � 1). (7.6)
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Fig. 7.2 Schematic of the
excluded volume between a
sphere with diameter d and a
scaled spherocylinder with
length λL and diameter νD

For intermediate values of the scaling parameters it is assumed that the work
W (λ, ν) can be found from a Taylor expansion around λ = ν = 0 up to the higher
order terms that are being replaced by Eq. (7.6), resulting in

W (λ, ν) =
1∑

m=0

1∑
n=0

1

m!n!
∂m+nW

∂λm∂νn
λmνn

+ 1

2

∂2W

∂ν2
ν2 + 1

6
πν3D3

(
1 + 3λL

2νD

)
P.

(7.7)

The expression for the work to insert a spherocylinder with length L and diameter
D is obtained by setting λ = ν = 1. By using the SPT expression (Eq. 3.37) for hard
spheres for P

P

n1kT
= 1 + φ1 + φ2

1

(1 − φ1)3
, (7.8)

we obtain

W

kT
= − ln(1 − φ1) + a

(
φ1

1 − φ1

)
+ b

(
φ1

1 − φ1

)2

+ c

(
φ1

1 − φ1

)3

. (7.9)

Here,

a = 3q + 3

2
L + 3q2 + 3qL + q3 + 3

2
q2L,

b = 9

2
q2 + 9

2
qL + 3q3 + 9

2
q2L,

c = 3q3 + 9

2
q2L,
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Fig. 7.3 Free volume
fraction α for needles in a
dispersion of hard spheres
with volume fraction φ1 for
L = 2. Data points are
Monte Carlo computer
simulation results at
nR2 L

3 = 21.6 redrawn from
Bolhuis and Frenkel [22].
Solid curve is the FVT result
(Eq. 7.11)

where the size ratios that characterise this mixture are defined as

q = D

d
and L = L

d
,

so L/D = L/q .

Exercise 7.1. Verify that the above expressions for a, b and c match with
those below Eq. (3.38) in the limit that a spherocylinder equals a sphere.

The free volume fraction now follows from Eq. (7.3) as

α = (1 − φ1) exp
[− (

ay1 + by21 + cy31
)]

, (7.10)

where

y1 = φ1

1 − φ1
.

In the limit D = 0 (and hence q = 0), where the spherocylinder reduces to an
infinitely thin rod (also called needle), the free volume fraction takes the simple
form

α = (1 − φ1) exp

[
−3

2
L

(
φ1

1 − φ1

)]
. (7.11)

This expression is compared to Monte Carlo computer simulations by Bolhuis and
Frenkel [22] for the case L = 2 in Fig. 7.3, and obviously agrees reasonably well.
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Fig. 7.4 Sketch of the
excluded volume between a
spherocylinder and a scaled
spherocylinder

7.2.2 Osmotic Pressure of a Dispersion of Rods

We still have to find an expression for the pressure PR of the rods in the reservoir
in order to use Eq. (7.1). Since low concentrations of rods already induce phase
transitions in dispersions of hard spheres, we only consider dispersions of isotropic
rods here. We focus on the work of Cotter [23] (for a review on rod-like dispersions,
see Vroege and Lekkerkerker [24]), who presented a thermodynamically consistent
scaled particle treatment to derive an expression for the pressure of a system of
hard spherocylinders. The starting point is again the calculation of the work W to
insert an additional spherocylinder in the system of spherocylinders to obtain the
excess part of the chemical potential. The pressure can then be obtained by using the
Gibbs–Duhem equation (see Appendix A.2.).

Again, using the scaling parameter λ for the length and ν for the diameter we
obtain in the limit λ, ν → 0,

W (�, λ, ν) = −kT ln

[
1 − nR2

∫
f (�′)vexcl(�,�′, λ, ν)d�′

]
. (7.12)

The solid angle� can be decomposed into a polar angle θ ∈ [0, π ] and an azimuthal
angle φ ∈ [0, 2π ]. In Eq. (7.12), vexcl(�, �′, λ, ν) is the excluded volume of the
added scaled spherocylinder with orientation � and a spherocylinder of the fluid
with orientation characterised by the solid angle �′,

vexcl(�,�′, λ, ν) = π

6
(D + νD)3 + π

4
(D + νD)2(L + λL)

+ (D + νD)λL2
∣∣sin γ (�, �′)

∣∣ ,
(7.13)

where γ (�, �′) is the angle between the axes of the two spherocylinders (Fig. 7.4).
Furthermore, f (�) is the orientational distribution function,which gives the prob-

ability of finding a spherocylinderwith an orientation characterised by the solid angle
�. To distinguish between the symbols for the grand potential and the solid angle,
we use here the boldface �. The distribution function f (�) must be normalised:

∫
f (�)d� = 1. (7.14)
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In the isotropic phase, all orientations are equally probable, which implies that

f (�) = 1

4π
. (7.15)

For large values of the scaling parameters λ and ν, the work required to insert an
additional particle is just the work to create the volume of the scaled particle against
the pressure exerted by the fluid of spherocylinders:

W (λ, ν) =
(
1

6
πν3D3 + 1

4
πν2D2λL

)
PR (λ, ν � 1). (7.16)

For intermediate values of the scaling parameters, it is again assumed that the work
W (λ, ν) can be found from a Taylor expansion of Eq. (7.12) around λ = ν = 0, with
the terms up to order of the terms given by expression Eq. (7.16), giving

W (λ, ν) =
1∑

m=0

1∑
n=0

1

m!n!
∂m+nW

∂λm∂νn
λmνn + 1

2

∂2W

∂ν2
ν2

+
(
1

6
πν3D3 + 1

4
πν2D2λL

)
PR.

(7.17)

The excess chemical potential of a spherocylinder with length L and diameter
D is obtained by setting λ = ν = 1 in the above expression and integrating over all
possible orientations with the orientation distribution function f (�),

μex
2 =

∫
f (�)W (�, 1, 1)d�. (7.18)

Equation (7.15) holds in the isotropic phase. In that case, the average value of the
(absolute) sine of the angle between the axes of the spherocylinders is π/4. This
leads to

μex
2

kT
= − ln(1 − φR

2 ) + 2nR(πD2 + πDL)( 12D + 1
4 L)

1 − φR
2

+ (nR)2(πD2 + πDL)3

8π(1 − φR
2 )2

+ PR(π
6 D

3 + π
4 D

2L)

kT
.

(7.19)

By applying the Gibbs–Duhem relation (see Appendix A.2)

1

kT

(
∂PR

∂nR2

)

T

= 1 + nR2

(
∂μex

2 /kT

∂nR2

)
, (7.20)
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Fig. 7.5 Pressure of a
dispersion of spherocylinders
with Γ = 6 as a function of
the rod volume fraction φ2.
Data points are Monte Carlo
simulations from McGrother
et al. [25] and the solid curve
is the SPT result Eq. (7.22)

0.0 0.1 0.2 0.3 0.4
0.1

1

10

Pv2/kT

2

we find

PR

nR2 kT
= 1

1 − φR
2

+ nR2 ( 12D + 1
4 L)(πD2 + πDL)

(1 − φR
2 )2

+ (nR2 )2(πD2 + πDL)3

12π(1 − φR
2 )3

.

(7.21)

Note that for L = 0, where the spherocylinder reduces to a sphere, the above expres-
sion reduces to the pressure of hard spheres (Eq. 3.37). The dimensionless pressure
PRv2/kT , where v2 is the volume of the spherocylinder, can be written as

PRv2

kT
= φR

2

1 − φR
2

+ A

(
φR
2

1 − φR
2

)2

+ B

(
φR
2

1 − φR
2

)3

. (7.22)

Here,

A = 3Γ (Γ + 1)

3Γ − 1
,

B = 12Γ 3

(3Γ − 1)2
,

with

Γ = L + D

D
.

Figure 7.5 presents a comparison of the SPT result for the pressure of spherocylinders
(Eq. 7.22) with computer simulation results of McGrother et al. [25] for Γ = 6,
showing that there is (except for high volume fractions) close agreement.
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Fig.7.6 Colloidal gas–liquid
coexistence of mixtures of
rods and hard spheres for
L/d = 2 and 3. Data points
are Monte Carlo simulation
results [22]. Solid curve is
the FVT prediction
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7.2.3 Phase Behaviour Predictions of Simple FVTTheory

We now have all the ingredients for analysing the properties of the semi-grand poten-
tial (Eq. 7.1) of a colloidal sphere–rod mixture. From it, we obtain the pressure P of
the system and the chemical potentialμ1 of the large hard spheres using the standard
thermodynamic relations

P = −
(

∂Ω

∂V

)

N1,T ,μ2

= P0 + PR
(

α − n1
∂α

∂n1

)
, (7.23)

and

μ1 =
(

∂Ω

∂N1

)

V ,T ,μ2

= μ0
1 − PR ∂α

∂n1
, (7.24)

where P0 andμ0
1 are the pressure and chemical potential of the pure (big) hard-sphere

system (for which we use the expressions derived in Chap. 3). The dimensionless
forms of Eqs. (7.23) and (7.24) are given in Eqs. (3.45) and (3.46). We can then
calculate the phase behaviour of the colloidal sphere–rod mixture by solving the
coexistence relations, see Appendix A. As a test of the quality of the FVT for the
phase behaviour of colloidal sphere–rodmixtures,wepresent inFig. 7.6 a comparison
between FVT and simulation results for infinitely thin rods with L = L/d = 2 and
L/d = 3 taken from the work of Bolhuis and Frenkel [22]. The close agreement is,
given the approximations made in FVT, remarkable.

In order to compare FVTwith experiments, described in the next section, we need
results for rods with a finite thickness. In Fig. 7.7, we give results [21] for sphero-
cylinders with L/D = 20 and L = 0.2, 0.5 and 1, both in the φR

2 − φ1 representation
as well as in the experimentally relevant φ2 − φ1 representation by using Eq. (7.3):
φ2 = αφR

2 . Given that the depletion interaction between two spheres in a sea of thin
rods scales asL/q2 = Ld/D2 (see Eq. (2.124)), we have scaled the volume fractions
of rods by multiplication with Ld/D2; φ̃R

2 = φR
2 Ld/D2.
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Fig. 7.7 FVT phase diagrams of the volume fractions of hard spheres (φ1) mixed with sphero-
cylinders (φ2) [21] for L/D = 20 and q = 0.01 (left), q = 0.025 (middle), q = 0.05 (right). Upper
curves are in the φR

2 –φ1-representation and lower curves are in the φ2–φ1-plane

For L/d = 0.2, only fluid–solid coexistence is found. For L/d > 0.3, a region
of three-phase coexistence (colloidal gas–liquid–crystal) bounded by three distinct
two-phase regions (gas–liquid, liquid–crystal and gas–crystal) is found.

The topology of these phase diagrams exhibits the same global features as those
for hard spheres mixed with penetrable hard spheres in Chap. 3 and colloid–polymer
mixtures in Chap. 4. Note that, for L/D = 20, FVT predicts that the rods can cause
a fluid–crystal transition in dilute suspensions of spheres for rod volume fractions as
low as 0.003. This is confirmed experimentally as we shall see in the next section.

7.3 Phase Behaviour of Colloidal Sphere–RodMixtures.
Experiment

Koenderink et al. [3] and Vliegenthart et al. [2] studied depletion-induced crys-
tallisation in a mixture of silica spheres (diameter of d = 740 nm) and boehmite
(γ − AlOOH) rods (length L = 230 nm and diameter D = 9 nm) dispersed in DMF
with 0.001 M LiCl added to screen electrostatic interactions. The rods are coated
with a thin layer of silica to make them compatible with the silica spheres. The silica
spheres are labelled with fluorescein isothiocyanate (FITC) to make them visible
with fluorescence confocal microscopy. Transmission electron micrographs of the
boehmite rods and amixture of the boehmite rods and the silica spheres are presented
in Fig. 7.8.

In Fig. 7.9a, a time series of confocal microscopy images is presented of a sam-
ple containing silica spheres (φ1 = 0.025) and boehmite rods (φ2 = 0.0025). In the
images, it is seen that the silica number density increases with time by sedimenta-
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Fig.7.8 Transmission electron micrographs of silica-coated boehmite rods with (left) and without
(right) silica spheres. Reprintedwith permission fromRef. [3]. Copyright 1999AmericanChemical
Society

tion. Locally ordered structures are formed but no signs of depletion-induced phase
transitions are found.

Figure 7.9b presents a time series of confocal microscopy images of a sample of
silica spheres with the same volume fraction as that in Fig. 7.9a but instead for a
larger volume fraction of boehmite rods (φ2 = 0.005). In this case, the morphology
of the system is totally different. Clusters are rapidly formed (within minutes) and
those aggregates rapidly transform into crystallites while they grow and coalesce [2].
The initial clusters contain typically 103 particles. In the final stage, re-orientation
of different crystalline patches and annealing of defect lines is seen. This results in
large crystalline areas. The entire process does not take more than 8 min, much faster
than the formation of locally ordered structures under the influence of sedimentation
in the system with a 0.0025 volume fraction of rods. Apparently, in the case of a
0.005 volume fraction of rods, we are in the biphasic region (fluid–solid) of the
phase diagram. Let us compare this to theory. Figure 7.10 shows the theoretical FVT
phase diagram for a mixture of hard spheres (diameter d = 740 nm) and hard rods
(length L = 230 nm and diameter D = 10 nm). The experimentally investigated
systems discussed above are indicated by dots. The experimental observations of no
phase separation (φ1 = 0.025 and φ2 = 0.0025) and phase separation (φ1 = 0.025
and φ2 = 0.005) are in agreement with theory. The experiments clearly indicate that
rods are very efficient depletion agents.

Bakker et al. [26] performed an experimental study on the phase behaviour of
charged silica rods (L = 3.6 µm, D ≈ 0.6 µm) mixed with charged silica spheres
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t = 3 min t = 10 min

t = 17 min t = 25 min

(a)

t = 3 min t = 3.4 min

t = 4.2 min t = 5.5 min

(b)

Fig.7.9 Confocal microscopy images of fluorescently labelled silica spheres (d = 740 nm) mixed
with boehmite rods (L = 230 nm, D = 10 nm) various times t after mixing. The samples are
composed of 2.5 wt% spheres and a 0.25 wt% rods and b 0.5 wt % rods. Images are 50 µm × 50
µm. Reprinted with permission from Ref. [2]. Copyright 1999 Royal Society of Chemistry
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Fig. 7.10 FVT phase
diagram for a dispersion of
spheres mixed with rods for
L/D = 23 and q = 1/74.
The open diamonds indicate
the mixtures studied in Fig.
7.9a (0.25 wt%) and Fig.
7.9b (0.5 wt%)

(d ≈ 0.4 µm). They also determined sedimentation–diffusion equilibria. For rela-
tively large amounts of spheres, the mixtures form a stable isotropic phase for low
rod concentrations, but phase-separated isotropic–smectic A coexistence regions at
elevated rod concentrations. In Chap. 8, the rich phase behaviour of colloidal rods
mixed with nonadsorbing polymers including higher order phase states of rods are
discussed.

As mentioned in the introduction of this chapter, Guu et al. [14] studied the phase
behaviour of mixtures of fd-virus and polystyrene (PS) spheres. In Fig. 7.11a, the
data points refer to the fd-concentration above which the authors [27] experimentally
observed a transition from a single isotropic phase to an isostructural fluid/fluid
coexistence for various values of L = L/d. The radii of the spheres used in the
experiments are 248, 300, 354 and 497 nm and the length of fd-virus is 880 nm. Note
the low rod volume fractions at which the phase transitions take place. The dashed
curves are the predictions using the simple extension FVT theory.

Figure 7.11b shows the effect of rod thickness for L = 1.75 Also here, the exper-
imental data points lie significantly above the FVT predictions. In this case, the
rods are long, and not infinitely thin. For such a system, excluded volume interac-
tions between the rods are expected to be significant as fd-viruses themselves already
exhibit an I–N phase transition at low concentrations (as will be shown and discussed
in Chap. 8). In summary, the FVT description of the previous section works well for
thin rods but starts to deviate for thicker rods. For such mixtures of hard spheres and
hard spherocylinders with sufficient thickness of the rods, one needs to account for
excluded volume interactions between the rods at the reservoir level [27]. This is the
subject of Sect. 7.4.
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7.4 FreeVolumeTheory for Sphere–RodMixtures: A Rigorous
Approach

We follow a similar procedure to that in Sect. 6.2.2 but apply this to the case of
dispersions of hard spheres (component 1) mixed with hard rods (component 2) as
depletants. We again use Eq. (6.4) and write this for the fluid phase as

φ2 = φR
2

α(φ1, φ2)

αR(φR
2 )

. (7.25)

As in the previous chapter, we use the definitions φ2 = N2v2/V , φR
2 = NR

2 v2/V R,
α(φ1, φ2) = 〈Vfree(N1, N2)〉/V and αR(φR

2 ) = 〈Vfree(NR
2 )〉/VR.

The volume fraction of rods in the system φ2 can be found numerically by solving
Eq. (7.25) at a given reservoir rod volume fraction φR

2 . Substituting Eq. (7.25) into
the definition of the semi-grand potential given by Eq. (6.1) and applying the Gibbs–
Duhem relation (see Appendix A.2) yield an expression for the semi-grand potential
of a mixture of hard spheres and hard rods for the fluid phase:

Ω̃ = F̃0 −
φR
2∫

0

α(q, φ1, φ
′
2)

αR(φR′
2 )

(
∂ P̃R

∂φR′
2

)
dφR′

2 , (7.26)

(as in the previous chapter); and in a similar fashion, the grand potential of the solid
phase can be obtained.

We use Eq. (7.22), the scaled particle theory (SPT) result for the osmotic pressure
of a fluid dispersion of hard spherocylinders [28], for P̃R in the reservoir, which is
recast into

P̃R = v1

v2

[
φR
2

1 − φR
2

+ 3Γ (Γ + 1)

3Γ − 1

(
φR
2

1 − φR
2

)2

+ 12Γ 3

(3Γ − 1)2

(
φR
2

1 − φR
2

)3 ]
, (7.27)

with v1 as the hard-sphere volume (π/6)d3 and v2 defined in Eq. 7.2.

Exercise 7.2. Show that Eqs. (7.22) and (7.27) are consistent.

Opdam et al. [27] also calculated the work of insertion W required to insert a
hard spherocylinder into a binary mixture of hard spheres and hard spherocylinders.
Using Eq. (7.3) yields the following expression for the free volume fraction α in the
system:

α = (1 − φ1 − φ2)×

exp

[
−a2

φ1 + φ2

1 − φ1 − φ2
− b2

(
φ1 + φ2

1 − φ1 − φ2

)2

− v2

v1
P̃

]
, (7.28)
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with

a1 = 6
φ1

φ1 + φ2
+

[
1

q

6Γ

3Γ − 1
+ 1

q2
3(Γ + 1)

3Γ − 1

]
φ2

φ1 + φ2
, (7.29)

a2 =
[
3

2
L(1 + 2q) + 3q(1 + q)

]
φ1

φ1 + φ2
+

[
6 + 6(Γ − 1)2

3Γ − 1

]
φ2

φ1 + φ2
. (7.30)

Predictions of Eq. (7.28) are plotted in Fig. 7.12a as solid curves forΓ = 6 andL = 1
and are compared to Monte Carlo computer simulations (data points). Obviously,
there is close agreement.

An expression for the osmotic pressure of the binary system P̃ can also be obtained
using SPT [29], resulting in

P̃ =
(

φ1 + v1

v2
φ2

)

×
[

1

1 − φ1 − φ2
+ A1,2

2

(φ1 + φ2)

(1 − φ1 − φ2)2
+ 2B1,2

3

(φ1 + φ2)
2

(1 − φ1 − φ2)3

]
.

(7.31)

In Eq. (7.31) the following coefficients are used:

A1,2 = a1
φ1

φ1 + φ2
v1
v2

+ a2

(
1 − φ1

φ1 + φ2
v1
v2

)
, (7.32)

B1,2 = b1
φ1

φ1 + φ2
v1
v2

+ b2

(
1 − φ1

φ1 + φ2
v1
v2

)
, (7.33)

b1 =
(
3

2

φ1

φ1 + φ2
+ 1

q

3Γ

3Γ − 1

φ2

φ1 + φ2

)2

, (7.34)

b2 =
[
3

2
(L + q)

φ1

φ1 + φ2
+

(
3(2Γ − 1)

3Γ − 1
+ 3(Γ − 1)2

3Γ − 1

)
φ2

φ1 + φ2

]

×
(
3q

φ1

φ1 + φ2
+ 6Γ

3Γ − 1

φ2

φ1 + φ2

)
. (7.35)

As all ingredients are now available to compute the semi-grand potential of Eq.
(7.26), we can predict the colloidal fluid–fluid (or gas–liquid) phase transition con-
centrations. Predictions of the phase diagram forΓ = 6 andL = 1 are plotted in Fig.
7.12b as solid curve and are compared to Monte Carlo computer simulations [29]
and classical FVT predictions (grey curves). The symbols in Fig. 7.12b depict the
simulation data: open symbols denote state points at which a homogeneous binary
fluid was obtained, and closed symbols indicate that phase separation was observed.
There is reasonable agreement for the phase transition concentrations predicted by
rigorous FVTand the simulations. The classical FVTprediction differs quantitatively
and qualitatively.
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Fig. 7.11 Phase diagrams of polystyrene spheres mixed with fd-rods with a length of 880 nm.
Symbols denote experimental data. Dashed curves represent original FVT from Vliegenthart and
Lekkerkerker [21]; solid curves are binodals calculated using improved FVT, taking into account
the excluded volume of the rods in the reservoir [27]. a Influence of size ratio L = L/d at fixed
(effective) rod diameter Deff = 14 nm. The four sphere diameters used were d = 496, 600, 708
and 994 nm. b Influence of (effective) rod diameter Deff at fixed L for a diameter of the spheres
d = 496 nm. For Deff ≈ 11 nm and 14 nm, experiments were performed at an ionic strength of 100
mM and 25 mM, respectively. For Deff ≈ 19 nm, fd-virus sterically-stabilised with PEG was used
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(a) (b)

Fig. 7.12 Comparison of predictions (solid curves) from the improved FVT approach with Monte
Carlo simulations (symbols) [29] for mixtures of hard spheres and hard rods for Γ = 6 and L = 1
(q = 1/5). a The free volume fraction available for the hard rods in the system as a function of the
rod volume fractionφ2 for four hard-sphere volume fractionsφ1. bThe phase behaviour. Data points
from simulations show single phase (◦) and demixing (•). Black curve indicates improved FVT
(showing colloidal fluid–solid coexistence); grey curves represent classical FVT [21] (fluid–fluid
coexistence with (�) critical point; triple gas–liquid–solid coexistence)

In Fig. 7.11a, the rigorous FVT predictions are given by the solid curves. It
is clear the experimental data are now somewhat closer to the experimental data
points, although FVT now predicts phase transitions at higher concentrations. It may
be that charges actually blur the picture here since it is known [30] that charges
can modify depletion effects [31], even under conditions of significant screening
[32,33]. Figure 7.11b shows the comparison of rigorous FVT for various values of the
effective rod thickness. The picture is the same: overall, a somewhat closer agreement
with experiments (data) but overprediction of the phase transition concentrations,
especially for Deff = 19 nm.

References

1. Asakura, S., Oosawa, F.: J. Pol. Sci. 33, 183 (1958)
2. Vliegenthart, G.A., vanBlaaderen,A., Lekkerkerker, H.N.W.: FaradayDiscuss. 112, 173 (1999)
3. Koenderink, G.H., Vliegenthart, G.A., Kluijtmans, S.G.J.M., van Blaaderen, A., Philipse, A.P.,

Lekkerkerker, H.N.W: Langmuir 15, 4693 (1999)
4. Oversteegen, S.M., Wijnhoven, J.G.E.J., Vonk, C., Lekkerkerker, H.N.W.: J. Phys. Chem. B

108, 18158 (2004)
5. Yasarawan, N., van Duijneveldt, J.S.: Soft Matter 6, 353 (2010)
6. Fraden, S., Maret, G., Casper, D.L.D., Meyer, R.B.: Phys. Rev. Lett. 63, 2068 (1989)
7. Dogic, Z., Fraden, S.: Curr. Opin. Colloid Interface Sci. 11, 47 (2006)
8. Dogic, Z., Fraden, S.: In: Soft Matter: Complex Colloidal Suspensions, Gompper, G., Schick,

M., (Eds.), vol. 2, Chap. 1, pp. 1–86. Wiley Ltd. (2006)
9. Zimmermann, K., Hagedorn, H., Heuck, C., Hinrichsen, M., Ludwig, H.: J. Biol. Chem. 261,

1653 (1986)
10. Lin, K.H., Crocker, J., Zeri, A.C., Yodh, A.G.: Phys. Rev. Lett. 87, 888301 (2001)
11. Holmqvist, P., Kleshchanok, D., Lang, P.R.: Eur. Phys. J. E 26, 177 (2008)
12. July, C., Lang, P.R.: Langmuir 26, 18647 (2010)



240 7 Phase Behaviour of Colloidal Hard Spheres Mixed…

13. Adams, M., Fraden, S.: Biophys. J. 74, 669 (1998)
14. Guu, D., Dhont, J.K.G., Vliegenthart, G.A., Lettinga, M.P.: J. Phys.: Condens. Matter 24,

464101 (2012)
15. Schmidt, M.: Phys. Rev. E 63, 050201 (2001)
16. Brader, J.M., Esztermann, A., Schmidt, M.: Phys. Rev. E 66, 031401 (2002)
17. Esztermann, A., Schmidt, M.: Phys. Rev. E 70, 022501 (2004)
18. Harnau, L., Dietrich, S.: Phys. Rev. E 71, 011504 (2005)
19. Wu, L., Malijevský, A., Jackson, G., Müller, E.A., Avendano, C.: J. Chem. Phys. 143, 044906

(2015)
20. Wu, L., Malijevský, A., Avendano, C., Müller, E.A., Jackson, G.: J. Chem. Phys. 148, 164701

(2018)
21. Vliegenthart, G.A., Lekkerkerker, H.N.W.: J. Chem. Phys. 111, 4153 (1999)
22. Bolhuis, P.G., Frenkel, D.: J. Chem. Phys. 101, 9869 (1994)
23. Cotter, M.A.: J. Chem. Phys. 66, 1098 (1977)
24. Vroege, G.J., Lekkerkerker, H.N.W.: Rep. Progr. Phys. 55, 1241 (1992)
25. McGrother, S.C., Williamson, D.C., Jackson, G.: J. Chem. Phys. 104, 6755 (1996)
26. Bakker, H.E., Dussi, S., Droste, B.L., Besseling, T.H., Kennedy, C.L., Wiegant, E.I., Liu, B.,

Imhof, A., Dijkstra, M., van Blaaderen, A.: Soft Matter 12, 9238 (2016)
27. Opdam, J., Guu, D., Schelling, M.P.M., Aarts, D.G.A.L., Tuinier, R., Lettinga, M.P.: J. Chem.

Phys. 154, 204906 (2021)
28. Cotter, M.A.: Phys. Rev. A 10, 625 (1974)
29. Holovko, M.F., Hvozd, M.V.: Condens. Matter Phys. 20, 1 (2017)
30. Fortini, A., Dijkstra, M., Tuinier, R.: J. Phys.: Condens. Matter 17, 7783 (2005)
31. Tuinier, R., Rieger, J., de Kruif, C.G.: Adv. Colloid Interface Sci. 103, 1 (2003)
32. Zhou, J., van Duijneveldt, J.S., Vincent, B.: Langmuir 26, 9397 (2010)
33. van Gruijthuijsen, K., Tuinier, R., Brader, J.M., Stradner, A.: Soft Matter 9, 9977 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


8PhaseBehaviour of Colloidal Rods
MixedwithDepletants

So far, we have considered the phase behaviour of colloidal spheres mixed with
depletants. In Chap.3, we considered the simplest type of depletant, the penetrable
hard sphere (PHS). We then extended this treatment to ideal and excluded volume
polymers inChap.4; and inChap.6,we considered small colloidal spheres (including
micelles). Colloidal rods as depletants were addressed in Chap.7; however, Chap.7
only considered dilute dispersions of rods, in which the rods assume all configura-
tions and are hence isotropic. In this chapter, we consider the phase behaviour of
mixtures of colloidal rods and polymeric depletants, and we also account for higher
rod concentrations and the corresponding phase states.

8.1 Experimental Observations with Rod-Like Particle
Dispersions

Colloidal rods can be subdivided into synthetic inorganic rods, rod-like clay particles
and biological rods (see also [1]). Examples are given in Fig. 8.1. Suspensions of
rod-like particles exhibit interesting phase transitions and can assume various phase
states. For a description of the various liquid crystalline phases, we refer the reader
to the standard textbook on liquid crystals by de Gennes and Prost [2]. Lyotropic
liquid crystalline phases were recognised a long time ago in suspensions of rod-like
inorganic vanadium pentoxide (V2O5) colloids by Zocher [3], and later in solutions
of biological particles comprising the tobacco mosaic virus (TMV) by Bawden et al.
[4].

Upon concentrating a dilute rod suspension, a transition from an isotropic phase
to an orientationally ordered phase occurs for rods with a length–diameter ratio
L/D > 3.5. This is the so-called nematic liquid crystal phase, for which examples
are given in Figs. 8.2 and 8.3. The first step of the isotropic–nematic phase transition

© The Author(s) 2024
H. N. W. Lekkerkerker, R. Tuinier, M. Vis, Colloids and the Depletion Interaction,
Lecture Notes in Physics 1026, https://doi.org/10.1007/978-3-031-52131-7_8
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(a) V2O5 [5] (b) goethite [6] (c) boehmite [7]

(d) -FeOOH [8] (e) titania [9] (f) gold [10]

(g) CdSe [11] (h) silica [12] (i) Ge-immogolite [13]

(j) immogolite [14] (k) sepiolite [15]

(l) tabacco mosaic virus [16] (m) cellulose [17]

Fig.8.1 Transmission electronmicroscopy (TEM)micrographs of a–i synthetic inorganic, j, k clay
and l, m biological rod-like colloids. Reprinted with permission from a Ref. [5], copyright 1991
American Chemical Society (ACS); b Ref. [6], copyright 2006 ACS; c Ref. [7], copyright 1994
ACS; d Ref. [8], copyright 1996 ACS; e Ref. [9], copyright 2020Wiley; f Ref. [10], copyright 2009
Elsevier; g Ref. [11], copyright 2002 ACS; h Ref. [12], copyright 2011 ACS; i Ref. [13], copyright
2013 the Royal Society of Chemistry (RSC); j Ref. [14], copyright 1970 Cambridge University
Press; k Z. Zhang, Soochow University, China; l Ref. [16], copyright 1985 EDP Sciences; m
Ref. [17], copyright 1996 ACS
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(a) V2O5 [3] (b) tobacco mosaic virus (TMV) [4]

(c) boehmite [18] (d) TMV [19]

Fig. 8.2 Examples of a, b nematic tactoids and c, d macroscopic isotropic–nematic phase coexis-
tence observed between crossed polarisers. Reprinted with permission from: a Ref. [3], copyright
1925 Wiley; b Ref. [4], copyright 1936 Nature; c P. A. Buining, Utrecht University; d Ref. [19],
copyright 2006 Wiley

is the formation of spindle-like droplets (so-called tactoids) of the nematic phase that
float in the isotropic phase (Fig. 8.2a, b). Over time, these droplets coalesce to give
rise to a macroscopic nematic bottom phase and an isotropic top phase. The rods
have a different refractive index in parallel and perpendicular directions. As a result,
the nematic phase displays typical interference colours under crossed polarisers due
to a difference in retardation of light in different directions (Fig. 8.2c, d).

Oster [24] found an additional liquid crystal phase in suspensions of TMV in
which the particles are ordered in periodic layers. On average, the axes of the rods
are perpendicular to the layers (Fig. 8.3) and within the layers the rods behave like a
two-dimensional fluid. This phase is known as the smectic A phase (SmA) [2] . For a
long time, it was argued that attractive interactions between the rods were necessary
for the occurrence of this phase. Frenkel, Stroobants andLekkerkerker [25], however,
showed by using Monte Carlo simulations that smectic ordering occurs in a fluid of
hard rod-like particles, i.e., a smectic phase may appear solely driven by entropy.

Figure8.3b–d gives examples of confocalmicroscopy images of silica rod suspen-
sions with L/D ≈ 6. Upon increasing the silica rod concentration, Kuijk et al. [22]
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I N SmA AAA ABC

(a) schematic representation

(b) isotropic (c) nematic (d) smectic A (e) smectic A

Fig. 8.3 a Sketches [20,21] and b–d experimental observations [22] of the structure of different
phases of silica rods. e Iridescence observed in a smectic liquid crystal of TMV [23]. Reprinted
with permission from a Peters et al. [20] under the terms of CC-BY-4.0; b–d Ref. [22], copyright
2012 RSC and e Ref. [23], copyright 1985 Wiley

found isotropic (b), nematic (c) and smectic ordering (d) also. The layered structure
of the SmA with layer distances of the order of the wavelength of light gives rise
to impressive iridescence (see Fig. 8.3e). Computer simulations have revealed that
hard rods can also give rise to crystal phases AAA and ABC at high rod densities
(see Fig. 8.3a) [26,27].

The effect of nonadsorbing polymer on the isotropic–nematic phase transition has
been studied since the 1940swith a focus on the practical possibilities of isolation and
separation of viruses [28,29] (see Sect. 1.3.2.4). It was observed that the addition of
relatively small amounts of polymer to virus suspensions led to the ‘precipitation’ of
the virus particles (i.e., the formation of a concentrated phase of the virus particles).
Only much later in the 1990s were experiments initiated on model suspensions of
rod-like colloids mixed with polymers to study the treatment given in the previous
chapters to rod-like colloidsmixedwith depletant, and the results compared to theory
and computer simulations.

To connect the experimental observations discussed here to theoretical predic-
tions, we first discuss the Onsager theory (Sect. 8.2) to quantify the I–N phase tran-
sition of long hard rods and its extension to describe charged rods. Subsequently,
scaled particle theory of rods is discussed to approximate finite size effects of rods
in Sect. 8.3. In Sect. 8.4, theory for the phase behaviour of mixtures of hard rods
and nonadsorbing polymers is presented, and experimental examples are provided in
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Sect. 8.5. Finally, higher order phase states are included in the theoretical description
in Sect. 8.6. All sections are supplemented by comparison with experiment and/or
computer simulation results.

8.2 Onsager Theory of the Isotropic–Nematic Transition

8.2.1 Long Hard Rods

As we saw in the previous chapters, colloidal phase transitions of hard particles
are governed by entropy. This was first revealed by Onsager, who showed that the
isotropic–nematic (I–N) phase transition in assemblies of hard rods is driven solely
by entropy. He realised that an attractive force is not necessary for the I–N transition
by showing that an assembly of repelling rods exhibits a transition from an isotropic
to a nematic state due to a gain of packing entropy that compensates the loss of
orientational entropy. Onsager also demonstrated that the I–N transition may be
treated within a virial expansion of the free energy. In fact, this is a unique example
of a phase transition that can be treated using a virial expansion. For very thin,
rigid, hard particles the transition occurs at a very low volume fraction and the virial
expansion may even be truncated after the second virial term, leading to an exact
theory for infinitely thin particles. In the following, we give a brief exposition on
Onsager’s theory. For more details, we refer the reader to [30,31].

The Helmholtz free energy F for a dispersion of N hard rods (which we, as in
Sect. 7, model as spherocylinders with length L and diameter D) in a volume V in
the second virial approximation can be written as

F[ f ]
NkT

= constant − 1 + ln c + s[ f ] + cρ[ f ]. (8.1)

We have lumped in the constant quantities that do not affect the phase transition, i.e.,
have the same value in the coexisting phases. The quantity c is the dimensionless
concentration

c = bn, (8.2)

where b = (π/4)L2D is the excluded volume and n = N/V is the number density
of the rods. The orientational entropy is expressed through s[ f ]:

sor = −k
∫

f (�) ln[4π f (�)]d� = −ks[ f ], (8.3)

where f (�) is the orientational distribution function, which gives the probability
of finding a spherocylinder with an orientation characterised by the solid angle �.
Finally, −kcρ[ f ] is the packing entropy per particle, with

ρ[ f ] = 4

π

∫ ∫
| sin γ| f (�) f (�′)d�d�′, (8.4)
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where γ is the angle between the rods, which depends on their orientations � and
�′ (see Fig. 7.4).

As already remarked, the I–N transition originates from a competition between the
orientational and packing entropy. For low concentrations the orientational entropy
dominates and attains a maximum value for an isotropic distribution f = (4π)−1;
whereas for high concentrations the packing entropy becomes more important,
favouring a nematic orientation distribution. The orientational distribution is deter-
mined by the fact that the free energy must be a minimum. Upon minimising Eq.
(8.1), the integral equation

ln[4π f (θ)] = λ − 8c

π

∫
| sin γ(�, �′)| f (θ′)d�′ (8.5)

is obtained. Here, we have taken into account that f does not depend on the azimuthal
angle but only on θ, the polar angle between the rod vector and the nematic vector.
Furthermore, the distribution function f (θ)must satisfy inversion symmetry, imply-
ing the angles θ and π − θ are equivalent. Note that we assume the nematic phase
is apolar. The Lagrange multiplier λ is determined by requiring that f (θ) fulfils the
normalisation condition ∫

f (�)d� = 1. (8.6)

It is easily seen that the isotropic distribution function

f = 1

4π
(8.7)

satisfies Eq. (8.5) for all concentrations (although it is only for low concentrations
that this corresponds to a minimum of the free energy). For the isotropic phase, s
and ρ attain the values

sI = 0, ρI = 1, (8.8)

and hence
FI

NkT
= constant − 1 + ln c + c. (8.9)

Exercise 8.1. Derive Eq. (8.8) from Eqs. (8.3) and (8.4) using Eq. (8.7).

An exact solution to the non-linear integral equation Eq. (8.5) for higher concen-
trations, where a nematic distribution minimises the free energy, has not yet been
found but ways to solve it numerically have appeared [32,33]. For a didactic account
of how to solve Eq. (8.5) numerically, see Ref. [34]. This allows the determination
of s[ f ] and ρ[ f ] and, from thereon, the free energy in the nematic phase. To be
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in mechanical and chemical equilibrium, both phases must have the same osmotic
pressure and the same chemical potential (see Eqs. (A.13) and (A.14)),

PI(cI) = PN(cN), (8.10a)

μI(cI) = μN(cN). (8.10b)

These quantities can be obtained (see Appendix A) from the free energy using the
standard thermodynamic relations:

P = −
(

∂F

∂V

)
N ,T

, (8.11a)

μ =
(

∂F

∂N

)
V ,T

. (8.11b)

For the isotropic phase, we find from Eq. (8.9)

PIb

kT
= cI + c2I , (8.12a)

μI

kT
= constant + ln cI + 2cI. (8.12b)

Exercise 8.2. Show that Eqs. (8.12a) and (8.12b) follow from Eqs. (8.9) and
(8.11a) and (8.11b).

In the nematic phase, Eq. (8.1) gives

PNb

kT
= cN + c2Nρ[ f ], (8.13a)

μN

kT
= constant + ln cN + s[ f ] + 2cNρ[ f ]. (8.13b)

where the distribution f must be obtained numerically for each concentration from
Eq. (8.5). Solving the coexistence equations (8.10a) and (8.10b) with the above
expressions for the osmotic pressure and chemical potential numerically yields the
coexistence concentrations

cI = 3.290, cN = 4.191. (8.14)

The usual measure of the ordering in the nematic phase is given by the nematic order
parameter S, which is defined as

S =
∫

P2(cos θ) f (û)dû, (8.15)
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where û is an orientational unit vector, and P2 is the second Legendre polynomial.
For a dispersion of isotropic rods S = 0, whereas for ordered phases S can attain
larger values, approaching S → 1 for highly ordered rods. For the nematic phase of
infinitely long rods considered here,

S = 4π
∫ π/2

0
f (θ)

[
3

2
cos2 θ − 1

2

]
sin(θ)dθ (8.16)

has the value

S = 0.7922 (8.17)

for the coexisting nematic phase.
More convenient calculations of the phase transition can be performed by choos-

ing a trial function for the orientational distribution function f with one or more
variational parameters. The free energy as a function of these parameters can then
be minimised with respect to these parameters. Onsager [30] chose the following
function:

fO(θ) = κ cosh(κ cos θ)

4π sinh κ
. (8.18)

This expression only has a single variational parameter (κ) and gives the following
results for the coexisting concentrations and nematic order parameter at coexistence:

cI = 3.340 , cN = 4.486 , S = 0.848. (8.19)

Comparison of these results with the exact values in Eqs. (8.14) and (8.17) shows
that the trial function chosen by Onsager works quite well.

Odijk [35,36] realised that for large values of κ (and thus, for highly ordered
nematics), Onsager’s orientational distribution function can be approximated by a
simple Gaussian distribution function:

fG ∼ Ñ (κ) exp

(
−1

2
κθ2

)
0 ≤ θ ≤ π

2
, (8.20a)

∼ Ñ (κ) exp

(
−1

2
κ(π − θ)2

)
π

2
≤ θ ≤ π. (8.20b)

where Ñ (κ) is a normalisation constant. The advantage of this Gaussian distribution
function is that for large values of κ the quantities s[ f ] and ρ[ f ] can be represented
by the analytic expressions

s[ fG] ∼ ln κ − 1, (8.21)

and

ρ[ fG] ∼ 4√
πκ

. (8.22)
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This leads to the following expression for the free energy in the nematic phase:

F

NkT
∼ constant − 1 + ln c + ln κ − 1 + 4c√

πκ
. (8.23)

Minimising this expression with respect to κ,

∂F

∂κ
= 0, (8.24)

leads to

κ ∼ 4c2

π
. (8.25)

Hence,

F

NkT
∼ constant + ln

4

π
+ 3 ln c. (8.26)

Applying Eqs. (8.11a) and (8.11b) yields the following results for the (osmotic)
pressure and chemical potential of the rods in the nematic phase:

PNb

kT
= 3cN, (8.27a)

μN

kT
= constant + ln

4

π
+ 3 + 3 ln cN. (8.27b)

Combining these with the expressions given by Eqs. (8.12a) and (8.12b) for the
pressure and chemical potential in the isotropic phase, the coexistence Eqs. (8.10a)
and (8.10b) now take the simple forms:

cI + c2I = 3cN (8.28a)

ln cI + 2cI = 3 ln cN + ln

(
4

π

)
+ 3 (8.28b)

From this, we find the following coexisting concentrations:

cI = 3.451, cN = 5.122, (8.29)

implying, via Eq. (8.25), that κ = 33.4. Insertion of Eqs. (8.20a) and (8.20b) into
Eq. (8.16) using this value for κ gives

S = 0.910 (8.30)

for the nematic order parameter in the coexisting nematic phase.
While the results for the Gaussian distribution function differ more from the exact

results than the Onsager trial function (although in both cases the values are too high
for the coexisting concentrations and for the order parameter in the coexisting nematic
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phase), the calculations are substantially simpler [37] and provide a good estimate of
the I–N transition in more complicated situations (that we will encounter in the next
sections). Although the results of Onsager’s theory are of great fundamental and
methodological interest, they refer strictly to infinitely thin hard rods. Hence, the
applicability of the theory to experimental results is limited. In real suspensions of
rod-like particles, we have to take into account one or more of the following aspects:

• particles are not infinitely thin,
• particles may be polydisperse in size,
• particles are not hard but may show (long-range) repulsions, for instance, due to

charges or anchored polymeric brushes,
• there may be attractions between the particles and
• particles may be semiflexible.

Onsager [30] already addressed the issues of additional particle repulsions and poly-
dispersity. These and the other issues raised above have been considered extensively
(for a review, see [31]). Some of these complex elements will be treated in the rest
of this chapter.

8.2.2 Charged Rods

In experimental systems, the rod-like particles are often charged. This means that,
besides the hard-core excluded volume interaction, there is a double layer repul-
sion between the rods that gives rise to a soft repulsive interaction. Double layer
forces between charged colloids in a polar solvent are specified by the range and
the strength of the repulsive interaction [38]. The density of surface charge groups,
which is directly related to the electrostatic surface potential Ψ at the rod surface,
determines the strength of the repulsion. The ionic strength of themediumdictates the
Debye length, which mediates the range of the double layer repulsion. Onsager [30]
proposed to describe charged rods as hard rods with an effective diameter Deff > D.

Stroobants, Lekkerkerker and Odijk [39] used the pair interaction between two
charged rods to compute the second virial coefficient. This revealed an effective rod
diameter that is given by

Deff

D
= 1 + ln A′ + kE + ln 2 − 1

2

D/λD
, (8.31)

where λD is the ionic strength-dependent Debye length (see Sect. 1.2.2), kE is Euler’s
constant ≈ 0.577 and A′ follows from the pair interaction as

A′ = πλDζ2 exp [−D/λD]
2λB

, (8.32)
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with λB the Bjerrum length (see Sect. 1.2.2). The parameter ζ is the proportionality
constant of the outer part of the double layer electrostatic potential profile near a
charged rod [40]:

eΨ (r)

kBT
∼ ζK0(r/λD), (8.33)

where e denotes the elementary charge, r represents the distance from the centre line
of the rod, and K0 is the modified Bessel function of the second kind of order 0. For
a weakly charged rod, the Debye–Hückel approximation provides [41]

eΨDH(r)

kBT
= 4ZλDλBK0(r/λD)

DK1(D/2λD)
, (8.34)

where Z is the linear charge density (per unit length) of the rod and K1 is themodified
Bessel function of the second kind of order 1. Comparison of Eqs. (8.33) and (8.34)
enables ζ to be expressed in Eq. (8.32), giving

A′
DH = 8πZ2λ3

DλB exp [−D/λD]
D2K1

2(D/2λD)
. (8.35)

For thick and thin double layers, this results in the following respective asymptotic
analytical results [31]:

A′
DH �

{
2πZ2λDλB D 	 λD,
8Z2λ2

DλB
D D 
 λD.

(8.36)

Insertion of Deff for D into the equations for hard rods then enables the physical
properties of charged rods to be predicted. One may, for instance, insert the effective
rod concentration given in Eq. (8.2) using Deff to quantify the isotropic–nematic
phase transition of long thin rods outlined in the previous section. It is noted that
electrostatic twisting effects are not accounted for here. For those interested, see, for
instance, Ref. [39].

8.3 Scaled Particle Theory of the Isotropic–Nematic Transition

When considering finite-sized rods (and later on, the effect of depletion attraction
on the I–N transition in rod-like suspensions), we must take into account that the
second virial term B2 no longer strongly exceeds the higher virial terms. When there
are attractions between the rods, nearly parallel configurations are of paramount
importance and B2 is no longer the dominating virial coefficient, as in the case of
long, repulsive rods. It was shown that, for even slightly attractive rods, the third
virial coefficient B3 is almost as large as B2 [42]. This means that we must start
from a theory that takes into account higher virial coefficients. Here, we use scaled
particle theory (SPT) [43], which will be treated in this section. SPT for rods mixed
with polymers will subsequently be addressed in Sect. 8.4, following [44,45].
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SPT—a convenient and tractable way to incorporate higher virial coefficients in
the treatment of the isotropic–nematic phase transition—was applied in Sect. 7.3 to
obtain the osmotic pressure of an isotropic suspension of rods. The starting point of
SPT is the calculation of the reversible workW to insert an additional spherocylinder
into the system of spherocylinders to obtain the excess part of the chemical potential:

μex =
∫

f (�)W (�, 1, 1)d�, (8.37)

where W (�, 1, 1) is the reversible work to insert a spherocylinder with length L
and diameter D and orientation � in a system of hard spherocylinders. In Sect. 7.3,
we considered an isotropic assembly of rods but Eq. (8.37) applies equally well to
an orientationally ordered (nematic) system of rods, as long as we use an accurate
expression for the orientation distribution function, f (�). After replacing the second
virial contribution 2cρ[ f ] in Eq. (8.13b) with the chemical potential μex, we obtain

μ

kT
= constant’ + ln y + s[ f ],

+ (1 + 2 A[ f ])y +
(
A[ f ] + 3

2
B[ f ]

)
y2 + B[ f ]y3.

(8.38)

Here, y has its usual meaning

y = φ

1 − φ
,

with φ the volume fraction of the rods (which equals nv0), and v0 as the spherocylin-
der volume given by

v0 = π

4
LD2 + π

6
D3.

The quantities A[ f ] and B[ f ] are defined as

A[ f ] = 3 + 3(Γ − 1)2

3Γ − 1
ρ[ f ] (8.39)

B[ f ] = 12Γ (2Γ − 1)

(3Γ − 1)2
+ 12Γ (Γ − 1)2

(3Γ − 1)2
ρ[ f ], (8.40)

where

Γ = L

D
+ 1 (8.41)

is the overall length-to-diameter ratio. Using the Gibbs–Duhem equation (see Eq.
(A.12)), one obtains for the pressure

Pv0

kT
= y + A[ f ]y2 + B[ f ]y3 . (8.42)



8.3 Scaled Particle Theory of the Isotropic–Nematic Transition 253

Exercise 8.3. Show that Eq. (8.42) recovers the SPT expression for the pres-
sure of a hard-sphere fluid (Eq. (3.37)) by setting Γ = 1 and imposing Eq.
(8.7).

Finally, the Helmholtz energy can be obtained from the relation

F = Nμ − PV ,

leading to

F[ f ]
NkT

= F̃[ f ]
φ

= constant′ − 1 + s[ f ] + ln y + A[ f ]y + 1

2
B[ f ]y2, (8.43)

with F̃ = Fv0/kT V (see Appendix A.2), which will be used in later sections.

Exercise 8.4. Show that in the limit L/D → ∞ and low concentrations the
above expression for the free energy reduces to the free energy in the second
virial approximation Eq. (8.1) with constant′ = constant + ln(L/D).

As indicated earlier, the I–N phase equilibria can be found simultaneously:

• using Eq. (8.24) to minimise F[ f ] numerically with respect to the orientational
distribution function f ,

• calculating the orientation distribution function of f ,
• calculating the (osmotic) pressure and chemical potential and
• solving the coexistence equations.

Hence, there are three equations with three unknowns: the two coexistence con-
centrations and κ. The results for the coexisting concentrations, which now depend
on L/D, are given in Fig. 8.4 (see also [45]). In this figure, we also present Monte
Carlo simulation results [27] and the Onsager limit result (L/D → ∞). Clearly,
the agreement between numerically solving the SPT expressions (solid curves) and
computer simulation results is quite good. In Fig. 8.5, we give the coexistence pres-
sure at isotropic–nematic coexistence for hard spherocylinders as a function of the
aspect ratio L/D.

It is interesting to compare the results obtained with the numerical orientational
distribution function with the results obtained with the Gaussian orientational distri-
bution function Eqs. (8.20a) and (8.20b). Minimising the free energy of Eq. (8.43) is
possible by substituting the expressions for s[ fG] and ρ[ fG] that are given by Eqs.
(8.21) and (8.22). This yields the following expression for κ:

κ = 36

π

(Γ − 1)4

(3Γ − 1)2

(
y + 2Γ

3Γ − 1
y2

)2

. (8.44)



254 8 Phase Behaviour of Colloidal Rods Mixed with Depletants

Fig. 8.4 Isotropic–nematic
phase coexistence for hard
spherocylinders as a function
of the inverse of the aspect
ratio L/D

Fig. 8.5 Pressure Pb/kT at
isotropic–nematic
coexistence for hard
spherocylinders as a function
of D/L . Note v0 =
b[D/L + (2/3)(D/L)2]

Exercise 8.5. Show that in the limit L/D → ∞ and at low rod concentrations
Eq. (8.44) reduces to Eq. (8.25).

Using Eq. (8.44) for κ in s[ fG] and ρ[ fG], and substituting these expressions
in Eqs. (8.38) and (8.42), provides us with analytical expressions for the chemical
potential and pressure in the nematic phase. The expressions for these quantities in
the isotropic phase are obtained by setting s = 0 and ρ = 1 in equations (8.38) −
(8.42). We can then solve the coexistence equations (8.10a) and (8.10b). The results
for the coexisting concentrations and the coexistence pressure obtained using the
Gaussian orientational distribution function are also given in Figs. 8.4 and 8.5 as the
dashed curves.

As in the Onsager limit, the results lie somewhat above the numerical solution
but are still quite reasonable. Given the fact that the Gaussian approximation is
transparent and simple, its use provides an extremely valuablemethod to scan through
a large parameter space as we shall see in the next sections.



8.4 Isotropic–Nematic Phase Behaviour of Rods Mixed… 255

0 10 20 30 40 50 60
0

50

100

150

200

Ionic strength (mM)

R
od

co
nc

en
tra

tio
n
(m

g/
m
L)

Fig. 8.6 Isotropic–nematic phase transition concentrations of TMV as a function of the ionic
strength. The data points are experimental results redrawn from Ref. [46]. Curves represent SPT
with Deff calculated by using Eq. (8.31) and following [39]. Equation (8.35) was used to calculate
A′. Parameters used: L = 282nm, D = 18nm, charge density Z = −10 e/nm and virus particle
molar mass Mp = 4 · 107 g/mol

This SPT description can be extended to also include the influence of a double
layer surrounding the rods in a polar solvent due to charges at the rod surface.
Basically, one can still apply Eq. (8.43) with Eq. (8.44) to describe charged rods,
but D is instead replaced with Deff given by Eq. (8.31). The I–N phase transition
concentrations for TMV virus as a function of salt concentration are given in Fig. 8.6,
as measured by Fraden et al. [46]. As the ionic strength increases the concentration of
virus in the coexisting phases increases. Without added salt, an isotropic phase of 15
mg/mL TMV coexists with a nematic phase of 23 mg/mL, while, at an ionic strength
of 60 mM, the coexisting concentrations are 90 mg/mL in the isotropic phase and
125mg/mL in the nematic phase. Replacing the electrostatic potential between TMV
particles with an appropriate effective diameter gives a reasonably good description
of the experimentally observed phase boundaries [46]. This provides information on
how the I–N phase coexistence varies with Deff , which in turn depends on the ionic
strength for charged rods.

8.4 Isotropic–Nematic Phase Behaviour of RodsMixed
with Penetrable Hard Spheres

We now consider the effect of added polymer on the phase behaviour of a system of
hard rods. The simplest representation of a polymer is a penetrable hard sphere (PHS)
with diameter σ = 2δ and radius δ equal to the depletion thickness. See Sect. 2.1 for
details about the PHS model.

The starting point for the calculation of the phase behaviour is the semi-grand
potential for the colloidal rods–PHSs system that is in osmotic equilibrium with a
reservoir of PHSs, which sets the chemical potential of the PHSs. This system is
depicted in Fig. 8.7. In the free volume approximation (see Sect. 3.3), we can write



256 8 Phase Behaviour of Colloidal Rods Mixed with Depletants

Fig. 8.7 Osmotic
equilibrium between a
dispersion of hard rods and
penetrable hard spheres (the
system) and a reservoir
containing a penetrable
hard-sphere dispersion

Fig. 8.8 Illustration of the
available free volume (the
unshaded volume) in a
dispersion of hard
spherocylinders

Eq. (3.26) as

�(N1, V , T , μ2) = F0(N1, V , T ) − PR〈Vfree〉0, (8.45)

where N1 stands for the number of rods, μ2 represents the chemical potential of the
depletants (PHSs), PR is the pressure in the reservoir and 〈Vfree〉0 is the free volume
for PHSs in the system of rods, illustrated in Fig. 8.8.
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For F(N1, V , T ), we use the SPT expression (Eq. (8.43)) [43], and the osmotic
pressure of the PHSs in the reservoir is given by

PR = nR2 kT ,

where nR2 is the number density of PHSs in the reservoir. The free volume is again
calculated using the relation

〈Vfree〉0
V

= α = e−W/kT , (8.46)

where W is the reversible work for inserting the PHSs into the hard rod suspension.
An expression for the work of insertionW can again be conveniently obtained using
SPT. The work W is calculated by expanding the PHS to be inserted from zero to
its final size. By writing the size of the scaled PHS as λσ (= 2λδ) in the limit that
λ → 0, the inserted sphere approaches a point particle. In this limit, it is very unlikely
that excluded volumes of the hard rods and added scaled PHS overlap. So,

W (λ) = −kT ln [1 − n1vexcl(λ)] for λ 	 1, (8.47)

where vexcl(λ) is the excluded volume of the added scaled PHS and a hard sphero-
cylinder with length L and diameter D:

vexcl(λ) = π

4
(D + λσ)2 L + π

6
(D + λσ)3. (8.48)

The opposite limit λ 
 1 corresponds to the case when the size of the inserted
PHS is very large. Then W is, to a good approximation, equal to the volume work
needed to create a cavity with volume

π

6
(λσ)3

and is given by

W = π

6
(λσ)3P for λ 
 1, (8.49)

where P is the (osmotic) pressure of the hard rod system given by (Eq. (8.42)).
In SPT, the above two limiting cases are connected by expandingW in a series in

λ:

W (λ) = W (0) +
(

∂W

∂λ

)
λ=0

λ + 1

2

(
∂2 W

∂λ2

)
λ=0

λ2 + π

6
(λσ)3P. (8.50)

This yields

W (λ = 1)

kT
= − ln(1 − φ1) +

[
6Γ q

3Γ − 1
+ 3(Γ + 1)q2

3Γ − 1

]
y1

+ 1

2

(
6Γ

3Γ − 1

)2

q2y21 + 2q3

3Γ − 1

Pv0

kT
,

(8.51)
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where

y1 = φ1

1 − φ1

q = σ

D
= 2δ

D

Inserting (Eq. (8.42)) for the pressure P of spherocylinders leads to the following
expression for the free volume fraction:

α = (1 − φ1) exp [−Q(φ1)] , (8.52)

where

Q(φ1) = ay1 + by21 + cy31 (8.53)

with

a = 6Γ

3Γ − 1
q + 3(Γ + 1)

3Γ − 1
q2 + 2

3Γ − 1
q3, (8.54a)

b = 1

2

(
6Γ

3Γ − 1

)2

q2 +
(

6

3Γ − 1
+ 6(Γ − 1)2

(3Γ − 1)2
ρ[ f ]

)
q3, (8.54b)

c = 2

3Γ − 1

(
12Γ (2Γ − 1)

(3Γ − 1)2
+ 12Γ (Γ − 1)2

(3Γ − 1)2
ρ[ f ]

)
q3. (8.54c)

Exercise 8.6. Check that, in the appropriate limit, Eq. (8.52) with Eqs. (8.53)
and (8.54), α reduces to Eq. (3.38) with a, b and c given by Eq. (3.38).

We now have all the contributions to construct the semi-grand potential � given
in (Eq. (8.45)). In order to obtain the phase behaviour, we proceed along the same
lines as for the system of pure rods involving the following steps:

• minimise � with respect to the orientation distribution function f (compute the
value of κ at which ∂�/∂κ = 0). Note that, in Eq. (8.45), both the free energy
of the pure rod system F0 and the free volume 〈Vfree〉0 depend on the orientation
distribution function f

• evaluate the orientation distribution function f
• calculate the (osmotic) pressure and chemical potential of the rods, which are

given by
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P = −
(

∂�

∂V

)
N1,μ2

= P0 + PR
(

α − n1
dα

dn1

)
, (8.55)

μ1 =
(

∂�

∂N1

)
V ,μ2

= μ0
1 − PR dα

dn1
, (8.56)

where P0 and μ0 are the pressure and chemical potential of the pure rod system,
and

• solve the coexistence relations (Eqs. (A.13) and (A.14))

μI
1

(
nI1,μ2

) = μII
1

(
nII1 , μ2

)
, (8.57)

P I (nI1,μ2
) = P II (nII1 , μ2

)
. (8.58)

Instead of formal minimisation of the free energy leading to an integral equation
for the orientational distribution function f , wewill first use theGaussian distribution
function, which simplifies the calculations considerably while leading to reasonably
accurate results. This is illustrated in Fig. 8.9, where we plot the isotropic–nematic
phase coexistence curve for L/D = 10 and q = 1. On the ordinate, the relative
reservoir concentration of PHSs in the reservoir φR

2 is plotted versus the volume
fraction of hard spherocylinders on the abscissa. The solid curves are the results for
the binodals using the Gaussian distribution function, while the dashed curves were
obtained using formal minimisation (see Ref. [45]). In Fig. 8.4, it was demonstrated
that the Gaussian overestimates the I–N concentrations somewhat for the pure hard

Fig.8.9 Isotropic–nematic phase coexistence for L/D = 10 and q = 1 in the reservoir representa-
tion. The Gaussian orientational distribution function result (solid curves) is compared to the coex-
istence computed using formal minimisation of the oriental distribution function (dashed curves).
Inset: Plot of the nematic order parameter S as a function of φR

2 of the nematic phase (numerical
approach: dotted curve, Gaussian approximation: solid curve) that coexists with the isotropic phase



260 8 Phase Behaviour of Colloidal Rods Mixed with Depletants

Fig.8.10 Phase diagrams calculated using free volume theory for spherocylinders (L/D = 20)with
added PHSs at three size ratios: q = 0.3 (left), q = 1 (middle) and q = 2.5 (right). The upper three
curves are in the reservoir representation and the lower curves are the system results. The Gaussian
form for the ODF was used to minimise the semi-grand potential and compute the coexistence
concentrations

spherocylinder dispersion, which is also shown here. For a pure rod dispersion the
Gaussian approximation provides a too sharply peaked orientation distribution func-
tion f , reflected by a too large value for the nematic order parameter S. Hence, the
loss of orientational entropy is overestimated for the pure rod dispersion.

As the depletant concentration becomes significant and attractions play a dom-
inating role f becomes sharply peaked. This is reflected in a strong increase of
the nematic order parameter S (see the inset in Fig. 8.9). Hence, the Gaussian ori-
entational distribution function becomes increasingly accurate at larger depletant
concentrations.

Phase diagrams for L/D = 20, computed using the Gaussian f , are plotted in
Fig. 8.10 for q = 0.3, q = 1 and q = 2.5. The upper plots are the reservoir depletant–
rod representations, while the lower plots are the system representations. These three
size ratios reflect different scenarios that are found in mixtures of spherocylinders
and depletants when accounting for rods in the isotropic and/or nematic phase states.
Depending on the length-to-width ratio of the rod-like particles and the ratio of
the depletant diameter over the rod diameter, we find the following types of phase
equilibria:

• coexistence between two isotropic phases (dilute and concentrated are the equiva-
lent of vapour and liquid) and a nematic phase. This phase behaviour is predicted
to occur for mixtures of relatively short rods and large depletants, so long-ranged
attractions.

• coexistence between an isotropic and a nematic phase.
• equilibria between two coexisting nematic phases for rodsmixedwith small deple-

tants, so short-ranged attractions.
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Fig.8.11 Critical end point (cep) curves for isotropic–isotropic (I1–I2) and nematic–nematic (N1–
N2) coexistence in dispersions of hard spherocylinders and PHSs as a function of the aspect ratio
L/D. Computed using the Gaussian approximation for the orientational distribution function. Inset:
magnified region for relatively small L/D

• coexistence between one isotropic phase and two nematic phases differing in con-
centration. This phase behaviour is predicted to occur for long rod-like particles
and relatively small depletants.

A critical end point (CEP) exists for both the critical isotropic–isotropic and
nematic–nematic points at given L/D. This CEP identifies the conditions for which a
certain phase transition ceases to exist. The occurrence of the three different regimes
as a function of the geometrical parameters L/D and q is shown in Fig. 8.11, as
marked by the isotropic–isotropic and nematic–nematic critical end points. As a
function of L/D the CEP values provide critical end curves. In the inset of Fig. 8.11,
we have marked the conditions for which we plotted the phase diagrams in Fig. 8.10.

The three types of phase behaviour are illustrated in Fig. 8.10 in a representation
showing colloid volume fraction φ1 against depletant concentration φR

2 . Experimen-
tally, one controls the depletant (for instance, nonadsorbing polymer) concentration
in the system:

n2 = − 1

V

(
∂�

∂μ2

)
N2,V

, (8.59)

rather than the polymer concentration (chemical potential) in the reservoir. Using
the relation

α = n2
nR2

= φ2

φR
2

, (8.60)

phase diagrams in the experimentally accessible (φ1, φ2) plane can be obtained
from the results in the (φ1,φ

R
2 ) plane. The resulting phase diagrams are presented in

Fig. 8.10 (lower diagrams).
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8.5 Experimental Phase Behaviour of Rod–PolymerMixtures

In this section, experimental results on the isotropic–nematic transition in mixed
suspensions of colloidal rods and polymer are discussed and compared to the theory
presented in the previous sections. The experimental results refer to three types of
rod-like colloidal particles, which in suspension give rise to isotropic–nematic phase
separation above a critical concentration:

• stiff and semiflexible virus particles,
• cellulose nanocrystals and
• colloidal boehmite (γ-AlOOH) rods.

In several experimental examples in this chapter, the rods are semiflexible. These
are usually described using the worm-like chain model, (see, for instance, Refs. [47,
48]). In this model, the rod-like object has some flexibility by assuming a gradual
change of the direction of the chain, which is in between the random walk character
of a Gaussian chain and a rigid rod. This gradual change is described by assuming
fluctuations in bond lengths and bond angles. In Fig. 8.12, u(s) is the direction vector
of the chain at position s along the contour of the chain, and Δs is the angle (θP)
between two direction vectors that are a distance apart. The persistence length lP
follows from:

〈u(s) · u(s + Δs)〉 = 〈cos θP(Δs)〉 = exp

(
−Δs

lP

)
. (8.61)

It follows that lP is the characteristic length scale, on which the direction vector u of
the chain varies.

The polymers added to the rod-like particles range from polysaccharides (heparin,
chondroitin sulfate, dextran) to polyethylene oxide (PEO) and polystyrene (PS).

s
O Ls+Δs

u(s)

u(s +Δs)

lP

Fig. 8.12 An example of a configuration of a semiflexible rod described as a worm-like chain
starting at position O , having a length L . The quantity u(s) is the direction vector of the chain at
position s. For explanation of the other symbols, see the main text. Inspired by Fig. 8 in Ref. [31]
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8.5.1 Stiff and Semiflexible Virus Particles Mixed with Polymer

Illustrative examples of rod-like colloidal particles are stiff and semiflexible virus
particles, such as the plant virus tobacco mosaic virus (TMV) and the filamentous
bacteriophages fd-virus, Pf1, Pf4. Table8.1 summarises the characteristics of the
virus particles discussed in this section.

Suspensions of TMV (see Fig. 8.13, taken from Ref. [56]) have long been recog-
nised as an interesting system to study the I–N transition [4]. TMV is a rigid cylin-
drical particle consisting of a protein shell enclosing double-stranded RNA. Fraden
et al. [46] measured the coexisting isotropic and nematic concentrations over a wide
range of ionic strengths (Fig. 8.6).

It was as early as 1942 that Cohen [28] conducted a study directed at the isolation
of TMV from infectious juice and observed that the addition of 5 mg/mL of the
polysaccharide heparin to a dilute TMV suspension (2 mg/mL) in 0.1 M phosphate
buffer (pH = 7.1) resulted in the production of needle-shaped paracrystals 5–20µm
in length (see Fig. 1.11 in Ref. [28]). These crystals may be considered as precursors
of the I–N transition [4]. In the 1990s, Sano and co-workers [56–58] added the
polysaccharide chondroitin sulfate (Chs) to dilute TMV suspensions with a view to
establish the antiviral activity of these polysaccharides. With electron microscopy,
Urakami et al. [56] observed that the addition of very low concentrations of Chs
(1 mg/mL) to dilute TMV suspensions (1 mg/mL) caused the formation of large raft-

Table 8.1 Characteristics of TMV [46], (wild-type) fd [19,49–51], Pf1 [50,52,53] and Pf4 [54,55]
virus particles. Acknowledgements to A. Tarafder, T. Bharat, P. Secor and P. Janmey for their help
with compiling this table

Virus Mp (kDa) L (µm) D (nm) L/D lP (µm)

TMV 4 · 104 0.3 18 17 > 10L

fd 1.64 · 104 0.88 6.6 133 2.5 ≈ 2.8L

Pf1 3.5 · 104 2 6 333 2 ≈ L

Pf4 6.08 · 104 3.8 6 633 2 ≈ 0.5L

Fig. 8.13 TEM micrograph
of TMV particles. Reprinted
with permission from
Ref. [56]. Copyright 1999
AIP Publishing
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Fig. 8.14 TEM micrograph
of ordered TMV particles as
induced by added
chondroitin sulfate.
Reprinted with permission
from Ref. [56]. Copyright
1999 AIP Publishing

Fig. 8.15 I–N phase
coexistence for hard
spherocylinders (L/D = 17)
mixed with PHSs,
mimicking TMV mixed with
polymers for size ratios
q = 0.4 (solid curves) and
q = 1.1 (dot-dashed curves)

like aggregates (Fig. 8.14). The effect of Chs on infectivity may, according to Sano
[57], be ascribed to these raft-like aggregates blocking the decapsulation process of
TMVprotein on the cellmembrane surface. The fact that very lowChs concentrations
lead to aggregation of TMV is attributed to its semirigidity [56,58].

Leberman [29] observed that addition of 6 mg/mL of the flexible polymer
polyethylene oxide (PEO) (M = 6 kDa, Rg = 3.6 nm) to a dilute 1 mg/mL TMV
suspension leads to precipitation of TMV, which may be considered as a sign of
the I–N transition. Figure8.15 presents a comparison of this experimental observa-
tion with the theoretical phase diagram for L/D = 300/18 = 17 and q = 2Rg/D =
2 · 3.6/18 = 0.4, which are the relevant parameters for this mixed TMV–PEO sus-
pension.

From this calculated phase diagram, we observe that at low TMV concentrations a
relative polymer concentrationφp = 0.125 is required to cause I–N phase separation,
which corresponds in this case to a mass concentration of cp = 3φpM/4πNAvR3

g =
6.4 mg/mL. The agreement with the experiment should be considered with care
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since the electrostatic interactions have not been taken into account in the theoretical
calculation.

More extensive measurements on the I–N transition in TMV suspensions with
added PEO (M = 100 kDa, Rg = 10 nm) were carried out by Adams and Fraden
[49]. At TMV concentrations of 20 mg/mL (where the pure rod system is in
the isotropic phase), they observed the first signs of I–N phase separation at 5
mg/mL added PEO and a more definite phase transition for 10 mg/mL added
PEO. For a direct comparison with the experimental observation, Fig. 8.15 also
presents the theoretical phase diagram for L/D = 17 (TMV as before) but now with
q = 2Rg/D = 2 · 10/18 = 1.1, which are the relevant parameters for this mixed
TMV–PEO suspension. From this calculated phase diagram, we observe that at low
TMV concentration a relative polymer concentration φp = 0.25 is required to cause
I–N phase separation, which corresponds in this case to a mass concentration of
cp = 3φpM/4πNAvR3

g = 10 mg/mL. This is again in reasonable agreement with
theory. As mentioned before, the electrostatic interactions that certainly play a role
have not been taken into account, and therefore the comparison with experiment
should be considered with care.

In addition to TMV, the liquid crystal phase behaviour of the semirigid cylindrical
fd-virus has been investigated extensively. The fd-virus particle consists of a protein
shell wound around a single ribbon of single-stranded DNA [59]. Figure8.16 shows
an AFM image of some fd-viruses. Near a neutral pH the linear charge density is
−5 to −20 e/nm. Fraden and co-workers [50] measured the coexisting isotropic and
(chiral) nematic concentrations over a wide range of ionic strengths of the wt fd-
virus. The onset of the (chiral) nematic phase occurs from 10 to 20mg/mL of fd-virus
as the ionic strength is increased from 1 to 100 mM. Dogic et al. [60,61] studied the
phase diagram of mixed suspensions of fd and dextran (Mp = 500 kDa, Rg = 18nm)
and an example is plotted in Fig. 8.17a.

A clear widening of the I–N transition of the fd-virus rod dispersion takes place
upon increasing the dextran concentration. Although this finding is quite general
for the I–N binodal, the corresponding spinodal points related to this phase transi-

Fig. 8.16 Image of fd-virus
mutant type Y21M particles
dried on a mica surface made
using AFM. Scale and depth
indicated. Image kindly
provided by O. Deschaume,
M.P. Lettinga and C. Bartic,
KU Leuven, Belgium
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Fig. 8.17 a Phase diagrams of dispersions containing fd-virus and dextran. Data points are mea-
sured phase coexistences. The phase diagram was measured at an ionic strength of 100 mM at pH
= 8.15 with added 500 kDa dextrans. Data replotted from Ref. [61]. b Predicted I–N phase coex-
istence for spherocylinders (L/D = 133, Deff = 11.57nm, L/Deff = 76.1, ionic strength of 100
mM) mixed with PHSs (2δ/Deff = 2.15). The dextran polymer has Rg = 17.6nm and the charge
density is taken as -10 e/nm

tion seem to be much less affected by adding nonadsorbing polymers [62]. At low
fd-virus concentrations, the I–N transition takes place upon adding large polymer
concentrations.

For direct comparison with the experimental phase diagram, we present the the-
oretical phase diagram for L/D = 880/6.6 = 133 and q = 2Rg/D = 2 · 11/6.6 =
3.3 in Fig. 8.17b. For detailed accounts of the ideal polymer chains, see Refs. [45,61].
The overall agreement between theory and experiment (compare Figs. 8.17a and
8.17b), while far from perfect, is satisfactory considering that fd is not completely
rigid and that dextrans are branched polymers. The rod flexibility is known to have a
significant effect on the I–N phase behaviour [31]. This is demonstrated by the inter-
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Fig. 8.18 Atomic force
microscopy image of Pf1
viruses in monovalent salt.
Image kindly provided by
P.A. Janmey from their study
reported in Ref. [64]

esting work of Barry, Beller and Dogic [63], who compared the phase behaviour of
a mutant filamentous virus, fd Y21M (Fig. 8.16), to that of a conventional fd wt.
The persistence length of fd wt is 2.8 ± 0.7 μm, whereas the persistence length of fd
Y21M is 9.9 ± 1.6 μm. Compared to fd wt, the location of the isotropic–cholesteric
phase transition for fd Y21M shifts to lower densities and approaches values that are
remarkably close to the Onsager prediction for rigid rods.

The filamentous bacteriophages Pf1 [50,53,64] and Pf4 [54,55] are structurally
similar to fd-virus. An atomic force microscopy image of the filamentous bacterio-
phage Pf1 [64] is presented in Fig. 8.18.

Booy and Fowler [65] observed small domains of smectic organisation (cybotactic
clusters [2]) in a nematic phase in suspensions of Pf1 at a concentration of 40mg/mL.
Using optical microscopy Dogic and Fraden [50] observed coexisting regions of the
nematic and smectic phases in suspensions of Pf1 with abrupt boundaries between
the phases, which is evidence of a first-order phase transition.

So far, no liquid crystal phases in pure suspensions of Pf4 have been reported; but
Secor et al. [54] andTarafder et al. [55] observed liquid crystal tactoids in suspensions
of Pf4 upon adding sodium alginate. In Fig. 8.19, we show the concentrations of Pf4
and sodium alginate where the tactoids appear [54].

Tarafder et al. [55] provided beautiful fluorescence microscopy images of Pf4
tactoids observed after mixing Pf4 with sodium alginate (Fig. 8.20a). The key role
of the tactoids is that they can encapsulate the pathogenic bacterium Pseudomonas
aeruginosa, shielding them from antibiotics [54,55,66]. Illustrative fluorescence
microscopy images of this encapsulation (Fig. 8.20b), can be found in [55].
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Fig. 8.19 Phase diagram indicating the stable (one phase) region (closed symbols) and unstable
demixing region (open symbols) in terms of the polymer (alginate) concentration and virus (Pf4)
concentration. The dotted curve that indicates the phase transition concentrations is drawn to guide
the eye. Replotted from the data in Ref. [54]

Fig. 8.20 Fluorescence microscopy images of Pf4 tactoids. a Tactoids observed in a mixture of
1mg/mL Pf4 and 10mg/mL sodium alginate 24h after mixing and b tactoids of Pf4 encapsulate
Pseudomonas Aeruginosa [55]. Figures were kindly provided by A.K. Tarafder and T.A.M. Bharat
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8.5.2 Cellulose Nanocrystals Mixed with Nonadsorbing Polymers

In 1959, Marchessault, Morehead and Walter [67] reported on the formation of
liquid crystals in suspensions of cellulose nanocrystals prepared from cellulose by
acid hydrolysis in sulfuric acid (see Fig. 8.1m for a microscopy image of cellulose
nanorods). The study of the isotropic–(chiral) nematic phase transition in suspensions
of cellulose nanocrystals [68] has since developed into a blossoming and fruitful field
of research (for an overview see Ref. [69]. See also [70,71] for more recent work).
Edgar and Gray [72] studied the effect of 2000 kDa dextran (Rg = 34 nm) on the
phase behaviour of cellulose nanocrystals (average length L = 110 nm, average
diameter D = 10 nm), prepared by acid hydrolysis of cotton filter paper.

In Fig. 8.21, we redraw the I–N phase behaviour at low dextran concentrations.
Above 7 wt % suspensions of these cellulose nanocrystals start to phase separate in
an isotropic and chiral nematic liquid crystal phase. At 13.3wt%, the relative volume
of chiral nematic phase (compared to the total volume) is 79%. This wide biphasic
range is a direct consequence of the polydispersity of the cellulose nanocrystals
[35,73] and has been observed in other dispersions containing polydisperse rod-like
colloids as well [15,74]. When dextran was added to the biphasic region, it led to
a significant broadening of the coexistence region and the dextran preferentially
partitions in the isotropic phase. These features are in agreement with the theory
described in Sect. 8.4.

8.5.3 Sterically Stabilised Colloidal Boehmite RodsMixed
with Polymer

As mentioned in the introduction of this chapter, suspensions of rod-like inorganic
colloids were the first systems in which the I–N transition was observed. In the
early 1960s, Zocher and Torök [75–77] and Bugosh [78] observed interesting liquid

Fig. 8.21 Influence of blue
dextran (Rg/D = 3.4)
concentration (normalised to
φp) on the isotropic–nematic
phase coexistence in
dispersions of rod-like
cellulose nanorods
(L/D = 11) with volume
fraction φ. Replotted from
Edgar and Gray [72]

�
p



270 8 Phase Behaviour of Colloidal Rods Mixed with Depletants

Fig. 8.22 TEM micrograph
of boehmite rods. Image
kindly provided by J.
Buitenhuis,
Forschungszentrum Jülich,
Germany

Fig. 8.23 Triphasic I1–I2–N
equilibrium in dispersions of
boehmite rods and
polystyrene chains in
ortho-dichlorobenzene [79].
Image kindly provided by J.
Buitenhuis,
Forschungszentrum Jülich,
Germany

crystal phase behaviour in aqueous dispersions of colloidal boehmite rods, shown in
Fig. 8.22.

Later, Buining and Lekkerkerker [74] observed isotropic–nematic phase sepa-
ration in a dispersion of sterically stabilised boehmite rods, which approximate
hard rods, in cyclohexane. Buitenhuis et al. [79] studied the effect of added 35
kDa polystyrene (Rg = 5.9 nm) on the liquid crystal phase behaviour of sterically
stabilised boehmite rods with average L = 71 nm and average D = 11.1 nm in
ortho-dichlorobenzene. Different phase equilibria were observed: two biphasic I–N
equilibria (both dilute isotropic phase I1 with nematic N and concentrated isotropic
phase I2 with nematic N) and a triphasic equilibrium I1–I2–N (Fig. 8.23). In this sys-
tem, the boehmite rods are quite polydisperse. Therefore, comparison with theory
should be done with an approach that includes polydisperse rods (see, for instance,
Refs. [33,80]). We further note no I1–I2 coexistence was observed experimentally
but rather an I1-gel at high polymer concentrations. The depletant-mediated appear-
ance of a nonequilibrium long-lived metastable state such as a gel resembles the
behaviour of colloidal sphere/polymer mixtures (see Chap.4).
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8.6 Phase Diagrams of Rod/polymer Mixtures Including
Highly Ordered Phases

In the previous sections we focused on the isotropic–nematic phase transition in
mixed suspensions of rod-like colloids and flexible polymers. In Sect. 8.3, it was
shown that scaled particle theory (SPT) provided the pressure and chemical poten-
tial of the hard spherocylinder reference system. SPT also enabled a route for the
calculation of the free volume fraction, the quantities required in the FVT calculation
of the phase diagram (see Sect. 8.4). Depending on L/D and δ/D, three types of
phase diagrams were obtained (presented in Fig. 8.10). For intermediate q values, a
significant broadening of the I–N biphasic region was obtained. For large q values
an isostructural I1–I2 transition arises in addition, while for small q values an addi-
tional N1–N2 transition arises. The broadening of the biphasic I–N region and also
a triphasic I1–I2–N equilibrium have indeed been observed experimentally in mixed
suspensions of rod-like colloids and flexible polymers [60,72,79]. We noted that the
theoretical prediction of the N1–N2 transition (which, so far, has not been observed
experimentally in mixed suspensions of rod-like colloids and flexible polymers)
should be treated with reservation.

The N1–N2 phase transition is predicted to occur at quite high volume fractions
of rods. At these high volume fractions, the N1–N2 transition may be superseded
by more highly ordered (liquid) crystal phases such as the colloidal smectic phase.
Experimentally, this colloidal smectic phase has been observed [24,50,81] in sus-
pensions of monodisperse rods. Simulations confirmed that hard rods can form a
thermodynamically stable smectic phase [25–27,82]. In this section, we outline how
the more dense highly ordered phases can be accounted for in the phase diagram of
mixtures of rod-like colloids and flexible polymers using FVT.

8.6.1 Full Phase Diagrams of Hard Spherocylinders

Computer simulation results of suspensions containing hard spherocylinders [25–
27] revealed that, with increasing concentration, isotropic (I), nematic (N), smectic–
A (SmA), AAA crystal and ABC crystal phases appear as preferred phase states
(Fig. 8.3a).

As discussed in Sect. 8.2.1, the rods have a random orientation in phase I, while,
in the other phases, they are aligned along a common nematic director. Both I and N
phases are fluids and have no long-range positional order. While SPT [43] provides a
reasonable equation of state for long rods, Parsons–Lee (PL) theory [83–85] is more
accurate for short rods. PL theory is basically an extension of the Carnahan–Starling
equation of state and is discussed in more detail in Sect. 9.2.2. See also [31]. To
accurately cover the full range of aspect ratios, Peters et al. [20] combined SPT and
PL using a sigmoidal interpolation procedure. In the SmA, AAA and ABC phases,
the particles are confined in layers and the nematic director is perpendicular to the
layers. For the SmA phase, there is, however, still no positional order within the
layers, while, in the AAA and ABC phases, the particles are ordered hexagonally. In
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the AAA phase, the rods of adjacent layers are stacked on top of each other, while,
in the ABC phase, they are stacked in between the rods of adjacent layers. For all
three phase states, an extended cell theory was developed by Peters et al. [20], based
upon an approach proposed by Graf and Löwen [86]. The final results were cast into
algebraic equations [20], which are summarised below.

In general, for any of these phases, the free energy can be split into an ideal,
orientational and packing contribution:

F̃ = Fv0

kT V
= F̃id + F̃or + F̃pack, (8.62)

with F̃id = φ ln(φΛ3/vc) − φ being independent of the phase state and F̃or = s[ f ]
given by Eq. (8.3). For the SmA phase, the cell model includes a thermodynamic
description of 2D discs with area fraction φ2D that captures the in-plane fluidity of
rods projected onto the smectic plane. The expression for the packing free energy
F̃pack of the smectic phase reads

F̃SmA
pack

φ
= − ln

(
1 − φ2D D̄

2
eff

)

+ φ2D D̄2
eff

1 − φ2D D̄2
eff

− ln

(
1 − Γ

Δ̄⊥

)
.

(8.63)

The quantities D̄eff and Δ̄⊥ in Eq. (8.63), as well as F̃or, can be determined by
simultaneously minimising the total free energy with respect to f (�) and Δ̄⊥ (see
Ref. [20] for details). The effective rod diameter D̄eff can be calculated using

Deff = 1 + A(Γ − 1)
∫

f (�)| sin(θ)|d�, (8.64)

where A was chosen such as to fit the resulting equations of state and nematic–
smectic-A phase transitions to those obtained from computer simulations [26,27].
The quantity A varies depending on whether the equations of state for the nematic
phase is based on SPT (A = 0.41φ) or PL (A = 0.28φ). For the sigmoidal inter-
pretation approach A = 0.41φh, with h = g + (1 − g)0.28/0.41, with g defined by
[20,21]

g = 1

1 + eΓt−Γ
, (8.65)

with Γt = 6, connecting the Onsager limit (Γ → ∞) and the sphere limit (Γ → 1).
For the AAA phase, Peters et al. [20] derived

F̃AAA
pack = φ + φ ln φAAA

cp − φ ln
(
Δ̄AAA‖ − D̄eff

)2

− φ ln

(
φAAA
cp /φ

(Δ̄AAA‖ )2
− 1

)
,

(8.66)
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where for AAA the parameter A = 0.225φh in the definition of D̄eff was chosen
based on comparison with simulation results for the equations of state and the AAA–
ABC phase transition [26,27]. The resulting normalised layer spacing Δ̄‖ reads

Δ̄AAA‖ =
61/3

(
φAAA
cp
φ

)
+

(
9

φAAA
cp
φ + φAAA

cp
φ

√
3

(
27 − 2

φAAA
cp
φ

))2/3

62/3

(
9

φAAA
cp
φ + φAAA

cp
φ

√
3

(
27 − 2

φAAA
cp
φ

))1/3 . (8.67)

The spacing parameter Δ‖ is normalised through Δ̄‖ = Δ‖/D.
For theABCcrystal phase, an extended cell theory approach leads to the following

expression [20,86]:

F̃ABC
pack

φ
= 1 + ln φref − ln

(
Δ̄ABC‖ − D̄eff

)2 − ln

(
φref/φ

(Δ̄ABC‖ )2
− 1

)
, (8.68)

with

Δ̄ABC‖ =
61/3

(
φref
φ
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+
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9φref
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3
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(
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3
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and

φref = π (3Γ − 1)

6
(√

3 (Γ − 1) + B
√
2
) ,

including the parameter B = 1.16. Next, the accuracy of these expressions is com-
pared to computer simulation results.

For L/D = 4, the rod concentration dependence of the resulting theoretical
osmotic pressures (curves) of the I, N, SmA and ABC phase states are plotted in
Fig. 8.24. The predictions are compared to computer simulation data of McGrother
et al. [26]. It is clear the equations of states correspond reasonably well to the com-
puter simulation data. For comparisons at other aspect ratios, see Ref. [20].

Phase coexistence between twophases can be established by imposingmechanical
and chemical equilibrium expressed by equality of osmotic pressure P and chemical
potential μ (Appendix A). Algebraic expressions for P and μ were derived [20] for
all phase states of the hard spherocylinders from the free energy expressions given
above.
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Fig. 8.24 Osmotic pressure of hard spherocylinders with L/D = 4 as a function of rod volume
fraction φ from both theory (solid curves) [20] and computer simulation results (data points) [26].
The stable phases include the isotropic (I), nematic (N), smectic-A (SmA), AAA crystal and ABC
crystal phases
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Fig.8.25 Phase behaviour of hard spherocylinders as a function of rod volume fractionφ and aspect
ratio D/L from both theory (solid curves) [20] and simulation (data points) [27]. The stable phases
include the isotropic (I), nematic (N), smectic-A (SmA), AAA crystal and ABC crystal phases

The theoretical predictions [20] for the binodals using the analytical equations
of states for all hard spherocylinder phase states discussed are shown in Fig. 8.25
(solid curves) as a function of volume fraction φ and aspect ratio D/L . Computer
simulation data of Bolhuis and Frenkel [27] are plotted as data points. The phase
diagram of rods without endcaps (see Ref. [82]) is very close to these results.
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It is noted (not shown) that in the sphere limit of L/D → 0 the equations of state
for the isotropic and ABC phases become equivalent to those of a hard-sphere fluid
and an FCC crystal, respectively (see Sect. 3.2.3). The agreement with the computer
simulation results is quite reasonable for these phase equilibria.

8.6.2 Phase Behaviour of Rod–Polymer Mixtures Including Highly
Ordered Phases

Next, the phase behaviour of mixtures of rod-like colloidal particles and polymers is
considered, including the highly ordered phases discussed in the previous subsection.
The rods are again described as hard spherocylinders and the nonadsorbing polymers
are treated as ideal depletants by describing them as PHSs with radius δ (see Chaps. 2
and 3). It is possible to explicitly include polymer–polymer interactions (seeChap.4),
which demonstrates that the PHS approximation for the polymer works well for the
relatively small polymers discussed here. Hence, phase diagrams are discussed for
mixtures of hard spherocylinders and PHSs.

The mixture is again described using FVT. The hard spherocylinder–PHS system
of interest is in contact with a PHS reservoir through a semi-permeable membrane
that is impermeable to the colloids but fully permeable for the polymers. Solvent
plays the role of continuum background again.

We use Eq. (8.43) for �, which we rewrite here as

�̃ = F̃ − αΠ̃R, (8.69)

with �̃ = �vc/kT V as the normalised semi-grand potential for the system of inter-
est, and F̃ = Fvc/kT V as the normalised Helmholtz free energy for a pure disper-
sion of hard spherocylinders. The free volume fraction α = 〈Vfree〉/V is the average
fraction of the system volume available to PHSs, and Π̃R is the normalised osmotic
pressure of the polymers in the reservoir, which is proportional to the reservoir poly-
mer coil volume fraction φR

p by Π̃R = φR
p (3Γ − 1)/(2q3).

A representative set of phase diagrams for colloid–polymer mixtures is shown in
Fig. 8.26 in terms of the polymer reservoir concentration φR

p versus the rod volume
fraction φ (see Refs. [21,87,88]). The rod aspect ratio is fixed at L/D = 12 and
polymer–rod size ratio is set to q = 0.4, 0.525 and 0.57. In the plots, the binodals
(solid curves) and three- and four-phase coexistences (dashed lines) are shown. In
most cases, the miscibility gaps widen as the polymer concentration is increased.
At the points where two binodals coincide, there is three-phase coexistence. For
instance, at q = 0.4 (left panel) the miscibility gap of N–SmA and SmA–AAA
coexistence widens as φR

p increases. At around φ = 0.4–0.65 and φR
p ≈ 0.05, the

binodals coincide and a triple N–SmA–AAA equilibrium emerges.
Increasing the polymer size qualitatively changes the phase diagram. The trends

are similar to those reported by Savenko and Dijkstra [89] in their Monte Carlo sim-
ulation study. For example, at q = 0.57 (right panel) the N–SmA binodal coincides
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Fig. 8.26 Phase diagrams of colloid–polymer mixtures in terms of the colloid volume fraction φ
and polymer reservoir concentration φR

p for colloidal rods of aspect ratio L/D = 12 and polymers
of size q = 2δ/D = 0.4 (left), 0.525 (middle), and 0.57 (right). Binodals are displayed as solid
curves, while three- and four-phase coexistences are indicated as dashed lines. Reprinted with
permission from Ref. [87] under the terms of CC-BY-4.0
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rods have an aspect ratio L/D = 5 (left) and L/D = 50 (right) and the polymers have a fixed
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with the I–N binodal and instead leads to a triple I–N–SmA coexistence. Similarly,
the N–AAA and I–N–AAA coexistences are only present at the smaller q = 0.4,
while the I–SmA binodals and I–SmA–AAA triphasic coexistence are only stable
at q = 0.57. The intermediate polymer size of q = 0.525 (middle panel) marks the
exact size ratio where all three binodals coincide at the same polymer reservoir
concentration. This leads to an I–N–SmA–AAA four-phase coexistence.

Next, the isostructural phase coexistences [88] discussed in Sect. 8.4 are re-
evaluated. In Fig. 8.27, two examples are given for L/D = 5 and L/D = 50 and
q = 1. As could be expected, the I1–I2 coexistence region (left panel) is large for
sufficiently large polymer sizes compared to the rod length. For L/D = 50 and
q = 1 (right panel), a region where N1–N2 phase equilibria are predicted appears.
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This is not superseded by I1–SmA2 or I–crystalline phase equilibria. So, although
these N1–N2 phase equilibria have not been observed they also appear as results from
theoretical calculations when taking higher ordered phases of the rods into account.
Moreover, the calculations reveal that (non-metastable) isostructural phase equilibria
are possible for all phase states [21].
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Fig.8.28 Phase diagrams of dextran/fd-virusmixtures. Data points aremeasured coexistences at an
ionic strength of 200 mM and pH = 8.10. In addition to the isotropic–nematic coexistence (dotted
coexistence lines), isotropic–smectic coexistence (dashed lines) is found at high polymer and rod
concentrations. Replotted from Ref. [90]. b Predicted phase diagram of a hard spherocylinder–
penetrable hard-sphere dispersion. Spherocylinders were modelled with L/D = 133, Deff =
9.64nm, L/Deff = 91.31, an ionic strength of 200 mM and mixed with PHSs with 2δ/Deff =
1.72. The dextran polymers have Rg = 11nm, the charge density is taken as −10 e/nm to mimic
the system of a. Solid curves represent I–N phase equilibria. The dashed lines represent I–N–Sm
triple coexistence. Above the triple region, there is I–Sm phase coexistence
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8.6.3 Comparison with Experiments

We now compare predictions including higher ordered phases with the limited num-
ber of experiments that have been reported in the literature. Dogic [90] extended the
earlier work of Dogic and Fraden [60] on mixed suspensions of fd and dextran to
higher dextran concentrations at a salt concentration of 200 mM. The phase diagram
he observed is plotted in Fig. 8.28a. Above dextran concentrations of 55 mg/mL the
I–N transition is superseded by the I–SmA transition. In Fig. 8.28b the predicted
phase diagram is plotted for the relevant size parameters. The effective diameter of
the rods was calculated using the theory presented in Sect. 8.2.2. The phase diagram
computed corresponds to the experimental one. No observations were reported on
the (narrow) triphasic I–N–SmA equilibrium that is expected between the biphasic
I–N and I–SmA phase equilibria.

An interesting aspect of bacteria is that they can assume a wide range of shapes
[91,93], examples of which are shown in Fig. 8.29. In 1954 Goldacre [92] showed
that, like viruses, some bacteria can be crystallised. The bacterial cells form regular
three-dimensional arrays, in which each cell corresponds to a molecule in a conven-
tional crystal. In the case of rod-shaped bacteria, the rods align in a parallel fashion,
as shown in Fig. 8.30 for Amoeba proteus [92].

Experimental work [94–96] demonstrated that, upon exceeding a certain con-
centration, suspensions of (non-motile) bacteria and nonadsorbing polymers exhibit
phase separation, just as colloid–polymer mixtures. Guided by the ideas of Goldacre
[92], we apply free volume theory to describe this phase separation. We highlight the
work presented bySchwarz-Linek et al. [95],who focused onmixtures ofEscherichia
coli (E. coli) (Fig. 8.31) and sodium polystyrene sulfonate (NaPSS).

The added NaPSS polymers have a molar mass of 64.7 kDa and a radius of
gyration of 14nm. The mixtures were studied in aqueous solutions containing 0.18
M salt, at which the Debye screening length is 0.8nm. In Fig. 8.32, we present results
of the phase behaviour of a suspension of E. coli bacteria with a volume fraction of
12.5% with different polymer weight fractions ranging from 0 to 10%.

Fig.8.29 Examples of bacteria and their shapes. Cocci have a spherical to ovoid shape and appear
not only as single cells (i) but also as pairs (e.g., Diplococci) (ii), clusters (e.g., tetrad) (iii) or chains
(e.g., Streptococci) (iv). Bacilli (v) and Diplobacilli (vi) are rod-shaped bacteria. Coccobacilli (vii)
resemble cocci and bacilli. Spiral bacteria (viii) are slightly curved microbes with a comma shape.
Pallisades are bacteria with a picket fence structure of connected rods (ix). Sketches made by Luuk
Tuinier, inspired by Ref. [91]
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Fig. 8.30 Microscopy image of three-dimensional arrays of Amoeba proteus bacteria. Scale bar
represents 10 µm. Reprinted with permission from Ref. [92]. Copyright 1954 Nature

Fig. 8.31 AFM image of
short, rod-like, E. coli
bacteria. The width of the
image represents 10 µm.
Reprinted with permission
from Ref. [95]. Copyright
2010 RSC

The pictures in Fig. 8.32 shows that the phase transition for a bacterial suspension
of a volume fraction of 12.5% takes place at a polymer weight fraction of about
0.2% and that the bacterial volume fraction of the concentrated phase has a volume
fraction of about 70%.

For the calculation of the phase behaviour, we assume that the E. coli bacteria
(see Fig. 8.31) can be modelled as spherocylinders with L = D ≈ 1 µm.We present
calculations for the phase separation between the isotropic phase and theABC crystal
phase.

Schwarz-Linek et al. [95] present no experimental evidence that the concentrated
phase is an ABC crystal, but it is known from the work of Goldacre [92] that such
phases can occur in suspension of bacteria. By applying the theory presented in
Sect. 8.6.2, we obtain the phase diagram plotted in Fig. 8.33b (see Ref. [97]).



280 8 Phase Behaviour of Colloidal Rods Mixed with Depletants

Fig. 8.32 E. coli cell
samples (cell density
≈ 9.6 · 1010 cfu/mL
(φ ≈ 0.125)) dispersed in
phosphate buffer with
NaPSS polyelectrolytes. The
polymer concentration (in
weight fraction) increases
from left to right, with
samples 1–11 containing
0%, 0.1%, 0.2%, 0.3%,
0.4%, 0.5%, 0.75%, 1%, 2%,
5% and 10% of NaPSS,
respectively. Times: a t=0, b
t= 30min, c t=100min, d
t=24h. e Shows the bottom
parts of samples 2—5 at 24h
at higher magnification.
Reprinted with permission
from Ref. [95]. Copyright
2010 RSC

In Fig. 8.33b, the drawn curves are the result of the theoretical calculations. The
datapoints are experimental results, indicating that the system shows (•) a single-
phase or (+) two-phase coexistence. The free volume calculations are in good agree-
ment with the experiments on phase separation in mixed suspensions of non-motile
bacteria and nonadsorbing polymers. For more details, see Ref. [97].
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Fig.8.33 Phase diagram of hard spherocylinders (L/D = 1) mixed with polymers (q = 2Rg/D =
0.028). a Predicted isotropic–ABC crystal phase coexistence (thick curves) with a few illustrative
tie-lines (thin lines) [97]. bComparison between predictions (curve) and experimental observations
of single-phase (•) or two-phase (+) systems [95]
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9PhaseBehaviour of Colloidal
Platelet–DepletantMixtures

9.1 Introduction to Colloidal Platelets

Colloidal platelets are encountered in a wide range of systems in nature and tech-
nology. Examples are hydroxides and layered double hydroxides, smectite clays and
exfoliated inorganic nanosheets. Suspensions of these platelets have been found to
exhibit liquid crystal ordering, including gibbsite [1–4], nickel hydroxide [5], lay-
ered double hydroxides [6,7], nontronite [8–10], beidellite [11,12], fluorohectorite
[13,14], solid phosphatoantimonate acid [15,16], zirconium phosphate [17–19], nio-
bate [20,21] and titanate [22]. TEM micrographs of dispersions made from some of
these particles are displayed in Fig. 9.1, giving some insight into the morphology.
Table9.1 provides the chemical composition of the platelets.

Upon increasing the concentration of platelets a dispersion of initially isotropic
platelets can become liquid crystalline, just as for rods, see Chap.8. Concentrated
dispersions of platelets may display nematic [1,6,8,14,16,18,20,22], columnar [5,
24] and smectic [4,7,15,16,19] phase states, illustrated in Fig. 9.2.

While each of these nematic (N), columnar (C) and smectic (Sm) phases exhibits
long-range orientational order, they differ by the positional correlations between the
particles. Long-range positional order is absent in the N phase. The C phase has a
two-dimensional lattice of columns, which consist of liquid-like stacks of particles.
The Sm phase is characterised by a one-dimensional periodic array of layers of
particles.

Figure9.3 depicts gibbsite dispersionswhich exhibit these liquid-crystalline phase
states [2]. These images illustrate the phases and phase transitions that can be detected
when using crossed polarisers for samples varying in platelet concentration. The Sm
phase is only rarely observed [4,5,7,15,16,19,25]. The smectic phases observed
in Refs. [7], [25] and [4], probably originated from the high surface charge of the
platelets. The large polydispersity [19,26] of the diameter of the platelets probably

© The Author(s) 2024
H. N. W. Lekkerkerker, R. Tuinier, M. Vis, Colloids and the Depletion Interaction,
Lecture Notes in Physics 1026, https://doi.org/10.1007/978-3-031-52131-7_9
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(a) gibbsite [2]

200 nm

(b) Ni(OH)2 [5] (c) Mg2+:Al3+ 2:1 LDH [6]

(d) nontronite [9] (e) beidellite [11] (f) fluorohectorite [14]

(g) K5Sb5P2O20 [23].

3 µm

(h) zirconium phosphate [17] (i) titanate [22]

Fig. 9.1 Examples of plate-like colloids: a–c synthetic platelets, d–f smectite clay particles, g–i
exfoliated inorganic nanosheets. Scale bars are as indicated. Reprinted with permission from a
Ref. [2], copyright 2000 Nature; b Ref. [5], copyright 1999 Springer; c Ref. [6], copyright 2003 the
American Chemical Society (ACS); d Ref. [9], copyright 2008 ACS; e Ref. [12], copyright 2011
ACS; f Ref. [14], copyright 2010 the Royal Society of Chemistry (RSC); g P. Davidson; hRef. [17],
copyright 2012 the American Physical Society (APS); i Ref. [22], copyright 2014 RSC

explains the Sm phase observed in Ref. [19]. These smectic phases can show bright
iridescence, see Fig. 9.4, depending on the spacing between the smectic layers [4].

Disc-like colloidal particles are also found in biological systems such as the red
blood cells in blood (already discussed in Sect. 1.3.2) and plate-like proteins such as
kinetochore [27]. Smectite clays, which are inorganic plate-like nanoparticle mixed
suspensions, are ubiquitous on Earth. Mixed suspensions of colloidal platelets and
inorganic nanoparticles display interesting rheological [28] and electronic properties
[29].

In this chapter we consider the phase behaviour of mixtures of colloidal plates and
depletants. The focus is on nonadsorbing polymers as depletants, although exper-
imental examples of added small colloidal particles are also considered. First, a
treatment of the phase behaviour of pure platelets is given.
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Table 9.1 Chemical composition of colloidal plate-like particles

Platelet type Chemical structure Fig. 9.1

Gibbsite Al(OH)3 a

Nickel hydroxide Ni(OH)2 b

Mg2Al layered double
hydroxide

[Mg2/3Al1/3(OH)2]
+1/3 c

Nontronite (Si7.55 Al0.16 Fe0.29)(Al0.34 Fe3.54 Mg0.05) O20 (OH)4
(Na)0.72

d

Beidellite (Si7.27 Al0.73)(Al3.77 Fe0.11 Mg0.21) O20 (OH)4 (Na)0.76 e

Fluorohectorite Mg2.60 Li0.46 Si4 O10 F2 Na0.46 f

Phosphoantimonate acid H3Sb3P2O14 g

Zirconium phosphate Zr(HPO4)2H2O h

Titanate H1.07Ti1.73O4 i

N C Sm

Fig. 9.2 Structure of the three main classes of liquid crystals made from disc-like particles: the
nematic phase (N), the columnar phase (C) and the smectic phase (Sm). Reprinted with permission
from Ref. [2]. Copyright 2000 Nature

Fig. 9.3 Tubes containing gibbsite suspensions [2] in toluene at varying platelet concentrations
photographed between crossed polarisers. Volume fractions from left to right: 0.19 (I–N), 0.28 (N),
0.28 (N–C) and 0.47 (C). The tube to the right depicts a monophasic columnar sample illuminated
by white light. The colours of its Bragg reflections (visible as small bright spots) vary from yellow
to green as the angle between the incident light and viewing direction is in the range of 50°–70°.
Reprinted with permission from Ref. [2]. Copyright 2000 Nature
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Fig. 9.4 Silica-coated
gibbsite platelets suspended
in DMF without added salt
show iridescence upon
illumination with white light
in a 10mm wide capillary,
indicating a lamellar phase

9.2 Phase Diagram of Hard Colloidal Platelets

Hard colloidal platelets are theoretically described here in a simplified way as
monodisperse discs with diameter D and thickness L , with a focus on L � D.
The volume of a colloidal platelet is given by v0 = πD2L/4 and the volume fraction
of colloidal platelets φ = nv0, with n the number density N/V . It is noted that in
experimental dispersions of these platelets there is often size dispersity in D and/or
L . In this section theoretical and computer simulation results on the phase diagram
of pure monodisperse hard platelets are reviewed.

9.2.1 Computer Simulations

In previous chapters it was identified that colloidal phase transitions of hard spheres
and hard rods are governed by entropy. That is also the case for hard platelets. In
Sect. 8.2 it was explained that, as was realised by Onsager, a theory based on the
second virial coefficient suffices to accurately predict the thermodynamic properties
of dilute long and thin rods. This includes the rod concentrations at the isotropic–
nematic (I–N) phase transition. The reason for that is that the higher virial coefficients
for long thin rods are very small compared to the second virial coefficient, as was
first rationalised by Onsager [30] on the basis of geometric arguments. Using Monte
Carlo simulations, Frenkel [31,32] showed that the longer and thinner the rods the
smaller the higher virial coefficients become.

As was pointed out by Onsager [30], there are no geometrical arguments that
the higher virial coefficients become small even in the limit of infinitely thin hard
platelets. This can be illustrated by comparing the results of the second virial
approach for the I–N transition of infinitely thin hard platelets with simulations.
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Fig. 9.5 a Phase diagram from computer simulations of dispersions of hard cut spheres to mimic
platelets. Inset: side view of a cut sphere with diameter D and thickness L [35]. b Experimentally
measured relative volume of the nematic and columnar phases as a function of the volume fraction
of gibbsite platelets [2]. The platelets have D/L = 13 and a polydispersity in D of 17% (�) and
25% (◦). The predicted phase states from panel a are indicated below the abscissa of (b). Reprinted
with permission from a Ref. [35], copyright 1992 APS and b Ref. [2], copyright 2000 Nature

Forsyth et al. [33] used the second virial approach for the I–N transition and found
nisoD3 = 5.3 and nnemD3 = 6.8 as coexisting platelet concentrations. Using Monte
Carlo simulations on infinitely thin hard platelets, Eppenga and Frenkel [34] found
nisoD3 = 4.04 and nnemD3 = 4.12. Clearly the second virial coefficient theory does
not accurately predict the I–N phase transition of hard platelets.

Veerman and Frenkel [35] extended the simulations of Eppenga and Frenkel to
hard platelets of finite thickness. The phase diagram that results from their computer
simulations is reproduced in Fig. 9.5a. Note that the platelets were simulated as cut
spheres (see the inset of Fig. 9.5a).

In Fig. 9.5a ρ∗ is the density relative to the close packed density. For L/D <

0.15 (i.e. D/L > 6.7) the simulations of Veerman and Frenkel reveal an isotopic
phase, an I–N phase transition, an N phase, a subsequent nematic–columnar (N–C)
transition and finally a pure C phase upon increasing the platelet concentration. This
simulation result was confirmed experimentally by usingmodel systems of plate-like
gibbsite particles with D/L = 13 with different polydispersities by Van der Kooij,
Kassapidou and Lekkerkerker [24] (see the observed phases in Fig. 9.5b).

The computer simulations of Veerman and Frenkel also predicted that coexistence
between isotropic and columnar phases (i.e. without forming a nematic phase) is pos-
sible for thicker platelets with L/D > 0.15 (Fig. 9.5a). Brown et al. [5] studied nickel
hydroxide platelets with D/L = 3.5 and indeed found this direct I–C transition.

Veerman and Frenkel [35] also observed an unexpected region in the phase dia-
gram, which they refer to as the cubatic phase (CUB). In this CUB phase the cut
spheres are assembled in short columns. The columns themselves have a random
orientation, and hence there is appreciable interaction between different columns.
The interaction between the columns eventually becomes so severe that the col-
umn segments try to order in a manner that minimises the packing problems.
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Fig.9.6 a Snapshot of the configuration of a systemcontaining 1728 cut hard sphereswith D/L = 5
at a reduced density of ρ∗ = 0.575. The platelets spontaneously assemble in short stacks containing
four or five particles. Neighbouring stacks tend to be approximately perpendicular [35]. Reprinted
with permission from Ref. [35]. Copyright 1992 APS. b Cryo TEM image of a suspension of nickel
hydroxide platelets at 20 wt%. Reprinted with permission from Ref. [36]. Copyright 1984 Elsevier

This is illustrated in the computer simulation snapshot inFig. 9.6a.Qazi,Karlsson and
Rennie [36] have presented experimental evidence for cubatic order in a dispersion
of plate-like colloids (see Fig. 9.6b).

In the next subsection, an approximation is outlined that aims to develop a theo-
retical prediction for the phase diagram of hard platelets.

9.2.2 Theoretical Account

9.2.2.1 Onsager–Parsons–Lee Theory for the Isotropic and Nematic
Phase States

In Sect. 8.3 we used scaled particle theory (SPT) to incorporate higher virial coef-
ficients in the treatment of the isotropic–nematic phase transition of hard rods. An
approach which is similar to SPT (in the fact that it may be considered a renor-
malised two-particle theory) has been given by Parsons [37] and was used by Lee
[38] to calculate the isotropic–nematic transition in solutions of hard spherocylinders.
This approximate theory [39,40] may be considered an extension of the Carnahan–
Starling equation [41] for hard spheres (see Sect. 3.2.1).

The Helmholtz free energy F within the Onsager–Parsons–Lee approach [37,38]
can be expressed as

F

NkT
= ˜F

φ
= ln

(

�3

v0

)

+ ln φ − 1 + s[ f ] + 2

π

D

L
φGP(φ)〈〈ṽexcl(γ)〉〉, (9.1)
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We further focus on the excess free energy ˜Fex, defined through ˜F = ˜Fid + ˜Fexc,
with ˜Fid = φ ln(φ�3/v0) − φ. As before, ˜F = Fv0/kT V . The orientational entropy
of the platelets is (see Section 8.2.1) related to s[ f ] and can be calculated using

s[ f ] =
∫

f (�) ln[4π f (�)]d�, (9.2)

which includes the orientational distribution function f (�), which is normalised
according to

∫

f (�)d� = 1, (9.3)

where� is the solid angle (see Sect. 8.2.1). In Eq.9.1, ṽexcl(γ) is the excluded volume
vexcl(γ) between two hard platelets divided by D3 at fixed interparticle angle γ:

ṽexcl(γ) = π

2
|sin(γ)| + L

D

{π

2
+ 2E[sin(γ)] + π

2
cos(γ)

}

+ 2

(

L

D

)2

|sin(γ)|,
(9.4)

including the complete elliptic integral of the second kind E[x]. The average
〈〈ṽexcl(γ)〉〉 is defined as

〈〈ṽexcl(γ)〉〉 =
∫ ∫

d�d�′ f (�) f (�′)ṽexcl(γ). (9.5)

The effects of higher order virial terms are incorporated via a Parsons–Lee scaling
factor GP:

GP(φ) = 4 − 3φ

4(1 − φ)2
, (9.6)

The factor GP ensures that the ratios of the third and higher virial coefficients to the
second virial coefficient are the same as for hard spheres.

At low concentrations the system is isotropic (I). In this isotropic phase, all
platelets are oriented randomly and f I = (4π)−1 so that sI = 0.Within the Parsons–
Lee approximation, the isotropic excess free energy (Eq. (9.1)) becomes

Fexc
I

NkT
=

˜Fexc
I

φ
= 2

π

D

L
φGP(φ)ṽIexcl, (9.7)

with ṽIexcl = 〈〈ṽexcl(γ)〉〉, which becomes

ṽIexcl ≈ π2

8
+

(

3π

4
+ π2

4

)

L

D
+ π

2

(

L

D

)2

, (9.8)

where the last term (of order (L/D)2) is usually omitted because the focus is often
on thin platelets (L/D � 0.1), for which its magnitude is negligible.
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The Helmholtz energy (Eq. (9.7)) directly provides the (dimensionless) osmotic
pressure (˜P = Pv0/kT ) and chemical potential (̃μ = μ/kT ) of the platelets in sus-
pension (see Appendix A):

˜PI = φ + 2

π
φ2 D

L

1 − φ/2

(1 − φ)3
ṽIexcl, (9.9)

μ̃I = ln

(

�3

v0

)

+ ln φ + 2

π

D

L

8φ − 9φ2 + 3φ3

4(1 − φ)3
ṽIexcl, (9.10)

with the reference chemical potential ln(�3/vc).
Above a certain concentration, the platelets spontaneously assume a preferred

orientation, the nematic state. One may then compute the orientational distribution
function (ODF) at each concentration numerically by minimising the Helmholtz free
energy expression (Eq. (9.1)), while using the condition of Eq. 8.6. Since the nematic
phases we consider are uniaxial in symmetry the solid angle � only depends on the
polar angle θ between a nematic director and the orientation of the platelet.

As in Chap.8, Odijk’s Gaussian approximation fG for the ODF f (θ) [42] is used:

fG(θ) = κ

4π
exp

[

−1

2
κθ2

]

, (9.11)

which applies to angles −π/2 ≤ θ ≤ π/2. The prefactor of the Gaussian ODF fol-
lows from Eq. (8.6). Insertion of Eq. (9.11) into Eq. (9.2) gives

sN ≈ ln κ − 1. (9.12)

The normalised excluded volume in the nematic phase follows as [39]

ṽNexcl = 〈〈ṽexcl(γ)〉〉N = 2π
L

D
+ π

2

√

π

κ
. (9.13)

Using the Gaussian ODF in the free energy (Eq. (9.1)), the excess nematic state
free energy can now be written as

Fexc
N

NkT
=

˜Fexc
N

φ
= ln κ − 1 + φGP(φ)

[

D

L

√

π

κ
+ 4

]

. (9.14)

The chemical potential and osmotic pressure in the nematic state can be easily
obtained:

μ̃N = ln

(

�3

v0

)

+ ln φ + ln κ − 1 + 8φ − 9φ2 + 3φ3

4(1 − φ)3

[

D

L

√

π

κ
+ 4

]

, (9.15)

and

˜PN = φ + φ2 1 − φ/2

(1 − φ)3

[

D

L

√

π

κ
+ 4

]

. (9.16)
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Once the variational parameter κ is known, the free energy and various thermo-
dynamic properties can be calculated explicitly. The κ parameter follows from the
minimisation of the free energy w.r.t. κ (Eq. (8.24)). Applying this to Eq. (9.14)
yields

κ = π

4

(

D

L

)2

φ2G2
P(φ). (9.17)

Insertion of this result into Eq. (9.14) gives

˜Fexc
N

φ
= 2 ln

(

D

L

√
π

2
φGP(φ)

)

+ 4φGP(φ) + 1, (9.18)

for the excess Helmholtz energy. The chemical potential of the hard platelets in the
nematic phase follows as

μ̃N = ln

(

�3

v0

)

+ 1 + 2 ln

(

D

L

√
π

2

)

+ ln φ + 2 ln[φGP(φ)]

+ 4φGP(φ) + 2 − φ − φ2 + φ3/2

(1 − 3φ/4)(1 − φ)3
,

(9.19)

and their osmotic pressure becomes

˜PN = φ + 2φ − φ2 − φ3 + φ4/2

(1 − 3φ/4)(1 − φ)3
. (9.20)

9.2.2.2 Isotropic–Nematic Phase Transition of Hard Platelets
It is now possible to compute the coexisting isotropic and nematic concentrations
of hard platelets within the Parsons–Lee approximation using the Gaussian form for
the ODF. In general, coexisting concentrations (the binodals) follow from solving
the concentrations for which the chemical potentials μ and osmotic pressures P are
equal (see also Appendix A).

Theoretical Parsons–Lee predictions (curves) for the I–N phase coexistence con-
centrations are plotted in Fig. 9.7 as a function of L/D and are compared to Monte
Carlo computer simulation results (data points). Two ‘flavours’ of the Parsons–Lee
predictions are shown, using the Gaussian form of the ODF (dotted curves) and a
numerical optimisation of the ODF (solid curves).

Compared to the numerical approach, the Gaussian approximation predicts a
wider coexistence region and slightly higher coexisting platelet concentrations, espe-
cially on the nematic side. This is similar to the situation for the I–N phase transition
of hard spherocylinders as was discussed in Chap.8 (see Fig. 8.4). Still, the rela-
tively simple Gaussian ODF approach—combined with the Parsons–Lee—provides
a reasonable description for the I–N phase transition of hard platelets. The Gaussian
ODF approach deviates most near the limit L/D → 0.
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Fig. 9.7 I–N phase coexistence for pure hard platelets. Platelet concentration is given in terms of
the quantity c = ND3/V = (4/π)φD/L . Curves are theoretical predictions using the Parsons–Lee
(P–L) approximation combined with a numerical minimisation (solid curves) and minimisation
using the Gaussian approximation to the ODF (dotted curves). Data points are computer simulation
results by Eppenga and Frenkel [34] for L/D → 0 (Onsager limit) and Veerman and Fenkel [35] for
other L/D values. Cut spheres were used to simulate the platelets, which slightly differs from the
theoretical description of cylindrical platelets. Reprinted with permission from Ref. [43]. Copyright
2015 Taylor & Francis

9.2.2.3 Lennard-Jones–Devonshire Cell Theory for the Columnar Phase
Topredict the thermodynamic properties of a columnar phase, an extended cell theory
by Lennard-Jones and Devonshire (LJD) can be used (seeWensink [44]). Within this
model the columnar phase is described as a superposition of a 1D liquid and a 2D
solid. The configurational (excess) free energy associated with the LJD cell theory
is given by

Fexc
LJD

NkT
=

˜Fexc
LJD

φ
= 2 ln

(

�̄−1
C

1 − �̄−1
C

)

, (9.21)

where �̄C = �C/D is the (lateral) spacing, with �C the nearest-neighbour distance
(see Appendix C for details). Near close packing densities, Eq. (9.21) is expected
to provide an accurate description of a 2D solid. Per column, it is assumed that the
particles assume liquid-like configurations in one direction only. By applying the
condition of single-occupancy, �̄C provides

φ∗�̄2
C = ρ̃, (9.22)

which relates the plate volume fraction φ = Nv0/V (with v0 = (π/4)LD2 as the
particle volume) to the reduced linear density ρ̃, where the reduced packing frac-
tion φ∗ = φ/φcp with φcp = π/2

√
3 ≈ 0.907 for the area fraction of discs at close

packing.
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The excess free energy of the columnar state now follows from adding the fluid
and LJD contributions:

Fexc
col

NkT
= ˜Fcol

exc

φ
= 2 ln

{

3

2

D

L

(

φ∗�̄2
C

1 − φ∗�̄2
C

)}

− ln(1 − φ∗�̄2
C)(1 − �̄−1

C )2.

(9.23)

The final step is to minimise the total free energy with respect to �̄C using

∂F

∂�̄C
= 0, (9.24)

which leads to

�̄C = 21/3K 2/3 − 31/34φ∗

62/3 φ∗ K 1/3 , (9.25)

in which K is defined by

K = 27(φ∗)2 + [3(φ∗)3(32 + 243φ∗)]1/2. (9.26)

With this, the free energy for the columnar state is fully specified. Unlike the nematic
free energy, the columnar free energy is entirely algebraic and does not involve
any implicit minimisation condition to be solved (see Eq. (C.6)). The pressure and
chemical potential can be found in the usual way (see Appendix A). The nematic
free energy can also be recast in closed algebraic form using a simple variational
form for the ODF, similar to Eq. (C.7) (see Ref. [39]).

9.2.2.4 Theoretical Prediction of the Phase Diagram of Hard Platelets
Using the free energies for the different phase states for the isotropic, nematic and
columnar phase states discussed above, standard thermodynamic relations can be
applied to calculate the osmotic pressure and chemical potential of the pure platelet
suspension for every phase state.

This enables the phase diagram for a system of hard platelets to be resolved, as
is presented in Fig. 9.8. The relatively high excluded volume between thin platelets
explains the I–N phase transition occurring at very low packing fractions for very
small values of the aspect ratio (L/D → 0). See also Fig. 9.7, which illustrates that
c ∼ D/L at the I–N coexistence hardly varies. With increasing L/D, the I–N phase
coexistence widens and its boundaries shift towards higher packing fractions. From
Fig. 9.8 it also follows that the N–C phase coexistence concentrations barely depend
on L/D. For sufficiently thick discs (L/D � 0.16), transitions from an isotropic to
a columnar phase occur without an intermediate nematic phase: thick discs are not
sufficiently anisotropic to stabilise the occurrence of a nematic phase [39]. The grey
vertical line in Fig. 9.8 at L/D ≈ 0.16 indicates an I–N–C triple coexistence for hard
colloidal platelets. Computer simulation data (symbols) from Refs. [35,45–47] have
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Fig. 9.8 Phase diagram of a monodisperse hard disc suspension. The grey triple line indicates the
platelet aspect ratio of the I–N–C triple phase coexistence. For L/D > 0.16 there is only isotropic–
columnar (I–C) phase coexistence. For L/D < 0.16 there are I–N and nematic–columnar (N–C)
phase coexistences. Curves are computed using the Gaussian approximation for the nematic phase
state; data points are Monte Carlo computer simulation results (◦, [35,45]), (•, [46]), (�, [47]).
Figure is based upon Refs. [39,48]

been added to have an idea of the accuracy of the equations of states used. Qualita-
tive agreement is found but quantitatively the theoretical phase transitions occur at
somewhat higher disc concentrations as predicted theoretically. The phase diagram
presented in Fig. 9.8 constitutes the pure platelet reference point for calculating the
thermodynamics of platelet–depletant mixtures.

Exercise 9.1. What are the fundamental differences between the theoreti-
cal description of hard plates in this chapter and hard rod-like particles in
Chapter 8?

9.3 Phase Behaviour of Hard Platelet–Penetrable Hard Sphere
Mixtures

To predict the phase behaviour of hard platelets mixed with penetrable hard spheres
(PHSs), the same steps are followed as outlined in Sect. 3.3 for hard spheres mixed
with PHSs and in Sect. 8.4 for hard rods mixed with PHSs (see also Appendix A).
The system of interest contains hard platelets (modelled as cylinders with diameter
D and thickness L) in osmotic equilibrium with a reservoir that only contains PHSs
(with diameter σ). The size ratio q = σ/D and the depletion thickness of the PHS
is constant (δ = σ/2). The FVT expression for the semi-grand potential in case of
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ideal depletants can be written as [49]

˜� = ˜F0 − v0

vd
α˜PR. (9.27)

Here, F0 is the free energy of the pure hard platelet dispersion, v0 is the volume of
the platelets, vd is the volume of the depletants, α is the free volume fraction for the
depletants, and

˜PR = PRvd

kT
= φR

d ,

is the dimensionless Van ’t Hoff osmotic pressure of an ideal solution of depletants
in reservoir R having a volume fraction φR

d . The depletant volume fraction in the
system follows from

φd = αφR
d .

The free volume fraction available for depletants in the system α = 〈Vfree〉0/V
and can be calculated using the relation α = e−W/(kT ), where W is the reversible
work for inserting the PHSs in the hard platelet suspension [50]. Following scaled
particle theory (SPT) [51,52],W is calculated by scaling the size of the PHSs as λσ.
In the case λ � 1, it is unlikely that the platelets and PHSs overlap. Hence,

W (λ) = −kT ln[1 − nvexcl(λ)] for λ � 1, (9.28)

where vexcl is the excluded volume between a PHS and a hard platelet, given by

vexcl(λ) = π

4
D2λσ + π

4
L(D + λσ)2 + π2

8
D(λσ)2 + π

6
(λσ)3. (9.29)

In the opposite limitλ  1, the inserted PHS is very large; in good approximation,
W is then equal to the work required to create a cavity with volume π

6 (λσ)3 against
the pressure P of the hard platelets:

W = π

6
(λσ)3P for λ  1. (9.30)

In SPT, these two limiting cases are connected by expanding W as a series in λ
(Eqs. (3.32) and (8.50)), which yields an expression for W (λ = 1) [48,53,54]:

α = (1 − φ) exp[−Q], (9.31)

with

Q = q

(

D

L
+ πqD

2 L
+ q + 2

)

y

+ 2q2
[

1

4

(

D

L

)2

+ D

L
+ 1

]

y2 + 2

3

D

L
q3 ˜P,

(9.32)
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Fig.9.9 Comparison of phase diagrams formixtures of plate-like particles andPHSs for L/D = 0.1
andq = 0.2.Left: phase diagram for hard discsmixedwithPHSsobtained fromFVTwith theoretical
expressions for the thermodynamic properties of the pure plate system and SPT results for the free
volume fractions [48]. Right: phase diagram for cut sphere–PHS mixtures by Zhang et al. [46]
obtained from Monte Carlo simulations for the thermodynamic properties of pure plate systems
combined with FVT with free volume fractions measured by a trial insertion method. Reprinted
with permission from Ref. [48]. Copyright 2018 Taylor & Francis

where y is defined by Eq. (3.39e). It should be noted that Zhang, Reynolds and Van
Duijneveldt [55] obtained α from SPT for a mixture of cut spheres and PHSs. For
infinitely thin discs, the expressions for α obtained by Zhang et al. [55] and obtained
here are identical. González García et al. [48] compared Eq. (9.31) (with Q given
by Eq. (9.32)) with computer simulation results of Refs. [46,56] and found good
agreement between theory and simulations.

With all the components required to calculate the grand potential at hand, deter-
mination of phase coexistence is straightforward in principle (see Appendix A). This
theoretical approach is now compared to phase diagrams computed by Zhang et al.
[46] for L/D = 0.1 and q = 0.2. They calculated the phase diagram also using FVT,
but employed Monte Carlo simulations to obtain the thermodynamic properties of
the pure platelet system and measured the free volume fraction in such simulations
by a trial insertion method. In Fig. 9.9 the phase diagrams are plotted in terms of a
dimensionless fugacity z = nRd D

3 of PHSs versus platelet concentration nD3. The
overall topology of the phase diagram from theory agrees with the one obtained from
the hybrid simulation method.

The details of the phase diagrams depend on L/D and q . A few typical represen-
tative phase diagrams, calculated using the theory outlined above, are presented in
Fig. 9.10a (in depletant reservoir concentrations along the ordinate) and Fig. 9.10b
(ordinate plotted as system depletant concentrations). In Fig. 9.10a, the phase dia-
gram for L/D = 0.15 and q = 0.158 shows that the I–N and N–C biphasic regions
in the phase diagrams join in an I–N–C three-phase coexistence upon increasing
the depletant concentration due to the widening of both I–N and N–C phase coexis-
tences. By increasing q we encounter an I1–I2–N three-phase coexistence, in addition
to a I1–N–C three-phase coexistence for L/D = 0.15 and q = 0.25. Note that these
triple lines lead to triple coexistences (see Fig. 9.10b).
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Fig. 9.10 Phase diagrams for platelet–polymer mixtures for various L/D and various q values
as indicated [48]. a Diagrams in the {φ,φR

d } polymer reservoir phase space. Horizontal lines mark
multiple-phase coexistence. bAs in a, but in the {φ,φS

d} phase space. The coloured triangles indicate
the system representation of the triple point lines on the top panels. The inset plot zooms into the
low depletant concentration regime. Reprinted with permission from Ref. [48]. Copyright 2018
Taylor & Francis

For smaller L/D and q a nematic–nematic phase coexistence also becomes possi-
ble, for instance for L/D = 0.02 and q = 0.04. Now there are I–N1–N2 and I–N2–C
triple lines. As can be seen in the lower panels (b) the triple regionsmay be accessible
experimentally because the concentrations are realistic and the regions are not too
narrow. For a full overview of the possible phase diagrams, including a four-phase
coexistence, see Refs. [48,53].

9.4 Experimentally Observed Phase Behaviour of Mixtures
Containing Colloidal Platelets

In this section selected experimental examples of phase behaviour that includes col-
loidal platelets and depletants are discussed. The focus is on nonadsorbing polymers
as depletants in Sects. 9.4.1 and 9.4.2, although we also illustrate some studies on
colloidalmixtures of platelets and added colloidal spheres in Sects. 9.4.3–9.4.5, 9.4.4.



300 9 Phase Behaviour of Colloidal Platelet-Depletant Mixtures

9.4.1 Sterically Stabilised Gibbsite Platelets Mixed with Polymers

Aswe have seen in Sects. 9.1 and 9.2 sterically-stabilised gibbsite platelets dispersed
in toluene display a rich liquid crystal phase behaviour. With increasing concentra-
tion the isotropic phase, isotropic–nematic phase coexistence, the nematic phase,
nematic–columnar phase coexistence and the columnar phase are observed [2]. Van
der Kooij et al. [24] found that the depletion attraction, brought about by the addition
of nonadsorbing polymer, enriches the phase behaviour of these platelet suspen-
sions even further. They used sterically stabilised gibbsite platelets with an average
diameter of 208nm and thickness (including the thickness of the stabilising grafted
polymer layer) of 14nm, leading to an aspect ratio L/D of 1/15 ≈ 0.067.

The nonadsorbing polymer used by Van der Kooij et al. [24] is a trimethyl-
siloxy terminated polydimethylsiloxane (PDMS)with aweight-averagedmolarmass
Mw = 4.2 · 105 g/mol. The radius of gyration Rg of this polymer is estimated as
33nm. Hence, the ratio of the polymer coil diameter over the plate diameter is
about 0.3.

The observed phase behaviour is presented in Fig. 9.11. The overall topology of
the plate–polymer phase diagram is characterised by awealth of one-, two- and three-
phase equilibria and even a four-phase equilibrium. Each of these phase regions can
be rationalised, based on possible combinations of the I1, I2, N, and C phases.

In Fig. 9.12 examples of phase-separated plate–polymer mixtures are shown as
observed between crossed polarisers. A calculated phase diagram for L/D = 0.0673
and 2δ/D = 0.317 using the theoretical approach outlined in Sect. 9.3 is shown in
Fig. 9.13.

Fig.9.11 Experimental phase diagramof gibbsite platelet–PDMSpolymermixtures [24] in toluene.
Phase boundaries are indicated by solid curves, their shape and position being based on the data
points they enclose, and on the consistency with surrounding phase regions. Curves are dashed in
cases where the location of the phase boundary is not known precisely due to local scarcity of data
points. Reprinted with permission from Ref. [24]. Copyright 2000 APS
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Fig. 9.12 Phase separated gibbsite platelet–PDMS polymer mixtures in toluene as observed
between crossed polarisers [24]. Depicted are a triple phase coexistence I1–I2–N (top to bot-
tom: dilute isotropic, concentrated isotropic I2 and nematic N at the composition φplate = 0.31
and cpol = 2.0 g/L); b triple phase coexistence I1-N-C (dilute isotropic, nematic, columnar for
φplate = 0.44 and cpol = 2.2); and c four-phase coexistence I1–I2–N–C (dilute isotropic, concen-
trated isotropic, nematic and columnar phase for φplate = 0.31 and cpol = 5.3). Reprinted with
permission from Ref. [24]. Copyright 2000 APS

Fig.9.13 Predicted phase diagram using free volume theory for L/D = 0.0673 and 2δ/D = 0.317,
calculated using the approach outlined in Sect. 9.3, following Ref. [48]. The I2–N and single-phase
N regions are magnified in the upper inset, while the lower inset shows the N–C region
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Fig. 9.14 Three-phase sedimentation equilibrium in a system of sterically stabilised gibbsite
platelets [47]. a The complete sample between crossed polarisers, where the upper right part is
digitally enhanced to visualise the I–N interface. The columnar phase contains a dark region at
the upper right of the phase, probably due to the orientation of the platelets along the sample
walls. Although not clearly visible, the N–C interface is horizontal and sharp. b Columnar phase
illuminated with white light to capture the red Bragg reflections. Reprinted with permission from
Ref. [47]. Copyright 2004, with permission from AIP Publishing

The richness of the observed phase diagram of colloidal plate dispersions with
added nonadsorbing polymer chains (see Fig. 9.11) raises the question of how to
explain the observed topology, including the four-phase region and the three-, two-
and single-phase regions surrounding it. It contrasts to some degree with the theo-
retical prediction of Fig. 9.13. At first sight, such four-phase coexistence seems to
conflict with the phase rule of Gibbs, which (at a given temperature) limits the maxi-
mumnumber of coexisting phases to three for a systemof effectively two components
(platelet–polymer). See Refs. [57,58] for further discussion.

An explanation for the observed phase diagram can be found by considering the
effect of gravity [59]. The height distribution of colloidal particles in a dispersion is
influenced by gravity, particularly when the sedimentation length lsed (Eq. (1.1)) is
much smaller than the sample height. At each height the system is thermodynami-
cally different because locally, at each position, the external gravity field provides a
different potential energy to the system. This implies that gravity has an influence on
the system over the length scale of the sample, and therefore mediates the number of
coexisting phases present, as well as their stacking. One can account for this using a
so-called local density approximation (LDA), which assumes that at any height there
is a local equilibrium.

Exercise 9.2. Argue why very rich apparent multi-phase coexistence is
expected for a polydisperse colloidal dispersion in the field of gravity in
case of a significant solvent-particle density difference.

We first consider the effect of gravity in a system of platelets without added
polymer. Van der Beek et al. [47] observed that a suspension of sterically stabilised
gibbsite platelets, which is initially an isotropic–nematic biphasic sample, develops a
columnar phase on the bottom after prolonged standing (Fig. 9.14). By employing the
theoretical approach ofWensink and Lekkerkerker [59], Van der Beek et al. [47] pre-
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sented a simple calculation of the heights of the phases based on the sedimentation–
diffusion equilibrium using the LDA. Consider a suspension of monodisperse, hard
discs with number density n(z) at position z and buoyant massm∗ = v0�ρ, where v0
is the colloid particle volume and�ρ is the difference in themass densities of the col-
loidal particles and solvent. The condition for sedimentation–diffusion equilibrium
reads as

−
(

∂�

∂n

)

T ,μsolvent

∂n

∂z
= m∗gn. (9.33)

It is convenient to use reduced quantities. The osmotic pressure of platelets is given by
˜� = �D3/kT , the reduced concentration by ñ = nD3, and positions can be scaled
with the sedimentation length �sed. Substituting these expressions in Eq. (9.33) yields

− 1

ñ

(

∂˜�

∂ñ

)

T ,μsolvent

dñ = dz

�sed
. (9.34)

The height H = ztop − zbottom can be found for a single-phase state by integrating
(Eq. (9.34)) from the bottom to the top of that phase:

H =
∫ ztop

zbottom
dz = −�sed

∫ ñtop

ñbottom

1

ñ

(

∂˜�

∂ñ

)

T ,μsolvent

dñ. (9.35)

The average concentration n of this phase now follows as

n =
∫ ztop
zbottom

ñ(z)dz
∫ ztop
zbottom

dz
= 1

H

∫ ñtop

ñbottom
ñ(z)

(

∂z

∂ñ

)

dñ. (9.36)

Using (Eq. (9.34)), this yields

n = �sed

H

[

˜�(ñbottom) − ˜�(ñtop)
]

. (9.37)

For a sedimentation equilibrium that includes multi-phase coexistences, Eqs. (9.35)
and (9.37) apply to every phase. The total sample height Hsample can be written as
the sum of all individual phase heights Hi :

Hsample =
∑

i

H i . (9.38)

The average overall sample concentration nsample can now be written as

nsample = 1

Hsample

∑

i

H i n i , (9.39a)

= �sed

Hsample

∑

i

[

˜�(ñ i
bottom) − ˜�(ñ i

top)
]

, (9.39b)
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Fig. 9.15 a Phase diagram for colloidal platelets with L/D = 0.05 in a gravitational field. Plotted
is the reduced sample height H/�sed versus the overall plate volume fraction φ0. The three-phase
region opens up at H = 11.15�sed. bConcentration profile of a sample with overall volume fraction
φ0= 0.157 and vessel height H = 30�sed (corresponding to the open dot in a). Plotted is the relative
height z/H as a function of φ. The I–N and N–C phase boundaries are indicated by the horizontal
dotted lines. Reprinted with permission Ref. [59]. Copyright 2004 Institute of Physics (IOP)

where the average phase concentration of phase i is given by n i . For two coexisting
phases A and B (where A is on top of B) the osmotic pressures are equal:

˜�(ñAbottom) = ˜�(ñBtop); (9.40)

so, Eqs. (9.39b) and (9.37) lead to

nsample = lsed
Hsample

[

˜�(ñsample
bottom) − ˜�(ñsample

top )
]

. (9.41)

Using the above equations and computer simulation data for the equation of state
for cut spheres (L/D = 1/20) from Zhang, Reynolds and Van Duijneveldt [46] the
phase diagram for colloidal plateletswith [59] can be calculated.Results are plotted in
Fig. 9.15. The calculated heights of the I, N and C phases are in reasonable agreement
with the experimental data for the sample shown in Fig. 9.14.

The role of gravity on the phase behaviour of mixtures of colloidal plates with
nonadsorbing polymer is more complicated but follows the same lines. Wensink and
Lekkerkerker [59] performed calculations for L/D = 1/20 and a ratio of the polymer
coil diameter over the plate diameter of 0.355 to mimic the experimental system of
Ref. [24]. They obtained the phase diagram shown in Fig. 9.16 for a sample with
a height of 15mm, a gravitational length of �sed = 0.9mm for the platelets, and
�sed → ∞ for the polymers. All the experimentally observed multi-phase equilibria
shown in Fig. 9.11 appear—even the four-phase equilibrium.

De las Heras and Schmidt [60] also used the local density approximation (LDA)
but applied it to account for multiple sedimenting components. The LDA implies that
at any z there is a chemical potential μi (z) for each component that can be expressed
as [61,62]

μi (z) = μbulk
i − zgmi,eff , (9.42)
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Fig. 9.16 Phase diagram
under gravity of a
plate–polymer mixture with
L/D = 1/20 and q = 0.355
in the representation of
dimensionless polymer

fugacity zpD3 = nRd
3
D3

versus volume fraction
representation for a vessel
height of 15mm
(H = 16.67�sed). Reprinted
with permission from
Ref. [59]. Copyright 2004
IOP

where μ̃bulk
i is the bulk chemical potential of each component i . In Eq. (9.42) an

external potential due to gravity is given by zgmi,eff , with mi,eff denoting the buoy-
ant mass of component i . This means that along the sample height there is a spectrum
of chemical potentials for every component, termed the sedimentation path. A pos-
sible scenario for a binary mixture composed of components 1 and 2 is sketched in
Fig. 9.17. Using an appropriate model for the thermodynamics of the bulk (e.g. DFT,
FVT, TPT), De las Heras and Schmidt related the bulk phase diagram to its phase
stacking in the field of gravity [60,61,63]. This enables one to predict the phase
states in the field of gravity.

Along the dashed line of Fig. 9.17 the chemical potentials of both components
from top to bottom are now position-dependent due to the external field of gravity. In
this hypothetical example, two-phase transitions occur along the sedimentation path.
At the bottom there is a certain phase A of mixed components 1 and 2. However, for

Fig. 9.17 Hypothetical bulk
phase diagram of a binary
mixture of two components 1
and 2 in terms of the
chemical potentials of these
components μ1 and μ2. Two
phases are possible in this
diagram: A (left region) and
B (right region). The solid
curve is a binodal at which
two phases A and B coexist.
The dashed line is the
sedimentation path along the
sample with height H .
Reprinted with permission
from Ref. [61]. Copyright
2015 IOP
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Fig. 9.18 Bulk phase diagrams for mixtures of colloidal platelets and nonadsorbing polymers in
terms of (i) (̃μp, μ̃c) plots and (ii) concentrations {cp, φ}. Reprinted with permission from Ref. [61].
Copyright 2015 IOP

a certain range of chemical potentials, phase B is the preferred phase state. Close to
the top, phase A is again the preferred phase state. This explains the possibility of a
floating phase (B in this case) between two A phases [63,64]. The chemical potential
differences �μi are directly related to the height of phase B:

�μi = −hBgmi,eff . (9.43)

In this case the stacking sequence is ABA.
De las Heras and Schmidt [61] applied the LDA approach to various colloidal

mixtures, includingmixtures of sterically stabilised gibbsite platelets (D=208nm, L
= 14nm; L/D ≈ 0.067) with PDMS polymers (Rg = 33nm;Mw = 4.2 · 105 g/mol,
so q ≈ 0.32) [24] as were discussed earlier (see the experimental phase diagram in
Fig. 9.11). The difference with the approach presented above is that De las Heras
and Schmidt [61] took into account both sedimenting components explicitly, which
is especially essential for the description of multi-component colloidal mixtures
[65,66].

The bulk diagram for this mixture was computed by De las Heras and Schmidt
[61] using the perturbation approach of Zhang, Reynolds and van Duijneveldt [46]
for L/D = 0.05 and q = 0.35. It is presented in Fig. 9.18i in terms of a chemical
potential plot (̃μp, μ̃c), where μ̃p is the (normalised) chemical potential of the non-
adsorbing polymers and μ̃c is the chemical potential of the colloidal platelets. This
phase diagram is relatively simple. There are two isotropic phases, a nematic phase
and a columnar phase. Additionally, there are two triple points (I1–I2–N and I1–N–C;
�) and an isostructural isotropic critical point (◦).

Each sedimentation path has an associated stacking sequence, for instance, CNI1.
The complete set of paths can be represented in a stacking diagram, e.g. in the plane
of average chemical potential along the path. Each point in the stacking diagram
corresponds to a sedimentation path in bulk. Boundaries in the stacking diagram
between different stacking sequences are connected to paths that cross a binodal. A
tiny change of such a path can alter the stacking sequence.
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Fig. 9.19 Sample height-dependent phase diagrams for mixtures of (both) sedimenting colloidal
platelets and nonadsorbing polymers in terms of (iii) (̃μp, μ̃c) plots and (iv) concentrations {cp, φ}.
Reprinted with permission from Ref. [61]. Copyright 2015 IOP

In Fig. 9.18(ii) the bulk phase diagram is presented, which follows from (i) but is
now given in terms of the polymer concentration (cp (g/l)) and volume fraction of
platelets φ. In terms of concentrations the triple points now become (small) regions
and the coexistence lines are now wide regions.

In Fig. 9.19 the stacking diagrams are plotted at heights of H = 1, 2 and 4cm.
These phase diagrams of finite heights are much richer and also include a quadru-
ple region (I1–I2–N–C). The phase diagrams for various heights are shown in
Fig. 9.19(iv) and reveal a quadruple region (I1–I2–N–C) that is absent in (iii). Com-
parison with Fig. 9.11 shows that the phase diagrams in Fig. 9.19, and especially
those for H = 2 and 4cm, are much closer to what is observed experimentally. These
phase diagrams of finite heights exhibit a quadruple region (I1–I2–N–C) that was
observed in Ref. [24].

A full quantitative comparison requires exact knowledge of the height distribu-
tions of both particles in the field of gravity. This is a challenge since there are
differences in sample preparation methods and solvent evaporation is possible. Fur-
ther, polydispersity also affects the details of the experimental phase diagram.
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9.4.2 Mixtures of Magnesium Aluminide Layered Double
Hydroxide Platelets and Polymers

Liu et al. [6] observed isotropic–nematic phase coexistence in aqueous suspensions
of Mg2Al-layered double hydroxide platelets (D = 120nm, L = 3.2nm). The same
research group [67] also studied the phase behaviour of mixtures of Mg2Al-layered
double hydroxide platelets and nonadsorbing polyvinylpyrrolidone (PVP, Mp = 630
kg/mol). The radius of gyration of the PVP used inwater is 42nm, hence, in the dilute
polymer concentration regime, one estimates a depletion thickness (see Chaps. 2 and
4) δ ≈ 1.13Rg = 47 nm. The observations of the phase behaviour are shown in
Fig. 9.20.

In Fig. 9.21 the transient phase transition for a sample is shown as a function of
time.

The predicted theoretical phase diagram for L/D = 3.2/120 and q = 94/120 =
0.78 is plotted in Fig. 9.22. Calculations were done using FVT as outlined in this
chapter.

This predicted theoretical phase diagram reveals an expected I1–I2–N three-phase
coexistence region, but not a four-phase I1–I2–N1–N2 equilibrium, as is observed
(see Fig. 9.20). The difference can probably be explained by effects of gravity and
polydispersity.

Fig. 9.20 Phase states and coexistence region observed in mixtures of Mg2Al layered double
hydroxide platelets and PVP. The solid curves represent estimated phase boundaries between dif-
ferent regions: liquid phase (L), dilute isotropic region (I1), concentrated isotropic region (I2), faint
birefringent (dilute nematic) phase (N1), concentrated nematic phase (N2) and sediment phase (S).
Data points are experimental observations. Reprinted with permission from Ref. [67]. Copyright
2009 ACS
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Fig. 9.21 Illustration of the evolution of the phase states of a mixture of Mg2Al layered double
hydroxide platelets (20 wt %) and PVP (0.3 wt %), as observed using crossed polarisers [67]. a Just
after preparation, b after 2 days, c after 30 days and d after 55 days. e Schematic representation
of the multi-phase coexistence regions in the sample. Reprinted with permission from Ref. [67].
Copyright 2009 ACS

Fig. 9.22 Phase diagram of
hard platelets
(L/D = 3.2/120 = 0.0267)
mixed with nonadsorbing
polymer chains modelled as
PHSs; q = 94/120 = 0.78,
calculated using the
approach outlined in
Sect. 9.3, following
Refs. [48,54]. Inset:
magnified I2–N region

9.4.3 Gibbsite Plate—Silica Sphere Mixtures

Doshi et al. [63,68,69] studied the phase behaviour of aqueous suspensions con-
taining gibbsite platelets mixed with alumina-coated silica spheres with diameter σ.
See Fig. 9.23 for an illustration of the alumina coating, chemically bound to a silica
sphere.

To inhibit double layer repulsions between the particles 5 mM NaCl was added,
and commercially available stabilisers (Solplus D450 and Solsperse 41,000) were
adsorbed on the particle surface to create near-hard particle interactions. The dimen-
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Fig. 9.23 Sketch of the
alumina coating at the silica
surface. Reprinted from
Ref. [69] with permission of
the authors, copyright 2011

Table 9.2 Mean dimensions of the plates and spheres discussed in this section. Dimensions include
size dispersity from TEM/AFM and average bare and effective dimensions of plates and spheres
from scattering data

Particle Dimension Characterisation method

TEM/AFM Scattering

Mean Dispersity Bare value Effective
value

(nm) (%) (nm) (nm)

gibbsite 〈D〉 203 20 183 191

gibbsite 〈L〉 5 21 7 15

Klebosol
30CAL25

〈σ〉 30 15 30 40

Klebosol
30CAL50

〈σ〉 74 21 74 90

sions of the particles studied are given in Table9.2; bare and effective dimensions
are quoted. The effective dimensions of the spheres and plates take into account the
additional layer that is due to steric stabilisation or the Debye length of 4nm at 5
mM of NaCl.

Figure9.24a presents a TEM micrograph of the gibbsite plates and Klebosol
30CAL25 alumina-coated silica spheres, while panels (b) and (c) show phase dia-
grams of these gibbsite plate–silica sphere mixtures. The effective size ratios for a
mixture of gibbsite platelets with Klebosol 30CAL25 silica spheres are Leff/Deff =
0.08 andσeff/Deff = 0.21, so on theoretical groundswe only expect an I–N transition.
This is confirmed experimentally, as can be seen in Fig. 9.24d, e.

For a similar mixture of gibbsite platelets and silica particles but with the
larger Klebosol 30CAL50 silica spheres the phase behaviour is considerably richer.
Now the ratio of deff /Deff = 0.47 and, in addition to an isotropic–nematic phase,
both an isotropic–isotropic and an isotropic–isotropic–nematic phase transitions are
expected. The latter is indeed observed, as is shown in Fig. 9.24e.

De las Heras et al. [61,63] have shown that sedimentation–diffusion equilibria of
binary colloidal mixtures can involve phase transitions, which can lead to complex
phase stacks, such as the sandwich of a floating nematic layer between top and bottom
isotropic phases. This may explain what is observed in mixtures of silica spheres and
gibbsite platelets.
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(a) TEM micrograph for q = 0.15 [68].

(b) Experimental phase diagram for q =
0.15 [68].
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(c) As (b) for q = 0.36 [69].
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(e) Mixtures between

crossed polarisers for

q = 0.36 [63].

Fig.9.24 Plate–spheremixtures composed of gibbsite platelets andKlebosol silica spheres. Particle
dimensions: a, b, d silica σ = 30nm, c, e silica σ = 74nm. Platelet dimensions 〈D〉 = 203nm ± 20
%, 〈L〉 = 5nm± 20%. d, e φsilica = 0.05, gibbsite platelet volume fractions as indicated. Reprinted
with permission from a, bRef. [68], copyright 2012 IOP; c Ref. [69], copyright 2011; d, eRef. [63],
copyright 2012 Springer Nature
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9.4.4 Mixtures of ZirconiumPhosphate Platelets and Silica Spheres

Chen et al. [70,71] studied the phase behaviour of aqueous mixtures of zirco-
nium phosphate (ZrP) platelets with silica spheres. In Ref. [71] they used ZrP
(D = 704.3nm, L = 2.68nm) and added silica spheres (σ = 162.7nm).

Exercise 9.3. In aqueous dispersion platelets are typically charged. How
would the I–N phase transition be affected upon adding salt?

The size ratio q = σ/D of the diameters of the silica spheres and ZrP plates is
0.23; so we expect—in addition to the biphasic equilibria I1–I2, I2–N and I1–N—a
triphasic phase triangle region I1–I2–N. The latter is indeed observed (see the left
panel of Fig. 9.25).

Again, a nematic phase is observed floating between two isotropic phases. Note
that the amounts of the phases I1, I2, and N reflect the positions of the samples A, B
and C denoted in the three-phase triangle denoted by points O (I1), P (I2) and Q (N).
From applying the lever rule [72] to the triangle region of the phase diagram (see left
panel of Fig. 9.25) it follows that state pointA,which is close to the I1 vertex,will have
a relatively large amount of phase I1. Similarly, state point C, which is close to the I2
vertex, has a relatively large amount of phase I2. This is indeed seen experimentally
(Fig. 9.25, right panel). Chen et al. [70] also studied the phase behaviour of a mixture
of ZrP platelets and silica spheres with a size ratio q = σ/D = 0.013. As expected,
an I–N1–N2 phase equilibrium is now observed (Fig. 9.26).

Fig.9.25 Left: experimental phase diagram of aqueous mixtures of ZrP platelets and silica spheres
[71]. Right: photographs of the (red) state points A and C in the phase diagram. The numbers on the
tubes indicate the number of hours lapsed after preparing the samples. Reprinted with permission
from Ref. [71]. Copyright 2017 RSC
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Fig. 9.26 Triphasic
I–N1–N2 equilibrium
observed for an aqueous
mixture of ZrP platelets and
silica spheres with a
sphere–platelet size ratio
q = σ/D of 0.013. The ZrP
volume fraction is 0.0063
and the silica concentration
is 2 wt % (corresponding to a
volume fraction of 0.015)
Reprinted with permission
from Ref. [70]. Copyright
2015 RSC

9.4.5 Effect of Added Silica Nanoparticles on the Nematic Liquid
Crystal Phase Formation in Beidellite Suspensions

While virtually all smectite clays dispersed in water form gels at very low concentra-
tions, aqueous suspensions of beidellite [11] aswell as nontronite [8] exhibit a unique
behaviour with a first order isotropic–nematic phase transition before gel formation.
Landman et al. [73] studied the modification of the phase behaviour of beidellite
suspensions upon addition of colloidal silica spheres. TEM images of their beidellite
platelets are reproduced in Fig. 9.27a. Figure9.27b shows a TEM micrograph of the
silica spheres. Images giving some indications of the phase behaviour of the pure
beidellite suspensions are presented in Fig. 9.28.

Note that sample (a) (φ = 0.27%) is still in the isotropic phase sample, (e) (φ =
0.40%) is completely nematic, and sample (f) (φ = 0.41%) is a nematic gel. Adding
silica nanoparticles to the nematic gel sample (f) leads to an isotropic–nematic phase
equilibrium as is displayed in Fig. 9.29.

Fig. 9.27 TEM micrographs of a beidellite platelets and b silica Ludox AS-40 spheres used.
Reprinted with permission from Ref. [73]. Copyright 2014 ACS
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Fig. 9.28 Aqueous beidellite suspensions observed between crossed polarisers one month after
preparation. Volume fractions of clay (φclay) are as follows: a 0.27%; b 0.32%; c 0.35%; d 0.37%;
e 0.40%; f 0.41%. Note that the tiny bright layer just at the glass bottom of the vial in a is not
due to a nematic phase but is a light reflection artefact. Reprinted with permission from Ref. [73].
Copyright 2014 ACS

Fig.9.29 Mixed beidellite/silica suspensions observed between crossed polarisers one month after
preparation: φclay = 0.41% and (from left to right) φsilica = 0, 0.034 and 0.138%. Reprinted with
permission from Ref. [73]. Copyright 2014 ACS

Fig. 9.30 Experimental
phase diagram of aqueous
beidellite/silica suspensions.
(◦) Isotropic, ( ) biphasic
and (�) gelled states are
indicated. The boundary
between the isotropic and the
biphasic samples was
obtained from naked-eye
observations of the
test-tubes, while the sol–gel
transition line was
determined by rheological
measurements. Reprinted
with permission from
Ref. [73]. Copyright 2014
ACS
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The modification of the beidellite phase diagram due to the addition of silica
nanoparticles is indicated in the images of Fig. 9.30. Note that the addition of a tiny
amount of silica nanoparticles (volume fraction of 10−3) has a significant effect on
the phase diagram.
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10PhaseBehaviour of Colloidal Cubes
MixedwithDepletants

In Chaps. 8 and 9 it was shown that the phase behaviour of anisotropic hard particles
is considerably richer than that of hard spheres (see Sect. 3.2). Recent breakthroughs
in colloidal synthesis allow the control of particle shapes and properties with high
precision. This provides us with a constantly expanding library of new anisotropic
building blocks, thus opening new avenues to explore colloidal self-assembly at a
higher level of complexity [1,2]. One of these intriguing novel systems are cube-like
colloids. In this chapter, a selective overview is given on the current knowledge of
the phase behaviour of cube-like colloids with and without added depletants.

This chapter commenceswith an introduction to some experimental cube-like sys-
tems that have been developed, followed by an outline of the basic thermodynamics
of dispersions comprising hard superballs, which are often used to model cubic col-
loids. Subsequently, an explanation is provided about how free volume theory can
be applied to predict the phase stability of cube–polymer mixtures. We conclude
by discussing the experimental work available on the phase stability of dispersions
containing colloidal cubes mixed with nonadsorbing polymers.

10.1 Introduction to Colloidal Cubes

Recent improvements in the synthesis of a wide range of different types of colloidal
particles have led to the realisation of well-defined building blocks that enable the
structuring of matter (see also Sects. 8.1 and 9.1). The anisotropic shape of inorganic
particles can be explained by the variation in growth rates of different crystal facets
that develop during colloid synthesis [3,4]. The shape can be tuned by the adsorption
of additives, which inhibit or accelerate the growth of certain crystal facets [5]. The
inhibition or acceleration of crystal facet growth also evolved into the development
of various types of cube-like colloidal particles. The ability to tune size, shape and

© The Author(s) 2024
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Fig. 10.1 Microscopy images of examples of cube-like colloidal particles. a Micrometre-sized
hollow silica cubes prepared by growing a shell around iron oxide particles according to the method
of Rossi et al. [20]; image kindly provided by L. Rossi. b Sharp Fe3O4 nanocubes from Ref. [32],
synthesised according to the method by Park et al. [13]. c Pd nanocubes; inset: magnification [19].
d, e SiO2-coated Cu2O nanocubes [27,33], images kindly supplied by F. Dekker. The CuO2 core
is removed in e. f Ag cubes [11]. Images b, c and f reprinted with permission from: b Ref. [32]
(CC-BY); c Ref. [19], copyright 2011 the American Physical Society [19]; f Ref. [11], copyright
2005 Wiley

chemistry of cube-like colloids [6–31] extends the range of possible applications.
Some examples are shown in Fig. 10.1.

Many of the synthesised cube-like colloidal particles have a shape that lies in
between that of a cube and a sphere. To a certain degree the shape is also tunable
within that range [27,34]. A commonway to quantify the shape of a cube-like particle
with rounded edges is by describing it as a superball. Formally, superballs are a subset
of a family of geometric shapes called superellipsoids [35]. The following expression
describes the shape of a superball in Cartesian coordinates {x, y, z} [36]:

f(x, y, z) =
∣
∣
∣
x

R

∣
∣
∣

m +
∣
∣
∣
y

R

∣
∣
∣

m +
∣
∣
∣
z

R

∣
∣
∣

m ≤ 1, (10.1)

where R is the radius of the superball (the shortest distance from the centre of the
superball to its surface), which is related to the edge length Rel ≡ 2R. The quantity
m is the shape parameter. The surface of the superball is described for f(x, y, z) = 1,
whereas the location of the material inside the superball is given by f(x, y, z) < 1.
For m = 2 a sphere is recovered and m = ∞ corresponds to a cube. To describe
cube-like colloidal particles the focus here is on m ≥ 2. In Fig. 10.2 a collection of
superballs is depicted for several m-values.
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RR R R

Fig.10.2 Three-dimensional (top panel) and two-dimensional (bottom panel) representations of a
superball for various values of the shape parameter (left to right):m = 2, 3, 5, and 10. The superball
radius (R) and the maximum distance of the superball surface to the centre (rmax) are indicated.
Adapted from Ref. [38] under the terms of CC-BY-4.0

Exercise 10.1. Compute the maximum distance rmax between the particle
centre and its surface in terms of R for the shapes in Fig. 10.2. Hint: see the
Appendix of Ref. [37].

It is noted that experimentally prepared cubes may be even more accurately
described as a sphube [39], or by using the Minkowski sum of a cube and a sphere
[32]. Also the Minkowski particle and sphube shapes interpolate smoothly from
perfect sharp cubes to perfect spheres. The advantage of the superball shape how-
ever is that it provides approximate analytic expressions for various thermodynamic
properties of the particle dispersions, enabling the theoretical prediction of phase
diagrams.

10.2 Equations of State of Hard Colloidal Superballs

In this section, equations of state are presented for a fluid and two solid phase states
composed of hard colloidal superball dispersions. These approximate results will
be used in subsequent sections to predict phase diagrams of hard superballs and
superballs mixed with depletants.

10.2.1 Second (Osmotic) Virial Coefficient of Superballs

The first step is to quantify the second (osmotic) virial coefficient for superballs. To
quantify the second (osmotic) virial coefficient (B2) of hard superballs, the orienta-
tionally averaged excluded volume between two particles [40] should be calculated
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Fig. 10.3 Normalised
second virial coefficient B∗

2
as a function of the shape
parameter m. Numerical
solutions are given by the
grey dots (see Ref. [38] for
details). The black curve
shows a fit through the data
points following Eq. (10.3).
Adapted from Ref. [38]
under the terms of
CC-BY-4.0
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because the particles are anisotropic form > 2. For convex particles (hence, also for
superballs with m ≥ 2), a general expression for B2 reads [41,42]

B2

vc
≡ B∗

2 = 3ς + 1, (10.2)

with the so-called asphericity ς , defined through

ς = sccc
3vc

,

which contains the geometrical superball characteristics volume vc, surface area
sc and surface integrated mean curvature cc. In [38,43] it is explained in detail
how ς can be calculated as a function of the shape parameter m from numerical
computation of vc, sc and cc. This yields B∗

2 via Eq. (10.2). The numerically obtained
B∗
2 values for hard superballs [38] are plotted in Fig. 10.3. It follows that B

∗
2 smoothly

increases with m from the hard sphere (hs) limit (m = 2, B∗
2 = 4) to the cube limit

(m = ∞, B∗
2 = 5.5). The numerical data can be described using the following closed

expression for B2 (solid curve in Fig. 10.3):

B∗
2 ≈ 1

0.42

√

1 −
(
1−2/m
1.83

)2 − 0.17

. (10.3)

10.2.2 Fluid Phase State of Superballs

To find an expression for the fluid state of superballs, consider a collection of Nc hard
superballs in a volume V , so the volume fraction of superballs φc = Ncvc/V . An
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accurate equation of state (EOS) for a fluid of hard convex particles was proposed by
Boublík [44–46] in terms of the reduced osmotic pressure of the pure hard superball
dispersion P̃f :

P̃f = Pvc

kT
= φc + Qφ2

c + Rφ3
c − Tφ4

c

(1 − φc)3
, (10.4)

with

Q = 3ς − 2,

R = 1 − 3ς + 3ς2,

T = 6ς2 − 5ς .

(10.5)

It is noted that Gibbons [47] derived an earlier, less accurate, EOS using scaled
particle theory.

Exercise 10.2. Show that Eq. (10.4) equals the Carnahan–Starling prediction
Eq. (3.1) in the limit of hard spheres [48]. Hint: use Eq. (10.2) to find ς for
hard spheres.

Using the relation between B2, ς and P̃f of Eqs. (10.2)–(10.4), the EOS for a fluid
of hard superballs is completely defined for a given value ofm. Computer simulations
have shown the accuracy of the Boublík EOS for a wide range of m-values [49,50].
In Fig. 10.4 computer simulation results for the limits of hard cubes (m = ∞) and
hard spheres (m = 2) are compared to predictions using Eq. (10.4).

The chemical potential of the superballs is related to the osmotic pressure through
the Gibbs–Duhem relation Eq. (A.12) for a single-component system at constant
temperature, which can also be written as

dμ̃f = 1

φc

d P̃f
dφc

dφc; (10.6)

Fig. 10.4 Volume fraction
dependence of the osmotic
pressure of hard cubes [50]
(�) and of hard spheres [51]
(•). Curves: Eq. (10.4)
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so, the chemical potential follows from combining Eqs. (10.4) and (10.6) (see also
Eq. (3.5)):

μ̃f = ln

(
Λ3

vc

)

+ (T − 1) ln(1 − φc) + ln φc

+ (10 + 4Q + 2T)φc − (13 + 3Q − 3R + 5T)φ2
c

2(1 − φc)3

+ (5 + Q − R + T)φ3
c

2(1 − φc)3
,

(10.7)

with ln(Λ3/vc) the reference chemical potential of a superball fluid. The free energy
follows from the chemical potential and the osmotic pressure through the thermody-
namic relation F̃f = φcμ̃f − P̃f (see Eq. (A.11)).

10.2.3 Solid Phase States of Superballs

To approximate the free energy of the solid phases of hard superballs, the cell theory
(see also Chaps. 3 and 9) proposed by Lennard-Jones and Devonshire (LJD) for hard
spheres [52] was modified. Each particle is considered to be contained in a closed
region whose shape is determined by neighbouring particles fixed at their lattice
positions [53], as illustrated in Fig. 10.5. The free energy of the solid is computed
from the number of configurations determined by the volume v∗ that the centre of
the particle explores, provided it does not overlap with its nearest neighbours. This
leads to the following normalised free energy for a solid:

F̃s = φc ln

(
Λ3

v∗

)

. (10.8)

The free volume v∗ depends on the shape parameterm and the volume fraction φc of
the superballs. It is, however, also dependent on the structure of the solid phase state,
because this structure affects the relative position of the nearest neighbours. Solids
that appear in dispersions of hard superballs are the face-centred cubic (FCC), the
simple cubic (SC) structure and two families of other more complex lattice packings:
the C0-lattice and C1-lattice [36,50,54].

These packings possess twofold (C0) and threefold (C1) rotational symmetries.
Both packings can be considered as a continuous deformation of the FCC lattice
for a sphere (m = 2) to a SC lattice for a perfect cube (m → ∞). Since these solids
have a distorted structure the corners of the superballs can be closer to one another.
Hence, the voids between the particles are smaller, which increases the maximum
packing density. The C0-lattice provides the densest packing for small m, while for
m � 2.308 the C1-lattice is the most efficient. The FCC and SC structures are the
thermodynamically preferred structures in the limits of hard spheres and hard cubes,
respectively [50]. Since there are no analytic expressions available for the C0- and
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Fig. 10.5 Representations of the face-centred cubic (FCC) crystal lattice (top panel) and simple
cubic (SC) lattice (bottom panel) at φc = 0.45 for (left to right) m = 2, 3, 5, and 10. The free
volume is illustrated as the shaded regions. As an illustration, a particle that just touches a nearest
neighbour is also depicted. The small arrows indicate the superball radius R and the large arrows
specify the nearest-neighbour distance r . Adapted from Ref. [38] under the terms of CC-BY-4.0

C1-lattice structures we consider only the FCC and SC phase states. A schematic
view of the FCC and SC structures of superballs for several m-values is shown in
Fig. 10.5.

For the FCC crystal the free volume depends on the shape of theWigner–Seitz cell
[53], which for an FCC crystal has a rather complicated geometry [55,56]. Usually it
is approximated as a sphere (see Chap.3). If one considers that this is still reasonable
for superballs for small values of m − 2, the free volume v∗,FCC is then given by

v∗,FCC = 4π

3

(

r − rcp
)3 , (10.9)

where r is the distance between the centres of a superball and its nearest neighbours,
and rcp is r at close packing. For the FCC crystal, a ‘frozen’ crystal can be considered
in which the particles are perfectly aligned. For the FCC lattice rcp then is two times
the distance between the edges of the superballs, 2r2Dmax, in the two-dimensional
representation. With φcp as the close packing fraction, the distance r at a certain
volume fraction can be determined from rcp:

r = rcp

(
φcp

φc

)1/3

. (10.10)

Combining rcp = 2r2Dmax = 2R
√
2 (1/2)1/m with Eqs. (10.8)–(10.10) provides the

free energy for the FCC phase. Taylor expansion of (φFCC
cp /φc)

1/3 − 1 was used in
the originalLJDapproach for hard spheres [52]. The chemical potential and (osmotic)
pressure are calculated from the free energy via the thermodynamic relations given
in Appendix A, leading to the following closed, m-dependent, expressions for the
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FCC phase:

F̃FCC = φc ln

(
Λ3

vc

)

+ φc ln

[
3423/m f (m)

π27/2

]

− 3φc ln

(

φFCC
cp

φc
− 1

)

, (10.11a)

μ̃FCC = μ̃0 + ln

[
3423/m f (m)

π27/2

]

− 3 ln

(

φFCC
cp

φc
− 1

)

+ 3

1 − φc/φFCC
cp

, (10.11b)

P̃FCC = 3φc

1 − φc/φFCC
cp

, (10.11c)

with μ̃0 = lnΛ3/vc. The m-dependency of the close packing volume fraction in an
FCC crystal is given by [38,43]

φFCC
cp = 1

2
f (m)23/m , (10.12)

with

f (m) = [ΓE(1 + 1/m)]3

ΓE(1 + 3/m)
. (10.13)

Here, ΓE(x) is the Euler Gamma function of x . For m = 2, Eqs. (10.11)–(10.13)
recover the result for hard spheres in the FCC phase [52], given in Sect. 3.2.2.

Following a similar procedure as for the FCC phase state, the thermodynamic
functions of the SC phase read

F̃SC = φc ln

(
Λ3

vc

)

+ φc ln f (m) − 3φc ln

⎡

⎣

(

φSC
cp

φc

)1/3

− 1

⎤

⎦ , (10.14a)

μ̃SC = μ̃0 + ln f (m) − 3 ln

⎡

⎣

(

φSC
cp

φc

)1/3

− 1

⎤

⎦ + 1

1 − (φc/φSC
cp )1/3

, (10.14b)

P̃SC = φc(φ
SC
cp /φc)

1/3

(φSC
cp /φc)1/3 − 1

+ φc

1 − (φc/φSC
cp )1/3

, (10.14c)

with the close packing fraction in the SC phase given by

φSC
cp = [ΓE(1 + 1/m)]3

ΓE(1 + 3/m)
. (10.15)

In this simple approach [38] of estimating v∗, effects of particle rotations are only
accounted for approximately. See also [57] for a comparison of cell theory of cubes
and other methods. Algebraic expressions for nonaxisymmetric hard particles are
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Table10.1 Close packingvolume fractions for superballswithm = 2 (spheres),m = 3 andm = ∞
(cubes). At m = 3 both crystals have the same close packing fraction

m = 2 m = 3 m = ∞
FCC π/3

√
2 ≈ 0.74 [ΓE (4/3)]3 ≈ 0.71 0.5

SC π/6 ≈ 0.52 [ΓE (4/3)]3 ≈ 0.71 1

scarce. No analytic expressions could even be derived for biaxial hard particles, and
one must rely on computational approaches [58]. Table10.1 provides close packing
volume fractions for perfect spheres (m = 2) and perfect cubes (m = ∞) and for a
limiting intermediate case. SC arrangements can pack closer for large m and FCC
packings are more efficient for smallm. It follows from Eqs. (10.12) and (10.15) that
φcp attains the same value for both the FCC and the SC phase states at m = 3 (see
Table10.1).

Cell theory is known to give accurate results for FCC and SC crystals of hard
spheres [55,56], but extending cell theory to other crystal structures is not straight-
forward. For a body-centred-cubic crystal of hard spheres, cell theory deviates from
computer simulation results [56]. Still, the approach outlined above gives some semi-
quantitative insight into the effects ofm on the free energy of FCC and SC solid phase
states, of which the latter has been found formicrometre-sized superball-like colloids
upon addingnonadsorbingpolymer chains [20]. Interestingly, experiments reveal that
superballs will form FCC (rotator phase) and dense C1-lattices upon sedimentation
for m � 3 [59].

10.3 Phase Behaviour of Hard Colloidal Superballs

The complete phase diagram of hard superballs can now be calculated using the
expressions of the chemical potential and osmotic pressure of the fluid, FCC and
SC phase states. The resulting theoretical phase diagram for a suspension of pure
hard superballs is presented in Fig. 10.6 (left panel). Results obtained using Monte
Carlo computer simulations are plotted in the right panel of Fig. 10.6. The fluid–FCC
coexistence for hard spheres [60] (discussed in Chap.3) is recovered form = 2. The
theoretically predicted fluid–FCC equilibrium gradually shifts to a higher volume
fraction upon increasingm. A similar shift is found using computer simulations [54].
The forbidden region (grey) identifies volume fractions beyond close packing. A dis-
continuity atm = 3 along the border of the forbidden region (left panel) corresponds
to the transition between FCC to SC phase states. The preferred solid phase is related
to the largest close packing volume fraction.

A triple F–FCC–SC point is found atm ≈ 3.71 (left panel). Simulations also indi-
cate a triple point at a somewhat higher m value [54] (right panel of Fig. 10.6), to be
discussed later. Betweenm = 3 andm ≈ 3.71, theory predicts SC–FCC coexistence
(left panel). Above m ≈ 3.71, only F–SC coexistence is found theoretically, which
shifts towards lower packing fractions with increasing m, also in qualitative agree-
ment with simulations [54]. In the cube limit (m = ∞), the simple theory presented
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Fig.10.6 Left: phase diagram for a suspension of superballs presented in terms of volume fraction
and shape parameter. Two-phase coexistences take place in the regions bounded by two single-phase
regions as indicated. The vertical dashed grey lines hold for the F–FCC–SC coexistence. Right:
theoretical predictions based upon Monte Carlo computer simulations by Ni et al. [54]. Adapted
from Ref. [38] under the terms of CC-BY-4.0

here predicts φF
c ≈ 0.36 and φSC

c ≈ 0.54. Computer simulation studies (not shown
here) by Agarwal and Escobedo [50] indicate that phase coexistence between a fluid
and a cubatic liquid crystal takes place at φF

c ≈ 0.47 and φSC
c ≈ 0.58 for perfect

cubes.

Exercise 10.3.What is the theoretical maximum number of coexisting phases
in a dispersion of hard superballs?

The overall topology of the theoretical phase diagram (left panel) corresponds
roughly to computer simulations results (see Refs. [49,50,54]; right panel of
Fig. 10.6). Differences can be justified because theory does not account for the same
solid phases for superballs as in simulations, as mentioned earlier. The solid C0 and
C1 phases can be accounted for in computer simulation studies [49,54]. Not surpris-
ingly, the triple point from simulations is a fluid–plastic FCC–C1 [54] and lies at
a larger m value than the theoretical triple point. Due to the limitations inherent to
the simple theory used here, the C0 and C1 phases are not accounted for. The FCC
phase features (and their coexistences) roughly match those of the plastic FCC. The
role played in simulations by the C1 phase state is mimicked by the SC phase in the
simpler model applied in the theoretical description.
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10.4 Theory for the Phase Behaviour of Colloidal Superballs
Mixed with Polymers

The presence of the nonadsorbing polymers leads to depletion zones around the cube-
like colloidal particles. In Fig. 10.7, overlap volumes of depletion layers (indicated by
the dashed zones) are illustrated for superballs with shape parameters m = 2, 4, and
∞. The volume of overlapping depletion zones Vov (given by Eq. 1.19 for m = 2)
increases with m when the superballs align their flat faces, under the condition that
the superball radius R and polymer size (and thus, the depletion thickness) are fixed.
At those configurations a maximum depletion attraction is achieved [61].

Upon adding nonadsorbing polymer (or colloidal particles) to a colloidal disper-
sion, one expects that the entropic patchiness effect, discussed in Sect. 1.3.6, leads
to an enhanced depletion attraction for cube-like particles as compared to spheres.

When considering colloidal superball–polymer mixtures, the phase diagrams
would only enrich upon refinements of the method. The liquid-crystalline and
crystalline coexistence regions are found in simulations in a broader range of
m-values [54].

10.4.1 FreeVolumeTheory

Adding depletants to dispersions of hard superballs is accounted for here in a semi-
grand canonical fashion via free volume theory (FVT), as in the previous chapters.
Within FVT, the superball–polymer system (S) is considered to be in equilibrium
with a reservoir (R) of polymers. In R and S the solvent is treated as background

Fig.10.7 Sketches of the maximum overlap of depletion zones for three types of hard superballs in
nonadsorbing polymer solutions for fixed polymer size and constant particle radius R. The hatched
areas reflect overlap volumes of depletion zones. The examples are given for superballs with shape
parameters m = 2, 4 and ∞. These overlap volumes are drawn next to each other for comparison
in the lower right section of the figure. Reprinted from Ref. [62] under the terms of CC-BY-4.0
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as before (see Sect. 3.3.4), and system and reservoir are connected through a mem-
brane permeable for the polymers and the common solvent but impermeable for the
superball or cube-like particles. The relative volume available for depletants in the
system, the free volume fraction α, relates the polymer concentrations in R and S.
Following original FVT, it is assumed that this key quantity α is independent of the
chemical potential of the depletants in R.

The simplest description is used here for polymeric depletants, namely the pen-
etrable hard sphere (PHS) model: depletants are treated as ghost-like spheres (with
radius δ) that can freely interpenetrate each other but do not overlap with the super-
balls. Further, the approximation is made again that the ensemble-averaged free
volume 〈Vfree〉 is independent of the concentration of depletants. This implies that,
similar to what was discussed in the previous chapters,α = 〈Vfree〉/V ≈ 〈Vfree〉0/V ,
resulting in the following (normalised) expression for the grand potential of the
system:

Ω̃ = Ωvc

kT V
= F̃ − P̃R

d α
vc

vd
, (10.16)

with V as the volume of the system, and vd as the volume of the depletant (vd =
4πδ3/3). Since the depletants are considered to behave ideally, the osmotic pressure
in the reservoir R is simply given by Van‘t Hoff’s law:

P̃R
d = PR

d vd

kT
= φR

d .

The depletant concentration in the system φd is again given by φd = αφR
d .

From thegrandpotential, the chemical potential andosmotic pressure of superball–
PHS mixtures are obtained through the standard thermodynamic relations given in
AppendixA, where it is also indicated how to calculate binodals, critical points, spin-
odals and multi-phase coexistences. If coexistence between three phases takes place
a triple point (TP) arises, and a four-phase coexistence is denoted as a quadruple point
(QP) (see also the previous two chapters). Colloidal systems may exhibit isostruc-
tural phase coexistence (such as gas–liquid equilibrium) when attractive interactions
between particles are present. In such a case, the low density phase will be entrop-
ically favourable and the high-density phase will be stabilised by attractive interac-
tions between the particles. The limit of isostructural phase coexistence is defined
via the critical point (CP).

The conditions of Eq. (A.20) enable one to determine the topology of the phase
diagrams as a function of the system parameters, which are the colloidal shape
(through m) and the relative depletant size trough:

q = δ

R
, (10.17)

where δ is the radius of the PHSs.
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10.4.2 FreeVolume Fraction

The only unknown parameter in Eq. (10.16) is the free volume fraction for depletants
in the system, α. Widom’s insertion theorem [63] relates the free volume fraction α
to the work (W ) required to bring a depletant from R to S via

α = 〈Vfree〉o
V

= e−W/kT , (10.18)

where 〈Vfree〉o is the free volume for depletants in the undistorted (depletant-free)
system. This work (W ) is obtained via Scaled Particle Theory (SPT) [64,65], by
connecting the limits of inserting a very small depletant (up to second order) and a
very big depletant in the system of interest, followed by scaling back to the actual
size of the depletant. As the depletants are considered to be spherical here, a single
scaling factor (λ) enables this work of insertion to be expressed as

W = lim
λ→1

W (λ),

W (λ) = W (0) + ∂W

∂λ

∣
∣
∣
∣
λ=0

λ + 1

2

∂2 W

∂λ2

∣
∣
∣
∣
λ=0

λ2

︸ ︷︷ ︸

λ�1

+ vdP
︸︷︷︸

λ1

, (10.19)

where P is the osmotic pressure of the pure hard superball dispersion to which the
depletants are added (see Sect. 10.2).

In the limit of depletants with a vanishing size (λ → 0) there is no overlap of
depletion zones. Hence, the free volume fraction can then be written as a function
of the excluded volume between a superball and a depletant (vexc):

α(λ → 0) = 1 − φc

(
vexc(λ)

vc

)

; (10.20)

so, W becomes

W (λ → 0) = −kT ln

[

1 − φc

(
vexc(λ)

vc

)]

. (10.21)

In the limit of big depletants, one finds

W (λ  1)

kT
= π

6 f (m)
(λq)3 P̃ . (10.22)

By combining Eqs. (10.19) and (10.22), a general expression for W in terms of
ṽexc(λ) = vexc(λ)/vc can be derived:
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W

kT
= − ln(1 − φc) + y

∂ṽexc(λ)

∂λ

∣
∣
∣
∣
λ=0

+ 1

2
y2

[
∂ṽexc(λ)

∂λ

∣
∣
∣
∣
λ=0

]2

+ 1

2
y

∂2ṽexc(λ)

∂λ2

∣
∣
∣
∣
λ=0

+ πq3

6 f (m)
P̃.

(10.23)

In Eq. (10.23), we have used

y = φc

1 − φc
,

which is similar to Eq. (3.39e).
A simple expression is available for the (normalised) excluded volume between

general, convex bodies and spheres [66]. For the excluded volume superball–sphere
it reads:

ṽexc = 1 + 3̃scq + 6πc̃cq2 + πq3

6 f (m)
, (10.24)

where s̃c = sc/R2
el, c̃c = cc/Rel and f (m) is defined in Eq.10.13. Due to the linear

relationship between δ and q (δ = qR), ṽexc(λ) is simply obtained from Eq. (10.24)
by making the substitution q → λq .

It is not possible to solve Eq. (10.24) analytically (see Ref. [38] for details on
the calculation of s̃c and c̃c). Via interpolation of s̃c and c̃c it is possible to obtain
an expression for Eq. (10.23). González García et al. [38] found that the depletion
zone is accurately described by the following approximate, but accurate, algebraic
expression:

ṽexc f (m) = 454.337 + 216.356(1 − 2/m) + 308.593q

+ exp[−0.005(1 − 2/m) + 8.178]
× sin[0.0604(1 − 2/m) + 0.087q − 3.014].

(10.25)

This enables straightforward calculation of α by inserting Eq. (10.25) into
Eq. (10.23). Now the grand potential Ω̃ (Eq. (10.16)) is completely defined.

10.5 Phase Diagrams of Mixtures of Hard Superballs
and Polymers:Theoretical Predictions

Firstly, superball–polymer mixtures with (hard) superballs are considered, whose
shape is still close to a sphere. Phase diagrams of superballs with m = 2.5 and
added depletants are presented in Fig. 10.8 for three relative size ratios q . For pure
superballs (φR

d = 0) the fluid–FCC coexistence corresponds to the densities shown
in Fig. 10.6 (left panel) and hardly differs from the fluid–solid phase coexistence
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Fig. 10.8 Phase diagrams for a mixture of colloidal superballs for m = 2.5 and penetrable hard
sphere depletants for several relative depletant sizes q. The top panels are in the reservoir represen-
tation and the bottom panels are in the system representation. The F1–F2 critical point is indicated
by a black dot. Triple-phase coexistences are shown as a horizontal black line in the reservoir rep-
resentation, and as a black area bounded by black lines in the system representation. All coexisting
phases present are indicated in the reservoir representation. Insets in the system representation zoom
in on the low depletant concentration region, and some of the coexistence regions are indicated. A
few illustrative tie-lines are shown as dashed grey lines for q = 0.2. Above each phase diagram,
a 2D illustration of the superball (black) and its depletion zone (grey) are shown, and the m and
q-values are indicated. Reprinted from Ref. [38] under the terms of CC-BY-4.0

concentrations of hard spheres (see Sect. 3.2). Upon addition of depletants the FCC
phase at coexistence gets denser, and the coexisting fluid phase becomes more dilute
in order to maximise the total free volume available for the depletants in the system.
For sufficiently large q-values (q = 0.4 and q = 0.6 in Fig. 10.8), an isostructural
colloidal F1–F2 (also termed gas–liquid) coexistence appears (metastable for low
q-values). For q = 0.4 a triple line is found (upper panel), which becomes a region
in the system representation (lower panels of Fig. 10.8). For larger q , the F–S coexis-
tence narrows and the F1–F2 critical point shifts to higher depletant volume fractions.

The coexistence regions in the system representation (bottom panels in Fig. 10.8)
show that the fluid phase with a low concentration of superballs has a high concen-
tration of depletants, whereas the FCC phase has a high concentration of superballs
but a low concentration of depletants. The system representation also shows that for
a superball–depletant mixture a single solid phase (without a coexisting fluid phase)
only occurs at quite small depletant concentrations. Figure10.8 reveals no special



334 10 Phase Behaviour of Colloidal Cubes Mixed with Depletants

m = 5, q = 0.2 m = 5, q = 0.4 m = 5, q = 0.6
de

pl
et

an
t v

ol
um

e 
fra

ct
io

n 
in

 R
 

dR

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

F SC

F- SC

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

F SC

F- SC .

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

F SC

F 2
-S

C

F1- F2

F1- SC
F1- F2- SC

de
pl

et
an

t v
ol

um
e 

fra
ct

io
n 

in
 S

 
dS

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

F

F- SC

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

F

F- SC

.
0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

F

F1- F2

F1- SC

F
1 - F

2 - SC

colloid volume fraction c

Fig.10.9 Phase diagrams of superball–polymer mixtures as in Fig. 10.8, but for m = 5. Reprinted
from Ref. [38] under the terms of CC-BY-4.0

features compared to FVT for hard spheres mixed with PHSs (see Sect. 3.3), even
though the colloidal shape considered is not perfectly spherical.

Phase diagrams for more cubic particles that have m = 5 (see Fig. 10.2) are pre-
sented in Fig. 10.9, for which only a SC state is present in the pure hard superballs
system (see left panel of Fig. 10.6) at high particle concentrations. Similar qualitative
trends as in Fig. 10.8 are observed, but with the F–SC coexistence instead of the
F–FCC equilibrium. For small q-values the broadening of the coexistence lines
occurs at lower depletant concentrations with respect to the superball–polymer mix-
ture with m = 2.5 in Fig. 10.8: the overlap of depletion zones is larger for parti-
cles with an increased cubicity (see Fig. 10.7), which results in a stronger depletion
attraction. Form = 5 and q = 0.4, there is no F1–F2 equilibrium phase coexistence,
whereas F1–F2 coexistence was found at this q-value for spheres (superballs with
m = 2, see Sect. 3.3.4 or [67]), and for m = 2.5. Due to the tendency of flat faces
to align upon addition of depletant into the system, stable F1–F2 coexistence shifts
to higher q-values: for larger m-values, longer ranges of attraction are required to
induce a (stable) F1–F2 coexistence. The trends in Fig. 10.9 hold for larger m and
F1–F2 occurs at even larger q-values. Quantitatively, comparison of Figs. 10.8 and
10.9 reveals that the stable single-phase fluid region for colloid volume fractions of,
say, smaller than 0.4, is larger for smaller m. This means that dispersions of parti-
cles which have a more cube-like shape, are expected to undergo phase transitions
at smaller depletant concentrations. The increased overlap volume of the depletion
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Fig. 10.10 Phase diagrams of mixtures of superball–polymer mixtures in the reservoir depletant
concentration representation forq = 0.4 andvariousm-values as indicated.Reprinted fromRef. [38]
under the terms of CC-BY-4.0

zones with increasing m, as illustrated in Fig. 10.7, drives this earlier onset of the
phase transitions.

Based on Fig. 10.6, a physically interesting region is expected near m = 3.65,
since here fluid, FCC and SC phase states are predicted upon increasing the colloid
volume fraction. In particular, one may wonder what the effect of adding depletants
is near the transitions between these phases. A few phase diagrams for q = 0.4 and a
few selectedm-values in that interesting region are plotted in Fig. 10.10. Form = 3.4,
a F1–FCC–SC triple coexistence occurs at a higher φR

d than the F1–F2–FCC triple
line (F1–F2–SC coexistence is metastable). Form = 3.65, however, the F1–F2–FCC
triple point becomes metastable and an F1–FCC–SC triple point arises at lower φR

d
than the F1–F2–SC isostructural coexistence. This is explained by the fact that the
stability of the FCC decreases as m increases.

The condition at which the F1–F2–FCC and the F1–F2–SC coexistences merge
results in a quadruple coexistence (F1–F2–FCC–SC). This four-phase coexistence
is present for a range of m-values (at different q-values). As a consequence of the
enhanced alignment of the flat faces upon the addition of depletants, F–SC coex-
istence takes place at m-values below those of the depletant-free system. Hence,
depletion-mediated entropic patchiness promotes the appearance of the SC phase.
As a F–FCC–C1 triple point has been detected experimentally [59] and in a Monte
Carlo computer simulation study [54] for the depletant-free superball system, the
corresponding quadruple phase coexistencemay be found from simulations or exper-
iments with the C1 phase instead of the SC phase used here.

At low q and highm-values an isostructural SC1–SC2 coexistence appears. A few
illustrative phase diagrams are depicted in Fig. 10.11, where small isostructural SC1–
SC2 coexistence regions appear. The single fluid phase and simple cubic regions get
smaller upon decreasing q . For m = 10 the binodals shift towards lower φR

d -values
with decreasing q . As can be observed in the rightmost panel of Fig. 10.11, the
m-value tunes the depletant concentration at which SC1–SC2 coexistence is found:
SC1–SC2 equilibria are driven by the alignment of the flat faces, and thus for more
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Fig. 10.11 Illustrative phase diagrams of superball–polymer mixtures, in which isostructural SC
phase coexistences appear. Reprinted from Ref. [38] under the terms of CC-BY-4.0

curved particles (decreasingm) the SC1–SC2 coexistence requires a higher depletant
concentration. This leads to demixing of the crystal state into two coexisting solids,
as is expected for short-ranged attractions in colloidal systems [68,69]. With more
accurate models or in experimental systems, these SC1–SC2 coexistences may be
replaced, for example, by a C1 coexisting with a SC phase. The absence of a stable
FCC1–FCC2 coexistence can be rationalised by the non-optimal overlap of depletion
zones between the flat faces of the superballs in an FCC state.

10.6 Phase Stability of Cubes Mixed with Polymers:
Experiments

In Sects. 10.4 and 10.5 theoretical predictions [38] were outlined for the rich phase
behaviour of colloidal cubes mixed with nonadsorbing polymers. A thorough veri-
fication of this phase behaviour is still underway; experimental studies on the bulk
phase behaviour of mixtures containing cubes and nonadsorbing polymers (or other
nonadsorbing components) are scarce. Depletion effects in dispersions containing
cubes were studied by Park et al. [70]. They mixed gold rods and cubes, and added
nonadsorbing polymers to separate them. For more details, see Sect. 11.3.

Another early demonstration of the effects of adding nonadsorbing polymers to
dispersions of cube-like particles was performed by Rossi et al. [20,34], who studied
aqueous mixtures of polymers and micrometre-sized hollow silica superball-shaped
particles (typically with m between 3 and 4). The experiments were performed in
10 mM NaCl, so the Debye length λD ≈ 3 nm. Images of the cube-like particles
were mapped onto the so-called superball shape to determine m. These particles are
very suitable for experiments: their size enables them to study their shape and con-
figurations using an optical microscope. However, the combination of their size and
silica shells makes them susceptible to gravity, so that equilibrium studies of the bulk
properties are challenging. Hence, it is noted that these experimental observations
correspond to colloid–polymer mixtures confined at a surface, whereas equilibrium
theoretical results presented earlier hold for bulk systems.
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Fig. 10.12 a Hollow silica cubes with a total edge length 2R = 1.3 µm, silica shell thickness of
100nm and shape parameterm = 3.5. bAdding nonadsorbing PEO (molar mass 600 kDa, Rg ≈ 57
nm) drives depletion-mediated self-assembly of the cubes to a simple cubic symmetry. Size ratio
q = Rg/R ≈ 0.085. Reprinted with permission from Ref. [20]. Copyright 2011 Royal Society of
Chemistry

Still, by studying their properties at a glass plate after sedimentation, Rossi et al.
[20,21,34] could investigate the influence of nonadsorbingpolymers on the structures
that appeared. Their experimental observations [20,34] revealed that the depletion
attractionmediated by the nonadsorbing polymers leads to a phase transition towards
a preferred simple cubic phase state, see Fig. 10.12. The appearance of such a solid
phase state can be understood by the fact that the volume of depletion zones that is
overlapping is then maximised (leaving space for the depletants to fit in the voids of
the respective lattices). The size of the nonadsorbing polymers was shown to play a
crucial role [20]. The cubic structures appear both in plane as well as in 3D.

The authors also studied adding nonadsorbing poly(N-isopropylacrylamide)
(pNIPAM) particles with a radius of 65nm. The size of these particles is highly
temperature-responsive between 20 and 45 ◦C. Upon increasing the temperature the
pNIPAM particles shrink in water as the solvency changes from good to poor. This
enabled Rossi et al. [20] to reversibly induce thermoresponsive cube crystallisation.

The experiments on dispersions of these hollow micrometre-sized silica parti-
cles with added nonadsorbing polymers revealed a rich phase behaviour. It was
demonstrated that the obtained phase states of the sediment depend on the colloid–
depletant size ratio and the details of the shape of the cube-like colloidal particles
[34] (Fig. 10.13).

Recently, it was shown that hollow silica nanocubes display effective hard-core
interactions [29], which makes them promising particles for studying the effect of
nonadsorbing polymers on the bulk phase behaviour of model anisotropic particles.
Basedon the estimatedphase-transition points from light scattering,Dekker et al. [62]
constructed an experimental phase diagram formixtures of hollow silica (nano)shells
(Rel = 129 nm and m = 4.1) and polystyrene polymers (PS) in DMF (40 mM LiCl).
Three different regions can be discerned in the phase diagram depicted in Fig. 10.14:
(1) a concentration range where the mixture is stable (•), (2) a concentration range
where themixture clearly phase separates (�) and (3) an intermediate transition region
where no clear phase separation occurs, but where the scattering studies indicated
that significant attraction is present (�).
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Fig. 10.13 Solid phases prepared from hollow silica cubes similar to those in Fig. 10.12 but with
m = 3.9. a Solid structures obtained upon adding depletants larger than the pockets available in an
SC arrangement. b SC arrangement that appears upon using smaller depletants than for. Reprinted
with permission from Ref. [34]. Copyright 2015 the National Academy of Sciences

Theoretical predictions for the phase stability threshold are also plotted in
Fig. 10.14 to compare with the experimental data. Particle volume fractions were
calculated using the specific volumes obtained earlier [29] and the overlap con-
centration of polystyrene (Mw = 600 kg/mol, Rg = 21.5 ± 1.1 nm) was 24g/L. The
curves correspond to the fluid branch of the fluid–solid coexistence binodal for super-
balls with m = 2, m = 4.1 and m = 104 added nonadsorbing polymers with size
ratio q = 0.32. The dashed curves are phase coexistence lines for superballs with
m = 4.1 and size ratios q = 0.29 and 0.35, representing the lower and upper limit of
the polymer polydispersity. The experimental data are in remarkable agreement with
the theoretical predictions, indicating that the theory is able to predict the depletion
effects in experimental model systems and that dispersions of hollow silica cubes in
DMF with 40 mM LiCl and polystyrene is such a model system.

Saez Cabezas et al. [71] compared the influence of nonadsorbing polymers on
the phase stability of tiny spherical and cubic nanocrystals. The prepared spherical
particles were composed of magnetite, iron oxide Fe3O4, following the method of
Yu et al. [72]. The cubic (F,Sn:In2O3) cubes were made using the procedure of
Cho et al. [30]. As followed from SAXS measurements, both particles were rather
monodisperse in size and the diameters were similar: 8–9nm. PEG nonadsorbing
polymers with M = 1 kg/mol, Rg = 1.0 nm were added to the aqueous dispersions
containing the colloidal particles and the observations are indicated in Fig. 10.15.
The open symbols refer to a single-phase mixture, whereas the closed symbols refer
to instability (the authors observed gelation). The curves are calculated spinodal
points, computed from Eq. (A.15). It is clear that adding nonadsorbing polymer to
the cubic particles leads to instability at much lower polymer concentrations, as is
the case for spherical particles. This is confirmed by the predicted spinodal curves,
which were computed using the theory outlined in Sect. 10.4. It is noted that both
particles have similar charge densities at the surface in aqueous solution, so double
layer interactions also play a role here.
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Fig. 10.14 Experimental phase diagram of hollow silica (nano)shells and polystyrene in DMF
with 40 mM LiCl compared to theoretical predictions (curves) of hard superballs with nonad-
sorbing polymers. The curves are predicted fluid–solid coexistence binodal curves for super-
balls with m-values equal to 2, 4.1 and 104 in solution containing nonadsorbing polymers
with size ratio q = 2Rg/Rel = 0.32. The dashed curves are binodal curves for superballs with
m = 4.1 and size ratios q = 2Rg/Rel = 0.29 (bottom) and q = 2Rg/Rel = 0.35 (top). Reprinted
from Ref. [62] under the terms of CC-BY-4.0

Fig.10.15 Phase diagramsof aSn:In2O3 spheres andbF,Sn:In2O3 cubesmixedwith nonadsorbing
polymers. Comparison of theoretical spinodal boundaries (curves) and experimental observations
(data points). The polymer concentration is normalised by the overlap concentration. (◦) Single
phase mixtures and (•) gelled samples are indicated. Reprinted with permission from Ref. [71].
Copyright 2020 American Chemical Society



340 10 Phase Behaviour of Colloidal Cubes Mixed with Depletants

References

1. Glotzer, S.C., Solomon, M.J.: Nat. Mat. 6, 557–562 (2007)
2. Sacanna, S., Pine, D.J.: Current Opin. Colloid. Interface Sci. 16, 96 (2011)
3. Cozzoli, P.D., Manna, L.: Nat. Mater. 4, 801 (2005)
4. Philipse, A.P.: In: Lyklema, J. (ed.) Fundamentals in Colloid and Interface Science, vol. 4,

Chap. 2. Elsevier, Amsterdam (2005).
5. Sugimoto, T.: Monodispersed Particles, 2nd edn. Elsevier, Amsterdam (2019)
6. Sugimoto, T., Sakata, T.: J. Colloid Interface Sci. 152, 587 (1992)
7. Sugimoto, T., Khan, M., Muramatsu, A., Itoh, H.: Colloids Surf. A 79, 233 (1993)
8. Sugimoto, T., Wang, Y., Itoh, H., Muramatsu, A.: Colloids Surf. A 134, 265–279 (1998)
9. Sugimoto, T., Wang, Y.: J. Colloid Interface Sci. 207, 137 (1998)
10. Sun, Y., Xia, Y.: Science 298, 2176–2179 (2002)
11. Wiley, B., Sun, Y., Mayers, B., Xia, Y.: Chem. Eur. J. 11, 454 (2005)
12. Tao, A., Sinsermsuksakul, P., Yang, P.: Angew. Chem. 45, 4597–4601 (2006)
13. Park, J., An, K., Hwang, Y., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hwang, N.M., Hyeon,

T.: Nature Mater. 3, 891–895 (2004)
14. Bratlie, K.M., Lee, H., Komvopoulos, K., Yang, P., Somorjai, G.A.: Nano Lett. 7, 3097–3101

(2007)
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11FurtherManifestations ofDepletion
Effects

In this chapter we provide examples of themanifestations of depletion effects in areas
such as biology and technology. The addition of nonadsorbing polymers to colloidal
suspensions can cause phase separation of the mixture into a colloid-rich and a
polymer-rich phase. The understanding of this polymer-induced phase separation is
very important, not only for colloid science but also for industrial systems, such as
food dispersions [1–4] and paint [5–8]. Colloids and polymers (or surfactants) are
both present in these systems and influence the stability and subsequent processing
issues. This holds similarly for binary or multi-component colloidal mixtures.

It has been realised that procedures employing the depletion interaction have
the potential to enable the fabrication of materials based on self-organised colloidal
structures [9]. Adding depletants can for instance enable the formation of a Penrose
quasi-crystal of mobile colloidal tiles [10].

Also, the importance of depletion effects in biological systems is recognised [11–
15]. Nonadsorbing polymer chains promote the adhesion of cells to surfaces [16]
and enhance adsorption of lung surfactants at the air–water interface in lungs so
as to help patients suffering from acute respiratory syndrome [17]. The physical
properties of actin networks are affected by nonadsorbing polymers [18], which also
modify phase transitions in virus dispersions [19]. It has been shown that depletion
forces can deform epithelial cells [20]. Rod-like depletants are even able to induce a
plethora of shape transitions of red blood cells. To further illustrate this, we discuss a
few examples of depletion effects in systems of biological and technological interest
in this chapter.

© The Author(s) 2024
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11.1 Macromolecular Crowding

A longstanding question in molecular biology is the extent to which the behaviour
of macromolecules observed in vitro accurately reflects their behaviour in vivo [21].
A characteristic of the cytoplasm of living cells is the high concentration of macro-
molecules (including proteins and nucleic acids) that they contain (up to 400g/L)
[22,23]. Since the 1980s [22,24,25] it has been increasingly appreciated that the
large volume fraction occupied by these macromolecules influences several intra-
cellular processes [26–28], ranging from the bundling of biopolymers like DNA and
actin, to the phase separation in a bacterial cell. These effects are known amongst
biochemists and biophysicists as macromolecular crowding (see for instance Refs.
[11,15,29–32]). The term ‘crowding’ is used rather than ‘concentrated’ because, in
general, no single macromolecular species occurs at high concentration but, taken
together, the macromolecules occupy a significant fraction (typically 10–30%) of
the total volume [33].

The biological relevance of crowding such as chemical equilibria and rates, asso-
ciation reactions and enzyme kinetics has been studied extensively. For reviews,
see Refs. [26,33]. Another important characteristic where macromolecular crowd-
ing plays an important role is phase separation in the cytoplasm. Walter and Brooks
[34] put forward the hypothesis that macromolecular crowding is the basis for micro-
compartmentalisation.

Phase separation between a nucleoid and cytoplasm in bacterial cells is a striking
example of macromolecular crowding [35–37]. Chromosomes in bacterial cells do
not occur in dispersed form but are organised in the nucleoid as a separate phase.
Depletion forces that originate from the presence of proteins can explain the phase
separation [36]. As a result, the proteins partition over the cytoplasm and nucleoid
phases. Their concentration in the cytoplasm is about two times larger than their
concentration in the nucleoid phase [37] (see Fig. 11.1).

Another example where macromolecular crowding plays a key role is fluid–fluid
phase separation in the cell [15,38–46]. Here, phase transitions give rise to dense
droplets in the cell such as nucleoli, germ granules and speckles [43,45] that have
been collectively described as membraneless organelles. This is schematically illus-
trated in Fig. 11.2 [15].

There has been significant interest in the role that the depletion interaction plays in
driving cellular organisation [11–13,47,48].However,while the depletion interaction
promotes fluid–fluid phase separation in the cell, Groen et al. [48] have argued
that crowded macromolecular solutions are very prone to non-specific associative
interactions that can potentially counteract depletion. It gradually becomes clear that
excluded volume interactions can explain the assembly of, and liquid–liquid phase
separation in, a wide range of cellular structures. These range from the cytoskeleton
to chromatin loops and entire chromosomes [11,15].
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Fig. 11.1 Representation of a bacterial cell containing phase-separated nucleoid and cytoplasm.
DNA is concentrated in the nucleoid, and ribosomes and proteins are concentrated in the cytoplasm.
Inspired by a drawing in Ref. [37]

11.2 Depletion Interactions and Protein Crystallisation

In 1934, Desmond Bernal and Dorothy Crowfoot (later Hodgkin) discovered that
crystals of the digestive enzyme pepsin give a well-resolved X-ray diffraction pat-
tern [49]. It took 25 years before the first atomic structures of proteins using X-ray
crystallography were determined. In 1958 Kendrew et al. published the structure of
the protein myoglobulin [50], which stores oxygen in muscle cells; and in 1960,
Perutz et al. [51] reported the structure of the protein haemoglobin, which transports
oxygen in blood.

The first requirement for protein structure determination with X-ray diffraction is
to growsuitable crystals [52].While great strides havebeenmade in the determination
of protein structures (more than 200,000 protein structures have been resolved [53]),
protein crystallisation (notwithstanding a history spanning more than 150 years [54,
55]) remains somewhat elusive. This actually holds for crystallisation in general [56].
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Fig. 11.2 A eukaryotic cell containing several types of organelles. Inset: the crowded state of the
cytosol. Reprinted from Ref. [15] under the terms of CC-BY-4.0

Figure11.3 characterises the state of the art in protein crystallisation in 1988 [57].
In recent years, significant progress has beenmade in understanding protein crystalli-
sation on the basis of the phase diagram of protein solutions. The key observation
that lies at the basis of this development was made by Benedek and co-workers
[58,59]. In the course of their investigations of proteins involved in maintaining
the transparency of the eye lens, they discovered that in aqueous solutions of sev-
eral bovine lens proteins the solid-liquid phase boundary lies higher in temperature
than the liquid–liquid coexistence curves. Thus, over a range of concentrations and
temperatures for which liquid–liquid phase separation occurs, the coexistence of a
protein crystal phase with a protein liquid solution phase is thermodynamically sta-
ble relative to the metastable separated liquid phases [60] (Fig. 11.4). Note also the
metastable critical fluid–fluid point [58,59,61–65].

It was shown that this remarkable phase behaviour could be understood on the
basis of the sensitivity to the form of the pair potential of the phase diagram of small
attractive colloidal particles [66–69]. Moreover, it was soon realised that successful
protein crystallisation depends on the location (protein concentration and tempera-
ture) in the phase diagram [65,70–74]. Control of protein crystal nucleation around
the metastable ‘liquid–liquid’ phase boundary [74] appears key to the development
of systematic crystallisation strategies (for a concise review, see Ref. [75]). This
phase boundary can be manipulated by depletion interactions through the addition
of nonadsorbing polymers such as polyethylene glycol [76–78].
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Fig. 11.3 View upon the ‘art’ of protein crystallisation by J. Drenth. Reprinted with permission
from Ref. [57]. Copyright 1988 Elsevier

Fig. 11.4 Typical phase
diagram of a globular protein
solution. The critical point is
marked by the asterisk

Exercise 11.1. Argue how Fig. 11.4 is modified upon increasingly adding
nonadsorbing polymers for q > 0.3.
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To illustrate the role of nonadsorbing polymer chains on the protein solution phase
behaviour, we discuss the results of adding PEG to a solution with the protein apo-
ferritin by Tanaka and Ataka [79]. Apoferritin is an iron storage protein consisting
of 24 subunits. The effective radius is about 8nm and the molar mass of apoferritin
is 440kg/mol. It is not easy to crystallise a solution of apoferritins by adding salt
ions. Traditionally, a well-defined scale known as the Hofmeister series [80] is used
as a measure for the efficiency of precipitating proteins. A solution of apoferritin
cannot be crystallised in the common manner with the usual salt ions as precipitat-
ing agents. Adding PEG, however, does make it possible to induce crystallisation.
Fig. 11.5 shows the experimental data obtained from visual and microscopic inspec-
tion of PEG–apoferritin in aqueous 0.6 M NaCl solutions. The concentration of
apoferritin was fixed at 54g/L. The PEG concentration and molar mass were var-
ied. Four molar masses MPEG (and radii of gyrations Rg) of the PEGs were used:
1.5, 4.0, 8.0 and 20kg/mol (1.4, 2.5, 3.7 and 6.2nm, respectively), corresponding to
q = 0.18, 0.31, 0.46, and 0.78.

Various situationswere observed aftermixing PEGwith apoferritins [79]. For suf-
ficiently small concentrations (depending on MPEG, hence q) the mixture was stable
(�, Fig. 11.5), while further increasing the PEG concentration leads to a phase tran-
sition. At q = 0.18 random aggregates (•) were found, which is typical for a protein
solution undergoing a fluid-to-solid transition and does not give the proper conditions
for obtaining good-quality crystals. The same happens for the highest concentrations
at q = 0.31 and 0.46. For q = 0.31, 0.46, and 0.78 there was a region where liquid
domains (+) were formed, indicative of a gas–liquid phase transition, usually referred
to as liquid–liquid phase separation. For q = 0.78, liquid domains were found in the
entire unstable regime. Finally, good-quality crystals (◦), in coexistence with liquid
domains, were formed at q = 0.31 and 0.46 for intermediate PEG concentrations.
For these q-values the critical point is close to the fluid–crystal coexistence line, in
agreement with the findings of Ten Wolde and Frenkel [71]. Thus, it follows that
adding PEG indeed provides the conditions for good crystallisation within a specific
range of protein–polymer size ratios and polymer concentrations. The different states
are illustrated with the micrographs in the right panel of Fig. 11.5.

Aided crystallisation is, of course, not limited to proteins. For instance, Kirner and
Sturm [81] used depletant-mediated crystallisation to separate mixtures of nanocrys-
tals of different sizes and shapes.

11.3 Shape and Size Selection

The depletion interaction, as argued in Sect. 1.2.5, depends on the concentration
of the depletion agent and the overlap volume of the depletion zones. For a given
concentration of depletant the only variable is the overlap volume, which in turn
depends on the size (see Chap.2) and shape of the colloidal particles. Tuning the
strength of the depletion interaction therefore allows particles of different size and
shape to be separated. For example, the separation of rod-like particles and spheres
under the influence of polymers is schematically indicated in Fig. 11.6.
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Fig. 11.5 Phase behaviour of apoferritin with PEG. Left: state diagram of apoferritin mixed with
PEG of various molar masses. The apoferritin concentration was kept constant at 54g/L and the
molar mass and concentration of PEG was varied as indicated in the diagram. Results are redrawn
from Ref. [79]. Right: Micrographs representing the various kinds of unstable solutions that were
found in aqueous apoferritin–PEG mixtures: a crystals, b liquid domains and c random aggregates.
Right panel: reprinted with permission from Ref. [79]. Copyright 2002, American Institute of
Physics

Fig. 11.6 Shape-selective separation induced by depletion forces

Unaware of the underlying principle, this had already been used by Cohen in 1941
[82] to separate two viruses, Tobacco Mosaic Virus and Tobacco Necrosis Virus.
Tobacco Mosaic Virus is a rod-like virus with a length of 300nm and diameter of
18nm, and Tobacco Necrosis Virus a spherical virus with a diameter of about 26nm.
Cohen used the polysaccharide heparin as depletant to separate these viruses. This
method to separate colloids of different sizes and shapes has recently gained new
impetus. Obtaining particles of a specific size and shape is critical for optimising the
nanostructure-dependent optical, electrical and magnetic properties in nano-based
technologies.
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Fig.11.7 TEMimages of a dispersion of rod-like and cube-like gold colloids.a synthesisedmixture,
b sediment, c supernatant. Reprinted with permission from Ref. [86]. Copyright 2010, American
Chemical Society (ACS)

While the self-organisation of nearly monodisperse spherical colloidal particles
has been studied for a long time, the full potential of the self-assembly of aniso-
metric colloidal particles (rods and plates) is far from being achieved. Nevertheless,
important advances have been made. For example, CdSe semiconductor nanorods
have been shown to form nematic liquid crystals [83] that can potentially be used
as functional components in electro-optical devices. Kim et al. [84] succeeded in
generating long-range assembly of colloidal anisotropic nanocrystals into thin films
with orientational and positional order by adding depletants. Hence, the depletion
interaction has the potential to enable the effective separation of anisometric colloids
from a mixture of particles of different sizes and shapes.

Depletion-induced shape and size selection of colloidal particles could be a pow-
erful tool to achieve the separation of different components. For instance, efficient
purification of gold platelets in complex multi-component colloidal mixtures was
realised by Zhao et al. [85] using surfactant micelles as depletants. Park et al. [86]
reported the depletion-induced shape and size selection of gold rods and cubes. In
Fig. 11.7we show their transmission electronmicroscopy (TEM) images of gold rods
(L = 77nm, D = 11nm) and cubes (20nm), which could be separated by adding
nonadsorbing polymers.

Baranov et al. [9] showed that the depletion attraction forces were effective in
the shape selective separation of CdSe/CdS-rods from a mixture of rods and CdSe
spheres. Mason [87] showed that the depletion interaction between plate-like parti-
cles is much stronger than between spheres, leading to a separation between a phase
enriched with plates and a phase mainly concentrated with spheres. The dependence
of the depletion interaction on size can also be used to fractionate a bidisperse pop-
ulation of colloidal spheres [88], or to obtain a monodisperse population of spheres
from a collection of polydisperse spheres [89]. Bidisperse colloidal particle mix-
tures have the potential to self-organise into colloidal crystals (see Chap.6 for more
details).

Ye et al. [90] presented an experimental-computational investigation of mixtures
of rods and spheres showing that the mixture can co-assemble into a binary super-
lattice. The formation of two-dimensional colloidal membranes from a suspension
of rod-like viruses mixed with nonadsorbing polymer chains was studied by Kang
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et al. [91]. It is clear that depletion forces can be exploited in the design of a wide
range of reconfigurable colloidal structures.

These procedures, based on the depletion interaction, have the potential to enable
powerful fabrication procedures of materials based on self-organised colloidal struc-
tures. A computational study by Bevan et al. [92] showed that actuating colloidal
assembly in a practical process is feasible, and they provided insights into how to
optimise the process conditions.

11.4 Directing Colloidal Self-assembly Using Surface
Microstructures

As indicated in Sect. 11.3, the depletion interaction depends on the overlap volume
for a given depletant concentration. This dependence leads to a difference in depletion
interaction between particles of different sizes and shapes and offers a powerful and
cost-effective way to separate them.

The use of surface microstructures provides a promising route for creating col-
loidal assemblies via depletion forces. Dinsmore, Yodh and Pine [93] studied the
interaction of large polystyrene spheres (R = 203 nm, φ = 10−5) in a sea of small
polystyrene spheres (R = 41 nm, φ = 0.30) with a wall with a step edge, see
Fig. 11.8.

Clearly, the overlap volume depends on the position of the big sphere with respect
to the step edge. Since the depletion interaction can be seen as the product of overlap
volume and osmotic pressure of the depletants (Wdep ≈ −PVov, where P is now
the osmotic pressure of the small spheres (see Eq. 1.18)), a difference in overlap
volume affects the depletion interaction accordingly. It is, therefore, also expected
that confinement effects canmediate phase transitions [94,95]. Spannuth and Conrad

Fig. 11.8 A large colloidal
sphere near a step edge in a
sea of small spheres. The
presence of the small spheres
leads to depletion zones
(light grey regions) near the
walls of the container and
around the big sphere.
Overlap of depletion zones is
indicated by the hatched
area. This overlap volume
increases the volume
accessible to the small
spheres, thereby increasing
their entropy
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showed that confinement of a colloid–polymermixture can induce solidification [96].
For an overview of theoretical accounts on confinement and depletion effects, see
Ref. [97]. Confinement effects are also relevant for themicrochannel flowof colloidal
or colloid–polymer mixtures [94,98].

The depletion interaction can be derived by measuring the probability of the
various positions (h) of the big particles on the terrace with the step edge using
optical microscopy, and relating this probability p(h) with the Boltzmann relation

p(h) ∼ e−Wdep(h)/kT , (11.1)

the depletion interaction can be measured. For the system, the differences in the
overlap volume amount to a difference in the depletion potential of about twice
the thermal energy of the particles. This indicates that surface structures can create
localised force fields that can trap particles.

Exercise 11.2. Rationalise what are more favourable positions inside the box
for the big sphere in Fig. 11.8.

An interesting application of this concept can be found in the work of Sacanna
et al. [99]. By clever colloid synthesis, they created 5 µm (diameter) polymerised
silicon oil droplets with a well-defined spherical cavity. To these ‘lock’ particles they
added appropriately sized spherical ‘key’ particles (silica, poly(methylmethacrylate)
or polystyrene colloids) that can fit into the cavity. Nanometer sized nonadsorbing
polymers were added to provide a depletion interaction. The depletion interaction,
being proportional to the overlap volume of the depletion zones, attains a maxi-
mum when the key particle fits precisely into the spherical cavity of a lock particle
(Fig. 11.9). The depletion-driven self-assembly of lock-and-key particles is demon-
strated in Fig. 11.10. This time series (from left to right) illustrates the site-specificity
of the attraction.

By developing colloids with well-defined multicavities, this concept has been
extended to make lock particles with multiple key holes [101]. Adding appropri-
ately sized depletants to dispersions of colloidal golf-balls [102] induces the forma-
tion of controlled self-assembled structures. Computer simulations have shown how
the binding tendency in a dispersion of lock-and-key colloids can be controlled by
adjusting the characteristics of polymeric depletants [103]. Theoretical predictions
revealed interesting phase behaviour of such mixtures of lock-and-key particles with
depletants [104].

Anotherway tomanipulate the overlap volume of the depletion zones is to vary the
roughness of the surface [105] of the colloidal particles (Fig. 11.11). The left drawings
show that surface roughness does not affect the overlap volume for intermediate
overlap of depletion zones. When the particles are in close contact surface roughness
prevents overlap of certain zones that would normally overlap for smooth surfaces
(see the sketches on the right).
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a key

lock

b
depletants

Fig.11.9 a Colloidal ‘lock’ particles can be synthesised [99] to contain a dimple into which ‘key’
particles, spherical colloids with appropriate size, can fit. b By adding depletants (polymer chains)
a key can be pushed into a lock using the depletion force. Inspired by Solomon [100]

Fig. 11.10 Series of images demonstrating a colloidal sphere entering the lock of larger colloid.
The curved arrow in the first micrograph indicates a successful lock–key binding. Scale bar is 2
µm. Reprinted with permission from Ref. [99]. Copyright 2010, Springer Nature

Hence, selecting the strength of the attraction is possible by introducing colloidal
surface roughness [106–108]. This makes it possible to direct the self-assembly
of particles by selectively controlling the roughness of different sides of colloidal
particles. Badaire et al. [109,110] demonstrated the potential of this method in the
assembly of lithographically designed colloidal particles. In Fig. 11.12 (left panel)
we show the particles used by Badaire et al. [109,110] that consist of roughened,
rounded side walls and flat ends. Upon adding surfactant micelles, these particles
will attract one another due to the depletion force. Since the attraction is stronger
between the flat sides of the particles, rod-like equilibrium structures are formed at a
certain depletant concentration. An example of the work of Badaire et al. is depicted
in Fig. 11.12 (right panel). Zhao and Mason [106] demonstrated the same principle
on plate-like particles with manipulated roughness.

Kraft et al. [111] prepared patchy particles with smooth and rough parts. This
made it possible to employ the depletion interaction to make ‘colloidal micelles’:
the patchy particles assemble into clusters that resemble surfactant micelles with the
smooth and attractive sides of the colloids located at the interior. Anzini and Parola
[108] developed a simple model to describe the effects of surface roughness on the
depletion interaction, yielding explicit expressions for a wide range of interesting
conditions. The theoretical predictions compare well with the numerical simulations
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Fig.11.11 Representation of the overlap zones between two colloidal hard sphereswith flat surfaces
(upper) and two particles with roughened surfaces (lower) for small (left) and large (right) overlap.
Drawn by C.M. Martens

Fig. 11.12 Left: Scanning Electron Microscopy (SEM) image of colloidal particles that have
sides with surface roughness and smooth sides. Right: Aggregated state of these particles under
the influence of depletion forces. Image size 50 µm × 50 µm. Reprinted with permission from
Refs. [109,110]. Copyright 2007 and 2008 ACS

of Kamp et al. [107]. This theory enables the onset of colloidal aggregation to be
predicted in suspensions of rough particles.

In materials science, depletion effects were used in various ways to self-organise
colloidal systems. Okabe et al. [112] used it to assemble artificially manufactured
components larger than micrometres. By making use of shape complementarity,
simple immersion of the microcomponents in polymer solutions enabled assembly.
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11.5 Dynamic Depletion Effects

Macromolecular crowding also has consequences for transport properties [113]. One
may wonder how protein transport occurs through a cell composed of a highly con-
centrated dispersion. The viscosity of the cytoplasm will be significantly larger than
that of a physiological salt solution. The question arises of what friction a protein
experiences as it moves through a cell. This relates to a fundamental problem in
colloid physics: the dynamics of a colloidal sphere translating and rotating through
a polymer solution.

Dzubiella, Löwen, and Likos [114] considered the flow of a dispersion containing
non-interacting Brownian small particles around bigger hard spheres (Fig. 11.13).
They found that the effective forces are highly anisotropic. The density profiles
are obviously non-trivial. A detailed analysis of the nonequilibrium forces under
dynamic circumstances was later performed by Dolata and Zia [115]. A theoretical
framework for the non-Newtonian viscosity of a colloidal dispersion with short-
ranged depletion attraction was developed by Huang and Zia [116].

As a colloidal particle diffuses or sediments through a solution containing non-
adsorbing polymer chains, one may naively expect that the friction experienced by
the particle is set by the bulk viscosity. In practice, it is smaller. An analysis of the
velocity profile of a nonadsorbing polymer solution near a flat surface shows that
depletion leads to effective slip [117]. The depletion layer implies a non-uniform
viscosity profile near the surface, which explains this slip. Such effective slip effects
also appear when considering the flow of colloidal particles at a wall [118]. Even
in the case of simulating colloids in a solvent, the solvent molecules induce deple-

Fig. 11.13 Steady state
contour density field (flow
from left to right) of
Brownian non-interacting
spheres around two hard
spheres (black). The brighter
the region the higher the
Brownian particle
concentration, which is grey
in the bulk (average
concentration). Reprinted
with permission from
Ref. [114]. Copyright 2003
American Physical Society
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tion effects [119,120], and it is challenging to properly account for such effects in
mesoscale simulation methods.

Phillies and co-workers [121,122] studied the translational self-diffusion of well-
defined colloidal spheres through polymer solutions, and showed that the interpreta-
tion of the measured friction coefficient of the particles is fairly complicated. For a
spherical particle that moves through a medium containing small solvent molecules,
the friction coefficient is proportional to the solvent viscosity. When the solvent is
replaced by a polymer solution, one may naively expect that the friction coefficient
is proportional to the viscosity of the polymer solution. Measurements indicate that
this is only true when the chains are very small compared to the size of the particle.

Exercise 11.3. What viscosity is experienced by a tiny sphere in a dilute
solution with very long polymer chains?

For polymer chains that are roughly as big as the particle, the apparent or effective
viscosity experienced by a sphere is in between the viscosities of solvent and polymer
solution. A similar finding was also reported for the rotational diffusion of colloidal
particles [123] and for the sedimentation of colloids through apolymer solution [124].
The influence of depletion forces on sedimentation in itself is a rich and challenging
topic [125,126].

The fact that the effective viscosity is intermediate between that of solvent and
polymer solution can be rationalised as follows. Within the depletion layer, the vis-
cosity is expected to follow the polymer density distribution [117], and it gradually
increases from the solvent viscosity at the solid surface to the bulk viscosity far from
the particle. Therefore, as a particle diffuses, the hydrodynamic resistance force is
also in between the two limits. Fan et al. [127–129] derived analytical expressions
for the friction felt by a sphere when it moves through a macromolecular medium
and showed that the friction is strongly reduced compared to Stokes’ law. This means
that depletion-induced slip effects facilitate protein transport through crowdedmedia.
This work has been extended to (i) understand the effect of shear flow on the segment
density profile of a nonadsorbing polymer solution in a narrow slit [130] and (ii) the
mimicking of colloid dynamics of interacting hard spheres mediated by depletants
[131,132]. For the diffusion of a slender object through a polymer solution, see
Ref. [133].

Krüger and Rauscher [134] calculated the short-time and the long-time diffu-
sion coefficients of a colloidal sphere in a polymer solution and took hydrodynamic
interactions into account. It follows that the long-time diffusion coefficient can be
described using a generalised Stokes-Einstein relation, whereas it deviates for the
short-time coefficient. Ochab and Holyst [135] proposed a model of confined diffu-
sion to describe the diffusion of a sphere through a polymer solution. Their model
explains the anomalous diffusion that is observed experimentally [136].

Anomalous diffusive motion of particles in crowded environments such as the
interior of cells and in cellular membranes was also evaluated by Höfling and Fra-
nosch [137]. For the analysis of anomalous transport, they reviewed the theory that
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underlies commonly applied techniques such as single-particle tracking, fluorescence
correlation spectroscopy and fluorescence recovery after photobleaching. They show
experimental evidence for anomalous transport in crowded biological media. Zöttl
and Yeomans [138] investigated the transport of driven nano- and micro-particles in
complex fluids. They measured the fluid flow fields and local polymer density and
polymer conformation around the particles. Schuler et al. [139] performed extensive
single-molecule experiments to investigate the interaction between two intrinsically
disordered proteins. They studied the influence of crowding on the association and
dissociation kinetics of the proteins and the translational diffusion. Theory by Fan
et al. [127,128] can accurately quantify the measured diffusion of proteins through
crowded macromolecular media [139,140].
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12Epilogue

This book mainly focuses on basic concepts and model systems; but in reality, soft
materials are complex and have a practical impact on our daily lives. These mate-
rials make up common products such as pharmaceutical formulations, paints, dairy
products and cosmetics [1]. To connect the insights into depletion effects to practical
applications, we highlight some of the unresolved questions and future directions
that could be pursued.

The basic concept of the depletion interaction can explain many phenomena in
practical systems (Chap. 1). It also quantifies several properties of model colloid–
polymer mixtures and can qualitatively describe phenomena in applications. This
also holds for depletion forces, which are well understood in simple model systems
(Chap. 2); but the challenge ahead is to understand the interactions in mixtures in
which the direct interactions between colloids and/or depletants are more realistic
than pure hard-core interactions. Additionally, depletion forces are typically not
pair-wise additive—certainly not in the case of relatively large depletants; hence, it is
important to account formulti-body interactions.Measuring thesemulti-body forces,
as well as interactions in more complex mixtures (such as those including charged
colloids and/or polyelectrolytes), is still a major challenge. The establishment of an
increasing number of advanced techniques is helpful here.

Phase diagrams summarise a material’s thermodynamic stability [2], quantifying
the stable phase state(s) upon varying conditions [3]. For that reason, phase diagrams
are crucial for materials design and/or process optimisation and constitute a major
part of this book. It is clear that the size of the nonadsorbing polymers relative to the
colloidal spheres plays a crucial role; this determines the phase diagram topology and
the region over which such a mixture is stable. Theoretical approaches can describe
the main equilibrium phase diagram of colloid–polymer mixtures [4] both qualita-
tively and semi-quantitatively [5] (Chaps. 3, 4). Nonequilibrium phenomena (e.g.
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aggregation, gelation and glass formation) also play an important role in dictating
whether certain phase states are experimentally accessible (Chap. 4).

Colloidal gas–liquid interfaces have unique characteristics, including ultra-low
interfacial tension and observable thermal capillary waves (Chap. 5). Although the-
ory and experiment show reasonable agreement for the interfacial tension and thick-
ness, model systems have so far been the main focus. The interfacial properties of
mixtures with more complex interactions and/or shapes remain an open field for
exploration. Fundamentally, this is of great interest as these parameters are tunable
for colloidal suspensions, which is in contrast to molecular systems. From a practical
point of view, these interfacial properties may be relevant for water-in-water emul-
sions, which can be composed of phase separating aqueous protein–polysaccharide
mixtures. Stabilising the fluid–fluid interface of these emulsion droplets against coa-
lescence requires intricate knowledge of the details of the interface and could be
a promising method to develop fat/oil-free food emulsions and other compartmen-
talised aqueous structures.

In some cases, interactions between depletants are of importance, such as in binary
colloidal systems (e.g. mixtures of small and large spheres, mixtures of spheres and
rods). The presence of these depletant–depletant interactions significantly influences
the phase behaviour (Chaps. 6, 7). For binary mixtures of hard spheres, the colloidal
gas–liquid phase transition is absent, while solid–solid phase equilibria appear. Rods
turn out to be highly efficient depletants; free volume theory predicts that they induce
phase transitions at very low volume fractions, in line with computer simulations and
experiments of well-defined systems.

Nematic, smectic and columnar liquid-crystalline phases can be induced by the
addition of polymers to rods or platelets (Chaps. 8,9), and their phase behaviour turns
out to be remarkably rich: a zoo of three-, four- and five-phase coexistence is found,
although this may appear to be at odds with the Gibbs phase rule.

The addition of colloidal spheres to rod-like particles leads to interesting phase
behaviour, such as a smectic phase consisting of alternating two-dimensional liquid-
like layers of rods and spheres [6–8]. It not only demonstrates the possibility for
control of colloidal self-assembly using depletion phenomena, but also highlights the
clear need for the use of models to guide such efforts. Anisotropic mixtures display
remarkable nonequilibrium phenomena, e.g. the formation of gels and glasses, and
unconventional responses to shear forces [9,10]; yet, these remain under-explored.
The structure and dynamics of their phases have been studied using a range of
experimental techniques, including X-ray and neutron scattering, microscopy and
rheology; but further understanding of their properties is needed in order to capitalise
on their potential applications.

The emergence of experimental model systems comprising cube-like colloids
allows a new range of colloidal solids to be prepared. They show surprising structures
depending on the exact shape and size of the cubes (Chap. 10). The parameter space
(i.e. cube and polymer concentrations, cube shape and cube–polymer size ratio)
of these mixtures is, however, almost impossible to fully explore experimentally.
Therefore, the availability of a complete theoretical framework that successfully
predicts the phase behaviour of cubesmixedwith depletants is paramount formaking
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scientific and technological progress. Itmust take themore complex solid phase states
(e.g. C0-lattice and C1-lattice) in the theoretical descriptions into account. Further,
the nonequilibrium behaviour of cubes and polymers remains yet unexplored.

Depletion interactions have also become relevant and/or recognised in fields
beyondclassic colloid science, such as biology and technology (Chap. 11).Depletion-
induced phase separation can be used to concentrate or purify colloidal suspensions,
and exploiting depletion insights in various separation and purification technology
applications is still an open field.

Accurate prediction of the depletion forces between colloidal particles in crowded
or confined spaces is another unresolved issue. Additionally, crowding phenomena
in dense systems affect the dynamics. This is of relevance for understanding, for
instance, the formation of structures [11] and the dynamics of proteins [12] in cells.
Crowders and the related depletion effects can induce hierarchical assembly and
mediate specific biomolecular interactions [13]. These are challenging and promising
topics where chemistry, physics and biology and chemistry meet.

Photovoltaics [14], energy storage materials [15], emerging battery technolo-
gies, fuel cells and novel products often consist of multi-component colloids and/or
colloid–polymer hybrid systems; and consequently, depletion phenomena play an
important role as they provide structure, affect dynamics and modify the phase sta-
bility. The colloidal systems that underpin real-world examples are, however, much
more complex than the relatively well-defined ones described in this book. It is
crucial to extend this knowledge towards these complex systems.

Besides complexity due to shape, charge and crowding, the colloids used in a range
of application areas are often soft (e.g. polymer brushes or surfactants), or attract one
another due to Van der Waals and/or hydrophobic forces. Association colloids, such
as surfactant or copolymeric micelles and vesicles, may drive depletion interactions
but have hardly been explored. In practice, dispersity in size and surface chemistry
is an issue with colloidal systems; and polymers may feature additional complexity
by being, e.g. branched, multi-armed, comb-like, copolymeric, or even responsive to
external stimuli, as is the case for somemicrogels and supramolecular polymers [16].
Predicting how these characteristics affect the physical properties of colloid–polymer
mixtures is still difficult.

Another topic that has largely been neglected is the influence of depletion forces
on the dynamic properties of multi-component colloidal mixtures. Without a doubt,
the rheological properties have implications for the practical applications of these
systems. The viscosity, for instance, is not just the result of the combined contribu-
tions of colloids and polymers of a colloid–polymermixture; theremust be a complex
interplay [17] that also affects, for instance, the fluid-to-gel transition [18].

Despite the significant progress made in understanding the depletion interaction
and resulting phase behaviour of colloidal systems, there is still a long way to go.
With so many factors influencing the depletion interaction, it is almost impossible
to explore them all experimentally; yet mastering their impact on the behaviour and
properties is instrumental for the design of the next generation of soft materials. The
application of theory and computer simulation to this challenge have significantly
advanced our understanding; but there is still a need for more accurate and predictive
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models and advanced experimental and computer simulation tools that can take into
account the various, more complex, factors that influence the depletion force and
related properties in practice.Here,we also see opportunities for artificial intelligence
and machine learning tools to be applied, which will undoubtedly accelerate the
testing of concepts. This powerful combination of tools, and further interdisciplinary
endeavours, will provide essential design rules for colloidal systems.

In summary, the depletion interaction is often employed as a tool to induce well-
defined attractions in colloidal systems; but it is far more than that, profoundly
impacting the phase behaviour and many other properties of colloidal dispersions.
This makes it a fascinating and relevant field of research in its own right, with
many fundamental questions still unanswered. Future research will, no doubt, lead
to valuable insights into the behaviour of colloids, and lead to the development of
new materials and technologies.
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AThermodynamicQuantification
of PhaseTransitions andEquilibria

A.1 Relation Between Helmholtz Energy, (Osmotic) Pressure
and Chemical Potential

For a multi-component system containing Ni particles of type i , classical thermo-
dynamics relate the change of the Helmholtz (or free) energy F to the chemical
potential μ, entropy S, interfacial tension γ and pressure P [1–3]:

dF =
∑

i

μidNi − SdT − PdV + γdAs. (A.1)

For a colloidal suspension containing only one type of colloidal particles and con-
sidering the solvent as background (effective one-component system) at constant
temperature T and constant surface area As, this expression simplifies to

dF = μcdNc − PdV , (A.2)

where μc is now the chemical potential of the colloidal particles and the pressure
becomes the osmotic pressure of the colloidal suspension.

The chemical potential and (osmotic) pressure now follow from F :

μc =
(

∂F

∂Nc

)

V ,T ,As

(A.3)

and

P = −
(

∂F

∂V

)

Nc,T ,As

(A.4)
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A.2 Thermodynamics of Phase Transitions of Colloidal
Dispersions

In this book we consider both canonical systems (for which we use the Helmholtz
energy F to describe the thermodynamic properties) and grand canonical systems,
for which the grand potential� is used. Here, we illustrate how to obtain the relevant
thermodynamic quantities from either one of them by writing the quantity F . This
then becomes either F or � for the canonical and grand canonical descriptions of
the system of interest, respectively. Dimensionless units are used for this generalised
Helmholtz energy:

F̃ j = F jv0

kT V
, (A.5)

where the subscript j refers to a certain phase state (fluid, solid, nematic, smectic,
columnar, etc.). A dimensionless colloid concentration (volume fraction)φ, chemical
potential and (osmotic) pressure are used:

φ = Ncv0

V
, (A.6)

μ̃c, j = μc, j

kT
, (A.7)

P̃j = Pjv0

kT
. (A.8)

This normalisation simplifies numerical computations. The standard thermodynamic
relations enable one to derive the osmotic pressure and chemical potential from
the φ-dependence of F̃ j . For the chemical potential of a component, applying
Appendix A.3 gives

μ̃c, j =
(

∂F̃ j

∂φ

)

T ,V (,nRd )

, (A.9)

where nRd is the depletant concentration in case of an external reservoir. For the
osmotic pressure Appendix A.4 gives

P̃j = −
(

∂(F̃ j/φ)

∂(1/φ)

)

T ,V (,nRd )

= φ2
(

∂(F̃ j/φ)

∂φ

)

T ,V (,nRd )

, (A.10)

so that

P̃j = φμ̃ j − F̃ j . (A.11)
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The pressure P̃j and chemical potential μ̃ j can be directly connected via the Gibbs-
Duhem relation:

φ

(
∂μ̃ j

∂φ

)

T ,V (,nRd )

=
(

∂ P̃j

∂φ

)

T ,V (,nRd )

, (A.12)

which follows from differentiation of Eq. (A.11) with respect to φ. Binodal points
are found by solving for the coexistence between the different phases:

P̃I = P̃II, (A.13)

and

μ̃I = μ̃II. (A.14)

The subscripts I and II denote the coexisting phases of the system. Spinodals can
be found from

(
∂μ̃ j

∂φ

)

T ,V (,nRd )

=
(

∂ P̃j

∂φ

)

T ,V (,nRd )

= 0. (A.15)

An isostructural phase coexistence region is marked by a critical point, which can
be calculated from the conditions

(
∂μ̃ j

∂φ

)

T ,V (,nRd )

=
(

∂2μ̃ j

∂φ2

)

T ,V (,nRd )

= 0, (A.16)

or from
(

∂ P̃j

∂φ

)

T ,V (,nRd )

=
(

∂2 P̃j

∂φ2

)

T ,V (,nRd )

= 0. (A.17)

If there is a critical point one can often also find three coexisting phases, for which
the conditions

P̃I = P̃II = P̃III, (A.18)

and

μ̃I = μ̃II = μ̃III (A.19)

hold,which enables one to determine a triple point or region. Extrapolation to quadru-
ple (Chaps. 9 and 10) or quintuple ([4,5]) phase coexistence is straightforward.
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Whenever a phase state has a stable or metastable critical point (CP), isostructural
phase coexistence takes place. The transition from a stable to a metastable isostruc-
tural phase coexistence is defined by the critical end point (CEP), where the CP and
the TP (or in general, multi-phase coexistences) of the corresponding isostructural
coexistences merge:

μ̃I = μ̃II = · · · and P̃I = P̃II = · · · (A.20)

and

∂μ̃I

∂φ
= ∂2μ̃I

∂2φ
= 0 and

∂ P̃I
∂φ

= ∂2 P̃I
∂2φ

= 0. (A.21)



BStatisticalMechanical Derivation
of the FreeVolumeTheory

Here, we present a statistical mechanical derivation of the grand potential for a
mixture of hard spheres mixed with penetrable hard spheres (PHSs), inspired by the
work ofMeijer and Frenkel [6] andDijkstra et al. [7]. Following statistical mechanics
[1] the grand potential is defined by

�(Nc, V , T ,μd) = −kT ln�(Nc, V , T ,μd), (B.1)

where � is the grand canonical partition function

� =
∞∑

Nd=0

exp(μdNd/kT )Q(Nc, V , T , Nd). (B.2)

Here, Q is the canonical partition function

Q = 1

�
3Nc
c �

3Nd
d Nc!Nd!

∫
exp[−(Uc +Ucd)/kT ]dRNcdrNd , (B.3)

where Uc is the interaction between the Nc hard spheres and Ucd the interaction
between the Nc hard spheres and the Nd (depletants). The latter interaction term
limits the integration over the position of the PHSs to the free volume Vfree, which
is a function of the positions RNc of the Nc hard spheres. This leads to

Q = 1

�
3Nc
c �

3Nd
d Nc!Nd!

∫
exp[−Uc/kT ]V Nd

freedR
Nc . (B.4)
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We next take into account that

∞∑

Nd=0

exp(μdNd/kT )V Nd
free

�
3Nd
d Nd!

= exp[PRVfree/kT ], (B.5)

where we have used the left-hand side of Eq. (B.5) as the grand canonical partition
function of the PHSs with chemical potential μd in a volume Vfree. Combining Eqs.
(B.2), (B.4) and (B.5) yields [6]

� = 1

�
3Nc
c Nc!

∫
exp[−(Uc − PRVfree)/kT ]dRNc (B.6)

= Q(Nc, V , T )

〈
exp

(
PRVfree
kT

)〉

0
. (B.7)

The quantity Q(Nc, V , T ) is the canonical partition function of the Nc hard spheres,
and the pointed brackets with subscript 0 indicate an average over the unperturbed
configurations of the hard spheres. Using Eqs. (B.7), (B.1) can be written as

� = −kT ln Q(Nc, V , T ) − kT ln

〈
exp

(
PRVfree
kT

)〉

0
(B.8)

= F0(Nc, V , T ) − kT ln

〈
exp

(
PRVfree
kT

)〉

0
. (B.9)

This expression for � is exact but, from a computational point of view, difficult to
handle.Tomakeprogress,we replace the averageof the exponentwith the exponent of
the average and obtain the following approximate expression for the grand potential:

� = F0(Nc, V , T ) − PR〈Vfree〉0 (B.10)

This is precisely expression Eq. (3.26), obtained from the thermodynamic integration
route using the approximation Eq. (3.24).



CConfigurational Integrals
for a Columnar Phaseof Colloidal Hard
Platelets

In Wensink’s approach [8], the structure of a columnar phase is envisioned in terms
of columns ordered along a perfect lattice in two lateral dimensions with a strictly
one-dimensional fluid behaviour of the constituents in the remaining direction along
the columns. For the configurational integral of a system of N parallel platelets with
thicknesses L and diameter D with their centre of mass moving along the plate
normal on a line of length �, Tonks [9] derived

Qfluid(N , �, T ) = 1

�N N ! [� − NL]N . (C.1)

The columns are assumed to be strictly linear and rigid. At high packing fractions,
the rotational freedom of each platelet is assumed to be asymptotically small, and
Equation (C.1) may be written as

Qfluid(N , �, T ) ≈ Qor

VN
1 N ! [� − N 〈Leff〉]N (C.2)

where V1 represents the total 1D thermal volume including contributions arising
from the 3D rotational momenta of the platelet. Furthermore,

Qor = exp[−N 〈ln 4π f 〉], (C.3)

is an orientational partition integral depending on the orientational probability dis-
tribution f . In the mean-field description implied by Eq. (C.2) there is no coupling
between the orientational degrees of freedom of the platelets. Up to leading order in
the polar angle θ, the rotational freedom of the platelets is expressed in an effective
entropic thickness:

〈Leff〉 = L

{
1 + 1

2

D

L

∫
d(cos θ)|θ| f (θ) + · · ·

}
. (C.4)
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The prefactor ‘1/2’ in Eq. (C.4) (partly) corrects for the azimuthal rotational free-
dom, and accounts for the fact that the excluded length between two platelets at
fixed polar angles minimises when the azimuthal orientations are the same. From
F = −kT ln Q, the 1D fluid Helmholtz energy then follows as

Ffluid
kT N

= ln Ṽ1ρ − 1 + 〈ln 4π f 〉 − ln
[
1 − ρ〈L̃eff〉

]
, (C.5)

where Ṽ1 = V1/L , ρ = NL/� is the reduced linear density and L̃eff = Leff/L is the
effective thickness.

The equilibrium form f (θ) can be found by a formal minimisation of the
Helmholtz energy:

δ

δ f

(
F

kT N
− λ

∫
dû f (û)

)
= 0 (C.6)

under the normalisation constraint (see also Sect. 8.2). The Lagrange multiplier
λ ensures the normalisation of f . The Helmholtz energy given by Eq. (C.5) only
depends on single-particle orientational averages. This enabledWensink [8] to obtain
the following analytic form for the equilibrium ODF:

f (θ) = ι2

4π
exp[−ι|θ|] (C.7)

with

ι =
(
3

2

D

L

)
ρ

1 − ρ
. (C.8)

The resulting expressions for the orientational entropy and entropic thickness are

〈ln 4π f 〉 ∼ 2 ln ι − 2 (C.9)

〈L̃eff〉 ∼ 1 +
(
D

L

)
1

ι
. (C.10)

Applying Eq. (8.15) for a column of discs enables the relation of the nematic order
parameter S to ι:

S ≡ 〈P2(cos θ)〉 ∼ 1 − 3

2

〈
θ2

〉 ∼ 1 − 9

ι2
. (C.11)

The Helmholtz energy associated with the positional order along the lateral direc-
tions of the columnar liquid crystal can be approximated as follows: one can map the
system onto an ensemble of N disks ordered into a 2D lattice. To a good approxima-
tion, the configurational integral of the system near the close packing density can be
computed using the Lennard-Jones–Devonshire (LJD) cell theory [10]. Within the
framework of the cell model, particles are considered to be localised in ‘cells’ centred
on the sites of a fully occupied lattice (of some prescribed symmetry). Each particle
experiences a potential energy unncell(r) generated by its nearest neighbours. In the
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simplest version, the theory presupposes each cell to contain one particle moving
independently from its neighbours. The N -particle canonical partition function can
then be written as

QLJD(N ) = 1

�2N

∫
drN exp

[
−U (rN )

kT

]

≈
(

1

�2

∫
d2r exp

[
−unncell(r)

2kT

])N

. (C.12)

For hard interactions, the second phase space integral is simply the cell free area
available to each particle. If the nearest neighbours form a perfect hexagonal cage,
the free area is given by

√
3(�C − D)2/2. The configurational integral then becomes

QLJD(N ) =
(

1
2

√
3�2

C

�2

)N (
1 − �̄−1

C

)2N
(C.13)

where �̄C is a measure for the translational freedom that each particle experiences
within the cage. This leads to Eq. (9.21).
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244, 271–273
Aarts, 152, 168, 169, 188, 191, 193, 199, 200,

202, 203
ABC crystal phase; phase state of hard rods,

244, 271, 273, 274, 279
Adhesive hard sphere interaction, 11
Adhesive hard spheres, 11
Adsorbed polymer, 9, 143, 145
Al(OH)3 gibbsite, 285
Aggregation, 3, 8, 11, 18–20, 22, 46, 49, 99,

172, 173, 220, 264, 353, 354
Anchored polymer chains: see brush, 10
Anchored polymer chains: see grafted polymer

chains, 24
Anisotropic colloidal particles, 49, 50
Anisotropic particles, 50
Arrested state, 170
Asakura and Oosawa, 12, 13, 17, 23, 40, 42,

67, 68, 72, 80, 99, 101, 223
Asphericity, 322
Atomic force microscope, 110
Attached polymer: see adsorbed polymer, 11
Avogadro’s number, 15, 121

B
Bacteria, 19, 22, 49, 267, 278–280, 344
Bacterial cells, 278
Bacteriophage, 263, 267
Beijerinck, 19
Binodal, 27, 28, 36, 38, 40, 41, 44, 47,

136–138, 149, 150, 161, 165, 210,
217–219, 275, 276, 305, 338, 339

Binodal: definition, 27

Bjerrum length, 7, 251
Boehmite rods, 269, 270
Bolhuis, 37, 39–41, 129, 162, 165, 227, 231,

244, 253, 271–275, 336
Boltzmann constant, 1
Boublík equation of state, 323
Boublík–Mansoori–Carnahan–Starling–

Leland equation of state, 214
Bragg, 3, 302
Bridging flocculation, 46, 143
Bristol, 24
Brownian Dynamics simulation, 148
Brownian motion, 1, 20, 78, 113, 121, 148,

171, 202, 355
Brush, 3, 9, 10, 15, 24, 34, 36, 46, 128, 164,

250
Brush: see also grafted polymer chains, 46
B2: see second osmotic virial coefficient, 11

C
Capillary length, 188, 190, 199
Capillary velocity, 199, 200
Capillary waves, 15, 43, 198, 199, 201
Carnahan–Starling, 123, 124, 213, 290, 323
Carnahan–Starling equation of state, 123, 125,

134, 290, 323
Casein micelles, 3, 34, 178
Casimir forces, 46
Cell model, 123, 125, 272, 294
Cells, 343
Cell: see living cell or bacteria, 344
Cellular organisation, 49, 344
CEP: critical end point, 138, 149, 162, 261, 368
Charged colloids, 4, 6–8, 36, 41, 47, 48, 250
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Charge density, 7, 36, 251, 255, 266, 277
Charged rods, 250
Chromosomes, 344
C0-lattice packing, 324, 328, 365
C1-lattice packing, 324, 327, 328, 335, 336,

365
Clay, 3, 223, 241, 285, 286, 313, 314
Clay particles, 241
Clusters, 22, 45, 46, 48, 171, 172, 233, 267,

278, 353
Coalescence, 233
Coalescence of droplets, 186, 200, 243
Colloidal cubes, 50, 51, 319, 320, 336, 337,

350
Colloidal discs, 140
Colloidal disks, 18, 45, 49–52, 104, 106, 109,

285, 350, 371
Colloidal platelets: see colloidal disks, 45
Colloidal rods, 23, 45, 49–52, 67, 94, 99–101,

103, 109, 113, 223–225, 228,
231–236, 241, 243, 245, 248–252,
254, 255, 257, 258, 260, 262, 267,
269–271, 275, 277, 278, 288, 290,
350, 364

Colloid–atom analogy, 2, 121, 185
Colloid: IUPAC definition, 1
Colloid limit, 31, 34, 37, 39, 165
Colloid, 2–4, 6–9
Colloids: industrial examples, 2
Columnar, 285, 287
Computer simulation, 27, 34, 37, 38, 44, 48, 52,

83, 91, 99, 122, 123, 127, 129, 134,
140, 149, 160, 162, 164, 165, 173,
177, 206, 210, 212, 215, 216, 218,
220, 227, 230, 244, 253, 271–273,
275, 288–290, 293, 298, 323, 327,
328, 335, 352

Concentration profile between two flat plates,
82

Correlation length, 154
Correlation length in a polymer solution, 26,

31, 37, 154, 155, 160, 190
Correlation length in a polymer solution:

definition, 26
Correlation time, 199
CP: critical point, 138, 330, 368
Critical end point, 40, 138, 149, 162, 261, 368
Critical point, 35, 39–41, 46, 138, 146, 148,

149, 167, 170, 187, 193, 239, 306,
330, 333, 347, 348, 368

Crowding: see macromolecular crowding, 49
Crystal facets, 319

Crystallisation, 3, 15, 24, 46, 128, 148, 149,
169, 172, 179, 218, 232, 233, 329,
337

Crystallisation: charged spheres, 24, 48
Crystallisation: cubes, 52
Crystallisation: hard spheres, 129
Crystallisation: proteins, 47, 345, 346, 348
Crystal phase of rods: see AAA or ABC, 244
CTAB, 31
Cubatic phase, 289
Cubes: see colloidal cubes, 50, 51
Cytoskeleton, 344

D
De Broglie wavelength, 124
Debye length, 7, 36, 48, 250, 308, 310, 336
Debye screening length, 7
De Gennes, 10, 26, 31, 155–157, 161
Delayed sedimentation, 177, 178
Delta formation, 3
Demixing; the three-phase region, 169
Density difference, 1, 171, 178, 187, 188, 195,

199
Density functional theory: see DFT, 39
Density profile around two spheres, 87
Density profile ideal chains; flat plate, 81
Density profile ideal chains; sphere, 85
Density profile of discs between two walls, 106
Density profile of discs near a wall, 106
Density profile of hard spheres between two

walls, 91
Density profile of hard spheres near a wall, 91
Density profile of rods between two walls, 101
Density profile of rods near a wall, 101
Depletion, 3, 12
Depletion-adsorption transition, 46, 47
Depletion; charges, 36
Depletion interaction; AOV potential, 13
Depletion interaction between plates; PHSs, 68
Depletion interaction between a sphere and a

plate, 76
Depletion interaction between spheres; ideal

chains, 88
Depletion interaction between spheres; PHS,

72
Depletion interaction between two plates;

discs, 105
Depletion interaction between two plates; hard

spheres, 95
Depletion interaction between two plates; ideal

chains, 80
Depletion interaction between two plates; rods,

101



Index 377

Depletion interaction between two spheres;
disks, 107

Depletion interaction between two spheres;
hard spheres, 98

Depletion interaction between two spheres;
ideal chains, 84

Depletion interaction between two spheres;
rods, 103

Depletion layer, 3, 12, 26, 32, 36, 71, 82, 85,
90, 93, 96, 130, 133, 146, 149, 207,
355, 356

Depletion layer thickness, 26–31, 34, 36, 38,
50, 70, 82, 85, 86, 88, 150, 153,
156–159, 161, 194, 255, 307, 308,
329

Depletion; permittivity gradients, 48
Depletion stabilisation, 26, 36, 38
Depletion thickness, 86
Depletion thickness at sphere; ideal chains, 86
Depletion thickness near a plate, ideal chains,

82
Depletion thickness: see depletion layer

thickness, 26
Derjaguin approximation, 75, 76, 84, 103, 107,

108, 111
DFT, 39, 40, 99, 191, 193, 198, 217, 305, 306
Dietrich, 157
Diffusion, 35, 167, 171, 178, 355, 356
Dijkstra, 34, 35, 37, 132, 140, 210–212, 215,

216
Directionality, 50
Disc, 104, 106, 108
Discs, 104, 106, 108, 285, 286, 288–292, 294
DLS, 118, 144, 146
DLVO, 4, 5, 8
DLVO interaction potential, 8
DLVO theory, 5, 8, 9
DMF, 218, 232, 288, 337, 338
Dogic, 263, 265–267, 271, 278
Double layer interaction, 4–7, 250
Double layer repulsion: see double layer

interaction, 4
Du Noüy ring, 186
Dynamic light scattering: see DLS, 118

E
Effective rod diameter, 250
Einstein, 2
Eisenriegler, 30, 31, 80, 81, 84, 85, 157
Elastic energy, 10
Electrostatic interaction: see double layer

interaction, 4
Emulsions, 2, 5, 19, 21, 34, 44, 177, 220
Entropic patchiness, 50

Epithelial cells, 343
Equation of state, 11, 123, 304
Equation of state: Boublík, 323
Equation of state: Boublík–Mansoori–

Carnahan–Starling–Leland,
214

Equation of state: Carnahan–Starling, 123, 323
Equation of state: cut spheres, 304
Equation of state: FCC crystal, 126, 127
Equation of state: fluid of binary hard spheres,

214
Equation of state: fluid of convex hard particles,

323
Equation of state: fluid of hard rods, 271
Equation of state: fluid of hard spheres,

123–125, 134
Equation of state: Parsons–Lee, 271, 290, 291,

293, 294
Euler Gamma function, 326
Evans, 34, 35, 39, 132, 206, 216
Excluded-volume chains, 31
Excluded volume interactions, 153

F
FCC crystal, 30, 123, 127, 214, 215, 275, 324,

325
fd-virus, 223, 235, 263, 265, 266
Fe3O4 iron oxide particles, 338
Flat faces align, 50, 334
Fleer, 27, 79, 82, 85, 149, 156–158, 160,

162–165
Flocculation, 3, 8, 24, 46, 143, 177
Flory, 23, 155, 156
Flory–Huggins, 26, 160
Flory scaling, 155
Fluid–crystal coexistence, 127
Fluid–crystal transition, 122
Food, 3
Force, 67
Force balance theory, 36
Force method, 67
Four-phase equilibrium, 275, 276, 299, 300,

302, 306, 307, 330, 335
Fractal aggregation, 173
Fraden, 255, 263, 265, 267, 278
Free volume theory, 32, 129
Frenkel, 12, 34, 37, 99, 127, 227, 231, 243,

271, 275, 288, 289, 294, 348
Friction coefficient, 356

G
Gast, 30
Gaussian chain, 77
Gaussian core model, 39
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Gaussian distribution function, 248
Gaussian ODF, 253, 254, 260, 292
Gel, 149, 170
Gelation, 3
Gibbs, 302
Gibbs adsorption equation, extended, 69
Gibbs–Duhem relation, 124, 132, 134, 152,

208, 228, 252, 323, 367
Gibbsite, 285, 289, 300, 302, 306, 308–310
Gibbsite Al(OH)3, 285
Gibbsite platelets, 309, 310
Gibbs phase rule, 30
Glass, 149
Glass transition, 3
Gold, 3
Gold cubes, 336
Gold rods, 336
Good solvent, 9, 10, 15, 26, 38, 45, 143, 146,

153, 154, 157–161, 163–165, 193,
194, 197

Grafted polymer chains, 5, 10, 24, 34, 46, 146,
164, 250, 300

Grinberg, 19
Growth rates, 168, 319

H
Hachisu, 3, 24, 219
Hall, 30
Hard-sphere crystal, 125
Hard-sphere fluid, 123
Hard sphere fluid–crystal transition, 122
Hard spheres, 11
HEC, see hydroxyethylcellulose, 29
Hollow silica, 336
Hydroxyethylcellulose (HEC), 29, 33

I
ICI, 24
Ideal chain, 77
Ideal Gaussian chain, 78
Ideal polymer chains, 30, 31, 42, 78, 79, 81–84,

86, 87, 108–110
Ideal polymers, 23, 28, 30, 43, 77, 80, 82,

84–86, 89, 97, 108, 150, 152, 266
Inhibition, 319
Ink, 2
Inorganic rods, 241
Integrating out, 2, 34
Interaction potential, 2, 5–8, 10, 12, 13, 15, 26,

27, 31, 35, 36, 39, 40, 42, 45, 46, 51,
52, 67, 80, 81, 84, 85, 89, 90, 95, 96,
98, 101, 103, 105, 107–111, 113,
114, 116, 121, 171, 192, 346, 351,
352

Interactions, 121
Interfacial tension, 19, 21, 35, 39, 43, 185,

191–193, 198–201
Interfacial thickness, 185
Iron oxide Fe3O4 particles, 338
Isostructural fluid–fluid coexistence, 137
Isostructural isotropic–isotropic coexistence,

271
Isostructural phase coexistence, 137, 211, 216,

223, 235, 271, 276, 306, 330, 333,
335, 367, 368

Isostructural solid–solid coexistence, 211, 216
Isotropic–nematic phase transition: charged

rods, 251
Isotropic–nematic phase transition: computer

simulations, 253
Isotropic–nematic phase transition: SPT theory,

252
Isotropic–nematic phase transition: theory

versus experiments for charged rods,
255

J
Jackson, 40, 230, 244, 271–274

K
Klebsol, 309, 310

L
Latex, 2, 3, 19–22, 24, 25, 29, 32, 33, 149, 219,

220
Law of corresponding states, 2
Lennard-Jones, 2, 125
Lennard-Jones–Devonshire cell theory, 125,

294, 324, 326, 372
Lennard-Jones interaction, 2
Le Sage, 17
Liquid crystalline phases, 241
Liquid window, 130
Living cell, 3, 344
Lock–key binding, 353
London–Van der Waals: see Van der Waals

interaction, 5

M
Macromolecular crowding, 49, 344, 355, 357
Mg2Al layered double hydroxide, 285, 307,

308
McMillan and Mayer, 2
Mean curvature, 322
Meniscus method, 188
Micelles, 21, 31, 45, 219, 220, 241, 353
Microcompartmentation, 344
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Micro-emulsion, 26, 38, 166
Microstructures, 351
Milk, 3
Minkowski, 321
Minkowski sum, 321
Molecular Dynamics simulation, 48
Molecular thermodynamics: see statistical

mechanics, 2
Monte Carlo, 34
Monte Carlo computer simulations, 27, 37,

39–41, 45, 47, 91, 97, 98, 123, 148,
161, 162, 166, 211, 218, 220, 227,
231, 243, 253, 288, 293, 327, 328,
335

Mushroom, 9

N
Negative adsorption, 12, 28, 82
Nematic, 51, 52, 122, 246, 251, 252, 254, 255,

259–262, 265, 267, 269–271, 274,
277, 285, 287–290, 292, 293, 295,
296, 300, 301, 306–310, 312–315

Nematic liquid crystal phase, 241
Nematic order parameter, 260
Nickel hydroxide, 285, 289
Nickel hydroxide Ni(OH)2, 285
Ni(OH)2 nickel hydroxide, 285
Nonequilibrium behaviour, 149
Nucleoid, 344

O
ODF, 259
Odijk, 31, 36, 49, 85, 248, 250, 292, 344, 345
Odijk’s Gaussian ODF, 292
Onsager, 2, 67
Onsager’s ODF, 248
Oosawa: history of the 1954 theory, 22
Oosawa: see Asakura and Oosawa, 12
Optical tweezers, 114
Order parameter, 260
Orientational distribution function, 228, 229,

245, 246, 248, 253, 254, 259, 291,
292

Orientational entropy, 245
Orientationally averaged excluded volume, 321
Orientation distribution function, 258
Osmotic pressure, 9, 13, 17, 26, 27, 34, 38,

40, 67, 68, 121, 145, 152, 153, 156,
159–161, 192, 212, 214, 228, 236,
237, 247, 252, 256, 257, 273, 275,
292, 293, 295, 297, 303, 304, 323,
324, 327, 330, 331, 351

Osmotic repulsion, 10

Overlap concentration: see polymer overlap
concentration, 31

Overlap volume, 12, 13, 19, 50, 71–74, 90,
155, 193, 329, 334, 335, 348, 351,
352

P
Packing entropy, 245
Paint, 2, 3, 19, 24, 343
Pair-wise additive, 32, 121, 130
Pair-wise additivity, 30
Parsons–Lee equation of state, 271, 290, 291,

293, 294
Partition function, 78
PDMS: polydimethyl siloxane, 24, 46, 47, 175,

176, 186, 187, 190, 193, 194, 196,
197, 300, 306

PEG, 346
PEG: see PEO, 47
Pendant drop, 186
Penetrable hard spheres, 13, 24, 30, 34, 37, 39,

42, 47, 67, 68, 70, 71, 73, 74, 76, 80,
84, 89, 90, 97, 110, 121, 129

PEO: also denoted as PEG, 348
PEO: polyethylene oxide, 24, 46, 178, 262,

264, 265, 337, 348
Permittivity, 5, 48
Perrin, 2, 121, 185
Persistence length, 262
Pf1, 263, 267
Pf4, 263, 267
Phase behaviour, 30
Phase coexistence, 136
Phase diagram; hard spheres–PHS system, 138
Phase diagrams; experimental colloid–polymer

mixtures, 146
Phase separation, 11
PHS: see penetrable hard spheres, 13, 67
Platelets, 285, 286, 288–292, 294
Plates, 285, 286, 288–292, 294
Plates; parallel flat, 67
PMMA, 146
PMMA particles, 127
PMMA spheres, 127, 128, 146, 168, 169, 171,

177, 178
PMMA spheres: colloidal hard-sphere-like

particles, 127, 128, 146, 168, 169,
171, 177, 178

PNIPAM, 337
Polarisability, 5
Polydimethyl siloxane: see PDMS, 24
Polyelectrolyte, 36, 41, 48, 280
Polyelectrolyte depletion, 36
Polyethylene oxide: see PEO, 24
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Polymer adsorption, 143
Polymer brush: see brush, 3
Polymer chains in a �-solvent, 153
Polymer chains in a good solvent, 153
Polymeric stabilisation, 3, 5, 9, 27, 28, 143,

144, 146, 171, 175, 179, 187, 190,
191, 193, 194, 196, 197, 218, 238,
269, 270, 300, 302, 306, 308–310

Polymer overlap concentration, 31, 40, 153,
155, 171

Poly(N-isopropylacrylamide), 337
Polystyrene, 113, 114, 146, 149, 163, 169, 179,

199, 200, 219, 223, 235, 238, 262,
269, 270, 337–339

Polystyrene: see PS, 48
Polystyrene sulfonate: see PSS, 35
Poor solvent, 11, 38
Potential of mean force, 2, 37, 40, 67, 90, 116,

117, 122
Potential: see interaction potential, 2
PRISM, 38, 43, 47
Product function, 83
Protein crystallisation, see crystallisation:

proteins, 47
Protein limit, 31, 34, 37, 40, 41, 166
PS, 23–25, 27–29, 31–33, 36, 41, 48, 147, 171,

219, 223, 270, 351, 352
PSS, 35, 278

Q
Quadruple point, 330
Quadruple region, 299
Quadruple region: see four-phase equilibrium,

307

R
Radius of gyration; excluded-volume polymer

chains, 154
Radius of gyration; ideal chain, 77
Radius of gyration of a polymer chain, 13, 26,

29, 30, 40, 45, 77, 145, 150, 154,
171, 277, 278, 300, 307, 308

RBC, 18, 19, 22, 99, 286
Red blood cells, 343
Red blood cells: see RBC, 18
Repulsive barrier, 26, 36, 103
Rescaled polymer concentration, 165
Rescaling, 165
Restabilisation, 24, 26
RGT; Renormalisation Group Theory, 154,

157, 158, 160
Rheology, 35, 43, 44
RISM, 38
Rod diameter; effective, 250

Rod-like colloids, 99
Rods, 110, 241
Rods: charge density, 251
Rods: see colloidal rods, 23
Roij, see van Roij, 34
Rotation, 187, 326, 355
Rotational-average, 2
Rotational symmetry, 324
Rotation: axis of, 186
Rotator phase, 327
Rouleaux formation, 18, 19
Russel, 30, 129

S
Salt, 3, 19, 24, 36, 41, 47, 113, 255, 267, 278,

288, 348, 355
SANS, 41, 42, 117
SAXS, 41, 42, 338
Scaled Particle Theory: see SPT, 32, 134
Scheutjens, 27
Scheutjens-Fleer, 27, 36
Sea water, 3
Second osmotic virial coefficient, 11, 27, 29,

31, 39, 44, 45, 90, 94, 123, 251, 288,
289, 321, 322

Second osmotic virial coefficient: definition,
27

Second osmotic virial coefficient: polymer
chains in solution, 159

Second virial coefficient; hard cubes, 321, 322
Second virial coefficient; hard spheres, 124
Second virial coefficient; hard superballs, 321
Sedimentation, 1, 18, 144, 171, 172, 175, 177,

178, 180, 233, 302, 303, 305, 306,
327, 337, 355, 356

Sedimentation–diffusion equilibria, 235, 303,
310, 311

Sedimentation rate, 18
Self-diffusion, 171
Self-diffusion coefficient, 171
Self-organisation, 350
Semidilute polymer solution, 14, 26, 27, 31,

48, 153–157, 160, 165
Semi-grand potential, 129, 131, 151, 153, 192,

207–209, 218, 224, 231, 236, 237,
255, 258, 275, 296, 329

Separation: shape-selection, 349
SESANS, 42
Shampoo, 2
Shape and size selection, 348
Shape complementarity, 354
Shape distributions, 45
Shape: ellipsoidal, 32
Shape: needle-shaped, 263
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Shape of a lens, 72
Shape of an RBC, 18
Shape of a Wigner–Seitz cell, 325
Shape of bacteria, 278
Shape of clusters, 172
Shape of colloids, 49–51, 205, 348
Shape of colloids: rod-like, 205
Shape of polymers, 45
Shape of self-assembled surfactants, 45
Shape of the density profile, 156
Shape of the interaction potential, 40
Shape of the interface, 187
Shape of the interface profile, 190
Shape of the meniscus, 188
Shape parameter of superballs, 322
Shape: rod-like, 99
Shape selection, 348
Shape-selective separation, 349, 351
Shape: superball like, 52
Shrinkage of a polymer chain, 38
Silica, 24, 27, 28, 35, 47, 48, 111, 127, 145,

168, 175, 176, 232, 243, 244, 288,
308–310, 312–314, 320, 336–338,
352

Silica SiO2, 24
SiO2: see silica, 24
Size selection, 348
Skvortsov, 82, 85, 157, 158, 165
Slip, 355
SLS, 28, 117, 118, 146, 167, 173, 175, 179,

337
Small-angle neutron scattering: see SANS, 41
Small-angle X-ray scattering: see SAXS, 41
SmA phase; liquid crystalline phase state of

hard rods, 243, 271, 272, 274
Smectic, 51, 52, 235, 243, 244, 267, 271, 272,

277, 285, 287, 364
Smectic phase of rods: see SmA phase, 243
Soft repulsive interaction, 250
Soil, 22
Solvency: see poor solvent, �-solvent and/or

good solvent, 9
Spherocylinders, 245
Sphube, 321
Spin-echo SANS, see SESANS, 42
Spinning drop, 186
Spinning drop method, 35, 186, 187, 191
Spinodal, 27, 28, 39, 47, 167, 168, 206, 265,

338, 339
Spinodal decomposition, 167, 173
Spinodal: definition, 27
SPT, 32, 133, 134, 225, 230, 236, 237, 251,

257, 271, 290, 297, 323, 331

Static light scattering: see SLS, 28
Statistical mechanics, 2, 22, 28, 109, 116, 123,

369
Steric stabilisation: see polymeric stabilisation,

3
Sticky spheres: see adhesive hard spheres, 11
Structure factor, 35, 42, 47, 116, 117, 173
Superballs, 320
Superellipsoids, 320
Superposition approximation, 83
Surface force apparatus, 9, 109
Surface microstructures, 351
Surface potential, 8
Surfactant, 2, 21, 45, 46, 48, 50, 51, 219, 343,

350, 353
Synthetic inorganic rods, 241

T
Tactoids, 243, 267, 268
Taniguchi, 31, 85, 253, 266, 356
Thermal energy, 1
Thermal length, 198, 199
Thermal motion, 1
Thermodynamic perturbation theory: see TPT,

30
�-solvent, 48, 153, 154, 157, 159–162, 164,

193
�-temperature, 45
Thin rods, 23, 100, 101, 103, 110, 225, 227,

231, 235, 251, 288
Three-phase equilibrium, 32, 139, 149, 166,

167, 275, 276, 298, 300, 302, 304,
308, 312, 313

Tie-line: definition, 27
Tie-lines, 27, 34, 139, 146, 281, 333
Tolstoguzov, 19
Total internal reflection microscopy, 111
TPT, 30, 32, 40, 42, 43, 129
TP: triple point, 138, 368
Transient gel, 174
Triple line, 139
Triple point, 138, 368

U
Ultralow interfacial tension, 21, 35, 186, 188
Upper colloidal size domain, 1

V
Vacuum, 16
Van der Waals, 2, 5, 156, 191, 194, 198
Van der Waals attraction, 146
Van der Waals interaction, 4–6, 8–10
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van Roij, 34, 206, 216, 246
Van’t Hoff’s law, 68
Vincent, 12, 24
Virial coefficient, 123, 251
Virial coefficient; see second osmotic virial

coefficient, 90
Virial coefficients of hard spheres, 124
Virial expansion, 123
Viscosity, 199, 355, 356
Viscosity; apparent, 356
Viscosity; effective, 356
Von Guericke, 16
Vrij, 12, 13, 24, 67, 73, 117, 206

W
Widom insertion theorem, 132
Wilhelmy plate, 186
Worm-like chain model, 262

X
Xanthan, 31, 177
X-ray crystallography, 345
X-ray diffraction, 345
X-ray reflectometry, 197
X-rays, 41, 197, 198, 345

Z
Zirconium phosphate, 285, 312, 313
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