
Chapter 4
Edge Computing for Digital Twin

Abstract Mobile edge computing is a promising solution for analysing and process-
ing a portion of data using the computing, storage, and network resources distributed
on the paths between data sources and a cloud computing centre. Mobile edge com-
puting thus provides high efficiency, low latency, and privacy protection to sustain
digital twin. In this chapter, we first introduce a hierarchical architecture of digital
twin edge networks that consists of a virtual plane and a user/physical plane. We then
introduce the key communication and computation technologies in the digital twin
edge networks and present two typical cooperative computation modes. Moreover,
we present the role of artificial intelligence (AI) for digital twin edge networks, and
discuss the unique edge association problem.

4.1 Digital Twin Edge Networks

4.1.1 Digital Twin Edge Network Architecture

In traditional cloud computing–assisted digital twin modelling, the centralized server
collects data and constructs twin mappings of the physical components, which leads
to large communication loads. In this context, digital twin edge networks, a new
paradigm that integrates mobile edge computing (MEC) and digital twin to build
digital twin models at the network edge, has emerged as a crucial area. In digital
twin edge networks, the edge nodes—for example, base stations (BSs) and access
points—can collect running states of physical components and develop their be-
haviour model along with the dynamic environment. Furthermore, the edge nodes
continuously interact with the physical components by monitoring their states, to
maintain consistency with their twin mappings. Hence, the networking schemes (i.e.
decision making, prediction, scheduling, etc.) can be directly designed and opti-
mized in the constructed digital twin edge networks, which improves the efficiency
of networking schemes and reduces costs. To better understand the internal logic
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of digital twin edge networks, we first present a hierarchical architecture of these
networks that consists of a virtual plane and a user/physical plane, as shown in Fig.
4.1.
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Fig. 4.1 A hierarchical architecture of digital twin edge networks

The user/physical plane is distinguished by typical digital twin application sce-
narios, such as an intelligent transportation system, the Industrial Internet of Things
(IIoT), and sixth-generation (6G) networks. The virtual plane generates and main-
tains the virtual twins of physical objects by utilizing digital twin technology at the
edge and on cloud servers. Specifically, devices in the user/physical plane include
vehicles, sensors, smart terminals, and so forth. These devices need to synchro-
nize their data with the corresponding virtual twins in real time through wireless
communication technologies. Meanwhile, these devices also accept feedback from
their virtual twins for instantaneous control and calibration. Therefore, mobile edge
networks are expected to provide communications and computations that satisfy
the main requirements of low latency, high reliability, high speed, and privacy and
security preservation, to support real-time interactions between physical and virtual
planes.
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4.1.1.1 Communications

Communications between physical and virtual planes in typical digital twin edge
network scenarios can be summarized as follows.

• Intelligent transportation systems: In recent years, urban transportation systems
have faced such problems as traffic jams and traffic accidents. Digital twin edge
networks can provide a virtual vision of the transportation system that can help
to manage traffic and optimize public transportation service planning efficiency
[46]. For example, traffic accidents can be effectively predicted and avoided by
processing the massive amounts of real-time transportation information in the
virtual plane [47]. Digital twin edge networks can also offer new opportunities
for maintaining transportation facilities. By simulating the usage of transportation
facilities in the virtual plane, facility malfunctions can be predicted in advance,
which helps managers to schedule appropriate maintenance actions.
Vehicle-to-everything communications allow vehicles to communicate with other
vehicles and their virtual twins via wireless links, which can be realized by dedi-
cated short-range communications and fifth-generation/6G communications [48].
In digital twin edge network–enabled intelligent transportation systems, vehicles’
running states and perceived environmental information need to be transmitted
to the virtual plane to update the virtual twins. However, it is challenging to
guarantee strict data transmission delays, since vehicles move at high speeds. A
detailed communications design must be carefully considered for physical plane
and virtual plane interactions in such a dynamic network environment.

• Internet of Things (IoT): With the increasing scale of the IoT, digital twin is one
of the most promising technologies enabling physical components be connected
with their virtual twins in digital space by using different sensing, communication,
computing, and software analytics technologies, to provide configuration, mon-
itoring, diagnostics, and prognostics for maintaining physical systems [49, 50].
For example, in manufacturing, digital twin edge networks can be utilized for
different aspects of manufacturing to improve production efficiency and reduce
product life cycles [51, 52]. When designing parts, their full life cycle can be
simulated through a virtual model, and design defects can be found in advance
to realize accurate parts design. In factory production lines, through a virtual
model of the entire production line, the production process can be simulated in
advance and problems in the process found, to achieve more efficient production
line management and process optimization. Additionally, in the health domain,
digital twin edge networks can be utilized to establish twin patients. The twin
patients can collect patients’ physiological status and life style, medication input
data, and data about the patients’ emotional changes over time. Thus, twin patients
can enable medical experts to provide patients with a full range of medical care
and even accurately predict changes.
Machine-to-machine and device-to-device (D2D) communications are enabling
technologies for the digital twin edge network–empowered IoT [53]. Physical com-
ponents can form clusters and transmit shared status data to the corresponding
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virtual twins by reusing the unoccupied uplink spectrum resources. Machine-to-
machine and D2D communications can improve data transmission rates during
physical plane and virtual plane interactions. However, privacy and security pro-
tection of the information in virtual twin formation is a critical issue, since some
core data, such as users’ personal information, must be continuously updated
for the virtual twins, and malicious attackers could intercept this information
through wireless communications. Hence, privacy and security protection mech-
anisms need to be designed for physical and virtual plane interactions in the
IoT.

• 6G networks: 6G networks aim to realize ultra-high-capacity and ultra-short-
distance communications, go beyond best effort and high-precision communica-
tions, and converge multiple types of communications [27]. Thus, 6G networks
can face challenges in security, spectral efficiency, intelligence, energy efficiency,
and affordability. The emergence of digital twin edge networks introduces op-
portunities to overcome these challenges. Digital twin edge networks provide
corresponding virtual twins of 6G network components, which can collect traf-
fic information on the entire network and use data analysis methods to discover
network traffic patterns and detect abnormal traffic in advance. 6G networks use
the information fed back from the virtual twins to make preparations in advance
to improve network performance. In addition, by collecting and analysing the
communication data in networks, rules of communication can be discovered to
automate demand and provide services on demand. Since communication demand
can be predicted in advance, the information can be fed back to the 6G networks
to reserve resources, such as spectrum resources.
The interactions between the physical and virtual planes in digital twin–
empowered 6G networks demand high data rates. Small cell communication is an
efficient solution for improving spectral efficiency by deploying heterogeneous
infrastructures, such as pico and micro BSs [54]. In small cell communication,
all BSs are equipped with rich computational resources and are responsible for
generating and maintaining the virtual twins of physical objects in the cells.
Additionally, intelligent communication infrastructures, such as reconfigurable
intelligent surfaces [55] and unmanned aerial vehicles [56, 57], can be leveraged
to realize interactions between the physical and virtual planes.

4.1.1.2 Computations for Resource-Intensive Tasks in the Virtual Plane

Beyond communications with low latency and high reliability, the resource-intensive
tasks executed by digital twin edge networks require large amounts of computational
resources. The virtual plane in the hierarchical architecture of digital twin edge
networks consists of multiple distributed edge servers and central cloud servers.
Specifically, central cloud servers have strong processing, caching, and computing
capabilities. Resource-intensive tasks that focus on computation speed and central-
ized processing can be deployed on central cloud servers. Through cloud servers,
large amounts of data can be processed in a short time (a few seconds), to provide
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powerful digital twin services for physical objects. In addition, the cloud architecture
facilitates the organization and management of large numbers of connected physical
objects and virtual twins, as well as the combination and integration of real-time
data and historical experience.

In addition, edge servers have computing (i.e. CPU cycles) and caching resources
distributed on the paths between data sources and the cloud computing centre that can
analyse and process a portion of the data from both physical objects and virtual twins.
Edge servers can be deployed in the network infrastructure, such as at BSs, roadside
units, wireless access points, gateways, and routers, or they can be mobile phones,
vehicles, and other devices with the necessary processing power and computing and
storage capabilities. Considering the proximity of edge servers to physical objects,
delay-sensitive tasks can be deployed on edge servers to provide digital twin services
for users with high efficiency.
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Fig. 4.2 Cooperative edge computing in digital twin edge networks

4.1.2 Computation Offloading in Digital Twin Edge Networks

In digital twin edge network scenarios, data processing and analysis require great
amounts of computing resources. Nevertheless, most criteria cannot be met by edge
computing, due to the limited capacity of edge servers. For example, when an edge
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node has many computing tasks with a long task queue, it can easily create high
latency. Cooperative computation is an approach for offloading computing tasks to
other nodes that have free computing resources, to reduce task processing latency.
According to different cooperation methods among the nodes, the following two
cooperative computation modes can be used.

4.1.2.1 Cooperative Edge Computing

In cooperative edge computing, as shown in Fig. 4.2, if other edge nodes have free
computing resources, they should share in the computing tasks of the overloaded
edge nodes. It is very important for multiple edge nodes to maintain workload
balance and provide low-latency computing services, particularly when a digital
twin edge network provides services for time-sensitive scenarios, as in intelligence
transportation systems.
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Fig. 4.3 Cooperative cloud-edge-end computing in digital twin edge networks

4.1.2.2 Cooperative Cloud-Edge-End Computing

As shown in Fig. 4.3, cooperative cloud-edge-end computing is necessary to meet the
demand for large-scale computations and AI for real-time modelling and simulation
in digital twin edge networks. Edge servers process the data that need to be responded
to in real time. The cloud server provides strong computing power and the integration
of various types of information. The interaction between edge nodes and the cloud
in real time can solve the problem of data heterogeneity for the cloud. Cooperative
cloud-edge-end computing can provide low-latency computation, communications,
and virtual twin continuous updating for digital twin edge networks. In addition,
when the storage resources of the edge nodes are insufficient, the cloud can store
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part of the data and transmit them to the client through the network when needed,
which saves storage resources on the edge servers.

In this section, we first present a hierarchical architecture of digital twin edge
networks that consists of a virtual plane and a user/physical plane. Then, we illustrate
key communications and computation technologies between the physical and virtual
planes in the typical digital twin edge network scenarios and present two cooperative
computation modes.

4.2 AI for Digital Twin Edge Networks

The integration of digital twin with AI [58] opens up new possibilities for efficient
data processing in applying digital twins in 6G networks. MEC, one of the key
enabling technologies for 6G, can considerably reduce system latency by executing
computations based on AI algorithms at the edge of the network. AI-empowered
MEC has been widely investigated for accomplishing edge intelligence tasks such
as computation offloading, content caching, and data sharing. In [59], the authors
proposed an AI-empowered MEC scheme in the IIoT framework. In [60], the au-
thors proposed an intelligent content caching scheme based on deep reinforcement
learning (DRL) for an edge computing framework. AI can significantly improve the
construction efficiency and optimize the running performance of digital twin edge
networks. The system model, communication model, and computation model of
AI-empowered digital twin edge networks are as follows.

4.2.1 System Model

4.2.1.1 AI-Empowered Network Model

We consider the AI-empowered digital twin edge network shown in Fig. 4.4. Our
wireless digital twin network system comprises three layers: a radio access layer
(i.e. end layer), a digital twin layer (i.e. edge layer), and a cloud layer. The radio
access layer consists of entities such as mobile devices and vehicles that have limited
computing and storage resources. Through wireless communications, these entities
connect to BSs and request services provided by network operators. In the digital
twin layer, some BSs are equipped with MEC servers to execute computation tasks,
while other BSs provide wireless communication services to end users. The digital
twins of the physical entities are modelled and maintained by the MEC servers. Since
the number of entities in the physical layer is much larger than the number of MEC
servers in the digital twin layer, an MEC server can maintain multiple digital twins
of physical entities. In the cloud layer, cloud servers are equipped with large amounts
of computing and storage resources. Tasks that are computation sensitive or require
global analysis can be executed in the cloud layer.
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Fig. 4.4 The architecture of wireless digital twin networks

Since digital twins reproduce the running of physical entities, maintaining the
digital twins of massive devices consumes a large number of resources, including
computing resources, communication resources, and storage resources. To relieve
the resource limitation in the edge layer, we model digital twins as one of two types: a
device digital twin or a service digital twin. The device digital twin is a full replica of
the physical devices, which includes the information of the hardware configuration,
the historical running data, and real-time states. The device digital twin for user 𝑢𝑖
can be expressed as

𝐷𝑇 𝑓 (𝑢𝑖) = Θ(D𝑖 , 𝑆𝑖 (𝑡),M𝑖 ,Δ𝑆𝑖 (𝑡 + 1)), (4.1)

where D𝑖 is the historical data of user device 𝑖, such as the configuration data
and historical running data. The term 𝑆𝑖 (𝑡) represents the running state of device
𝑖, which consists of 𝑟1 dimensions and varies with time, and it can be denoted as
𝑆(𝑡) = {𝑠1

𝑖 (𝑡), 𝑠
2
𝑖 (𝑡), ..., 𝑠

𝑟1
𝑖 (𝑡)}. The term M𝑖 is the behaviour model set of 𝑢𝑖 , which

consists of 𝑟2 behaviour dimensions, and M𝑖 = {𝑚1
𝑖 , 𝑚

2
𝑖 , ..., 𝑚

𝑟2
𝑖 }, and Δ𝑆𝑖 (𝑡 + 1) is

the state update of 𝑆𝑖 (𝑡) in time slot 𝑡 + 1. Taking a meteorological IoT device as
an example, 𝑆(𝑡) can be the temperature, humidity, wind speed, location, and so on.
The behaviour models M𝑖 can consist of the variation models of the temperature,
humidity, and wind speed. In this paper, we mainly focus on the scenarios of device
digital twin to conduct our study.

Different from a device digital twin, a service digital twin is a lightweight digital
replica constructed by extracting the running states of several devices for a specific
application. Similar to (4.1), the service digital twin can be expressed as

𝐷𝑇 (𝑢𝑖 , 𝜁) = Θ(D𝑖 (𝜁), 𝑆
𝜁
𝑖 (𝑡),M

𝜁
𝑖 ,Δ𝑆

𝜁
𝑖 (𝑡 + 1)), (4.2)
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where 𝜁 is the target service, and D𝑖 (𝜁), 𝑆𝜁𝑖 (𝑡), M
𝜁
𝑖 , and Δ𝑆

𝜁
𝑖 (𝑡 + 1) are the cor-

responding terms related to the target service 𝜁 . For example, vehicles driving in
the same region can be modelled into a specific service digital twin for supporting
autonomous driving on a particular stretch of road. In such a case, the service digital
twin for autonomous driving collects only the driving information of these vehicles
and analyses their driving behaviour to guide them. Depending on the required scale,
service digital twins can be constructed on the edge server or the cloud server.

4.2.2 Communication and Computation Model

The communication between end users and edge servers contains the uplink com-
munication for transmitting data from user devices to edge servers and the downlink
communication for sending the results from edge servers back to user devices. Note
that the size of the results returning to users is much smaller than that of the up-
dated data, so we consider only uplink communication latency in our communication
model. The maximum achievable uplink data rate 𝑟𝑖 𝑗 between user 𝑖 and BS 𝑗 is
given as

𝑟𝑖 𝑗 = 𝑊𝑙𝑜𝑔(1 +
𝑝𝑖 𝑗ℎ𝑖 𝑗

𝑊𝑁0
), (4.3)

where ℎ𝑖 𝑗 denotes the channel power gain of user 𝑖, 𝑝𝑖 𝑗 denotes the corresponding
transmission power for user 𝑖, 𝑁0 is the noise power spectral density, and 𝑊 is the
channel bandwidth. The transmission latency for uploading 𝐷𝑖 from user 𝑖 to BS 𝑗
can be expressed as

𝑇𝑐𝑜𝑚
𝑖 𝑗 =

𝐷𝑖

𝑟𝑖 𝑗
. (4.4)

The wired transmission latency between BSs is highly correlated to the transmis-
sion distance. Let 𝜙 be the latency required for transmitting one unit of data in each
unit distance. Then the wired transmission latency can be written as

𝑇𝑐𝑜𝑚
𝑗1 𝑗2

= 𝜙 · 𝐷 𝑗 · 𝑑 ( 𝑗1, 𝑗2), (4.5)

where 𝐷 𝑗 is the size of the transmitted data and 𝑑 ( 𝑗1, 𝑗2) is the distance between
BSs 𝑗1 and 𝑗2.

We denote the total computation resource of edge server 𝑗 as 𝐹𝑗 . The computation
resource of edge server 𝑗 can be allocated to multiple user devices to maintain their
digital twins on server 𝑗 . Let 𝑓𝑖 𝑗 denote the computation resource assigned to the
digital twin of user 𝑖. Then the time to execute tasks from user 𝑖 can be expressed as

𝑇𝑐𝑚𝑝
𝑖 𝑗 =

𝐷𝑖

𝑓𝑖 𝑗
, (4.6)

where 𝐷𝑖 is the size of computation task from user 𝑖,
∑𝑁
𝑖=1 𝑥𝑖 𝑗 𝑓𝑖 𝑗 ≤ 𝐹𝑗 , and 𝑥𝑖 𝑗 = 1

if 𝑓𝑖 𝑗 > 0. Otherwise, 𝑥𝑖 𝑗 = 0.
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4.2.3 Latency Model
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Fig. 4.5 The digital twin construction process

The latency of maintaining a digital twin mainly consists of two parts: the con-
struction delay and the synchronization delay. Figure 4.5 shows the complete process
for constructing a digital twin of user 𝑢𝑖 . In the beginning, the running data 𝐷𝑖 of 𝑢𝑖
are transmitted to their nearby BS through wireless communication. Then the nearby
BS transmits through wired communication the running data 𝐷𝑖 to the digital twin
server 𝐷𝑇1 that is responsible for constructing and maintaining the digital twin of 𝑢𝑖 .
The digital twin server 𝐷𝑇𝑖 runs the computation to process and analyse the received
data and builds a digital twin model for user 𝑢𝑖 , as expressed by Eq. (4.1). During
the digital twin computation process, AI-related algorithms are used to extract the
data features and to train the digital twin model. Finally, the results of the digital
twin model are transmitted back to user 𝑢𝑖 through wired and wireless communica-
tions. The feedback results provide 𝑢𝑖 with insights for improving its service quality
or running efficiency for specific applications. The system latency consists of the
following items.

1. Wireless data transmission: In the construction phase of 𝐷𝑇 (𝑢𝑖), the historical
running data of user 𝑖 must be transmitted to its digital twin server through
its nearby BS. Let 𝐷𝑖 denote the size of the historical data to be transmitted.
The wireless communication latency 𝑇𝑐𝑜𝑚

𝑖 𝑗 from user 𝑖 to its BS 𝑗 can then be
calculated according to Eq. (4.4).

2. Wired data transmission: The wired transmission time from the nearby BS of 𝑢𝑖
to its digital twin server 𝑘 is

𝑇𝑐𝑜𝑚
𝑗𝑘 = 𝜙 · 𝐷𝑖 · 𝑑 ( 𝑗 , 𝑘). (4.7)
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The total communication time for transmitting the historical data of 𝑢𝑖 to its
digital twin server is thus

𝑇𝑐𝑜𝑚
𝑖𝑘 = 𝑇𝑐𝑜𝑚

𝑖 𝑗 + 𝑇𝑐𝑜𝑚
𝑗𝑘 . (4.8)

3. Digital twin data computation: The computation time at digital twin server 𝑘 is

𝑇𝑐𝑚𝑝
𝑖𝑘 =

𝐷𝑖

𝑓𝑖 𝑗
. (4.9)

The total latency for constructing the digital twin of user 𝑖 is

𝑇 𝑖𝑛𝑖
𝑖𝑘 = 𝑇𝑐𝑜𝑚

𝑖𝑘 + 𝑇𝑐𝑜𝑚
𝑗𝑘 + 𝑇𝑐𝑚𝑝

𝑖𝑘 . (4.10)

The digital twin of user 𝑖, that is, 𝐷𝑇 (𝑢𝑖), is constructed on its digital twin server
𝐷𝑇𝑘 . Then, 𝐷𝑇 (𝑢𝑖) must constantly interact with 𝑢𝑖 to remain consistent with the
running states of 𝑢𝑖 . We denote the size of the updated data as Δ𝐷𝑖 . The latency for
one update can then be expressed as

𝑇𝑢𝑝𝑑
𝑖𝑘 =

Δ𝐷𝑖

𝑟𝑖 𝑗
+ 𝜙 · Δ𝐷𝑖 · 𝑑 ( 𝑗 , 𝑘) +

Δ𝐷𝑖

𝑓𝑖 𝑗
. (4.11)

The synchronization latency in one unit time slot can be written as

𝑇
𝑠𝑦𝑛
𝑖𝑘 =

1
Δ𝑡

𝑇𝑢𝑝𝑑
𝑖𝑘 , (4.12)

where Δ𝑡 denotes the time gap between every two updates.

4.3 Edge Association for Digital Twin Edge Networks

4.3.1 System Model

Due to the dynamic computing and communication resources available through edge
servers, the association of digital twins to corresponding servers is a fundamental
problem in digital twin edge networks that needs to be comprehensively explored.
Moreover, since the federated learning in digital twin edge networks requires multiple
communications for data exchange, the limited communication resources need to be
optimally allocated to improve the efficiency of digital twins in the associated edge
servers. Thus, in this section, we design a digital twin wireless network (DTWN)
model and define the edge association problem for digital twin networks. A permis-
sioned blockchain-empowered federated learning framework for edge association is
also proposed.

We consider a blockchain- and federated learning–empowered digital twin net-
work model as depicted in Fig. 4.6. The system consists of 𝑁 end users, such as
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Fig. 4.6 The proposed digital twin wireless network

IoT devices and mobile devices, 𝑀 BSs, and a macro BS (MBS). The BSs and the
MBS are equipped with MEC servers. The end devices generate running data and
synchronize their data with the corresponding digital twins that run on the BSs. We
use D𝑖 = {(𝑥𝑖1, 𝑦𝑖1), ..., (𝑥𝑖𝐷𝑖 , 𝑦𝑖𝐷𝑖 )} to denote the data of end user 𝑖, where 𝐷𝑖 is
the data size, 𝑥𝑖 is the data collected by end users, and 𝑦𝑖 is the label of 𝑥𝑖 . The
digital twin of end user 𝑖 in the BSs are denoted as 𝐷𝑇𝑖 , which is composed of the
behaviour model M𝑖 , static running data D𝑖 , and the real-time dynamic state 𝑠𝑡 ,
so that 𝐷𝑇𝑖 = (M𝑖 ,D𝑖 , 𝑠𝑡 ), whereD𝑖 and 𝑠𝑡 are the essential data required to run
the digital twin applications. Instead of synchronizing all the raw data to the digital
twins, which incurs a huge communication load and the risk of data leakage, we
use federated learning to learn model M from the user data. In various application
scenarios, the end users can communicate with other end users to exchange running
information and share data, through, for example, D2D communications. Thus, the
digital twins also form a network based on the connections of end users. Based on
the constructed DTWN, we can obtain the running states of the physical devices and
make further decisions to optimize and drive the running of the devices by directly
analysing the digital twins.

In our proposed digital twin network model, we use federated learning to execute
the training and learning process collaboratively for edge intelligence. Moreover,
since the end users lack mutual trust and the digital twins consist of private data,
we use permissioned blockchain to enhance the system security and data privacy.
The permissioned blockchain records the data from digital twins and manages the
participating users through permission control. The blockchain is maintained by the
BSs, which are also the clients of the federated learning model. The MBS runs as
the server for the federated learning model. In each iteration of federated learning,
the MBS distributes the machine learning model parameters to the BSs for training.
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The BSs train the model based on the data from the digital twins and returns the
model parameters to the MBS.

We use orthogonal frequency division multiple access for wireless transmission
in our system. To upload trained local models, all the BSs share 𝐶 subchannels to
transmit their parameters. The achievable uplink data rate from BS 𝑖 to the MBS is

𝑅𝑈𝑖 =

𝐶∑
𝑐=1

𝜏𝑖,𝑐𝑊
𝑈 𝑙𝑜𝑔2 (1 +

𝑃𝑈𝑖,𝑐ℎ
𝑈
𝑖,𝑐𝑟

−𝛼
𝑖,𝑚∑

𝑗∈N′ 𝑃𝑈𝑗,𝑐ℎ
𝑈
𝑗,𝑐𝑟

−𝛼
𝑖,𝑚 + 𝑁0

), (4.13)

where 𝐶 is the total number of subchannels, 𝜏𝑖,𝑐 is the time fraction allocated to BS
𝑖 on subchannel 𝑐, and 𝑊𝑈 is the bandwidth of each subchannel, which is a constant
value. The transmission power is 𝑃𝑈𝑖,𝑐 and the uplink channel gain on subchannel 𝑐
is ℎ𝑈𝑖,𝑐; 𝑟

−𝛼
𝑖,𝑚 is the path loss fading of the channel between BS 𝑖 and the MBS; 𝑟𝑖,𝑚

is the distance between BS 𝑖 and the MBS; 𝛼 is the path loss exponent; 𝑁0 is the
noise power; and

∑
𝑗∈N′ 𝑃𝑈𝑗,𝑐ℎ

𝑈
𝑗,𝑐𝑟

−𝛼
𝑖,𝑚 is the interference caused by other BSs using

the same subchannel. In the download phase, the MBS broadcasts the global model
with the rate

𝑅𝐷
𝑖 =

𝐶∑
𝑐=1

𝑊𝐷 𝑙𝑜𝑔2 (1 +
𝑃𝐷
𝑖,𝑐ℎ

𝐷
𝑖,𝑐∑

𝑗∈N′′ 𝑃𝐷
𝑗,𝑐ℎ

𝐷
𝑗,𝑐𝑟

−𝛼
𝑖,𝑚 + 𝑁0

), (4.14)

where 𝑃𝐷
𝑖,𝑐 is the downlink power of BS 𝑖, ℎ𝐷𝑖,𝑐 is the channel gain between BS 𝑖 and

the MBS, and
∑

𝑗∈N′′ 𝑃𝐷
𝑗,𝑐ℎ

𝐷
𝑗,𝑐𝑟

−𝛼
𝑖,𝑚 is the downlink inference.

4.3.2 Edge Association: Definition and Problem Formulation

The end devices or users are mapped to the digital twins in the BSs in the DTWN.
The maintenance of digital twins consumes a large amount of computing and com-
munication resources for synchronizing real-time data and building corresponding
models. However, the computation and communication resources in wireless net-
works are very limited and should be optimally used to improve resource utility.
Thus, the association of various IoT devices with different BSs according to their
computation capabilities and states of the communication channel is a key problem
in DTWNs. As depicted in Fig. 4.6, the digital twins of IoT devices are constructed
and maintained by their associated BSs. The training data and the computation tasks
for training are distributed to various BSs based on the association between the
digital twins and the

Definition (Edge Association) Consider a DTWN with 𝑁 IoT users and 𝑀 BSs. For
any user 𝑢𝑖 , 𝑖 ∈ N , the goal of edge association is to choose the target BS 𝑗 ∈ M

to construct the digital twin 𝐷𝑇𝑖 of user 𝑖. The association 〈𝐷𝑇𝑖 , 𝐵𝑆 𝑗〉 is denoted as
Φ(𝑖, 𝑗). If 𝐷𝑇𝑖 is associated with BS 𝑗 , then Φ(𝑖, 𝑗) = 𝐷𝑖 , where 𝐷𝑖 is the size of
the data used to construct 𝐷𝑇𝑖 . Otherwise, Φ(𝑖, 𝑗) = 0. �
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A BS can be associated with multiple digital twins, whereas a digital twin can
only be associated with at most one BS; that is,

∑𝑀
𝑗=1 Φ(𝑖, 𝑗) = 𝐷𝑖 . We perform edge

association according to the datasets 𝐷𝑖 of IoT users, the computation capability of
the BSs 𝑓 𝑗 , and the transmission rate 𝑅𝑖, 𝑗 between 𝑢𝑖 and 𝐵𝑆 𝑗 , denoted as

Φ(𝑖, 𝑗) = 𝑓 (𝐷𝑖 , 𝑓 𝑗 , 𝑅𝑖, 𝑗 ). (4.15)

The objective of the edge association problem is to improve the utility of resources
and the efficiency of running digital twins in the DTWN.

We use the weight matrix 𝐴 = [𝑎𝑖𝑘] to represent the association relations between
the user devices and the digital twin servers, where 𝑎𝑖𝑘 = 1 if the digital twin of user
𝑖 is maintained by digital twin server 𝑘 . Otherwise, 𝑎𝑖𝑘 = 0. For example, in Fig. 4.5,
since the digital twin of 𝑢𝑖 is maintained by 𝐷𝑇1, we have 𝑎𝑖1 = 1 and 𝑎𝑖2 = 0. The
association matrix takes the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎11 𝑎12 𝑎1𝑘 ... 𝑎1𝑀
𝑎21 𝑎22 𝑎2𝑘 ... 𝑎2𝑀
𝑎21 𝑎22 𝑎2𝑘 ... 𝑎2𝑀
. . . ... .
. . . ... .
. . . ... .

𝑎𝑁1 𝑎𝑁2 𝑎𝑁𝑘 ... 𝑎𝑁𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now we start to derive the formulation of the edge association problem. We
consider that the gradient ∇ 𝑓 (𝑤) of 𝑓 (𝑤) is 𝐿-Lipschitz smooth; that is,

| |∇ 𝑓 (𝑤𝑡+1) − ∇ 𝑓 (𝑤𝑡 ) | | ≤ 𝐿 | |𝑤𝑡+1 − 𝑤𝑡 | |, (4.16)

where 𝐿 is a positive constant and | |𝑤𝑡+1−𝑤𝑡 | | is the norm of 𝑤𝑡+1−𝑤𝑡 . We consider
that the loss function 𝑓 (𝑤) is strongly convex; that is,

𝑓 (𝑤𝑡+1) ≥ 𝑓 (𝑤𝑡 ) + 〈∇ 𝑓 (𝑤𝑡 ), 𝑤𝑡+1 − 𝑤𝑡 〉 +
1
2
| |𝑤𝑡+1 − 𝑤𝑡 | |

2. (4.17)

Many loss functions for federated learning can satisfy the above assumptions, for
example, logic loss functions. If (4.16) and (4.17) are satisfied, the upper bound of
the global iterations can be obtained as

T (𝜃𝐿 , 𝜃𝐺) =
O(𝑙𝑜𝑔(1/𝜃𝐿))

1 − 𝜃𝐺
, (4.18)

where 𝜃𝐿 is the local accuracy | |∇ 𝑓 (𝑤𝑡+1 ) | |
| |∇ 𝑓 (𝑤𝑡 ) | |

≤ 𝜃𝐿 , 𝜃𝐺 is the global accuracy, and
0 ≤ 𝜃𝐿 , 𝜃𝐺 ≤ 1. As in [94], we consider 𝜃𝐿 a fixed value, so that the upper bound
T (𝜃𝐿 , 𝜃𝐺) can be simplified to T (𝜃𝐺) =

1
1−𝜃𝐺 . If we denote the time of one local

training iteration by 𝑇𝑐𝑚𝑝 , then the computation time in one global iteration is
𝑙𝑜𝑔(1/𝜃)𝑇𝑐𝑚𝑝 , and the upper bound of total learning time is T (𝜃𝐺)𝑇𝑔𝑙𝑜𝑏.

The time cost in our proposed scheme mainly consists of the following.
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1. Local training on digital twins: The time cost for the local training of BS 𝑖 is
determined by the computing capability and the data size of its digital twins. The
time cost is

𝑇𝑐𝑚𝑝
𝑖 =

∑𝐾𝑖

𝑗=1 𝑏 𝑗𝐷𝐷𝑇𝑗

𝑓 𝐶𝑖
𝑓 𝐶 , (4.19)

where 𝑓𝐶 is the number of CPU cycles required to train one sample of data, 𝑓 𝐶𝑖 is
the CPU frequency of BS 𝑖, and 𝑏 𝑗 is the training batch size of digital twin 𝐷𝑇𝑗 .

2. Model aggregation on the BSs: The BSs aggregate their local models from various
digital twins. The computing time for local aggregation is

𝑇 𝑙𝑎𝑖 =

∑𝐾𝑖

𝑗=1 |𝑤 𝑗 |

𝑓 𝐶𝑖
𝑓 𝐶𝑏 , (4.20)

where |𝑤 𝑗 | is the size of the local models and 𝑓 𝐶𝑏 is the number of CPU cycles
required to aggregate one unit of data. Since all the clients share the same global
model, |𝑤1 | = |𝑤2 | = ... = |𝑤 𝑗 | = |𝑤𝑔 |. Thus the time cost for local aggregation
is

𝑇 𝑙𝑎𝑖 =
𝐾𝑖 |𝑤𝑔 |

𝑓 𝐶𝑖
𝑓 𝐶𝑏 . (4.21)

3. Transmission of the model parameters: The local models aggregated by BS 𝑖 are
then broadcast to other BSs as transactions. The time cost is related to the number
of blockchain nodes and the transmission efficiency. Since other BSs also help to
transmit the transaction in the broadcast process, the time function is related to
𝑙𝑜𝑔2𝑀 , where 𝑀 is the size of the BS network. The required time cost is

𝑇 𝑝𝑡
𝑖 = 𝜉𝑙𝑜𝑔2𝑀

𝐾𝑖 |𝑤𝑔 |

𝑅𝑈𝑖
, (4.22)

where 𝜉 is a factor of the transmission time cost that can be obtained from the
historical running records of the transmission process.

4. Block validation: The block producer BS collects the transactions and packs them
into a block. The block is then broadcast to other producer BSs and validated by
them. Thus, the time cost is

𝑇𝑏𝑣
𝑏𝑝 = 𝜉𝑙𝑜𝑔2𝑀𝑝

𝑆𝐵

𝑅𝐷
𝑖

+ max
𝑖

𝑆𝐵 𝑓 𝑣

𝑓𝑖𝑠
, (4.23)

where 𝑀𝑝 is the number of block producers and 𝑆𝐵 is the size of a block.

Note that, in the aggregation phase, the size of the model parameters |𝑤𝑔 | is small
and the computing capability 𝑓𝑖 is high. Thus, compared to other phases, the time for
aggregation is very short, such that it can be neglected. Based on the above analysis,
the time cost for one iteration is denoted as
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𝑇 = max
𝑖

{∑𝐾𝑖

𝑗=1 𝑏 𝑗𝐷𝐷𝑇𝑗

𝑓 𝐶𝑖
𝑓 𝐶

}
+ max

𝑖

{
𝜉𝑙𝑜𝑔2𝑀

𝐾𝑖 |𝑤𝑔 |

𝑅𝑈𝑖

}

+ 𝜉𝑙𝑜𝑔2𝑀𝑝
𝑆𝐵

𝑅𝐷
𝑖

+ max
𝑖

𝑆𝐵 𝑓 𝑣

𝑓𝑖𝑠
.

(4.24)

In the 6G network, the growth of the user scale, the ultra-low latency requirement
of communication, and the dynamic network status make the reduction of the time
cost of model training an important issue in various applications. Since accuracy
and latency are the two main metrics for evaluating the decision-making abilities of
digital twins in our proposed scheme, we consider the edge association problem to
find the trade-off between learning accuracy and the time cost of the learning process.
Due to the dynamic computing and communication capabilities of various BSs, the
edge association of digital twins—that is, how to allocate the digital twins of different
end users to various BSs for training—is a key issue to be solved to minimize the
total time cost. Moreover, increasing the training batchsize 𝑏𝑛 of each digital twin
𝐷𝑇𝑛 can improve the learning accuracy. However, this will also increase the learning
time cost to execute more computations. In addition, how to allocate the bandwidth
resources to improve communication efficiency should be considered. In our edge
association problem, we should carefully design these policies to minimize the total
time cost of the proposed scheme. Thus, we formulate the optimization problem as
the minimization of the time cost of federated learning for a given learning accuracy.
To solve the problem, the association of digital twins, the batchsize of their training
data, and the bandwidth allocation should be jointly considered according to the
computing capability 𝑓 𝐶𝑖 and the channel state ℎ𝑖,𝑐. The optimization problem can
be formulated as

min
𝑲𝒊 ,𝒃𝒏 ,𝝉𝒊,𝒄

1
1 − 𝜃𝐺

𝑇 (4.25)

s.t. 𝜃𝐺 ≥ 𝜃𝑡ℎ, 𝜃𝐺 , 𝜃𝑡ℎ ∈ (0, 1), (4.25a)
𝑀∑
𝑖=1

𝐾𝑖 = 𝐷, 𝐾𝑖 ∈ N , (4.25b)

𝑀∑
𝑖=1

𝜏𝑖,𝑐 ≤ 1, 𝑐 ∈ C, (4.25c)

𝑏𝑚𝑖𝑛 ≤ 𝑏𝑛 ≤ 𝑏𝑚𝑎𝑥𝑛 ,∀𝑛 ∈ N . (4.25d)

Constraint (4.25b) ensures that the sum of the number of associated digital twins
does not exceed the size of the total dataset. Constraint (4.25c) guarantees that each
subchannel can only be allocated to at most one BS. Constraint (4.25d) ensures the
range of the training batchsize for each digital twin. Problem (4.25) is a combinational
problem. Since there are several products of variables in the objective function and
the time cost of each BS is also affected by the resource states of other BSs, problem
(4.25) is challenging to solve.
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4.3.3 Multi-Agent DRL for Edge Association

Since the system states are only determined by network states in the current iteration
and the allocation policies in the last iteration, we regard the problem as a Markov
decision process and use a multi-agent DRL-based algorithm to solve it.

The proposed multi-agent reinforcement learning framework is depicted in Fig.
4.7. In our proposed system, each BS is regarded as a DRL agent. The environment
consists of BSs and the digital twins of the end users. Our multi-agent DRL frame-
work consists of multiple agents, a common environment, the system state S, the
action A, and the reward function R, which are described below.

Blockchain EmpoweredDigital Twin Networks

BS agent M

BS agent 1

Action 𝑎!(𝑡)

s(𝑡) Action 𝑎"(𝑡)

Joint actions

⋮

Reward R1(𝑡)

s(𝑡)

Reward R
�
(𝑡)

Fig. 4.7 Multi-agent DRL for edge association

• State space: The state of the environment is composed of the computing capa-
bilities 𝑓 𝐶 of the BSs, the number of digital twins 𝐾𝑖 on each BS 𝑖, the training
data size of each digital twin 𝐷𝑛, and the channel state ℎ𝑖,𝑐. The states the of
multiple agents are denoted as 𝑠(𝑡) = ( 𝒇𝐶 , 𝑲, 𝑫, 𝒉), where each dimension is a
state vector that contains the states for all the agents.

• Action space: The actions of BS 𝑖 in our system consist of the digital twin
allocation𝐾𝑖 , the training data batchsizes for its digital twins 𝒃𝑖 , and the bandwidth
allocation 𝝉𝑖 . Thus, the actions are denoted as 𝒂𝑖 (𝑡) = (𝐾𝑖 , 𝒃𝑖 , 𝝉𝑖). BS agent 𝑖
makes new action decisions 𝒂𝑖 (𝑡) at the beginning of iteration 𝑡 based on system
state 𝑠(𝑡). The system action is 𝒂(𝑡) = (𝒂1, ..., 𝒂𝑖 , ..., 𝒂𝑚).

• Reward: We define the reward function of BS 𝑖 according to its time cost 𝑇𝑖 based
on Eq. (4.24):

R𝑖 (𝑠(𝑡), 𝒂𝑖 (𝑡)) = −𝑇𝑖 (𝑡). (4.26)

The reward vector of all the agents is 𝑹 = (R1, ...,R𝑚). According to Eq.
(4.25), the total time cost 𝑇 is decided by the maximum time cost of the agents
max{𝑇1, 𝑇2, ..., 𝑇𝑚}. Each DRL agent in our scheme thus shares the same reward
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function. In the training process, the BS agents adjust their actions to maximize
the reward function, that is, to minimize the system time cost in each iteration.

The learning process of BS 𝑖 is to find the best policy that maps its states to its
actions, denoted as 𝒂𝑖 = 𝜋𝑖 (𝑠), where 𝒂𝑖 is the action to be taken by BS 𝑖 for the
whole system state 𝑠. The objective is to maximize the expected reward, that is,

R𝑡 =
∑
𝑖

𝛾R𝑖 (𝑠(𝑡), 𝒂𝑖 (𝑡)), (4.27)

where 𝛾 is the discount rate, 0 ≤ 𝛾 ≤ 1. In the conventional DRL framework, it
is hard for an agent to obtain the states of others. In our DTWN, the states of the
digital twins and BSs are recorded in the blockchain. A BS can retrieve records from
the blockchain to obtain the system states and actions of other agents in the training
process. We use 𝜋 = [𝜋1, 𝜋2, ..., 𝜋𝑛] to denote the policies of the 𝑛 agents, whose
parameters are denoted as 𝜃 = [𝜃1, 𝜃2, ..., 𝜃𝑛]. Thus we have the following policy
gradient for agent 𝑖:

∇𝜃𝑖 𝐽 (𝜋𝑖) = 𝐸{ 𝜃𝑖 },𝑎∼𝐷 [∇𝜃𝑖𝜋(𝑎𝑖 |𝑜𝑖)·

∇𝑎𝑖𝑄
𝜋
𝑖 ({𝜃𝑖}, 𝑎1, ..., 𝑎𝑛) |𝑎𝑖=𝜋𝑖 (𝑜𝑖 ) ],

(4.28)

where {𝜃𝑖} is the observation of agent 𝑖, that is, the state of each agent. In our scheme,
since the placement of digital twins requires global coordination, we consider that
all the agents share the same system state through information exchange between
the servers. Agent 𝑖 determines its action 𝒂𝑖 through its actor deep neural network
(DNN) 𝜋(𝑠𝑡 |𝜃𝜋), denoted as

𝑎𝑖 (𝑡) = 𝜋𝑖 (𝑠𝑡 |𝜃𝜋𝑖 ) +𝔑, (4.29)

where 𝔑 is the random noise for generating a new action. The actor DNN is trained
as

𝜃𝜋 = 𝜃𝜋 + 𝛼𝜋 · E[∇𝑎𝑖𝑄(𝒔𝒕 , 𝒂1, ..., 𝒂𝑖 |𝜃𝑄) |𝒂𝒊=𝜋 (𝒔𝒕 | 𝜃𝜋 ) · ∇𝜃𝜋𝜋(𝒔𝒕 )], (4.30)

where 𝛼𝜋 is the learning rate of the actor DNN.
The critic DNN of agent 𝑖 is trained as

𝜃𝑄𝑖 = 𝜃𝑄𝑖 + 𝛼𝑄𝑖 · E[2(𝑦𝑡 −𝑄(𝒔𝒕 , 𝒂𝒊 |𝜃𝑄𝑖 )) · ∇𝑄(𝒔𝑡 , 𝒂1, ..., 𝒂𝑖)], (4.31)

where 𝛼𝑄𝑖 is the learning rate, 𝑦𝑡 is the target value, and (𝒂1, ..., 𝒂𝑖) constitutes the
actions of the agents in our system.

In the proposed algorithm, all the actor networks and critic networks are initialized
randomly as the initial training parameters. Then the replay memory is initialized
to store the experiential samples in the training process. In each episode, the agent
selects its action towards its current observation state and obtains the reward for
its current action. Then the new observation of the system state is obtained. The
experience tuple (𝑠𝑡 , 𝑎𝑖 , 𝑟𝑡 , 𝑠𝑡+1) is then stored in the replay buffer. Finally, the
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agents train their critic network and actor network by sampling records from the
replay buffer.
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