
Chapter 6
Digital Twin for 6G Networks

Abstract Digital twin is a technology that has the potential to help sixth-generation
(6G) networks to realize digitization. In this chapter, we first introduce the com-
bination of digital twin and 6G and then discuss two key use cases in terms of
reconfigurable intelligent surfaces and digital twin and digital twins for stochastic
offloading.

6.1 Integration of Digital Twin and Sixth-Generation (6G)
Networks

To meet the ever-increasing demands of user traffic, fifth-generation (5G) networks
integrate several novel network architectures, such as edge computing, software-
defined networking, network function virtualization, and ultra-dense heterogeneous
networks, to realize performance improvements for peak rates, transmission latency,
network energy efficiency, and other indicators. However, the rapid proliferation
and breakneck expansion of 5G wireless services also pose new challenges on
transmission data rates, ubiquitous coverage, reliability, and network intelligence
[67]. These challenges are spurring activities focused on defining the next-generation
6G wireless networks. Compared with 5G, 6G networks are envisioned to achieve
the superior performance in the following areas [68, 69].

• Peak data rate: The peak data rate is the highest data rate under ideal channel
conditions where all available radio resources are completely assigned to a single
mobile device. Driven by both user demand and technological advances such as
terahertz communications, peak data rates are expected to reach up to 1 Tbps, 10
times that of 5G.

• Latency: Latency can be distinguished as the user plane and control plane latency.
The minimum latency requirement for the user plane is 1–4 ms. This value is
envisioned to be further reduced in 6G to 100 𝜇s or even 10 𝜇s. The minimum
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latency for the control plane should be 10 ms in 5G and is also expected to be
remarkably improved in 6G.

• Mobility: The highest mobility supported by 5G is 500 km/h. In 6G, the maximal
speed of 1,000 km/h is targeted to meet the requirements of commercial airline
systems.

• Connection density: The minimum number of devices with a relaxed quality of
service in 5G is 106/km2. In 6G, the connection density is envisioned to be further
improved by 10 times, to 107/km2.

• Energy efficiency: Energy efficiency is an important metric to enable cost-efficient
wireless networks for green communications. In 6G, network energy efficiency
is expected to increase 10 to 100 times compared to that in 5G.

• Signal bandwidth: The requirement for bandwidth in 5G is at least 100 MHz, and
6G will support up to 1 GHz for operations in higher frequency bands, and even
higher in terahertz communications.

Beyond imposing new performance metrics, emerging trends that include new
services and the recent revolutions in artificial intelligence (AI), computing, and
sensing will redefine 6G. Digital twin, as one of the emerging technologies for next-
generation network digitalization, can pave the way for the creation of future digital
6G by transforming and precisely mapping physical networks to digital networks with
virtual twins. Digital twin will provide three main benefits for 6G. First, digital twin
can provide a comprehensive and accurate network analysis for 6G with increasingly
accurate and synchronous network updates. Second, digital twin can build a virtual
twin layer between the physical entities and user applications. This can establish a
bridge between the bottom network and the top application with better cross-layer
interaction and timely user experience feedback. Third, digital twin–enabled 6G can
utilize AI algorithms to adjust network schedules, such as task offloading, resource
allocation, and network management. Thus, digital twin is an essential technique for
6G in terms of supporting network automation and intelligence.

6.2 Potential Use Cases

Several works have explored utilizing digital twins to enhance the performance
of next-generation communication networks. In [70], the authors proposed digital
twin–enabled 6G to enable network scalability and reliability. The authors in [71]
analysed the potential of digital twin for next-generation communication networks
in terms of radio access, channel emulation, and network optimization. These works
discussed how digital twin could be a powerful tool to fulfil the potential of 6G.
Next, we present three detailed use cases of the combination of digital twin and 6G.

• Reconfigurable intelligent surface (RIS) technology and digital twin: With the
dense deployment of edge servers, there will be increasing data transmission re-
quirements in the next-generation networks, which will aggravate network inter-
ference and increase transmission delays. Current massive multiple input, multiple
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output and millimetre wave technologies can increase wireless communication
data rates, but these can incur high hardware costs and complicated signal pro-
cessing issues. RIS is a new technology for 6G that can enhance spectral efficiency
and suppress interference in wireless communications by adaptively configuring
massive low-cost passive reflecting elements. However, to improve wireless trans-
mission rates, RIS requires both the amplitude and phase of passive reflecting
elements to be adjusted to facilitate an enhanced signal propagation environment.
Since virtual twins can record the real-time states of physical objects, monitor the
dynamic changes of wireless networks, and carry out optimization and prediction
to improve the performance of the physical system, RIS can utilize digital twin to
extract the key features of RIS components, such as the number of RIS elements,
the phase and amplitude of the reflecting elements, and the mobile devices served
by each RIS element. With the extracted information, digital twin can assist in
RIS to adjust the wireless propagation environment to improve the signal-to-noise
ratio and decrease the probability of outages.

• Edge association and digital twin: The huge number of connected devices and
the heterogeneous network structure of 6G pose great challenges for constructing
digital twins in each network’s infrastructure. A possible solution for this issue is
to select a subset of base stations as the digital twin servers to maintain the digital
twins at reduced time cost and energy consumption, instead of maintaining digital
twins at every base station (BS). To achieve this, the edge association problem must
be addressed. The objective of edge association is to minimize the average system
latency while providing delay-guaranteed service for each user. According to the
running phases of digital twins, edge association consists of two subproblems:
the digital twin placement problem and the digital twin migration problem. The
digital twin placement problem involves how to choose the optimized subset of
BSs as digital twin servers. The migration of digital twins problem involves how
to allocate network resources to ensure relatively low transmission overhead and
communication latency in the process of digital twin migration.

• Cellular vehicle to everything (C-V2X) and digital twin: The rapid development of
wireless communications and C-V2X has facilitated the wide use of smart vehicles
and enriched many intelligent transportation system applications, such as smart
navigation, road condition recognition, high-precision real-time mapping, forward
collision warning, and driving assistance. However, due to the high mobility of
vehicles, it is difficult to test C-V2X functionalities and performance for typical
V2X use cases. Digital twin can provide a high-fidelity digital mirror of C-V2X
systems throughout their entire life cycle [72]. By using digital twin mapping, the
predicted state of automatic driving vehicles can be realized based on a virtual
simulation test environment. Based on the prediction information of digital twin,
driving behaviours and emergency events can be more actually determined and
quickly perceived.
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Fig. 6.1 Digital twin–empowered RIS framework

6.3 Digital Twin for RIS

To support emerging applications, 6G networks deploy computation/storage capabil-
ities at BSs to avoid long transmission delays from mobile devices to cloud servers.
However, while this shortens the distance and delay to access cloud server resources,
it does not improve the wireless propagation environment. The recently proposed
RIS technology can enhance spectral efficiency and suppress interference by adjust-
ing both the amplitude and phase of passive reflecting elements. Digital twin can
assist in RIS to intelligently adjust passive reflecting elements.

6.3.1 System Model

To clearly illustrate the combination of digital twin and RIS, we present a hierarchical
digital twin–empowered RIS framework, as shown in Fig. 6.1. In this framework,
edge resources can alleviate the heavy computational pressure of mobile devices,
and edge servers can reduce task processing latency due to their proximity to mobile
devices. RIS can enhance the quality of wireless communication links in the process
of task offloading by intelligently altering the radio propagation environment.

The proposed framework consists of two layers: an RIS-aided communication
layer and a digital twin–empowered virtual layer. In the RIS-aided communication
layer, RIS elements are distributively installed on the surface of building facades, to
improve propagation conditions and increase the quality of wireless communications.
The digital twin–empowered virtual layer is constructed by diverse distributed edge
servers. With edge resources and AI algorithms, virtual twins can construct a real-
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time mirror of the physical network to enable intelligent policy design, quality
of service requirements, resource management, and network topology monitoring.
This is a general framework that can improve the communication and computational
performance in many scenarios, including cellular, vehicular, and unmanned aerial
vehicle networks.

6.3.2 Computation Offloading in Digital Twin–Aided RIS

To elaborate on how digital twin assists in RIS coefficient adjustment, in this section,
we present a case study that focuses on RIS-aided offloading. We consider a network
of digital twin–aided RIS offloading that consists of a physical network entities
layer and a digital twin–empowered virtual layer. The physical network entities layer
contains three types of physical entities: base stations, RISs, and mobile devices.
Since digital twin mirrors a physical entity, the digital twin–empowered virtual layer
also contains three types of virtual models. The first type of virtual model involves
the BSs. We consider that each physical BS has multiple antennas and an edge server
for providing edge computing via wireless communications. The virtual model of
a BS with edge intelligence and can thus predict current available communication,
computing, and caching resources and monitor current wireless links to construct the
current network topology. The second type of virtual model involves RIS, including
the number of RIS elements and the phase and amplitude of reflecting elements. The
key function of this virtual model is to adjust the RIS coefficients. The third type
of virtual model involves mobile devices. This type of virtual model mainly records
the size of the collected data, the current locations of the mobile devices, and the
latency or computational resource requirements of on-device applications.

Task offloading aims to offload the computation-intensive tasks of mobile devices
to nearby distributed BSs for processing. The virtual model of each mobile device
records the computation-intensive task as (𝑑𝑘 , 𝑐𝑘), where 𝑑𝑘 is the data size of task
𝑘 and 𝑐𝑘 is the required computation resource for the computing unit bit. The virtual
model needs to determine what part of the task should be processed locally and
how much should be offloaded to the edge server to process. We define this as the
offloading ratio (i.e. 𝑥𝑘). RIS offloading utilizes RIS to assist in task offloading for a
higher wireless communication rate. Different from traditional wireless transmission
links, which only include direct device–BS links, the wireless transmission link
in RIS offloading includes both of device–BS links and reflected device–RIS–BS
links. For the device–BS link, the virtual model of the BS records its channel
vector, that is, h𝑑

𝑘 . The reflected device–RIS–BS link contains three components:
the device–RIS link, the RIS reflection with phase shifts, and the RIS–BS link. The
virtual RIS model records the channel vectors of the device–RIS link and RIS–
BS link as h𝑟

𝑘 and h𝐻 , respectively. The RIS reflection coefficients are denoted as
Θ = diag(𝛽1𝑒

𝑗 𝜃1 , 𝛽2𝑒
𝑗 𝜃2 , ..., 𝛽𝑁 𝑒

𝑗 𝜃𝑁 ), where 𝛽𝑛 and 𝜃𝑛 are the amplitude and phase
shift of the 𝑛th RIS element, respectively. The effective channel gain can be expressed
as
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g𝑘 = h𝑑
𝑘 + h𝐻Θh𝑟

𝑘 . (6.1)

Based on channel gain, the maximum achievable wireless transmission data rate
can be obtained by

𝑅𝑘 = 𝐵 log2 (1 +
𝑝𝑘 |w𝐻

𝑘 g𝑘 |
2∑𝐾

𝑗=1, 𝑗≠𝑖 𝑝 𝑗 |w𝐻
𝑖 g𝑘 |2 + 𝜎2

), (6.2)

where 𝐵 is the system’s bandwidth. The virtual RIS model should properly adjust
the reflection coefficients to improve the wireless communication rate.

The task execution latency is determined by the local computation and task of-
floading. The latency of local computation is mainly related to the computational
capability of each mobile device (i.e. 𝑓 𝑙𝑘). The latency of task offloading involves
the task transmission time and edge computation time. Since the two parts are ex-
ecuted in parallel, the total task execution latency is equal to the maximal value of
the two processes. To minimize the total task execution latency, the RIS configura-
tion offloading ratio and computation resource must be jointly optimized. The RIS
offloading problem can be formulated as

min
𝑥, 𝑓 ,𝛽, 𝜃

∑
𝑘∈K

max{𝑑𝑘𝑐𝑘
1 − 𝑥𝑘

𝑓 𝑙𝑘
, 𝑑𝑘𝑐𝑘

𝑥𝑘
𝑓 𝑠𝑘

+ 𝑑𝑘
𝑥𝑘

𝑅𝑘 (g𝑘)
}

s.t.
∑
𝑘∈K

𝑓 𝑠𝑘 � 𝐹𝑠 , 0 � 𝑓 𝑠𝑘 � 𝐹𝑠 , 𝑘 ∈ K, (6.3a)

𝑥𝑘 , 𝛽𝑛 ∈ [0, 1], 𝑘 ∈ K, 𝑛 ∈ N , (6.3b)
0 � 𝜃𝑛 � 2𝜋, 𝑛 ∈ N , (6.3c)

where 𝑓 𝑠𝑘 and 𝐹𝑠 are the computation resource that the BS allocates to task 𝑘
and the total computation resource of the BS. Constraint (6.3a) is the computation
resource allocation constraint. Constraints (6.3b) and (6.3c) are the value ranges
of the offloading ratio, amplitude and phase shift variables, respectively. Since the
digital twin–empowered virtual layer has AI ability, we can use AI, such as deep
reinforcement learning (DRL), to solve the complex optimization problem. We first
reformulate the above optimization problem as DRL with a system state, action, and
reward. The state has five components:

𝑠(𝑡) = {𝑑𝑘 (𝑡), 𝑐𝑘 (𝑡), 𝑓
𝑙
𝑘 (𝑡), 𝐹𝑠 ,Θ(𝑡)}. (6.4)

In the environment, the BS assembles the information as a state and sends it to the
DRL agent. The action has four parts, which are the variables of the optimization
problem:

𝑎(𝑡) = {𝑥𝑘 (𝑡), 𝑓
𝑠
𝑘 (𝑡), 𝛽𝑛 (𝑡), 𝜃𝑛 (𝑡)}. (6.5)

Based on the state and action, the agent can produce a reward R𝑖𝑚𝑚 (𝑠(𝑡), 𝑎(𝑡))
from the environment, where the reward is related to the objective function. In this
scenario, the total task execution latency can be regarded as the reward function.
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Fig. 6.2 Cumulative task execution latency under different schemes

Based on the state, action, and reward, we exploit asynchronous actor–critic DRL
to solve the formulated problem [73]. Asynchronous actor–critic DRL consists of a
global agent and several local agents. The global agent accumulates all the parameters
of the neural networks from the local agents. Each local agent has an actor neural
network and a critic neural network. The actor neural network is for generating
actions and the critic neural network is for evaluating the performance of the action
generated by the actor neural network. At each training step, the parameter of the
actor neural network is updated based on

𝜃𝜋 ←𝜃𝜋 + 𝛼𝜋

∑
𝑡

�𝜃𝜋 log 𝜋(𝑠(𝑡) |𝜃𝜋) (R𝑖𝑚𝑚(𝑠(𝑡), 𝑎(𝑡))

+ 𝛿𝑣 𝜃𝑣 (𝑠(𝑡 + 1)) − 𝑣 𝜃𝑣 (𝑠(𝑡))),

(6.6)

where 𝛼𝜋 is the learning rate of the actor network and 𝜋(𝑠(𝑡) |𝜃𝜋) is the output of the
actor neural network. The parameter of the critic neural network is updated based on

𝜃𝑣 ← 𝜃𝑣 + 𝛼𝑣

∑
𝑡

�𝜃𝑣 (R
𝑖𝑚𝑚(𝑠(𝑡), 𝑎(𝑡)) + 𝛿𝑣 𝜃𝑣 (𝑠(𝑡 + 1)) − 𝑣 𝜃𝑣 (𝑠(𝑡))))

2, (6.7)

where 𝛼𝑣 is the learning rate of the critic network.
Figure 6.2 shows the total task execution latency of computation offloading under

different RIS configuration schemes. First, we can see that the proposed DRL-
based computation offloading algorithm converges in all cases and the cumulative
task execution latency reduces with the number of episodes. Further, the offloading
latency with RIS aid is lower than the latency without RIS aid. The reason is
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Fig. 6.3 Illustration of a digital twin network

that RIS offloading can achieve a higher transmission data rate, thus resulting in a
lower transmission latency. In addition, the offloading latency with optimized RIS
configuration is the lowest due the optimal adjustments of the RIS amplitude and
phase shift.

6.4 Stochastic Computation Offloading

To improve task processing efficiency and prolong the battery lifetime of mobile
devices, computation offloading is a promising approach that can offload the collected
data and computation tasks to distributed BSs for processing. However, current
research focusing on computation offloading assumes that each device executes a
single computation task, without considering the randomness of task arrivals. Such
an assumption in the designed policy cannot be applied to a network with a stochastic
task arrival model. Since digital twin is a powerful technology that can monitor and
analyse the dynamic changes of physical objects, in this section, we utilize digital
twin to construct virtual models of the physical objects and solve the stochastic
computation offloading problem considering dynamic changes of the task queue.

6.4.1 System Model

We consider a digital twin network consisting of a physical network and its digital
twin. As shown in Fig. 6.3, the physical network has three major components:
distributed mobile devices, small base stations (SBSs), and a macro base stations
(MBS). Each device collects data from sensors and on-device applications, and the
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collected data must be analysed in real time. Since data analysis is computation
intensive, devices with limited computation capability and battery power might
not be able to conduct the data analysis in a timely manner. So, the devices must
offload these tasks to edge servers for a high quality of computational experience.
Digital twins contain the virtual models of the physical elements. Virtual models
not only mirror the characteristics of the physical elements/system, but also make
predictions, simulate the system, and can play a crucial role in policy design and
resource allocation. In the network, digital twin can be utilized [74] to 1) construct
the network topology of the physical network; 2) monitor network parameters and
models, that is, dynamic changes of resources and stochastic task arrival processes,
and 3) optimize offloading and resource allocation policy.

6.4.2 Stochastic Computation Offloading: Definition and Problem
Formulation

Based on digital twin, the digital representation (i.e. virtual models) of the physical
network (i.e. virtual world) is created. The virtual models here comprise the wireless
network topology, the communication model between the devices and BSs, and the
stochastic task queueing model.

(1) Network topology in the digital twin network
Digital twin first models the physical network as a graph 𝐺 = (U,B, 𝜀), where

U = {𝑢1, .., 𝑢𝑁 } and B = {𝑏0, 𝑏1, ..., 𝑏𝑀 } are, respectively, the sets of devices and
BSs (where 𝑏0 is the index for the MBS, and the other values are the indexes for the
SBSs). The term 𝜀 is the edge information, that is, for the connection between the
devices and BSs.

Then, the digital twin uses a 3-tuple 𝐷𝑇𝑖 (𝑡) to characterize devices, that is,
𝐷𝑇𝑖 (𝑡) = {𝑝𝑖,𝑚𝑎𝑥 (𝑡), 𝑙𝑖 (𝑡), 𝑓

𝑙
𝑖 }, where 𝑝𝑖,𝑚𝑎𝑥 (𝑡) denotes the maximal transmission

power in time slot 𝑡, 𝑙𝑖 (𝑡) denotes the current location of 𝑢𝑖 , and 𝑓 𝑙𝑖 denotes the
computation resources of the local server. Similarly, the digital twin uses a 3-tuple
𝐷𝑇𝑗 (𝑡) to characterize the BSs, that is, 𝐷𝑇𝑗 (𝑡) = {𝑙 𝑗 (𝑡), 𝑤 𝑗 , 𝑓

𝑒
𝑗 }, where 𝑙 𝑗 (𝑡) denotes

the current location of 𝑏 𝑗 , 𝑤 𝑗 denotes the bandwidth of 𝑏 𝑗 , and 𝑓 𝑒𝑗 denotes the
computation resource.

The task offloading between the devices and BSs is facilitated through wireless
communication. Here, we consider that devices communicate with the nearest BS
for offloading. The wireless communication data rate between device 𝑢𝑖 and SBS 𝑏 𝑗

can be expressed as

𝑅𝑠
𝑖 𝑗 (𝑡) = 𝑤𝑖 𝑗 (𝑡) log(1 +

𝑝𝑖 (𝑡)ℎ
𝑠
𝑖 𝑗 (𝑡)𝑟

𝑠
𝑖 𝑗 (𝑡)

−𝛼

𝜎2 + 𝐼
), (6.8)

where 𝑤𝑖 𝑗 (𝑡) (𝑤𝑖 𝑗 (𝑡) ≤ 𝑤 𝑗 ) is the bandwidth that SBS 𝑏 𝑗 allocates to device 𝑢𝑖 in
time slot 𝑡, ℎ𝑠𝑖 𝑗 (𝑡) is the current channel gain, 𝛼 is the path loss exponent, 𝜎2 is the
noise power, 𝑟𝑠𝑖 𝑗 (𝑡) is calculated based on the locations of 𝑙𝑖 (𝑡) and 𝑙 𝑗 (𝑡), and 𝐼 is the
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Fig. 6.4 Stochastic computation offloading in digital twin network

interference from other SBSs. With the adoption of orthogonal frequency division
multiple access, the interference of different devices in the coverage of the MBS is
ignored. The wireless communication data rate between device 𝑢𝑖 and the MBS is

𝑅𝑚
𝑖0 (𝑡) = 𝑤𝑖0 (𝑡) log(1 +

𝑝𝑖 (𝑡)ℎ
𝑚
𝑖0 (𝑡)𝑟

𝑚
𝑖0 (𝑡)

−𝛼

𝜎2 ), (6.9)

where 𝑤𝑖0 (𝑡) (𝑤𝑖0 (𝑡) ≤ 𝑤0) is the channel bandwidth between device 𝑢𝑖 and the
MBS in time slot 𝑡, ℎ𝑚𝑖0 (𝑡) is the channel gain between device 𝑢𝑖 and the MBS, and
𝑟𝑚𝑖0 (𝑡) is the distance between device 𝑢𝑖 and the MBS.

(2) Stochastic task queueing
At the beginning of time slot 𝑡, device 𝑢𝑖 inputs the size of the computation task

of 𝜆𝑖 (𝑡) (bits/slot) into the local dataset. We assume the 𝜆𝑖 (𝑡) values in different time
slots are independent, and E[𝜆𝑖 (𝑡)] = 𝜆. Since device 𝑢𝑖 has computation resources,
it can execute part of the computation task locally. We consider the size of the
computation task that is executed locally as 𝐷𝑙

𝑖 (𝑡). The size of the computation task
offloaded to BS 𝑏 𝑗 ( 𝑗 ∈ B) is 𝐷𝑒

𝑖 𝑗 (𝑡). The rest is stored in a local task buffer, as
shown in Fig. 6.4(a). Assume the queue length of the local task buffer is 𝑄𝑙

𝑖 (𝑡) and
the queue length is dynamically updated with the following equation:

𝑄𝑙
𝑖 (𝑡 + 1) = max{𝑄𝑙

𝑖 (𝑡) − Ψ𝑖 (𝑡), 0} + 𝜆𝑖 (𝑡), (6.10)

where Ψ𝑖 (𝑡) = 𝐷𝑙
𝑖 (𝑡) + 𝐷𝑒

𝑖 𝑗 (𝑡) is the size of the computation task that leaves the task
buffer of device 𝑢𝑖 during time slot 𝑡.

Each edge server also has a task buffer to store the offloaded but not yet executed
task. As shown in Fig. 6.4(b), the queue length is dynamically updated by

𝑄𝑒
𝑗 (𝑡 + 1) = max{𝑄𝑒

𝑗 (𝑡) − Ψ 𝑗 (𝑡), 0} +
∑
𝑖∈U

𝐷𝑒
𝑖 𝑗 (𝑡), (6.11)
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where
∑

𝑖∈U 𝐷𝑒
𝑖 𝑗 (𝑡) is the amount of tasks offloaded from all the devices connected

to BS 𝑗 , and Ψ 𝑗 (𝑡) is the size of the computation tasks leaving the edge task buffer.
According to the definition of stability in [75], the task queue is stable if all the
computation tasks satisfy the following constraints:

lim
𝑇→∞

1
𝑇

𝑇−1∑
𝑡=0

∑
𝑖∈U

E{𝑄𝑙
𝑖 (𝑡)} < ∞, (6.12a)

lim
𝑇→∞

1
𝑇

𝑇−1∑
𝑡=0

∑
𝑗∈B

E{𝑄𝑒
𝑗 (𝑡)} < ∞. (6.12b)

(3) Task offloading in the digital twin network
Let 𝑓 𝑙𝑖 (𝑡) be the computation resource of device 𝑢𝑖 during time slot 𝑡 and let 𝑐

denote the required computation resource for executing one bit of a computation
task. Thus, the size of computation tasks executed locally will be

𝐷𝑙
𝑖 (𝑡) =

𝜏 𝑓 𝑙𝑖 (𝑡)

𝑐
, (6.13)

where 𝜏 is the duration of the time slot. The energy consumption of a unit of
computation resource is 𝜍 ( 𝑓 𝑙𝑖 )

2, where 𝜍 is the effective switched capacitance,
depending on the chip architecture. The local energy consumption for computing
task 𝐷𝑙

𝑖 (𝑡) can be defined as

𝐸 𝑙
𝑖 (𝑡) = 𝜍𝜏 𝑓 𝑙𝑖 (𝑡)

3. (6.14)

Devices offload their tasks to BSs via wireless communication. Since the devices
are associated with different BSs, the offloaded tasks of device 𝑢𝑖 during time slot 𝑡
can be expressed as

𝐷𝑒
𝑖 𝑗 (𝑡) =

{
𝑅𝑠
𝑖 𝑗 (𝑡)𝜏 𝑗 ∈ B/{𝑏0},

𝑅𝑚
𝑖0 (𝑡)𝜏 𝑗 = 𝑏0.

(6.15)

The energy consumption in this case has three parts: the energy consumption for
uplink offloading, the energy consumption for computation, and the energy con-
sumption for downlink feedback. The third quantity is generally ignored due to its
small data size. Thus, the energy consumption for executing task 𝐷𝑒

𝑖 𝑗 (𝑡) on BS 𝑏 𝑗

can be expressed as

𝐸𝑒
𝑖 𝑗 (𝑡) = 𝑝𝑖 (𝑡)𝜏 +

𝐷𝑒
𝑖 𝑗 (𝑡) ∗ 𝑐

𝑓 𝑒𝑖 𝑗 (𝑡)
∗ 𝜀, (6.16)

where 𝑓 𝑒𝑖 𝑗 (𝑡) is the computation resource that 𝑏 𝑗 allocates to device 𝑢𝑖 in time slot 𝑡,
and 𝜀 is the energy consumption for unit computation on edge servers.

The total energy consumption is the combination of local energy consumption,
edge server energy consumption, and the transmission energy consumption for com-
putation offloading. Therefore, the total energy consumption can be expressed as
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𝐸 𝑡𝑜𝑙 (𝑡) =
∑
𝑖∈U

𝐸 𝑙
𝑖 (𝑡) +

∑
𝑖∈U

∑
𝑗∈B

𝐸𝑒
𝑖 𝑗 (𝑡). (6.17)

(4) Stochastic offloading problem
Based on the total energy consumption, we can define network efficiency as

𝜂𝐸𝐸 =

lim𝑇→∞
1
𝑇

∑𝑇−1
𝑡=0 E{𝐸

𝑡𝑜𝑙 (𝑡)}

lim𝑇→∞
1
𝑇

∑𝑇−1
𝑡=0

∑
𝑖∈U

∑
𝑗∈B E{𝐷

𝑡
𝑖 (𝑡) + 𝐷𝑒

𝑖 𝑗 (𝑡)}

. (6.18)

This is the ratio of long-term total energy consumption to the corresponding long-
term aggregate of accomplished computation tasks.

We define a(𝑡) = [w(𝑡), p(𝑡),Ψ(𝑡), fl (𝑡), fe (𝑡)] as the system action in time slot 𝑡,
where w(𝑡) is the bandwidth allocation vector, p(𝑡) is the transmission power vector,
𝚿(𝑡) is the vector associated with the computation task leaving the edge servers, and
fl (𝑡) and fe (𝑡) are the vectors of computation resources that edge servers allocate
to the devices. Taking the network stability constraint into account, the stochastic
offloading problem for minimizing 𝜂𝐸𝐸 can be formulated as

P1 : min
a(𝑡 )

𝜂𝐸𝐸

s.t.
∑
𝑖∈U

𝑤𝑖 𝑗 (𝑡)

𝑤 𝑗
≤ 1, 𝑤𝑖 𝑗 (𝑡) ≥ 0, (6.19a)

0 � 𝑝𝑖 (𝑡) � 𝑝𝑖,𝑚𝑎𝑥 (𝑡), (6.19b)
0 � 𝑓 𝑙𝑖 (𝑡) � 𝑓 𝑙𝑖 , (6.19c)∑
𝑖∈U

𝑓 𝑒𝑖 𝑗 (𝑡) ≤ 𝑓 𝑒𝑗 , 𝑓 𝑒𝑖 𝑗 (𝑡) ≥ 0, (6.19d)

Ψ 𝑗 (𝑡) ∗ 𝑐 ≤ 𝑓 𝑒𝑗 𝜏, Ψ 𝑗 (𝑡) ≥ 0, (6.19e)

(6.12𝑎) − (6.12𝑏).

Constraint (6.19a) is the bandwidth allocation constraint. Constraints (6.19b) and
(6.19c) denote the transmission power and computation resource constraints, respec-
tively. Constraint (6.19d) is the computation resource allocation constraint. Con-
straint (6.19e) implies that the amount of computation resource for processing task
Ψ 𝑗 cannot exceed the available computation resources.

Problem P1 is a stochastic optimization problem. The complex coupling among
optimization variables and mixed combinatorials make P1 difficult to solve. Further,
the stochastic task arrival, dynamic channel state information, and dynamic task
buffer make it challenging to design an efficient resource management policy for the
devices and edge servers. We therefore exploit Lyapunov optimization to transform
the original stochastic optimization problem into a deterministic per-time block
problem and propose a stochastic computation offloading algorithm to solve P1.
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6.4.3 Lyapunov Optimization for Stochastic Computation Offloading

We define the quadratic Lyapunov function as the sum of the squared queue backlogs,

𝐿 (Θ(𝑡)) =
1
2
{
∑
𝑖∈U

[𝑄𝑙
𝑖 (𝑡) − 𝛽𝑖]

2 +
∑
𝑗∈B

𝑄𝑒
𝑗 (𝑡)

2}, (6.20)

where Θ(𝑡) = [𝑄𝑙 (𝑡), 𝑄𝑒 (𝑡)] represents the current task queue lengths of the devices
and edge servers, and 𝛽 is a perturbation vector. Further, we define the Lyapunov
drift-plus-penalty function as

�𝑉𝐿 (Θ(𝑡)) = �𝐿 (Θ(𝑡)) +𝑉E[𝜂𝐸𝐸 (𝑡) |Θ(𝑡)], (6.21)

where �𝐿 (Θ(𝑡)) = E[𝐿 (Θ(𝑡 + 1)) − 𝐿 (Θ(𝑡)) |Θ(𝑡)] is the conditional drift, and
𝑉 is a non-negative weight parameter. By minimizing �𝑉𝐿 (Θ(𝑡)), we can ensure
network stability and simultaneously minimize network efficiency. The upper bound
of �𝑉𝐿 (Θ(𝑡)) can be derived as

�𝑉 𝐿 (Θ(𝑡)) ≤ 𝐶 −
∑
𝑖∈U

[𝑄𝑙
𝑖 (𝑡) − 𝛽𝑖]E[Ψ𝑖 (𝑡) − 𝜆𝑖 (𝑡) |Θ(𝑡)]

−
∑
𝑗∈B

𝑄𝑒
𝑗 (𝑡)E[Ψ 𝑗 (𝑡) −

∑
𝑖∈U

𝐷𝑒
𝑖 𝑗 (𝑡) |Θ(𝑡)]} +𝑉E[𝜂𝐸𝐸 (𝑡) |Θ(𝑡)],

(6.22)

where 𝐶 =
1
2
{
∑

𝑖∈U [Ψ2
𝑖,𝑚𝑎𝑥 + 𝜆2

𝑖,𝑚𝑎𝑥] +
∑

𝑗∈B [Ψ
2
𝑗 ,𝑚𝑎𝑥 + (

∑
𝑖∈U 𝐷𝑒

𝑖 𝑗,𝑚𝑎𝑥)
2]}, and

Ψ𝑖,𝑚𝑎𝑥 , 𝜆𝑖,𝑚𝑎𝑥 ,Ψ 𝑗 ,𝑚𝑎𝑥 , and 𝐷𝑒
𝑖 𝑗,𝑚𝑎𝑥 are the upper bounds ofΨ𝑖 (𝑡), 𝜆𝑖 (𝑡),Ψ 𝑗 (𝑡), and

𝐷𝑒
𝑖 𝑗 (𝑡), respectively. Based on Lyapunov optimization theory, we can minimize the

right side of the inequality in (6.22) to obtain the optimal solution of P1. Specifically,
instead of solving P1, we can observe Θ(𝑡) and 𝜆𝑖 (𝑡) to determine 𝑎(𝑡) by solving
the following problem in each time slot:

P2 : min
a(𝑡 )

𝑉 [𝐸 𝑡𝑜𝑙 (𝑡) − 𝜂𝐸𝐸 (𝑡)
∑
𝑖∈U

∑
𝑗∈B

(𝐷𝑡
𝑖 (𝑡) + 𝐷𝑒

𝑖 𝑗 (𝑡))] +
∑
𝑗∈B

{𝑄𝑒
𝑗 (𝑡) [

∑
𝑖∈U

𝐷𝑒
𝑖 𝑗 (𝑡) − Ψ 𝑗 (𝑡)]} −

∑
𝑖∈U

[𝑄𝑙
𝑖 (𝑡) − 𝛽𝑖] [Ψ𝑖 (𝑡) − 𝜆𝑖 (𝑡)]

s.t. (6.12𝑎) − (6.12𝑏), (6.19𝑎) − (6.19𝑒).

(6.23)

Problem P2 needs to minimize the system cost per time slot. Here, we use DRL to
solve P2, because it is efficient for finding a near-optimal solution in real time.

To solve P2, the system first constructs a Markov decision process, that is, M =

(S,A,P,R), and then uses a DRL algorithm to explore the actions. From Fig. 6.5,
the network state 𝑠(𝑡) is constructed by digital twin and output to the DRL agent.
To gather network information, digital twin needs to predict the locations, energy,
and the generated task flow of the devices and BSs. The locations can be predicted
by the K-nearest neighbours classification method in [76]. To prolong the battery
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Fig. 6.5 Digital twin–enabled DRL

life of the devices, some of them are equipped with energy-harvesting chips, such
as solar panels. Digital twin thus needs to support solar energy prediction here. The
generated task flow is based on the application running on each device. Digital twins
are used to first predict and gather the information on location, energy, and task flow.
Then, based on the gathered information, digital twin updates the network topology,
channel condition, and task queueing models. Finally, digital twin generates the
current state and transmits it to the DRL agent.

The DRL agent constructs the system state as 𝑠(𝑡) = {R(𝑡),F, p𝑚𝑎𝑥 (𝑡),w,Θ(𝑡)}
with wireless data rate, computation resource, transmission power, and task queueing
information. Action 𝑎(𝑡) = [w(𝑡), p(𝑡),Ψ(𝑡), fl (𝑡), fe (𝑡)] is constructed with the
bandwidth allocation, the transmission power, the executed computation task, and
the computation resource allocation. It is worth noting that all the variables in action
a(𝑡) are continuous. Thus, we will utilize a policy gradient–based DRL algorithm
to explore policy. After executing action a(𝑡), digital twin updates the system state
and estimates the immediate reward R𝑖𝑚𝑚(𝑠(𝑡), 𝑎(𝑡)). Because the distribution of
transition probabilities is often unknown in DRL, the DRL agent utilizes a deep neural
network to approximate it. We define the immediate reward function 𝑅𝑖𝑚𝑚 (𝑠(𝑡), 𝑎(𝑡))
as the objective of P2 problem. After computing the immediate reward, the system
updates its state from 𝑠(𝑡) to 𝑠(𝑡 + 1) based on action 𝑎(𝑡).

We use an online and asynchronous DRL algorithm to explore policy. The online
DRL consists of a global agent and multiple learning agents. The detailed policy
is explored by the learning agent in each SBS. The policy learned by the learning
agent is 𝑎(𝑡) = 𝜋(𝑠(𝑡) |𝜃𝜋), where 𝜋(𝑠(𝑡) |𝜃𝜋) is the explored offloading and resource
allocation policy produced by a deep neural network. According to 𝑠(𝑡) and 𝑎(𝑡), the
DRL agent can produce the reward and the next state. To estimate the performance
of the proposed DRL algorithm, we consider a network topology with one MBS,
𝑀 = 3 SBSs, and 𝑁 = 20 devices. Each learning agent has an actor network and a
critic network. The actor network has three fully connected hidden layers, each with
128 neurons, and an output layer with eight neurons using the softmax function as
the activation function. The critic network has three fully connected hidden layers,
each with 128 neurons, and one linear neuron output layer.

Figure 6.6 depicts the system costs with respect to training episodes under different
schemes. The green curve is the benchmark of the joint optimization of computation
offloading, the bandwidth, and the transmission power, but without computation
resource allocation. The orange curve is the benchmark of the joint optimization of
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Fig. 6.6 System costs under different schemes

the computation offloading and computation resource allocation. Figure 6.6 shows
that the performance of the proposed scheme outperforms the two benchmarks, since
it can concurrently optimize computation offloading, the bandwidth, the transmission
power, and the computation resource allocation. In addition, the system cost of the
orange curve is lower than that of the green curve. This means that, compared with
the optimization of computation resources, the joint optimization of the bandwidth
and transmission power has a greater influence on performance.

Fig. 6.7 System costs with respect to the number of devices under different schemes

Figure 6.7 compares the system costs with respect to the number of devices under
different schemes. The number of devices ranges from 10 to 40. From Fig. 6.7, we
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can make two observations. First, for each of the three schemes, the system cost
increases with the number of devices. The reason is that the increase of devices leads
to more offloading requests, resulting in the consumption of more communication
and computation resources. Second, the performance of the proposed algorithm out-
performs two benchmarks by jointly optimizing computation offloading, bandwidth,
transmission power, and computation resource allocation.
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