
Chapter 8
Digital Twin for the Internet of Vehicles

Abstract As a working combination of smart vehicles, advanced communication
infrastructures, and intelligent transportation units, the Internet of Vehicles (IoV) has
emerged as a new paradigm for safe and efficient urban life in the future. However,
various types of smart vehicles with distinct capacities, diverse IoV applications with
different resource demands, and unpredictive vehicular topology pose significant
challenges to fully realize IoV systems. To cope with these challenges, we leverage
digital twin (DT) technology to model complex physical IoV systems in virtual space,
to identify the relation between application characteristics and IoV services, which
facilitates effective service scheduling and resource management. In this chapter,
we discuss the motivation, benefits, and key issues of applying DT in IoV systems.
Then, we use vehicular edge computing and caching as two typical IoV application
scenarios to present DT-empowered task offloading and content caching scheduling
schemes and their performance.

8.1 Introduction

Vehicles are undergoing a fundamental shift, from simple transportation units to
smart ones empowered with environmental sensing, autonomous driving, and in-
formation interaction capabilities. Integrating such smart vehicles with pedestrians
and the infrastructures around them gives rise to Internet of Vehicles (IoV) systems,
which provide a range of powerful vehicular applications and lead to pioneering
advances in safety and the efficiency of intelligent transportation. For instance, IoV
helps to deliver information gathered from the urban traffic environment to adjacent
vehicles for safe navigation and traffic management. In addition, IoV can provide
real-time information and interactive entertainment for vehicle occupants.

The development of IoV technology has received much attention in recent years,
and high expectations have been raised about the benefits that its application will
bring, prompting researchers and engineers to engage in in-depth discussions on
possible obstacles in the IoV evolutionary graph.
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The key feature of IoV is its massive connections and dynamic topology. As we
mentioned, IoV is a network consisting of vehicles, drivers, pedestrians, roadside
units (RSUs), and other intelligent units participating in traffic applications, commu-
nicated in vehicle-to-vehicle (V2V), vehicle-to-RSU (V2R), vehicle-to-person, and
vehicle-to-sensor modes. The mobility of vehicles and pedestrians can cause drastic
changes in data transmission performance and even the interruption of communi-
cation links. The large scales of connected units and time-varying communication
associations make IoV characteristic modelling and operation management seriously
complex and difficult.

Another issue worth considering is the ultra-low latency constraints of some IoV
applications. For example, in vehicle driving, when the vehicle in front brakes in an
emergency, the following autonomous vehicle needs to complete the braking action
within a few milliseconds according to the detected vehicle distance or the warning
notification sent by the front vehicle. To meet such a strict delay constraint, the vehi-
cle’s control, environmental perception, vehicular communication, and information
processing must be comprehensively coordinated.

The last issue to be addressed is closely related to the previous one. Different
types of IoV applications rely on different forms of cooperative services from het-
erogeneous resources. For example, vehicular augmented reality needs to consume a
great deal of computing and sensing resources, while onboard interactive entertain-
ment mainly relies on communication and storage resources. Furthermore, synergy
and competition exist between heterogeneous resource services. For instance, the
premise of data processing is that the data can be transmitted to the corresponding
processor node by communication resources, which may be in contention due to mul-
tiple vehicle communication pairs. The complex relation between these resources
makes it challenging to efficiently implement IoV applications.

Several technical approaches to the above challenges have emerged, with Digital
twin (DT), in particular, showing promise. By mapping physical IoV networks to
virtual space, DT helps improve IoV application performance and resource efficiency.
Some of the main benefits provided by DT to IoV are shown in Fig. 8.1 and are listed
below.

Accurate mapping and unified modelling: In DT-empowered IoV networks, DT
servers collect road traffic status and application service characteristics from sensors
installed on smart vehicles and through communication facilities spread throughout
the vehicular network, to construct a real-time and accurate reflection of physical
IoV networks. Since a reflection model in virtual space is represented by multidi-
mensional digital parameters, irrelevant physical difference between various types
of vehicles can be shielded by normalizing the feature parameters, to build a unified
model that enables modelling interaction and migration.

Feature digging and trend prediction: In the process of autonomous driving and
on-board application services, vehicles can consume various resources, such as urban
roads, vehicular communications, and edge computing. Therefore, collaboration,
competition, and even social associations among multiple vehicles are generated.
DT reflection helps to explore such potential features and relations in IoV systems.
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Fig. 8.1 Benefits provided by DT to IoV

Going a step further, based on these relations, DT can predict future physical actions,
states, and events in IoV systems, such as possible traffic congestion or collisions.

Digital–physical two-way interaction: There is a two-way interaction between
the DT model and the real physical entities of the IoV system. On the one hand,
physical entities determine the digital mirroring. On the other hand, digital models
logically guide physical action strategies. Both model accuracy and physical strategy
performance can be improved during this iterative evolution process.

Not restricted by time, space, or resources: In physical IoV networks, the safety
predictions of vehicle driving behaviour, inter-vehicle communications, and resource
cooperation between vehicles are restricted by event sequences, wireless transmission
distances, and vehicle resource capacities, respectively. However, in the DT image
of IoV, these constraints can be broken. For example, by dynamically changing the
timeline, retrospective determinations and predictions of traffic events are convenient
to make. In addition, in virtual space, communications between inaccessible vehicles
can be realized by data sharing between vehicle model processes in a DT server.

Motivated by the potential benefits of DT technology, a few works have ad-
dressed the incorporation of DT into IoV systems. In [106], the authors leveraged
DT to facilitate collaborative and distributed autonomous driving. Based on vehicle
DT models, driving decisions can be obtained at low cost. In [107], two DT models
of vehicle driving states based on a Gaussian process and deep convolutional neural
networks were respectively established that provide a scheme for the optimization
of vehicle driving states and the realization of DT entity interactions. The authors
in [108] introduced a DT-enabled edge intelligent cooperation scheme that guides
optimal edge resource allocation and edge intelligent cooperation. Combining DT
with vehicle-to-cloud communications, the authors in [109] presented a cooperative
ramp merging system for connected vehicles that allows merging vehicles to cooper-
ate with others prior to arriving at a merging zone. In [110], the authors focused on
the security issues of cooperative intelligent transportation systems and constructed
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a DT model based on convolutional neural networks and support vector regression.
Aided by the DT model, system security prediction accuracy was improved.

Despite much promising recent work in the area of DT-empowered IoV, several
questions remain open for further investigation, and are discussed below.

Delays in DT modelling: Traffic safety is an important application scenario of DT-
enabled IoV, in which some functions, such as early warnings of upcoming traffic
accidents and adjustments of vehicle driving behaviour, have strict delay constraints.
Meeting these constraints requires the DT model for the traffic environment and
vehicle state to be constructed in a short time and to remain updated in real time.
Considering the highly dynamic IoV topology and massive amounts of connected
IoV nodes, the maintenance and tracking of such a complex system in real time are
a challenge.

Efficiency in DT modelling: Following the previous challenge, to reduce DT
modelling delays, many resources need to be allocated for vehicular environment
sensing, state information delivery, and modelling processing. However, in addition
to serving in the construction and update of DT models, constrained IoV resources are
also used to support vehicular communication, autonomous driving, and onboard
multimedia applications. How to reduce the resource costs of DT modelling and
improve DT efficiency has become an important issue to be investigated.

Fault tolerance in DT modelling: The last but not least question concerns fault
tolerance in DT modelling. Due to a limited sensing range, vulnerable wireless
transmission parameters, and poor modelling processing power, established IoV DT
models can have errors. These errors can seriously affect the control of vehicles’
driving action and mislead the prediction of road traffic trends, thereby undermining
the safety and efficiency of road traffic. In a harsh IoV environment, how to construct
a DT model with high fault tolerance is still an unexplored problem.

8.2 DT for Vehicular Edge Computing

Driven by advances in vehicular communication and sensing and processing capa-
bilities, many powerful IoV applications have emerged, such as autonomous driv-
ing, smart logistics, and driving augmented reality. However, the implementation
of these applications requires intensive computation for environmental information
processing and obtaining traffic behaviour under strict delay constraints, posing great
challenges for vehicles with limited onboard computing resources.

VEC, which enables computing resource sharing at the edge of vehicular net-
works, is an appealing paradigm for meeting the intensive computation demands.
In VEC, resource-hungry vehicles can offload their computing tasks to other smart
vehicles or an RSU with spare computing power. However, to achieve efficient task
offloading in such a dynamic and complex IoV environment, key issues still need
to be addressed. For example, the communication scheduling for task data deliv-
ery is closely related to the computing resource management for task processing,
which makes task offloading complicated. Moreover, resource competition between
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different offloading vehicle pairs, as well as the time-varying topology of vehicular
networks, introduces further unprecedented challenges in managing VEC.

Recent advancements in machine learning provide significant capabilities to an
aware dynamic IoV environment, determine action strategies, and tackle complex
problems that rely in VEC applications. However, the effective implementation of
the learning approach always relies on accurate and real-time system information
gathered by learning agents. In vehicular networks characterized by massive amounts
of connected smart vehicles, a highly dynamic topology, and a limited wireless
spectrum, it is impractical to form a centralized artificial intelligence (AI) manager
that schedules edge services for the entire network. To address this problem, we turn to
multi-agent distributed learning empowered vehicular edge management. However,
efficient collaboration and joint decision optimization among these multiple agents
still face critical challenges.

DT is a promising technology to address these challenges. DT’s state mapping
between real and virtual dimensions provides users with comprehensive insights
into the investigated system and dramatically reshapes the design and engineering
process. Merging DT with machine learning will generate great benefits. On the one
hand, DT provides AI with comprehensive and accurate system state information,
which is exactly what learning processes require. On the other hand, AI provides
much intelligence to DT, making its information collection and system description
smart and efficient.

In this section, we propose a new VEC network based on DT and multi-agent
learning that improves agent collaboration and optimizes task offloading efficiency
[72]. In this network, DT is leveraged to reveal the potential cooperation between
different vehicles and adaptively form multi-agent learning groups, which reduces
learning complexity. Moreover, we design a distributed multi-agent learning scheme
that minimizes vehicular task offloading costs under strict delay constraints in com-
plex vehicular networks and dynamically adjusts the state-mapping mode of the DT
network (DTN).

8.2.1 System Model

Figure 8.2 shows the framework of a DT-empowered VEC network. There are 𝑁
smart vehicles on the road. These vehicles are equipped with computing power to
process tasks and perform learning functions. The computing capability of vehicle 𝑖,
𝑖 ∈ N , is denoted as 𝑓𝑖 CPU cycles per second. To enable powerful vehicular appli-
cations, such as autonomous driving and onboard entertainment, vehicles generate
various types of tasks to be processed. Without loss of generality, we consider vehicle
𝑖 to have 𝐽𝑖 types of tasks, and task 𝑤𝑖, 𝑗 is described in the form of three elements, as
𝑤𝑖, 𝑗 = {𝐶𝑖, 𝑗 , 𝐷𝑖, 𝑗 , 𝑇

max
𝑖, 𝑗 }. Here, 𝐶𝑖, 𝑗 is the amount of computing resources required

to execute the task, 𝐷𝑖, 𝑗 presents the size of the task input data, and 𝑇max
𝑖, 𝑗 is the

maximum delay that task 𝑤𝑖, 𝑗 can tolerate.
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Fig. 8.2 A DT-empowered VEC network

Since different vehicles have diverse computing capabilities and task processing
requirements, parts of the vehicles can have sufficient computing resources, whereas
others are lacking. Through V2V communication, one vehicle can offload its tasks
to others. We call the target vehicles “vehicular edge servers”. Let 𝛽𝑖, 𝑗 ,𝑘 = 1 denote
vehicle 𝑖, which offloads its task 𝑗 to vehicular server 𝑘 , and 𝛽𝑖, 𝑗 ,𝑘 = 0 denotes when
the vehicle does not offload task 𝑗 to server 𝑘 . The time consumed to complete task
𝑤𝑖, 𝑗 is divided into two parts, namely, the offloading task transmission time and the
task execution time. The transmission time of task 𝑤𝑖, 𝑗 from vehicles 𝑖 to 𝑘 through
channel 𝑙 is shown as 𝑇 tran

𝑖, 𝑗 ,𝑘,𝑙 = 𝐷𝑖, 𝑗/𝑅𝑖,𝑘,𝑙 , where 𝑅𝑖,𝑘,𝑙 is the transmission rate.
A target vehicular server can receive multiple tasks from the other vehicles, and

it puts these tasks in a queue. Taking into account task delay constraints, the target
server executes the tasks in order according to the length of remaining time, from
shortest to longest. Consequently, a task’s execution time consists of the waiting time
in the queue and the time processed in the CPU. The execution time of 𝑤𝑖, 𝑗 can be
presented as

𝑇exe
𝑖, 𝑗 ,𝑘 =

𝑁∑
𝑖′=1

𝐽𝑖′∑
𝑗′=1

1{𝑇 rem
𝑖′ , 𝑗′ ≤ 𝑇 rem

𝑖, 𝑗 }𝛽𝑖′ , 𝑗′ ,𝑘𝐶𝑖′ , 𝑗′ / 𝑓𝑖′ , (8.1)

where 1{𝑥} is an indicator function that equals one if 𝑥 is true, and zero otherwise,
and 𝑇 rem

𝑖, 𝑗 is the remaining time of task 𝑤𝑖, 𝑗 before the deadline.
To improve vehicular computing resource utilization, a price-based incentive

mechanism is incorporated into the resource scheduling. For a vehicular server, the
weaker its computing power, the greater the resource demands of its queuing tasks,
the tighter the tasks’ delay constraints, and the higher the price of resources providing
for guest tasks. We denote the price of a unit of computing resource of vehicle 𝑖 as
𝑧𝑖 .

In the vehicular edge system, a DTN continually maps the vehicles’ physical states,
such as the communication topology and computing resource demands, to virtual
digital space. With the help of the DTN, edge service optimization and resource
allocation strategies can be efficiently obtained.
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8.2.2 DT and Multi-Agent Deep Reinforcement Learning for VEC

Merged with DT, AI learning gains comprehensive state information and effective
guidance for agent learning, while helping DT to accurately model the physical
system. We investigate the incorporation of DT and multi-agent learning in VEC
networks and propose optimal edge service scheduling schemes. The main frame-
work of these schemes is shown in Fig. 8.3.
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Fig. 8.3 Incorporation of DTN and multi-agent learning for VEC

Owing to the large-scale distribution of massive numbers of vehicles, it is costly
and impractical to globally schedule the task offloading of the whole edge network.
To address this issue, we leverage a DTN and gravity model to design an edge
service aggregation scheme that efficiently aggregates vehicles based on the potential
matching relations between the supply and demand of computing resources and
greatly reduces the complexity of task offloading scheduling.

To guide the edge service aggregation, DTNs of the vehicular edge network are
constructed in the RSUs. A DTN can be regarded as a combination of logical models
and parameters recorded in digital space to characterize the states of the objects in
physical space. We define the element of a DTN as 𝐷𝑠 = {M,Φ, 𝜛}. Here, M
denotes the digital model of the vehicles in the physical system, which is described
by a vehicle task set {𝑤𝑖, 𝑗 }, a computing capability set { 𝑓𝑖}, a resource price set
{𝑧𝑖}, and an available transmission rate set {𝑅𝑖, 𝑗 }. The modelling parameters are
Φ = {𝜙1, 𝜙2, 𝜙3}, which reflect the importance of the three factors of resources,
pricing, and communication in the DTN modelling, respectively. The values of
the parameters update periodically, and 𝜛 is the sequence number of the mapping
periods.

With the aid of the DTN, we develop a gravity model–based vehicle aggregation
scheme. Here we reform the gravity model and make it suitable to characterize the
supply and demand relations of the vehicular edge service. The gravitation in the
service association between vehicles 𝑖 and 𝑖′ is calculated as
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𝐹𝑖,𝑖′ =
𝜙1 max(𝑚𝑖/𝑚𝑖′ , 𝑚𝑖′ /𝑚𝑖)(

𝜙2 (𝑧𝑖/𝑚𝑖 + 𝑧𝑖′ /𝑚𝑖′ ) + 𝜙3/𝑅𝑖,𝑖′
)2 . (8.2)

According to the gravitation obtained in (8.2), we split the vehicles into multiple
aggregation groups, which are denoted as {V}. Based on this aggregation, we
leverage a multi-agent learning approach to optimize edge resource allocation. Since
the vehicles in the edge network have computing and communication capabilities,
they can act as agents to learn the optimal edge scheduling strategies. To minimize
the task offloading costs under delay constraints, the optimization problem is given
in the following form:

min
{𝛽𝑖, 𝑗,𝑘 , 𝛿𝑖, 𝑗,𝑘,𝑙 }

∑
𝑉𝑞∈V

|𝑉𝑞 |∑
𝑖=1

𝐽𝑖∑
𝑗=1

|𝑉𝑞 |∑
𝑘=1

𝛽𝑖, 𝑗 ,𝑘
𝐿∑
𝑙=1

𝛿𝑖, 𝑗 ,𝑘,𝑙𝐶𝑖, 𝑗 𝑧𝑖

C1 :
𝑉𝑞∑
𝑘=1

𝛽𝑖, 𝑗 ,𝑘 = 1, ∀𝑉𝑞 ∈ V, 𝑖, 𝑘 ∈ 𝑉𝑞 , 𝑗 ∈ 𝐽𝑖

C2 :𝛽𝑖, 𝑗 ,𝑘 = 0, ∀𝑉𝑞 ∈ V, 𝑖 ∈ 𝑉𝑞 , 𝑗 ∈ 𝐽, 𝑘 ∉ 𝑉𝑞

C3 :
𝑉𝑞∑
𝑘=1

𝛽𝑖, 𝑗 ,𝑘 (𝑇
tran
𝑖, 𝑗 ,𝑘 + 𝑇exe

𝑖, 𝑗 ,𝑘) ≤ 𝑇max
𝑖, 𝑗 , ∀𝑉𝑞 ∈ V, 𝑖, 𝑘 ∈ 𝑉𝑞 , 𝑗 ∈ 𝐽𝑖

, (8.3)

where constraint C1 ensures that a task can be offloaded at most to only one vehicle for
processing, C2 indicates that task offloading occurs only between vehicles belonging
to the same aggregation group, and C3 shows that the time consumption, including
the transmission and execution time, should be within the delay constraints of the
tasks. Problem (8.3) is an integer programming problem and has been proved to be
NP complete.

Let𝑈𝑉𝑞 =
∑ |𝑉𝑞 |

𝑖=1
∑𝐽𝑖

𝑗=1
∑ |𝑉𝑞 |

𝑘=1 𝛽𝑖, 𝑗 ,𝑘
∑𝐿

𝑙=1 𝛿𝑖, 𝑗 ,𝑘,𝑙𝐶𝑖, 𝑗 𝑧𝑖 . The target function of (8.3)
can be written as min

∑
𝑉𝑞∈V 𝑈𝑉𝑞 . According to C2, there is no offloading correla-

tion between the different aggregation groups. Thus, to address problem (8.3), we
turn to minimize 𝑈𝑉𝑞 by adopting a multi-agent deep deterministic policy gradient
(MADDPG) learning approach, where 𝑉𝑞 ∈ V. The number of learning iterations
is represented by the time slot 𝑡. For vehicle 𝑖 belonging to aggregation group 𝑉𝑞 , its
action taken at time slot 𝑡 is 𝑎𝑡𝑖 = {𝛽𝑡𝑖, 𝑗 ,𝑘 , 𝛿

𝑡
𝑖, 𝑗 ,𝑘,𝑙}, where 𝑖, 𝑘 ∈ 𝑉𝑞 , 𝑗 ∈ 𝐽𝑖 and 𝑙 ∈ 𝐿.

Then, the action set of the multiple agents is given as 𝐴𝑡 = {𝑎𝑡𝑖 }. The state at time
slot 𝑡 can be presented as 𝑆𝑡 = {𝑇 rem,t

𝑖, 𝑗 , Γ𝑡
𝑘}, where 𝑇 rem,t

𝑖, 𝑗 and Γ𝑡
𝑘 are the remaining

completion time of the task 𝑤𝑖, 𝑗 and the set of tasks that have been queued for
processing in vehicle 𝑘 in time slot 𝑡, respectively. Taking action 𝐴𝑡 in state 𝑆𝑡 , the
learning system of 𝑉𝑞 gains the reward

𝑄𝑡
𝑞 (𝑆

𝑡 , 𝐴𝑡 ) =

|𝑉𝑞 |∑
𝑖=1

𝐽𝑖∑
𝑗=1

|𝑉𝑞 |∑
𝑘=1

𝛽𝑡𝑖, 𝑗 ,𝑘

𝐿∑
𝑙=1

𝛿𝑡𝑖, 𝑗 ,𝑘,𝑙𝐶𝑖, 𝑗 𝑧𝑖 . (8.4)

The main goal of multi-agent learning in group 𝑉𝑞 is to find the optimal action
strategy for the agents to minimize the group’s task offloading costs, presented as
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𝑄𝑞 (𝑆
0, 𝐴) = E

[
∞∑
𝑡=0

𝜉𝑄𝑡
𝑞 (𝑆

𝑡 , 𝐴𝑡 ) |𝑆0

]
, (8.5)

where 𝜉 is a discount coefficient that indicates the effect of a future reward on the
current actions, and 0 < 𝜉 < 1.

The DTN and the multi-agent learning system operate cooperatively in scheduling
the vehicular edge service. On the one hand, the DTN determines the distributed
learning environments of the multiple agents by aggregating vehicular groups under
the guidance of the parameters Φ = {𝜙1, 𝜙2, 𝜙3}. This aggregation improves the
supply and demand matching of edge resources and reduces the multi-agent learning
complexity. On the other hand, the multi-agent learning results, that is, the task
offloading target selection and edge resource allocation, affect the vehicular edge
service performance and the performance indicators can be used in turn to evaluate
the pros and cons of the aggregation mechanism, to adjust the aggregation parameter
set Φ. These two parts iteratively interact and update to adapt to the changes in
application scenarios.

8.2.3 Illustrative Results

We evaluate the performance of our proposed vehicular edge task offloading schemes
based on real traffic data sets, which are extracted from the historical mobility traces
of taxi cabs in the San Francisco Bay area. There are approximately 500 cabs, and the
average time interval for their GPS coordinate updates is less than 10 seconds [112].
To investigate the influence of traffic environment characteristics on the offloading
scheme performance, we further divide the Bay Area into six square areas. We
consider a scenario in which the computation capacities of the vehicles are randomly
taken from (10, 20) units. The computation resource requirements, data size, and
maximum tolerable latency of the tasks are randomly chosen from (30, 50) units,
(5, 10) MB, and (0.5, 2) seconds, respectively. In addition, there are five orthogonal
channels for offloading transmissions, and the bandwidth of each channel is 0.3
MHz.

Figure 8.4 shows the offloading costs under different scheduling schemes. Com-
pared with the other two schemes, our proposed MADDPG obtains the lowest cost. In
the independent learning scheme, each vehicle works as an agent to aware edge ser-
vice environments and makes self-interested offloading actions without interactions
among the agents. This independent decision-making approach can create a resource
surplus or shortage between some vehicular service pairs, thereby undermining the
offloading efficiency of the whole system. In the MADDPG without aggregation,
all the agents in the same area adopt joint decision making. Due to the complexity
of the vehicle topology and potential service relations, in this scheme, it is difficult
to reach the optimal offloading strategy under constrained learning iterations. In
contrast to the previous two schemes, the MADDPG scheme aggregates vehicular
agents based on DTN-aided edge service matching, which helps the scheme to real-
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ize low-complexity multi-agent collaborative learning under the premise of efficient
resource utilization and obtains the lowest cost.
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Fig. 8.4 Comparison of offloading costs with different schemes

Figure 8.5 presents the convergence of the MADDPG learning scheme. We ran-
domly select two agents from areas 3 and 5, respectively. All the agents’ learning
converges around 3,300 iterations. Furthermore, this figure demonstrates that the
difference in edge network characteristics and aggregation groupings between the
two areas has little effect on the convergence performance.
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Fig. 8.5 Convergence of MADDPG learning

8.3 DT for Vehicular Edge Caching

Along with the proliferation of smart vehicles and powerful IoV applications, the
huge amounts and high diversity of content need to be disseminated and shared be-
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tween interactive vehicles under stringent delay constraints. However, due to limited
spectrum resources, it is challenging for current wireless systems to deliver content
while meeting such requirements, especially in heavy traffic scenarios with high
vehicle density.

Vehicular edge caching is a promising paradigm for addressing this challenging
issue. Edge caching technology locates popular content close to end users via dis-
tributed cache vehicles and RSUs and considerably accelerates the responsiveness
of content acquisition from the edge, compared to fetching them from remote con-
tent providers. However, unstable communications and the highly dynamic topology
between smart vehicles and RSUs still pose critical challenges in designing optimal
caching schemes for vehicular edge networks. In practice, an individual edge cache
server always has constrained storage space, which makes it impossible for a single
server to hold multiple large files at the same time. Moreover, when the cache servers
are equipped on several RSUs, the limited coverage range of an individual RSU can
lead to short communication durations and small amounts of data delivered.

To effectively utilize the constrained cache and communication resources with
dynamic topology, cooperative caching needs to be leveraged, where content sub-
scribers can be served by multiple caching servers. Moreover, to make full use of the
caching capabilities of smart vehicles, social interactions among the vehicles can be
utilized to improve content dispatch efficiency. The social characteristics of the ve-
hicles are basically related to their drivers, who determine their content preferences
and daily driving routines and affect the other vehicles that may be encountered on
the road or in parking lots.

Integrating socially aware smart vehicles and the mobile edge computing frame-
work also requires addressing the challenges brought about by socially aware smart
vehicles. For instance, vehicular social characteristics are time varying and can
change dynamically according to content popularity, traffic density, and vehicle
speeds. Furthermore, owing to the mobility of vehicles, highly intermittent connec-
tivity between vehicular content providers and subscribers can seriously undermine
the efficiency of socially aware content transmission. In addition, the cooperation
between vehicular cache resources needs to cater to road traffic distribution, channel
quality, and content popularity. Thus, supporting delay-bounded content delivery
over vehicular social networks with multiple cache-enabled smart vehicles is a chal-
lenge.

DT technology can be used to address the above challenges. In socially aware
vehicular edge caching networks, the DT approach can enable cache controllers to
grasp the social relations between vehicles, understand the vehicle flow distribution,
and effectively allocate communication and storage resources for content delivery.
In this section, we propose a DT-empowered content caching mechanism for socially
aware vehicular edge networks [111]. We present a DT-based vehicular edge caching
framework that comprehensively captures vehicular social features and improves
caching scheduling in highly dynamic vehicular networks. Moreover, by applying
a deep deterministic policy gradient (DDPG) learning approach, we propose an
optimal vehicular caching cloud formulation and edge caching resource arrangement
that maximize the system’s utility in diverse traffic environments.
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8.3.1 System Model

Figure 8.6 shows a DT-empowered vehicular social edge network. We consider an
intelligent transport system in urban areas, where smart vehicles provide various
powerful applications, such as smart navigation, online video, and interactive gam-
ing. The implementation of these applications always requires content generated by
the data centre, which is located in the core network. The required content is classified
into 𝐺 types. Each type of content is described in three terms, as 𝑇𝑔 = { 𝑓𝑔, 𝑡

max
𝑔 , 𝜇𝑔},

and 𝑔 ∈ G, where 𝑓𝑔 is the size of content type 𝑔, 𝑡max
𝑔 is its maximum delay toler-

ance, and 𝜇𝑔 is the delay sensitivity coefficient that can be taken as the utility gained
from a unit time reduction compared to 𝑡max

𝑔 during the content delivery process.

Fig. 8.6 A DT-empowered vehicular social edge network

To form access networks and provide data to vehicular content subscribers, 𝑁
RSUs are located along bidirectional roads that can receive content from the data
centre and then relay it to the vehicles. The diameters of the regions covered by these
RSUs are {𝐿1, 𝐿2, ..., 𝐿𝑁 }, respectively. Each RSU is equipped with an edge caching
server. The caching capabilities of these servers are {𝐶1, 𝐶2, ..., 𝐶𝑁 }, respectively.
To avoid long transmission latencies between the data centre and the vehicles, the
servers can retrieve popular content from the centre and store them in their cache for
later use.

Besides being cached in RSUs, content can also be pre-stored in smart vehicles.
Cache-enabled smart vehicles on the road act as content carriers and forward cached
data to vehicles they encounter through V2V communication. To fully exploit V2V
content delivery, vehicular social relations are leveraged in edge cache management.
When the supply and demand content between vehicles is consistent and the com-
munication link for data delivery can be established, we say that the vehicles are
socially related. From this viewpoint, vehicular social relations are characterized
by two elements. One element is the content matching between the supply and de-
mand sides, and the other is the communication contact rate of the vehicles. We
consider that the vehicles in this system demand 𝐺 types of content with probability
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𝛽 = {𝛽1, 𝛽2, ..., 𝛽𝐺}, respectively, where
∑

𝑔∈G 𝛽𝑔 ≤ 1. When a vehicle with type
𝑔 content in its cache is on the road, the probability of encountering a vehicle that
needs exactly this type of content is 𝛽𝑔. Thus, the content-matching element can be
described by the probability 𝛽. The communication contact rate is defined as the
number of vehicles with which a given vehicle can be associated in a unit time while
it is driving.

8.3.2 DT-Empowered Content Caching

ℎ
"#$

Cell

Hidden layerInput Output

ℎ
"

Cell

Digital twin 
network

LSTM

Vehicle location
Driving status

Content demands
Service capacity

%
"#$

%
"

&
"#$

Content preference 
Contact rate

&
"Information 

collection

Instruction 
output

Inter-RSU 
collaboration

Smart 
vehicles

RSU

Digital twin 
formation

Control

Fig. 8.7 DT and LSTM-based social model construction

Figure 8.7 illustrates the main framework of the proposed DT and a social model
construction approach based on long short-term memory (LSTM). The DTN con-
sists of five modules, where the information collection module obtains vehicular
network states from smart vehicles through V2R communication. The control mod-
ule determines the update cycle and adjusts the data type and interactive frequency in
information collection. The adjustment will be issued to the smart vehicles through
the instruction output module, thereby changing the vehicles’ state sampling and
reporting mode. After establishing the DT, which offers a virtual representation of
the physical vehicular network, we use an LSTM recurrent network to extract the
social features from the received data sets.

We use𝜓𝑔 (𝜉𝑔) to denote the accuracy of the social model that reflects the relations
between the supply and demand of vehicles for type 𝑔 content, where 𝜉𝑔 is the amount
of system information gathered by DT to train the LSTM network and obtain the
social model {𝛽, 𝑠1, 𝑠2}. The value of 𝜓𝑔 (𝜉𝑔) is the modulus ratio of the estimated
social model parameters to those of the true model, and 0 ≤ 𝜓𝑔 (𝜉𝑔) ≤ 1. Since more
information would help improve the model’s accuracy, 𝜓𝑔 (𝜉𝑔) is a monotonically
increasing function in terms of 𝜉𝑔.

In the proposed vehicular edge caching network, to improve the delivery time
efficiency while reducing transmission costs, the content needs to be efficiently pre-
stored in appropriate cache nodes. Moreover, as the caching arrangement depends on
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the vehicular social model obtained from the DT-empowered LSTM system, the more
information gathered by the DTN, the higher the accuracy of the model. However,
the information collection process incurs a V2R communication cost. Thus, the
trade-off between the V2R communication cost and model accuracy and its impact
on the caching system utility also need to be considered in the cache scheduling.

Let 𝑥𝑔 and Y𝑔 = {𝑦𝑔,1, 𝑦𝑔,2, ..., 𝑦𝑔,𝑁 } denote the probability of pre-storing type
𝑔 content in the vehicular caching cloud and in the caching servers equipped on
RSUs, respectively. The size of the content segment cached in a vehicle is 𝑄𝑔. The
proposed optimal edge caching problem, which maximizes the utility of the caching
system under the constraints of node cache capacity and content delivery delay, can
therefore be formulated as

max
{𝑥𝑔 ,Y𝑔 ,𝑄𝑔 , 𝜉𝑔 }

𝑈 =
∑
𝑔∈G

{
∑

𝑣′ ∈V2

∑
𝑛∈N

Ψ𝑔 (𝜉𝑔)𝛽𝑔 [𝑥𝑔 (𝜇𝑔 (𝑡
max
𝑔

−𝑡𝑉𝑔,𝑣′ ) − 𝑓𝑔𝜍𝑣) + (1 − 𝑥𝑔)𝑤𝑔,𝑣′ ,𝑛 (𝜇𝑔 (𝑡
max
𝑔

−𝑡𝑅𝑔,𝑣′ ,𝑛) − 𝑓𝑔 (𝜍𝑟 + (1 − 𝑦𝑔,𝑛)𝜍𝑐))] − 𝜉𝑔𝜍𝑟 }

s.t. C1 : 0 � 𝑥𝑔 � 1, 𝑔 ∈ G,
C2 : 0 � Y𝑔 � 1, 𝑔 ∈ G,
C3 : 𝑒𝑣 � 𝐶𝑣 , 𝑣 ∈ V1,
C4 :

∑
𝑔∈G 𝑦𝑔,𝑛 𝑓𝑔 �𝐶𝑛, 𝑛 ∈ N ,

C5 : 1{𝑥𝑔 > 0}𝑡𝑉𝑔,𝑣′ � 𝑡max
𝑔 , 𝑔 ∈ G, 𝑣′ ∈ V2, 𝑛 ∈ N ,

C6 : 1{𝑦𝑔,𝑛 > 0}𝑡𝑅𝑔,𝑣′ ,𝑛 � 𝑡max
𝑔 , 𝑔 ∈ G, 𝑣′ ∈ V2, 𝑛 ∈ N ,

C7 : 𝑄𝑔 � 𝑄max
𝑣 , 𝑔 ∈ G,

C8 :
∑

𝑔∈𝐺 𝜉𝑔 ≤ 𝜉max, 𝜉𝑔 > 0, 𝑔 ∈ G,

(8.6)

where V1 and V2 denote the sets of the content provider and subscriber vehicles
in an area, respectively; Ψ𝑔 (𝜉𝑔) is an influence function that presents the impact of
social model deviation caused by different amounts of gathered information on the
system’s utility; and 𝑤𝑔,𝑣′ ,𝑛 is the probability that vehicle 𝑣′ is located within the
coverage of RSU 𝑛 and obtains type 𝑔 content from the cache server equipped on
this RSU in V2R mode.

In (8.6), the first two constraints show the range of the caching probability.
Constraints C3 and C4 guarantee that the amount of content on a vehicle and on
an RSU server should not exceed the maximum storage capacity of the respective
caching node. Constraints C5 and C6 ensure the time cost for type 𝑔 content remains
within its delay constraint. Constraint C7 indicates that the size of the content segment
cached in a vehicle should not exceed the upper limit. The last constraint ensures that
the amount of information related to type 𝑔 content is positive and the total amount
of gathered information should not exceed the maximum threshold 𝜉max.

In the proposed optimal caching problem, the edge cache scheduling relies on the
social model built, while, in the model construction, the adjustment of information
collection depends on its effect on the system’s utility. Moreover, due to possible
content segmentation and cache resource sharing, there exists strong correlation
between the various types of content cached in heterogeneous edge caching nodes.
These features make solving problem (8.6) a critical challenge. To address this
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issue, we propose a DDPG learning–based iterative approach. In each iteration, we
first obtain the cache scheduling strategies according to a given social model and
then modify the amount of information gathered in model construction based on
the determined caching strategies. The iteration continues until the system’s utility
converges.

8.3.3 Illustrative Results

We evaluate the performance of the proposed DT-empowered and socially aware
edge caching schemes based on vehicular traffic data sets gathered in different areas.
We consider a scenario in which one to three RSUs are randomly located in each area.
The data storage capacity of the cache server equipped on each RSU is randomly set
within the interval (300, 700) MB. There are 10 types of content requirements, of
which the content size, maximum delay tolerance, and delay sensitivity coefficient
are randomly chosen from (10,100) MB, (0.5, 3) seconds, and (0.1, 0.3), respectively.

Fig. 8.8 Comparison of the caching utilities of multiple areas under different schemes

Figure 8.8 compares the utilities of multiple areas with different edge caching
scheduling schemes. Our proposed DT-empowered learning approach gains the high-
est utilities in all the urban areas compared to the others. Here, the greedy approach,
which obtains the lowest utility, arranges the content storage in the edge cache nodes
only according to content popularity and ignores the social relations between smart
vehicles and thus fails to make full use of the communication contacts between vehi-
cles to implement V2V data delivery. In contrast to this approach, the socially aware
learning scheme takes the content delivery among vehicles directly into account
and dynamically allocates cache and communication resources based on the content
requirements and known environmental characteristics, thus achieving higher utility.
However, its social feature perception mode is fixed, which can increase detection
costs or reduce perception accuracy. Unlike the two previous schemes, the one we
proposed leverages DT to reflect the vehicular network states while adaptively ad-
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justing social model construction strategies with balanced accuracy and costs, thus
resulting in the highest caching utility.

Fig. 8.9 Comparison of the content acquisition delays of multiple areas under different schemes

Figure 8.9 compares the content acquisition delays under different schemes in
multiple areas. Our proposed DT-empowered learning scheme outperforms the other
two approaches. Since this scheme smartly utilizes vehicular social relations and
caching capacity in enabling direct data delivery between vehicles, the content
acquisition delay is reduced. It is worth noting that, although in a few areas, such
as area 3 in Fig. 8.8 and area 4 in Fig. 8.9, the performance of the DT-empowered
learning scheme is close to that of the socially aware learning approach, in all areas
as a whole, the utility (delay) of the DT-empowered scheme is increased (decreased)
by 17% (10%), on average, over the simple socially aware scheme. Since both
these schemes leverage vehicular social relations to schedule cache resources, the
difference in their performance is smaller than the performance gap between the
socially aware schemes and the greedy approach, which ignores vehicular social
relation effects. Moreover, the performance gain provided by the DT mechanism is
affected by the different vehicle distributions, driving states, and caching capacities
in various areas. Therefore, there are differences in the gain effects of DT in these
areas.
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