Skip to main content

Targeting Induced Local Lesions in Genomes: A Transgenic Approach for the Improvement of Desirable Crop in the Current Era of the Changing Climate

  • Chapter
  • First Online:
Food Production, Diversity, and Safety Under Climate Change

Abstract

TILLING (Targeting Induced Local Lesions in Genomes) was first shown in 2000 as an anti-hereditary special tool that strengthens traditional mutagenesis and high-throughput screening. In order to take care of the ever-growing population, it is seeking to limit the availability of food with limited land and water resources under a changing climate system. Traditional breeding has played an important role in increasing crop yields but takes long time and hard work. Later, transgenic technology came into being and played an important role in increasing crop yields. Therefore, more emphasis is now needed on crop improvement over non-GM technology. Nowadays, genome editing (GE) technique is also used in crop improvement projects because of its simplicity, robustness and high performance. Therefore, TILLING is a fast, simple, low cost, effective, widely available technique, independent of genotype and genome size. This review focuses on the prospect and potential use of the TILLING technique in crop improvement programs during valid genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGE:

Agarose Gel Electrophoresis

Az:

Sodium Azide

Az-MNU:

Sodium Azide plus Methylnitrosourea

CE:

Capillary Electrophoresis

DEMETER:

5-Methylcytosine DNA Glycosylase

DEB:

Diepoxybutane

DES:

Diethyl Sulfate

EMS:

Ethyl Methanesulfonate

FN:

Fast Neutron Bombardment

GR:

Gamma Ray Bombardment

HRM:

High-Resolution Melting

PAGE:

Polyacrylamide Gel Electrophoresis

PCR:

Polymerase Chain Reaction

RNAi:

Ribonucleic Acid Interference

TILLING:

Targeting Induced Local Lesions in Genomes

References

  • Adamski NM, Borrill P, Brinton J, Harrington S, Marchal C, Uauy C (2018) A roadmap for gene functional characterisation in wheat. PeerJ 2167–9843

    Google Scholar 

  • Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU, Mubeen M (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: Recent advances and future outlook. Int J Mol Sci 21:2590

    CAS  Google Scholar 

  • Amin R, Laskar RA, & Khan S (2015) Assessment of genetic response and character association for yield and yield components in Lentil (Lens culinaris L.) population developed through chemical mutagenesis. Cogent Food & Agriculture. https://doi.org/10.1080/23311932.2014.1000715

  • Bajaj D, Srivastava R, Nath M, Tripathi S, Bharadwaj C, Upadhyaya HD, Tyagi AK, Parida SK (2016) EcoTILLING-based association mapping efficiently delineates functionally relevant natural allelic variants of candidate genes governing agronomic traits in chickpea. Front Plant Sci 7:450

    Google Scholar 

  • Berkelmann D, Schneider D, Meryandini A, Daniel R (2020) Unravelling the effects of tropical land use conversion on the soil microbiome. Environ Microbiome 15:5

    CAS  Google Scholar 

  • Berro I, Lado B, Nalin RS, Quincke M, Gutiérrez L (2019) Training population optimization for genomic selection. Plant Genome 12:190028

    Google Scholar 

  • Bush SM, Krysan PJ (2010) ITILLING: A personalized approach to the identification of induced mutations in Arabidopsis. Plant Physiol 154(1):25–35

    CAS  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40(1):143–150

    CAS  Google Scholar 

  • Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM (2019) Doubled haploid technology for line development in maize: Technical advances and prospects. Theor Appl Genet 132:3227–3243

    CAS  Google Scholar 

  • Charles H, Godfray H, Garnett T (2014) Food security and sustainable intensification. Philos Trans R Soc B: Biol Sciences. https://doi.org/10.1098/rstb.2012.0273

    Article  Google Scholar 

  • Chawade A, Sikora P, Br¨autigam M et al. (2010) “Development and characterization of an oat TILLING-population and identification of mutations in lignin and beta-glucan biosynthesis genes.” BMC Plant Biol 10: 86

    Google Scholar 

  • Choudhary, Swamy, K (2016) Targeting induced local lesions in genomes (TILLING): A reverse genetics tool for plant functional genomics

    Google Scholar 

  • Colbert T, Till BJ, Tompa R et al (2001) High-throughput screening for induced point mutations. Plant Physiol 126(2):480–484

    CAS  Google Scholar 

  • Cooper JL, Till BJ, Laport RG et al. (2008) “TILLING to detect induced mutations in soybean.” BMC Plant Biol 8(9)

    Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, De Los CG (2017) Genomic selection in plant breeding: Methods, models, and perspectives. Trends Plant Sci 22:961–975

    CAS  Google Scholar 

  • Dahmani-Mardas F, Troadec C, Boualem A et al. (2010) “Engineering melon plants with improved fruit shelf life using the TILLING approach.” PLoS One 5(12): e15776

    Google Scholar 

  • Dalmais M, Schmidt J, Le Signor C et al. (2008) “UTILLdb, a Pisum sativum in silico forward and reverse genetics tool.” Genome Biol. 9(2) R43

    Google Scholar 

  • Davies FT, Garrett B (2018) Technology for sustainable urban food ecosystems in the developing world: Strengthening the nexus of food-water-energy-nutrition. Front Sustain Food Syst 2:84

    Google Scholar 

  • Dong C, Dalton-Morgan J, Vincent K, Sharp P (2009a) A modified TILLING method for wheat breeding. Plant Gen 2:39

    CAS  Google Scholar 

  • Dong C, Dalton-Morgan C, Vincent K, Sharp P (2009b) A modified TILLING method for wheat breeding. Plant Genetic 2(1):39–47

    CAS  Google Scholar 

  • Ehrlich PR, Harte J (2015) Opinion: To feed the world in 2050 will require a global revolution. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1519841112

    Article  Google Scholar 

  • Enebe MC, Babalola OO (2021) Metagenomics assessment of soil fertilization on the chemotaxis and disease suppressive genes abundance in the maize rhizosphere. Genes 12:535

    CAS  Google Scholar 

  • FAO (2009) How to feed the world in 2050. Insights from an Expert Meeting at FAO. https://doi.org/10.1111/j.1728-4457.2009.00312.x

    Article  Google Scholar 

  • FAO (2011) State of food and agriculture 2010–2011. In Lancet. ISSN 0081-4539

    Google Scholar 

  • Farooq M, Siddique KH, Rehman H, Aziz T, Lee DJ, Wahid A (2011) Rice direct seeding: Experiences, challenges and opportunities. Soil till. Res. 111:87–98

    Google Scholar 

  • Gady ALF, Hermans FWK, Van De Wal MHBJ, Van Loo EN, Visser RGF, Bachem CWB (2009) “Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations.” Plant Methods 5(1): 13

    Google Scholar 

  • Gepts P, Papa R (2002) Evolution during domestication. Encycl Life Sci: 1–7

    Google Scholar 

  • Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N (2009) “TILLING in the two-rowed barley cultivar ’Barke’ reveals preferred sites of functional diversity in the gene HvHox1.” BMC Res Notes 2: 258

    Google Scholar 

  • Himelblau E, Gilchrist EJ, Buono K et al (2009) Forward and reverse genetics of rapid-cycling Brassica oleracea. Theor Appl Genet 118(5):953–961

    Google Scholar 

  • Hu J, Mitchum MG, Barnaby N, Ayele BT, Ogawa M, Nam E, Lai WC, Hanada A, Alonso JM, Ecker JR, Swain SM, Yamaguchi S, Kamiya Y, Sun TP (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336

    CAS  Google Scholar 

  • Irshad A, Guo H, Zhang S, Gu J, Zhao L, Xie Y, Xiong H, Zhao S, Ding Y, Ma Y (2019) EcoTILLING reveals natural allelic variations in starch synthesis key gene TaSSIV and its haplotypes associated with higher thousand grain weight. Genes 10:307

    CAS  Google Scholar 

  • Jaskowiak J, Kwasniewska J, Szurman-Zubrzycka M, Rojek-Jelonek M, Larsen PB, Szarejko I (2020) Al-tolerant barley mutant hvatr.g shows the ATR-regulated DNA damage response to maleic acid hydrazide. Int J Mol Sci 21: 8500

    Google Scholar 

  • Jawher M, Arabi MIE, MirAli N, Till BJ (2018) Efficient discovery of single-nucleotide variations in Cochliobolus sativus vegetative compatibility groups by EcoTILLING. J. Plant Biochem. Physiol. 6:2

    Google Scholar 

  • Joshi E, Kumar D, Lal B, Nepalia V, Gautam P, Vyas AK (2013) Management of direct seeded rice for enhanced resource-use efficiency. Plant Know J 2:119

    Google Scholar 

  • Kashtwari M, Wani AA, Rather RN (2019) TILLING: An alternative path for crop improvement. J Crop Improv 33:83–109

    CAS  Google Scholar 

  • Keller B, Ariza-Suarez D, de la Hoz J, Aparicio JS, Portilla-Benavides AE, Buendia HF (2020) Genomic prediction of agronomic traits in common bean (Phaseolus vulgaris L.) under environmental stress. Front Plant Sci 11: 1001

    Google Scholar 

  • Khursheed S, Raina A, Parveen K, Khan S (2019) Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis. J Saudi Soc Agric Sci. https://doi.org/10.1016/j.jssas.2017.03.00

    Article  Google Scholar 

  • Knoll JE, Ramos ML, Zeng Y et al. (2011) “TILLING for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.).” BMC Plant Biol 11: 81

    Google Scholar 

  • König S, Vogel H-J, Harms H, Worrich A (2020) Physical, chemical and biological effects on soil bacterial dynamics in microscale models. Front Ecol Evol 8:53

    Google Scholar 

  • Krassowski M, Das V, Sahu SK, Misra BB (2020) State of the field in multi-omics research: From computational needs to data mining and sharing. Front Genet 11:1598

    Google Scholar 

  • Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK et al (2021) Understanding omics driven plant improvement and de novo crop domestication: Some examples. Front Genet 12:415

    Google Scholar 

  • Lenaerts B, Collard BC, Demont M (2019) Improving global food security through accelerated plant breeding. Plant Sci 287:110207

    CAS  Google Scholar 

  • Le Signor C, Savois V, Aubert G et al. (2009) “Optimizing TILLING populations for reverse genetics in Medicago truncatula.” Plant Biotechnol J 7(5): 430–441

    Google Scholar 

  • Leung H, Wu C, Baraoidan M et al. (2001) “Deletion mutants for functional genomics: progress in phenotyping, sequence assignment, and database development.” In: Rice Genetics, Brar D, Hardy B, Khush G, (eds), vol. 4, pp. 239–251, International Rice Research Institute

    Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23:184–186

    CAS  Google Scholar 

  • Maghuly F, Marzban G (2021) Editorial: Omics technologies toward systems biology. Front Genet 12:1798

    Google Scholar 

  • Manoharan L, Kushwaha SK, Ahrén D, Hedlund K (2017) Agricultural land use determines functional genetic diversity of soil microbial communities. Soil Biol Biochem 115:423–432

    CAS  Google Scholar 

  • Mart´ın M, Ramiro B, Mart´ınez-Zapater JM, Alonso-Blanco C (2009) “A high-density collection of EMS-induced mutations for TILLING in Landsberg erecta genetic background of Arabidopsis.” BMC Plant Biol 9: 147

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18(4):455–457

    CAS  Google Scholar 

  • Miedaner T, Boeven ALG-C, Gaikpa DS, Kistner MB, Grote CP (2020) Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize. Int J Mol Sci 21:9717

    CAS  Google Scholar 

  • Minoia S, Petrozza A, D’Onofrio O et al. (2010) “A new mutant genetic resource for tomato crop improvement by TILLING technology.” BMC Res Notes 3: 69

    Google Scholar 

  • Mo Y, Howell T, Vasquez-Gross H, de Haro LA, Dubcovsky J, Pearce S (2018) Mapping causal mutations by exome sequencing in a wheat TILLING population: A tall mutant case study. Mol Genet Genomics 293:463–477

    CAS  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol Biotechnol Equip: 1–16

    Google Scholar 

  • Palansooriya KN, Wong JTF, Hashimoto Y, Huang L, Rinklebe J, Chang SX, Bolan N, Wang H, Ok YS (2019) Response of microbial communities to biochar-amended soils: A critical review. Biochar 1:3–22

    Google Scholar 

  • Pereyre S, Bénard C, Bres C, Le Roy C, Mauxion JP, Rideau F, Sirand-Pugnet P, Henrich B, Bebear C (2018) Generation of Mycoplasma hominis gene-targeted mutants by targeting-induced local lesions in genomes (TILLING). BMC Genomics 19(1):525. https://doi.org/10.1186/s12864-018-4917-1

    Article  CAS  Google Scholar 

  • Perry JA, Wang TL, Welham TJ et al (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131(3):866–871

    CAS  Google Scholar 

  • Perry JA, Brachmann A, Welham T et al. (2009) “TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethylmethanesulfonate alleles toward glycine replacements.” Plant Physiol 151(3): 1281–1291

    Google Scholar 

  • Podwyszyńska M, Markiewicz M, Broniarek-Niemiec A, Matysiak B, Marasek-Ciolakowska A (2021) Apple autotetraploids with enhanced resistance to apple scab (Venturia inaequalis) due to genome duplication-phenotypic and genetic evaluation. Int J Mol Sci 22:527

    Google Scholar 

  • Raina A, Laskar R, Khursheed S, Amin R, Tantray Y, Parveen K, Khan S (2016) Role of mutation breeding in crop improvement -past, present and future. Asian Res J Agriculture. https://doi.org/10.9734/arja/2016/29334

  • Raja RB, Agasimani S, Jaiswal S, Thiruvengadam V, Sabariappan R, Chibbar RN, Ram SG (2017) EcoTILLING by sequencing reveals polymorphisms in genes encoding starch synthases that are associated with low glycemic response in rice. BMC Plant Biol 17:13

    Google Scholar 

  • Rajaratnam B, Roberts S, Sparks D, Yu H (2019) Influence diagnostics for high-dimensional lasso regression. J Comput Graph Stat 28:877–890

    Google Scholar 

  • Sabetta W, Alba V, Blanco A, Montemurro C (2011) SunTILL: A TILLING resource for gene function analysis in sunflower. Plant Methods 7(1):20

    CAS  Google Scholar 

  • Salgotra RK, Stewart JCN (2020) Functional markers for precision plant breeding. Int J Mol Sci 21:4792

    CAS  Google Scholar 

  • Schaarschmidt S, Fischer A, Lawas L, Alam R, Septiningsih E, Bailey-Serres J, Jagadish S, Huettel B, Hincha D, Zuther E (2020) Utilizing PacBio Iso-Seq for novel transcript and gene discovery of abiotic stress responses in Oryza sativa L. Int J Mol Sci 21:8148

    CAS  Google Scholar 

  • Schmidt JE, Kent AD, Brisson VL, Gaudin AC (2019) Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7:1–18

    Google Scholar 

  • Sestili F, Botticella E, Bedo Z, Phillips A, Lafiandra D (2010) Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Mol Breeding 25(1):145–154

    CAS  Google Scholar 

  • Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genomics 2011: 314829, https://doi.org/10.1155/2011/314829

  • Singh S, Sharma SN, Prasad R (2001) The effect of seeding and tillage methods on productivity of rice–wheat cropping system. Soil till. Res. 61:125–131

    Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005a) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23(1):75–81

    CAS  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005b) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    CAS  Google Scholar 

  • Slade AJ, McGuire C, Loeffler D, Mullenberg J, Skinner W, Fazio G, Holm A, Brandt KM, Steine MN, Goodstal JF, Knauf VC (2012) Development of high amylose wheat through TILLING. BMC Plant Biol 12:69

    CAS  Google Scholar 

  • Spencer-Lopes MM, Forster BP, Jankuloski L (2018) Manual on mutation breeding and introduction to plant breeding and selection. Plant Breeding and Genetics Subprogramme Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture Vienna, Austria

    Google Scholar 

  • Stephenson P, Baker D, Girin T et al. (2010) “A rich TILLING resource for studying gene function in Brassica rapa.” BMC Plant Biol: 10, article 62

    Google Scholar 

  • Sui X, Zhang R, Frey B, Yang L, Li M-H, Ni H (2019) Land use change effects on diversity of soil bacterial, Acidobacterial and fungal communities in wetlands of the Sanjiang Plain, northeastern China. Sci Rep 9:1–14

    CAS  Google Scholar 

  • Suzuki T, Eiguchi M, Kumamaru T et al (2008) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Genet Genomics 279(3):213–223

    CAS  Google Scholar 

  • Taheri S, Abdullah TL, Jain SM, Sahebi M, Azizi P (2017) TILLING, high-resolution melting (HRM), and next-generation sequencing (NGS) techniques in plant mutation breeding. Mole Breed 37

    Google Scholar 

  • Talam`e V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) “TILLMore, a resource for the discovery of chemically induced mutants in barley.” Plant Biotechnol J 6(5): 477–485

    Google Scholar 

  • Till BJ, Reynolds SH, Greene EA et al (2003a) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13(3):524–530

    CAS  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC (2003b) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    CAS  Google Scholar 

  • Till BJ, Cooper J, Tai TH et al. (2007) “Discovery of chemically induced mutations in rice by TILLING.” BMC Plant Biol 7: 19

    Google Scholar 

  • Triques K, Sturbois B, Gallais S et al (2007) Characterization of Arabidopsis thaliana mismatch specific endonucleases: Application to mutation discovery by TILLING in pea. Plant J 51(6):1116–1125

    CAS  Google Scholar 

  • Uauy C, Paraiso F, Colasuonno P et al. (2009) “A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat.” BMC Plant Biol 9: 115

    Google Scholar 

  • Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MG (2019) Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun 10:1–10

    CAS  Google Scholar 

  • Wang N, Wang Y, Tian F et al (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180(4):751–765

    CAS  Google Scholar 

  • Wang X, Xu Y, Hu Z, Xu C (2018) Genomic selection methods for crop improvement: Current status and prospects. Crop J. 6:330–340

    Google Scholar 

  • Wen N, Osorio CE, Brew-Appiah RAT, Mejías JH, Alam T, Kashyap S, Reinbothe S, Reinbothe C, Moehs CP, von Wettstein D, Rustgi S (2022) Targeting induced local lesions in the wheat DEMETER and DRE2 genes, responsible for transcriptional derepression of wheat gluten proteins in the developing endosperm. Front Nutr 9:847635. https://doi.org/10.3389/fnut.2022.847635

    Article  CAS  Google Scholar 

  • Wu JL, Wu C, Lei C et al (2005) Chemical- and irradiation induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59(1):85–97

    CAS  Google Scholar 

  • Xin Z, LiWang M, Barkley NA et al. (2008) “Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population.” BMC Plant Biol 8: 103

    Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    CAS  Google Scholar 

  • Zhang H, Yin L, Wang M, Yuan X, Liu X (2019) Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations. Front Genet 10:189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siyal, A.L., Sial, S., Hossain, A., Chang, A.G. (2024). Targeting Induced Local Lesions in Genomes: A Transgenic Approach for the Improvement of Desirable Crop in the Current Era of the Changing Climate. In: Chakraborty, R., Mathur, P., Roy, S. (eds) Food Production, Diversity, and Safety Under Climate Change. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-51647-4_19

Download citation

Publish with us

Policies and ethics