
Chapter 7
Digital Twin for Aerial-Ground Networks

Abstract With the widespread deployment of unmanned aerial vehicles (UAVs) in
civil and military fields, researchers have turned their attention towards the emerging
area of aerial-ground networks for computing-intensive applications, data-intensive
applications, and network-intensive applications. However, the application of aerial-
ground networks relies on dynamic perceptions and intelligent decision making,
which are difficult to conceive of due to the heterogeneity of ground devices and the
complexity of the aerial-ground environment. The convergence of digital twin (DT)
and UAVs has great potential to tackle the challenge and improve the service quality
and stability in applications such as rescue and search and communication relaying.
This chapter first investigates the advantages, challenges, and key techniques of DTs
for aerial-ground networks. In addition, we highlight the main issues of DT for
UAV-assisted aerial-ground networks with two case studies, including cross-domain
resource management and intelligent cooperation among devices.

7.1 Introduction

Recently, aerial-ground networks based on unmanned aerial vehicles (UAVs) have
made great success in various applications, such as disaster relief, service congestion,
and damage assessment. Thanks to their inherent advantages, such as wide coverage,
high flexibility, and strong resilience, UAVs can act as aerial mobile base stations
to provide seamless and intelligent services for ground devices. However, due to the
heterogeneity and mobility of ground devices and the dynamic network topology,
the advantages of aerial–ground networks cannot be fully exploited. As an emerging
digital mapping technology, digital twin (DT) has great potential to tackle the network
dynamics and complexity of aerial-ground networks. By mapping the channel state
and computing state, DT established on UAV can reflect the state of ground devices
or network topology in a timely manner and accurately capture their state changes.
After learning from these complex statuses, DT established on UAVs can support
diversified applications, such as trajectory planning, large-scale mapping, urban
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modelling, road patrol, and anti-piracy. We detail the main application scenarios of
DT deployed on UAVs in different fields as follows.

• Smart city: In smart cities, with the help of DT deployed on UAVs, we can build
a large-scale virtual city, dynamically monitor urban facilities, allocate urban
public resources, and further realize intelligent collaborative decision making in
urban management.

• Disaster rescue: In the disaster rescue field, UAVs with DT can analyse the con-
nection performance of ground rescue devices and then make proactive commu-
nication resource allocations for high-priority devices to maximize the long-term
quality of service (QoS).

• Telemedicine: In the field of telemedicine, through smart wearable devices, pa-
tients’ health information can be sent back to DTs deployed on UAVs. UAVs
with DT can track and monitor a patient’s health status remotely and in a timely
manner. When the DT measures any abnormal information, the rescue agency
can immediately provide first aid services.

• Internet of vehicles: In the Internet of Vehicles (IoV), UAVs with DT can com-
petently implement the real-time planning of vehicle trajectories in a specific
area. At the same time, services such as status awareness and mobility predic-
tion provided by DT can effectively avoid traffic congestion and reduce traffic
accidents.

DT is able to assist in the optimal allocation and intelligent dispatching of valuable
aerial resources. We further summarize the advantages of DT and UAV fusion as
follows.

• Hyperconnectivity: Due to the wide coverage of UAVs over ground devices, DT
deployed on UAVs can achieve interoperability and hyperconnectivity with physi-
cal counterpart devices. DT deployed on a UAV can connect all the ground devices
in the aerial-ground network. We can fully utilize the advantages of DT from the
multidimensional integration of information to sense how different devices work
together, thus building an aerial-ground network with hyperconnectivity. In an
aerial-ground network with hyperconnectivity, DT has the interaction details and
status information of all the devices, which can then dynamically provide optimal
decisions for different problems.

• Low latency: Thanks to the mobility of UAVs, DT deployed on a UAV can maintain
a specified synchronization frequency with the ground device, which enhances
the fidelity of the signal and brings more reliable DT services to the device.
DT is sensitive to synchronization frequency, and untimely state synchronization
or instruction updates can cause DT to make incorrect decisions. UAVs have
the ability to move with mobile devices such as vehicles, significantly reducing
DT status update delays due to communication distance. DT deployed on UAVs
can better meet the requirements of devices for low network latency in different
application scenarios, such as real-time trajectory planning in IoV, and provide
services with higher performance and reliability.

• Strong stability: DT deployed on UAVs can monitor the status of each aerial-
ground network in real time, which ensures the coverage and stability of the
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aerial-ground network and makes the DT service more stable. Deploying DT
on the ground makes it difficult to perform timely maintenance in the event
of an attack or communication failure, which will lead to the interruption of
DT services. DT deployed on a UAV can closely monitor the state changes
in different aerial-ground networks, after detecting emergency situations such as
UAV damage and network failure. DT can then immediately replenish and replace
UAVs, continuously providing high-stability and high-performance services for
devices.

The complementary advantages of DT and UAV play an important role in di-
verse applications that require stable network connections. However, there are still
challenges in how to customize DT on UAVs for smart services in aerial-ground
networks. We summarize the challenge in two cases.

• Cross-domain resource allocation: An aerial-ground network involves two dif-
ferent resource domains: the aerial domain and the terrestrial domain. The main
challenge that DT faces on UAVs is the effective allocation of limited resources
across domains under resource and distance constraints. DT-enabled intelligent
services are often supported by a large amount of data distributed over various
terminal devices. In a large-scale aerial-ground network, there are limitations
of physical distance, communication resources, and computing resources; there-
fore, how DT deployed on UAVs effectively allocates resources across domains
deserves in-depth study. In addition, the limited energy capacity of UAVs can-
not support DT modelling, and DT relies on abundant computing resources and
sufficient energy supply, which further limits the endurance of UAVs.

• Cross-device intelligent collaboration: The intelligent collaboration of different
devices in an aerial-ground network is an important link to keep the network
running efficiently. One of the important features of aerial-ground networks is
a highly dynamic network environment. Diverse devices are constantly joining
and withdrawing from the network, and mobile devices such as vehicles, UAVs,
and mobile phones have low latency tolerance. For DTs deployed on UAVs, en-
abling different devices to achieve dynamic joint decision making and intelligent
collaboration in tasks such as autonomous driving and trajectory planning while
reducing network latency is challenging.

7.2 Key Techniques

7.2.1 Cross-Domain Resource Management

Aerial-ground networks can enhance the environmental perception and decision
making capabilities of the network by leveraging multidimensional resources to
achieve resource management. However, the resources in different domains (such
as air and ground) are complicatedly coupled, and the orchestration of these cross-
domain resources is confronted with a huge state–action space, which makes it
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difficult to allocate resources optimally in real time [78, 79]. To effectively manage
the multidimensional resources (for communication, computing, and caching) of
aerial-ground networks, the state change and QoS of the network are the key factors
to consider.

Ensuring the flexibility and efficiency of resource management:
Aerial-ground networks are extremely dynamic and complex because of the high

mobility of heterogeneous devices and the large scale of the networks. It is difficult to
achieve flexible and efficient network resource management. As an emerging digital
mapping technology, DT provides an approach for realizing effective and reliable
network orchestration by mapping and predicting the dynamics of networks. Deng et
al. in [80] proposed a combined approach of expert knowledge, reinforcement learn-
ing, and DT to cope with the dynamic changes of high-dimensional network states.
Dai et al. in [74] proposed a new paradigm DT network for the Industrial Internet
of Things (IIoT) and formulated random computing shunting and resource alloca-
tion problems, using Lyapunov optimization technology to transform the original
problem into a deterministic per-slot problem. Lu et al. in [37] proposed a DT edge
network to fill the gap between the physical edge network and the digital system. The
integration of DT technology into aerial-ground networks can yield considerable im-
provement in both the latency performance and computing efficiency of applications
running on ground devices and aerial devices.

Software-defined networking (SDN) can be utilized to construct and manage vir-
tual networks to support specific network services for flexible network management
[81]. Based on SDN architecture, Li et al. in [82] modelled multidimensional re-
source scheduling as a partially observable Markov decision process and used value
iteration to jointly optimize networking, caching, and computing. Due to the compli-
cated coupling of multidimensional resources, the central controller can hardly know
a priori the effects of its actions on system performance. To this end, He et al. in [83]
proposed a resource orchestration method based on deep reinforcement learning,
with which the central controller learns an effective policy via trial-and-error search.

Ensuring QoS performance: The effective management of the multidimensional
resources (for communication, computing, and caching) of aerial-ground networks to
guarantee the required QoS performance of ground devices is also an important chal-
lenge. High computational complexity, the large cost of equipment deploymemt, and
limited resources are the factors that hinder the improvement of QoS performance.

• Reducing computational complexity: Due to the limited computing and commu-
nication capabilities of ground devices, task offloading, as a key technology, can
effectively improve service execution efficiency and realize the fast and efficient
response of ground devices. Task offloading means that resource-constrained mo-
bile terminal devices can offload overloaded computing tasks to edge nodes with
stronger computing or communication capabilities, to improve computing speed
and save energy. For example, road side units (RSUs) can undertake computation-
intensive tasks (e.g. semantic image segmentation, motion planning, and route
planning) for vehicles. Xu et al. in [30] proposed a service offloading method
with deep reinforcement learning in DT-empowered IoV to provide vehicular
services with a high QoS level. To reduce processing delays, Do-Duy et al. in [84]
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proposed a novel DT framework assisting in the task offloading of IoT devices
for IIoT networks with mobile edge computing. Qu et al. in [85] proposed a deep
meta-reinforcement learning offloading algorithm that combines multiple parallel
deep neural networks with Q-learning, quickly and flexibly obtaining the optimal
offloading strategy from a dynamic environment.

• Reducing equipment deployment costs: To achieve effective resource management
and satisfy the diverse QoS requirements, the deployment cost of edge nodes
cannot be ignored in aerial-ground networks. Using a large number of edge
nodes to completely cover an area means a large deployment cost. When ground
devices offload computing tasks to nearby edge nodes through the assistance of
UAVs, the appropriate incentive is required for edge nodes to contribute their
services. Edge nodes can be unwilling to contribute their services if the rewards
cannot compensate for their service costs. Sun et al. in [86] designed an incentive
mechanism to motivate RSUs to provide computing resources for ground vehicles.
It was able to effectively complete vehicle task offloading schemes with the
assistance of UAVs in an aerial-ground network. Zhou et al. in [87] proposed
a novel incentive-driven and deep Q-network–based method and combined a
content caching strategy and incentive mechanism to improve the performance of
device-to-device offloading. To realize the long-term stability of DT services, Lin
et al. in [88] designed an incentive-based congestion control scheme to offload
real-time mobile data captured by DT to mobile edge computing servers.

• Reducing the burden of aerial devices with limited resources: Most works ignore
the fact that centralized resource allocation schemes introduce a great burden
to aerial devices, especially to UAVs in aerial-ground networks. Moreover, the
incentive mechanism can be computation intensive, which results in service-
unrelated energy consumption and further deteriorates service endurance. Thus,
the resource allocation scheme should be carried out in a distributed manner.
Through cooperative networks [89], SDN controllers can be decomposed into
multiple simpler controllers to reduce the complexity of a large action space.
Nasir et al. in [90] thus leveraged multi-agent deep Q-learning to distributedly
schedule power allocation in wireless networks. The alternating direction method
of multipliers (ADMM) is a distributed parallel optimization algorithm, and
resource allocation problems based on ADMM have attracted much attention.
Wang et al. in [91] considered computational offloading, resource allocation, and
content caching strategies as optimization problems. An algorithm for solving
optimization problems based on the ADMM algorithm was designed. Liang
et al. in [92] proposed an efficient ADMM-based distributed virtual resource
allocation algorithm in virtualized wireless networks. In addition, Zheng et al.
in [93] designed a converged and scalable Stackelberg game–based ADMM for
edge caching to solve storage allocation games and user allocation games in a
distributed manner.
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7.2.2 Cross-Device Intelligent Cooperation

In aerial-ground networks, heterogeneous ground devices can collaborate with aerial
devices to accomplish intelligent network orchestration based on federated learning.
Cross-device intelligent cooperation plays an important role in the efficient operation
of networks and stable network environments. However, due to the heterogeneity,
mobility, and selfishness of devices, across-device intelligent cooperation based on
federated learning still faces many challenges. For example, further optimization is
needed in terms of communication efficiency, training efficiency, and training costs.
DT has the powerful ability to capture the state of heterogeneous devices in real
time, which can effectively promote cross-device intelligent cooperation.

Improving communication efficiency: The heterogeneity and high mobility of
devices complicate network management. The real-time changes of device states
can lead to inaccurate channel estimation and affect the communication efficiency
of federated learning. DT can analyse the connection performance of devices and
make proactive communication resource allocations for improving communication
efficiency. Lu et al. in [9] proposed a blockchain-based DT-enabled federated learn-
ing scheme to improve communication efficiency. Tran et al. in [94] studied the
collaborative optimization problem when devices participate in federated learning
in wireless networks. By adjusting a device’s resource allocation strategy and the
local training update frequency between two global aggregations, the best trade-off
between communication time and computing performance can be achieved. Sun et
al. in [33] used deep reinforcement learning to adaptively adjust the cooperative
aggregation strategy of federated learning to achieve the balanced optimization of
communication and computing. Krouka et al. in [95] proposed a novel distributed re-
inforcement learning algorithm to solve the random interference and communication
interference of wireless channels and optimize communication efficiency.

Improving training efficiency: The dynamic nature of aerial-ground networks
makes it difficult for heterogeneous devices to complete collaborative computing,
so it is difficult to improve the training efficiency of federated learning. Lu et al.
in [37] proposed a blockchain-empowered federated learning framework operating
in a DT wireless network that comprehensively considers DT association, training
data batchsize, and bandwidth allocation to formulate the training optimization
problem. Jiang et al. in [36] exploited blockchain to propose a new DT edge network
framework and designed a joint cooperative federated learning and local model
update verification scheme that achieves the optimal unified time. Zhang et al.
in [96] proposed a reinforcement of a federated learning scheme based on deep
multi-agent reinforcement learning to optimize the training performance of federated
learning in distributed IIoT networks. Li et al. in [97] proposed a platform-assisted
collaborative learning framework. This framework can rapidly adapt to learning a
new task at the target edge node by using a federated meta-learning approach with
a few samples. Existing collaborative computing needs to restart learning as the
topology changes, which leads to the failure or slow convergence of the established
cooperative mechanism. DT can capture a complex network topology dynamically
and improve the efficiency of collaborative computing between devices.
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Reducing training costs:
It is necessary to encourage heterogeneous devices to participate in intelligent

cooperation. Heterogeneous devices need to spend their resources and costs to train
the federated learning model. They are therefore reluctant to participate in training
without appropriate incentives [98, 99]. Existing incentive mechanisms can perform
poorly due to the insufficient utilization of massive data and inaccurate modelling
of operations in dynamic aerial-ground networks. DT can reduce the information
asymmetry between devices by monitoring the status of devices in real time. Yang
et al. in [100] introduced the Stackelberg game to establish an interaction model that
comprehensively considers the data size, training time, and power consumption to
measure the contribution to motivate client participation. Lim et al. in [101] studied
the incentive mechanism for federated learning in UAV-assisted IoV to encourage
contributions from data owners, considering information asymmetry between UAVs
and the data owners. Federated learning is data driven, and the motivation of clients
and the quality of data they provide have an important impact on the training results
[102, 103]. The incentive mechanism combined with DT is suitable for motivating
heterogeneous devices to actively participate in training in aerial-ground networks.

In summary, cross-device intelligent cooperation based on federated learning in
an aerial-ground network still needs to be studied further. The integration of DT and
aerial-ground networks can provide favourable support for realizing the cooperation
mechanism of model-free, self-learning, autonomous intelligence.

Fig. 7.1 A DT-driven aerial-ground network system model



94 7 Digital Twin for Aerial-Ground Networks

7.3 DT for Task Offloading in Aerial-Ground Networks

7.3.1 System Model

To realize the efficient allocation of cross-domain resources from air and ground,
we establish a dynamic DT model for an aerial-ground network. The DT model
can capture the time-varying demand and supply of cross-domain resources in the
network. Deploying the DT model on devices in the network can significantly im-
prove the environmental perception, computing efficiency, and delay performance
of the devices. This is beneficial for the unified and efficient resource allocation and
scheduling in aerial-ground networks.

As shown in Fig. 7.1, we consider a DT-driven aerial-ground network in which
vehicles act as ground devices and UAVs act as aerial devices. The network is
composed of vehicles, RSUs, UAVs and DTs. We assume the UAVs are responsible
for areas that are not covered by RSUs, as a supplement to the ground network.
In such areas, vehicles and RSUs are able to deliver messages to a UAV directly
with line-of-sight communication. With the assistance of UAVs, the vehicles not
covered by the ground network could offload their computing tasks to RSUs to
reduce their computing burden. We establish two DT models, including the DT of a
group of RSUs and the DT of vehicles. Both DTs are established in UAVs to update
the network topology and traffic load in real time and help UAVs make specific
decisions, such as path planning. The DT of a group of RSUs can be given by

D𝑟= {F 𝑟 , 𝐺𝑟 , 𝐿𝑟 } , (7.1)

where F 𝑟 is a vector describing the available computing resource status of the RSUs,
𝐺𝑟 is the network topology between the RSUs, and 𝐿𝑟 is the network transmission
load of the RSUs.

The DT of vehicles can be given by

D𝑣= {𝐺𝑣 , 𝐿𝑣 , C,Q} , (7.2)

where 𝐺𝑣 is the network topology of the vehicles, 𝐿𝑣 is the communication load
of the vehicles, C represents the demand information of the vehicles at this time,
and Q is the preference of the vehicles for the resource providers. The preference is
determined by the historical service of the vehicles in a specific type of offloading
task.

7.3.2 Utility Function

The DT of a group of vehicles and the DT of a group of RSUs have different utilities.
The set of RSUs in the network is M = {1, ..., 𝑚, ..., 𝑀}. The set of vehicles that
require offloading tasks is N = {1, ..., 𝑛, ..., 𝑁}. Vehicle 𝑛 wants to maximize its
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service satisfaction, which is the accumulated satisfaction it achieves from various
RSUs. A vehicle’s satisfaction is defined as the ratio of its cumulative satisfaction
from RSUs to the total number of resources it receives. Thus the satisfaction of
vehicle 𝑛 is given by

S𝑛 =

∑
𝑚∈M

{𝑞𝑛,𝑚𝑝𝑚,𝑛 −
𝑞𝑛,𝑚 𝑝2

𝑚,𝑛

2 𝑓 }∑
𝑚∈M

𝑝𝑚,𝑛
, (7.3)

where 𝑓 is the maximum expected value of resources from RSUs, 𝑝𝑚,𝑛 represents the
CPU frequency obtained by vehicle 𝑛 at RSU 𝑚, and 𝑞𝑛,𝑚 represents the preference
of vehicle 𝑛 for RSU 𝑚.

The DT of RSUs tries to minimize energy consumption. The energy consumption
on the RSU is related to the frequency and duration of the CPU used. We can express
energy consumption as

𝐸 (P) =
∑
𝑚∈M

∑
𝑛∈N

𝜔𝑝2
𝑚,𝑛𝑐𝑛,𝑚, (7.4)

where 𝜔 represents the effective capacitance parameter of the computing chipset,
and 𝑐𝑛,𝑚 is the number of CPU cycles required for RSU 𝑚 to calculate its tasks
for vehicle 𝑛. The detailed resource scheduling of each vehicle is expressed as
P = {𝑃𝑚, 𝑚 ∈ M}𝑇 .

7.3.3 Distributed Incentives for Satisfaction and Energy Efficiency
Maximization

The goals of RSUs and the DT of RSUs are different. An RSU is designed to max-
imize the average satisfaction of the vehicle. whereas an RSU’s DT is designed to
maximize global energy efficiency. Although these quantities are used to formulate
the allocation scheme of computing resources, it is difficult to achieve the goal of

Fig. 7.2 Workflow of a game and Jacobian ADMM-based algorithm
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minimizing total energy consumption when they have different optimal values. In
addition, due to limited computing resources, computationally intensive centralized
computing creates pressure for UAVs. Therefore, we propose an incentive mecha-
nism based on the Stackelberg game and Jacobian ADMM to allocate computing
resources, so that the DT of RSUs and the RSUs can reach a consensus on the
allocation scheme and solve the whole problem in a distributed and parallel manner.

Due to the complexity of solving the desired objectives of RSUs and the DT of
RSUs, we first derive the optimization problem of RSUs and the DT of RSUs and
then construct a Stackelberg game. We solve the average satisfaction maximization
problem for vehicles and the global energy efficiency maximization problems for the
DT of RSUs by using the classic ADMM and Jacobian ADMM with two blocks,
respectively. We obtain the resource allocation schemes of the two problems (the
DT-driven classic ADMM and the DT-driven Jacobian ADMM). Furthermore, we
model these two problems as a complete Stackelberg game. In the game, the RSUs’
DT is the leader and the RSUs are the follower. According to the goals of RSUs and
the DT of RSUs, we can formulate the Stackelberg game as

𝐿𝑒𝑎𝑑𝑒𝑟 : 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
P

𝐸 (P)

𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 : 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑝𝑚 ,𝑄𝑚

Φ𝑚 (ℎ𝑚 (𝑃𝑚, 𝜂𝑚), 𝜽𝑚)

s.t.
∑
𝑛∈N

𝑝𝑚,𝑛 = 𝑓𝑚, 𝑚 ∈ M (𝐶1), (7.5)

where 𝑄𝑚 is the cumulative preference of all the vehicles for RSU 𝑚. The term
Φ𝑚 (·) includes the optimization direction of the DT of the RSUs and RSU 𝑚 and
the compensation from the DT of the RSUs. The classic ADMM with two blocks
is powerless in this kind of convex optimization problem with high-dimensional
variables. The Jacobian ADMM-based algorithm is able to solve convex optimiza-
tion problems by breaking them into smaller subproblems, making each part more
tractable. Therefore, we use the game and Jacobian ADMM-based algorithm to solve
the problem. The algorithm flow is shown in Fig. 7.2.

In the beginning, the DT of the RSUs, as the leader, sends the incentive parameter
𝜽𝑚 to the corresponding RSU 𝑚, that is, the additional compensation of the DT of
the RSUs to RSU 𝑚. We define the number of iterations of the outer loop as 𝑘 .
At iteration 𝑘 , given incentive parameters {𝜽1, · · · , 𝜽𝑚, · · · , 𝜽𝑀 } from the leader,
each RSU updates its own computing resource allocation scheme 𝑃𝑚 in the inner
loop, and then the leader and the follower can reach the current optimal scheme.
At the next iteration, 𝑘 + 1, the leader will adjust the incentive parameters based
on the updated 𝑃𝑚,∀𝑚 ∈ M. Then, a new current optimal scheme can be reached.
When the outer iteration is terminated, the optimal incentive parameters and resource
allocation scheme are the equilibrium point (𝜽∗,P∗) of the Stackelberg game. The
proposed DT-driven game ADMM minimizes global energy consumption based on
the premise of ensuring the satisfaction of the RSUs.
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7.3.4 Illustration of the Results
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Fig. 7.3 Convergence of the energy consumption of all RSUs over iterations
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Fig. 7.4 Vehicle satisfaction with RSUs over iterations under three schemes

Figure 7.3 compares the energy consumption of three schemes, that is, the DT-
driven Jacobian ADMM, the DT-driven game ADMM, and the scheme without
DT, over the numbers of iterations. The scheme without DT allocates resources
without the preference information that was obtained from the DT of the vehicles.
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The energy consumption of the scheme without DT is the highest and remains a
constant, because the tasks and CPU frequency can only be allocated randomly. This
leads to a decision making and optimization process without iteration. The energy
consumption of the DT-driven Jacobian ADMM is the lowest, since minimizing total
energy consumption is its only objective at the cost of low vehicle satisfaction. The
proposed DT-driven game ADMM jointly considers the overall energy efficiency
and the satisfaction of the RSUs, and its energy consumption is thus higher than that
of the DT-driven Jacobian ADMM.

Figure 7.4 compares the vehicles’ satisfaction with the RSUs of three schemes,
that is, the DT-driven classic ADMM, the DT-driven game ADMM, and the scheme
without DT. Due to the contradictory goals of the RSUs and the DT of the RSUs,
the DT-driven game ADMM attempts to balance between the two contradictory
goals, and its satisfaction is a bit lower than that of classic ADMM. This is because
RSUs allocate a great deal of resources to vehicles with high preferences, to provide
satisfactory services for the vehicles. The satisfaction achieved by both DT-driven
schemes, that is, the DT-driven Jacobian ADMM and the DT-driven game ADMM,
is much higher than that without DT. This is because, in the scheme without DT, the
preferences of the vehicles for RSUs are unknown, and the allocation cannot fully
meet the actual requirements of the vehicles.

7.4 DT and Federated Learning for Aerial-Ground Networks

7.4.1 A DT Drone-Assisted Ground Network Model

Figure 7.5 shows a drone-assisted ground network scenario consisting of drones,
ground clients, and DTs, where the drones provide supplementary capacity for ground
communications during natural disasters or traffic peaks. Mobile drones with a
wide range of coverage act as servers, responsible for task offloading, global model
updates, and so forth. A wide variety of ground equipment, such as smartphones and
laptops, serves as clients to perform tasks and connect with drones through wireless
communications.

The drone serving as the aggregator cooperates with the ground equipment serving
as the trainers to perform federated learning tasks. The drone publishes a global
model 𝜔, which all participating clients will download. Then, each client uses its
own private data sets to train the model and upload the new weights or gradients
to the server. This process is conducted iteratively until the entire training process
converges [104, 74].

The establishment of DT can capture the state of network elements in real time
and effectively help the system make intelligent decisions. DT types include the DT
of ground clients and the DT of the drone. The DTs of ground clients are deployed
on a resource-rich ground node. The drone would maintain the DT by exchanging
information with the ground node instead of all the clients. The set of clients in the
network is N = {1, 2, · · · , 𝑁}. Client 𝑖’s DT, 𝐷𝑇𝑐

𝑖 , at time 𝑡 can be expressed as
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Fig. 7.5 The architecture of a DT-empowered aerial-ground network

𝐷𝑇𝑐
𝑖 (𝑡) = {𝐹𝑡

𝑖 (𝜔), 𝑏𝑖 (𝑡), 𝑓𝑖 (𝑡)}, (7.6)

where 𝜔 denotes the current training parameter of client 𝑖, 𝐹𝑡
𝑖 (𝜔) represents the

current training state of client 𝑖, 𝑏𝑖 (𝑡) represents the packet loss rate, and 𝑓𝑖 (𝑡) is the
CPU frequency of the client at time 𝑡.

Due to the deviation of DTs, the packet loss rate deviation �̂�𝑖 (𝑡) and the CPU
frequency deviation 𝑓𝑖 (𝑡) can be measured as the errors of the DT mapping in the
communication environment and computing power, respectively. For client 𝑖, the
calibrated DT is

𝐷𝑇
𝑐
𝑖 (𝑡) = {𝐹𝑡

𝑖 (𝜔), 𝑏𝑖 (𝑡) + �̂�𝑖 (𝑡), 𝑓𝑖 (𝑡) + 𝑓𝑖 (𝑡)}. (7.7)

The DT of the drone manages the deviation of the DTs of the clients and has a
preference for the clients. Drone 𝑗’s model is

𝐷𝑇𝑢
𝑗 (𝑡) = {P(𝑡), D̂(𝑡)}, (7.8)

where P(𝑡) is the reputation distribution of nodes within its coverage area, and D̂(𝑡)
is the set of deviations between the client’s local update and the global update.

7.4.2 Contribution Measurement and Reputation Value Model

Update significance can intuitively measure the contribution of a local model update
to the global model update. The update significance is measured by the model
deviation 𝑑𝜏

𝑖 , which is the divergence of a particular local model from the average
across all local models. A small 𝑑𝜏

𝑖 reflects a high quality of upload parameters of
client 𝑖. The aggregator updates the value of 𝑑𝜏

𝑖 for client 𝑖 in each time slot, as a
basis for the quality evaluation of the parameters submitted by client 𝑖.
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The reputation of a client can also affect the training process. Through the rep-
utation model, high-performance clients should be identified in terms of sufficient
communication resources, powerful computing capabilities, and accurate training
results. We use P = (𝜌1, 𝜌2, · · · , 𝜌𝑁 ) to represent the reputation value of each
client. According to subjective logic, the reputation value model is related to the
communication capability of node 𝑖 during the 𝜏th global update and the learning
quality 𝑑𝜏

𝑖 .

7.4.3 Incentive for Federated Learning Utility Maximization

Static and dynamic incentives are designed for small-scale networks and large-scale
networks, respectively [37]. In a small-scale network, a single drone can cover all
the clients. Therefore, we first design a static incentive mechanism. The term 𝜏𝑖
represents the decision of client 𝑖, that is, the number of rounds in which the client
participates in the global update; T = (𝜏1, 𝜏2, · · · , 𝜏𝑁 ) represents the strategies for
all the clients; and 𝜏−𝑖 = (𝜏1, · · · , 𝜏𝑖−1, 𝜏𝑖+1, · · · , 𝜏𝑁 ) denotes the training strategies
of all the clients except for client 𝑖. Given the computing cost per round (a complete
global update round) C = (𝑐1, 𝑐2, · · · , 𝑐𝑁 ) and the communication cost per round
K = (𝑘1, 𝑘2, · · · , 𝑘𝑁 ), the static incentive utility function is the difference between
the reward and loss of client 𝑖, which can be defined by

𝑈𝑖 (𝜏𝑖 , 𝜏−𝑖) =
𝜌𝑖𝜏𝑖∑

𝑗∈N
𝜌 𝑗𝜏𝑗

𝑅 − 𝜏𝑖𝑐𝑖 − 𝜏𝑖𝑘𝑖 . (7.9)

The utility function of the aggregator is the total energy consumption of clients
in the learning process minus the payment of the aggregator. The static incentive
utility function is defined as

𝑈0 (𝑅) =
∑
𝑖∈N

𝜌𝑖𝜏𝑖𝑐𝑖 − 𝛼𝑅2, (7.10)

where 𝛼 > 0 is a system parameter to ensure that the utility is greater than or equal
to zero under the optimal 𝑅∗.

In a large-scale case, it is difficult for a single drone to cover the entire area.
Therefore, a dynamic incentive mechanism can be designed to select the optimal
clients in adaptation to the time-varying environment. The difference from the static
incentive is that 𝐶 in the dynamic incentive represents the computing cost of the
client to complete a round of local training. In the dynamic scene, we use 𝑟 𝜏 instead
of 𝑅 in the formula, where 𝑟 𝜏 represents the reward determined by the drone before
the 𝜏th global model is updated. For convenience, in the following analysis, we
uniformly use 𝑅 to express the reward.

The decision making problem can be modelled using the Stackelberg game. In
the game, the DT of the drone acts as the leader, while the ground clients are the
follower. The game consists of two stages. In the first stage, the aggregator publishes
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the task and determines its reward 𝑅. In the second stage, each client will devise
strategies to determine the number of rounds to participate in federated learning and
maximize their respective utilities [105]. The second stage of the Stackelberg game
is a noncooperative game, that is, in which there is a Nash equilibrium. A set of
strategies T∗ = (𝜏∗1 , 𝜏

∗
2 , · · · , 𝜏

∗
𝑁 ) is a Nash equilibrium in the second stage of the

game if, for any client 𝑖, 𝑈𝑖 (𝜏
∗
𝑖 , 𝜏

∗
−𝑖) ≥ 𝑈𝑖 (𝜏𝑖 , 𝜏

∗
−𝑖), ∀𝜏𝑖 > 0. Under the reward 𝑅

given by the aggregator, no client can gain any additional benefits by unilaterally
changing the current strategy.

According to Nash equilibrium, when all the other clients expect client 𝑖 to play
their best strategy, client 𝑖 can only play 𝜏∗𝑖 . Therefore, we need to introduce the
concept of the best response strategy. Given 𝜏−𝑖 , a strategy is client 𝑖’s best response
strategy, denoted by 𝛽𝑖 (𝜏−𝑖), if it maximizes 𝑈𝑖 (𝜏𝑖 , 𝜏−𝑖) over all 𝜏𝑖 ≥ 0. To find the
Nash equilibrium in the second stage of the game, a closed-form solution of the
best response strategy for each client must be calculated. Accordingly, if the whole
game has a unique Stackelberg equilibrium, the necessary and sufficient condition
is for there to be a unique optimal solution in the first stage of the game. There
exists a unique Stackelberg equilibrium (𝑅∗,T∗), where 𝑅∗ is the only value that
can maximize the utility of the aggregator over 𝑅 ∈ [0,∞). The utility function of
the aggregator is a concave quadratic function on the difference between the reward
and loss of client 𝑖, and the first derivative of the utility function is equal to zero.
Then the optimal 𝑅 can be solved. At this time, (𝑅∗,T∗) is the unique Stackelberg
equilibrium in the game.

Different from the static mechanism, the dynamic mechanism selects clients
according to the ratio of the unit local training computing cost and reputation value,

that is, 𝑐𝑖
𝜌𝑖

. The drone’s optimal payment 𝑅∗ should be expressed as 𝑅∗ =
𝜏𝑔∑
𝜏=1

(𝑟 𝜏)∗,

where 𝜏𝑔 is the number of rounds of the global update. Finally, 𝑡∗𝑖 and (𝑟 𝜏)∗ constitute
the unique equilibrium of the Stackelberg game.

7.4.4 Illustration of the Results

We use the software Pytorch 0.4.1 to build a federated learning model in an air–
ground network and use the classic Modified National Institute of Standards and
Technology data set to evaluate the performance of the proposed incentive mech-
anisms. We set up a total of 10 to 100 clients. Under the dynamic incentive, the
communications range of a drone can only cover 20 clients at the same time. We
employ a cost-only scheme as the benchmark where clients with low training costs
are selected to participate in federated learning.

Figure 7.6 shows the model’s accuracy with varying global update rounds under
three schemes. The convergence accuracy of the global model relies on the par-
ticipating clients and their data quality. The accuracy under the dynamic incentive
scheme is the highest. After each round of global updates, the performance of the
clients will be evaluated, and the participation of low-quality clients will be reduced.
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Fig. 7.6 Comparison of model accuracy under varying global update rounds

Fig. 7.7 The total social welfare of a drone and clients varies with the number of clients

The static scheme chooses the optimal client set, which might not be appropriate
later in the federated learning process due to the mobility of the drone. Thus, the
accuracy of the static incentive is lower than that of the dynamic incentive. Since the
benchmark considers only the training costs of the clients, its model accuracy is 5%
lower than that of the static scheme.

Figure 7.7 compares the total social welfare of the drone and clients varies with
the number of clients under three schemes. As the total number of clients increases,
the total social welfare increases first, peaks at around 40 clients, and then decreases.
With the increase of the client number, the utility of the drone increases, while the
utilities of the clients decrease due to the greater number of competitors. In addition,
the benchmark social welfare is higher than that of the static incentive, because the
benchmark selects only clients with low cost. Thus, its social welfare is the highest
among the three schemes.
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