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Abstract This Brief aims to discuss the potential of Recurrent Neural Networks 
(RNNs) for indirect data-driven control. Indeed, while RNNs have long been known 
to be universal approximators of dynamical systems, their adoption for system iden-
tification and control has been limited by the lack of solid theoretical foundations. 
We here intend to summarize a novel approach to address this gap, which is struc-
tured in two contributions. First, a framework for learning safe and robust RNN 
models is devised, relying on the Incremental Input-to-State Stability (. δISS) notion. 
Then, after a. δISS black-box model of the plant is identified, its use for the design of 
model-based control laws (such as Nonlinear MPC) with closed-loop performance 
guarantees is illustrated. Finally, the main open problems and future research direc-
tions are outlined. 

1 Introduction 

In recent decades, the control systems community has devoted an increasing research 
interest to data-driven control. This term relates to the approaches in which the control 
system is directly synthesized based on the data collected from the physical plant to be 
controlled (direct approaches), or designed relying on a dynamical model identified 
from such data (indirect approaches). 

The common rationale behind these methods is that retrieving first-principle mod-
els of physical systems is generally a time-consuming task, and these models are often 
valid only in a neighborhood of the nominal operating conditions. Such limitations 
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arise, e.g., from assumptions needed to obtain reasonable analytical models, or from 
the estimation of their unknown parameters, which is typically carried out by locally 
perturbing the operating conditions. Data-driven control aims to address these lim-
itations, exploiting the information embedded in the measured data to synthesize 
control systems that are as accurate and global as possible, while minimizing the 
need for human intervention in the design phase. 

In this context, researchers and engineers soon realized that many of the tools and 
methodologies developed within the deep learning community could find relevant 
applications for data-driven control. Neural Networks (NNs), and in particular Recur-
rent Neural Networks (RNNs), have been the object of many research efforts and 
engineering applications, see [ 21], owing to their advanced capabilities of modeling 
dynamical systems, for which they are known universal approximators. Although 
these modeling capabilities have been known for decades, the use of RNNs for 
learning dynamic systems has only recently been made effective by the increased 
availability of data, the development of RNN architectures less prone to vanishing 
and exploding gradient problems [ 20], and the development of open source software 
platforms for training them. 

In light of their flexibility, there exists a multitude of different data-driven con-
trol strategies making use of NNs and RNNs [ 9]. In this work, we focus on (i) the  
use of RNNs for black-box nonlinear system identification and (ii) the design of 
theoretically-sound control laws based on the learned RNN models. By resorting to 
this indirect data-driven control paradigm, one can exploit RNNs’ modeling capabil-
ities while relying on the vast literature of nonlinear model-based control strategies, 
such as Nonlinear Model Predictive Control (NMPC). 

Although RNN-based NMPC has been successful in numerous applications, such 
a strategy has often garnered criticism by the control systems community, due to the 
lack of solid theoretical foundations guaranteeing the accuracy of the learned mod-
els, let alone the closed-loop stability and performances. Despite these clear goals, 
only limited theoretical results, mainly related to the simplest RNN architecture (i.e. 
“vanilla” RNNs), had been obtained [ 25]. Researchers have indeed struggled to build 
a theoretical framework for the adoption of more advanced RNN architectures, such 
as Gated Recurrent Units (GRU) and Long Short Term-Memory (LSTM) networks, 
due to their structural complexity. 

Contributions 

This work is intended to outline some contributions given in [ 6] that aim to fill 
the above-mentioned methodological and theoretical gaps, establishing a novel and 
theoretically-sound framework for RNN-based indirect data-driven control. The 
approach is structured in two contributions. 

Learning stable RNN models—A methodology for learning “safe” and “robust” 
RNN models is devised, by resorting to classical nonlinear stability notions such 
as the Incremental Input-to-State Stability (. δISS, [ 1]). To this end, novel sufficient 
conditions on the weights of several RNN architectures, such as Neural NARXs 
(NNARXs), as well as more advanced RNNs like GRUs and LSTMs, have been pro-
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posed in [ 7, 8, 24], respectively. These conditions are leveraged to devise a training 
procedure for learning RNNs with . δISS certification [ 9]. 

Control design—Based on the identified . δISS RNN models, several control archi-
tectures with closed-loop guarantees are devised. One approach relies on the design 
of a state observer with exponential convergence guarantees to synthesize an NMPC 
law [ 6, 10]. Relying on the model’s . δISS, this control strategy can guarantee nom-
inal closed-loop stability and recursively feasibility provided that the cost function 
is designed according to the proposed criterion, which makes the design procedure 
fairly easy. For the sake of compactness, only this control architecture is reported 
here, see Sect. 3.2. More involved NMPC architectures, able to attain asymptotic 
offset-free tracking of piecewise-constant reference signals, can also be synthesized, 
as shown in [ 12, 14]. These architectures rely on the enlargement of the RNN model 
with integral action and on the design of a state observer for the resulting enlarged 
system, which is provenly enabled by the . δISS of the RNN model itself. 

Remarkably, the proposed framework for learning . δISS RNN models has also 
been shown to enable the design of a variety of other control architectures with 
closed-loop guarantees. To mention a few, in [ 22, 23] a disturbance estimation-
based NMPC has been devised for LSTM models, whereas in [ 11] an Internal Model 
Control (IMC) architecture with local stability guarantees has been proposed. This 
latter control strategy has been shown to attain closed-loop performances close to 
those of NMPC laws at a fraction of their online computational burden, making it 
suitable for implementation on embedded control boards with limited computational 
resources. 

The following notation is adopted here. Given a vector.v ∈ R
n , we denote by. v' its 

transpose and by .||v||p its .p-norm. The Hadamard (element-wise) product between 
two vectors . v and .w of the same dimensions is denoted as .v ◦ w. Given a matrix 
. A, .||A||p is used to indicate its induced .p-norm. Time-varying vectors are denoted 
by the time index . k as a subscript. Sequences of vectors spanning from time .k1 to 
.k2 ≥ k1 are denoted as .vk1:k2 = {vk1 , vk1+1, ..., vk2}. 

2 Learning Stable RNN Models 

Let us consider an RNN in the state-space form 

.Σ(Φ) :
{
xk+1 = f (xk, uk;Φ)

yk = g(xk;Φ)
, (1) 

where .xk ∈ R
nx , .uk ∈ U ⊆ R

nu , and .yk ∈ R
ny denote the state, input, and output 

vectors, respectively, and .nu = ny for simplicity. The exact expression of the state 
transition function. f (·) and of the output function.g(·) depends on the specific RNN 
under consideration; see [ 6]. These functions are parametrized by the weights . Φ,
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which are learned during the training procedure. In the following, let us compactly 
denote the state evolution of the system by .xk(x0, u0:k−1;Φ), obtained initializing 
(1) in .x0 and feeding it with the input sequence .u0:k−1. 

Recalling the definitions of .K∞ and .KL functions from [ 6, 9], we can now for-
mulate the considered stability notion. Note that we here restrict the analysis to the 
. δISS property, as it is the strongest and most useful property for the control synthesis. 
Other less strict stability notions are available in [ 6]. 

Definition 1 (. δISS [ 1]) System (1) is regionally . δISS in its invariant set .X if there 
exist a .KL function . β and a .K∞ function . γ such that, for any pair of initial states 
.xa,0 ∈ X and.xb,0 ∈ X , and any pair of input sequences.ua,0:k ∈ U and.ub,0:k ∈ U , at  
any time step .k ∈ Z≥0 it holds that 

.||xa,k − xb,k||p ≤ β(||xa,0 − xb,0||p, k) + γ
(

max
τ∈{0,...,k−1} ||ua,τ − ub,τ||p

)
, (2) 

where .x∗,k is short for .xk(x∗,0, u∗,0:k−1;Φ). 

Note that the . δISS implies, among other desirable properties, that (i) the effect 
of the initial conditions asymptotically vanishes, meaning that the modeling perfor-
mances of the RNN are asymptotically independent of the random initial conditions; 
(ii) the RNN is robust against input perturbations, since closer input sequences imply 
a tighter asymptotic bound on the distance between the resulting state trajectories; 
(iii) the RNN is bounded-input bounded-state stable; (iv) the RNN admits exactly 
one equilibrium for any constant input .ū ∈ U [ 22]. 

Theorem 1 (. δISS sufficient conditions [ 6, 9]) For each of the considered RNN 
architectures there exist sufficient conditions, in the form of nonlinear non-convex 
inequalities on the network’s weights, compactly denoted as 

.ν(Φ) < 0, (3) 

that guarantee the . δISS in the sense specified by Definition 1. 

Of course, each architecture has different expressions for condition (3). The inter-
ested reader is addressed to [ 7, 8, 13] for the exact expression in the case of NNARXs, 
LSTMs, and GRUs, respectively. Moreover, let us notice that for these architecture 
the . δISS property is exponential, i.e., there exist .μ > 0 and .λ ∈ (0, 1) such that . β
can be expressed as .β(s, k) = μλks. 

2.1 Training Procedure 

Being a known function of the weights, the. δISS condition (3) can be used not only to 
assess a-posteriori the stability of a trained model but can also be enforced during the
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training procedure, allowing one to learn RNN models with. δISS certification. In the 
following, a training algorithm based on the Truncated Back-Propagation Through 
Time (TBPTT, [ 3]) is therefore outlined. A more detailed version of the algorithm 
can be found in [ 6]. 

Assume that .Ntr pairs of input-output training subsequences of length .Ts are 
available, and let them be denoted by .(u{i}

0:Ts , y
{i}
0:Ts ), with .i ∈ I = {0, ..., Ntr }. Such 

subsequences are randomly extracted from the normalized 1 input-output sequences 
recorded from the plant during the experiment campaign. Note that .Ntr and .Ts are 
designed so that the subsequences are partially overlapping, which allows to mitigate 
the vanishing gradient phenomenon [ 20]. 

The training procedure is iterative, where at each iteration (known as epoch) the set 
. I is randomly partitioned in. B batches, denoted by.I{b}. For each batch.b ∈ {1, ..., B}, 
the training loss function is defined as 

.L(I{b};Φ) =
∑
i∈I{b}

MSE
(
yτw :k

(
x0, u

{i}
0:k;Φ

)
, y{i}

τw :k
)

+ ρ
(
ν(Φ)

)
, (4) 

where the first term penalizes the Mean Square Error (MSE) between the measured 
output sequence.y{i}

τw :k and the free-run simulation of the RNN (1) (starting from ran-

dom initial conditions and fed by the input sequence .u{i}
0:k) after a  washout period 

.τw > 0, which accommodates the initial transient. The second term is a regular-
izer that penalizes the violation of the . δISS condition. The loss function gradient 
.∇ΦL(I{b};Φ) is then backpropagated via gradient descent, or by accelerated gradi-
ent descent methods like ADAM and RMSProp [ 2]. 

At the end of each epoch, the performance metrics of the RNN on a validation 
dataset are computed. The training procedure is halted when the stability condition 
(3) is satisfied and the validation performance metrics stop improving, yielding the 
trained weights .Φ★. Finally, the modeling performances of the trained network are 
assessed on an independent test dataset. 

3 Control Design 

3.1 Definition of the Control Problem 

At this stage, let us assume that an RNN model of the system,.Σ(Φ★), has been trained 
and that it satisfies the . δISS conditions described in Theorem 1. It is reminded that 
.X denotes the invariant set with respect to the input set . U . 

Under the Certainty Equivalence Principle (CEP), the control problem consists in 
synthesizing a control law that steers the model’s output .yk to a piecewise-constant 
setpoint. ȳ, while fulfilling the input constraint .uk ∈ U . Letting.Int(S) be the interior

1 Input and output vectors are henceforth assumed to have zero mean and unity scale. 
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Fig. 1 Schematic of an 
RNN-based NMPC 

part of set. S, the following assumption can be introduced to state the control problem 
more formally. 

Assumption 1 Given the output setpoint . ȳ, there exist .x̄ ∈ Int(X ) and . ū ∈ Int(U)

such that the triplet .z̄ = z̄(ȳ) = (x̄, ū, ȳ) constitutes a feasible equilibrium of the 
RNN model (1), that is, .x̄ = f (x̄, ū;Φ★) and .ȳ = g(x̄;Φ★). 

The control problem can now be formally stated. 

Problem 1 Given the . δISS RNN model .Σ(Φ★) and the output setpoint . ȳ, steer the 
system to the feasible equilibrium.z̄(ȳ) by means of a control action that satisfies the 
input constraint . U . 

Leveraging the model’s . δISS, Problem 1 has been addressed with a variety of 
approaches [ 6], such as internal model control [ 11] and nonlinear model predictive 
control, see e.g. [ 23, 24], and [ 14]. In the following, one of the possible NMPC 
approaches is outlined for illustrative reasons. 

3.2 NMPC Design 

In this section, the synthesis procedure of the scheme depicted in Fig. 1 is summa-
rized. Note that, since RNNs are generally black-box models and NMPC is a state-
feedback control law, the model states need to be estimated by a suitably-designed 
state observer. The synthesis of the proposed control architecture is therefore struc-
tured in two steps, i.e., (i) the design of a state observer for the RNN model and 
(ii) the formulation of NMPC’s underlying Finite Horizon Optimal Control Problem 
(FHOCP). 
Weak Detector Design—In order to estimate the states of the black-box models 
from the plant’s input and output data, a state observer with convergence guar-
antees should be designed. While nonlinear state observers can be designed with 
several different approaches, such as moving horizon estimators, we here consider 
Luenberger-like observers. Such observers are generally synthesized by including 
in the model dynamics a suitably designed innovation term. 2 In the following, we

2 See [ 23, 24] for the design of observers for LSTMs, and [ 6] for GRUs. 
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denote such observer by 

.O(Φo) : x̂k+1 = fo(x̂k, uk, yk;Φo), (5) 

parametrized by.Φo = Φ★ ∪ ΦL , where.ΦL collects the observer’s innovation gains. 

Definition 2 (Weak detector) System (5) is said to be a weak detector of model 
(1) if there exist .μo > 0 and .λo ∈ (0, 1) such that, for any initial condition of the 
model .x0 ∈ X , any initial guess .x̂0 ∈ X , and any input sequence .u0:k , it holds that 
.||x̂k − xk||2 ≤ μoλ

k
o||x̂0 − x0||2. 

Relying on the . δISS property of the trained RNN model, in [ 6, 23, 24] sufficient 
conditions on the innovation gains .ΦL which guarantee the state observer to be a 
weak detector have been devised. A notable case is that of GRU models, where the 
devised conditions can be leveraged to formulate the observer design problem as a 
convex optimization program [ 6, Proposition 6.1]. 
Formulation of the FHOCP—According to the MPC paradigm, the control law is 
retrieved by solving, at every time-step. k, the underlying FHOCP. Such an optimiza-
tion problem relies on the RNN predictive model of the system, i.e. (1), to predict the 
future state trajectories throughout the prediction horizon . N , given the current state 
estimate .x̂k yielded by the observer (5) and the applied control sequence. Let there-
fore .uk:k+N−1|k be the control sequence applied throughout the prediction horizon, 
and let .xk:k+N |k indicate the resulting state trajectories, where, of course, .xk|k = x̂k . 
Under this notation, letting.N = {0, ..., N − 1}, the considered FHOCP can be stated 
as follows. 

. min
uk:k+N−1|k

N−1∑
τ=0

(||xk+τ |k − x̄||2Q + ||uk+τ |k − ū||2R
) + Vz̄(xk+N |k) (6a) 

.s.t. xk|k = x̂k (6b) 

.xk+τ+1|k = f (xk+τ |k, uk+τ |k;Φ★) ∀τ ∈ N (6c) 

.uk+τ |k ∈ U ∀τ ∈ N (6d) 

Note that the predictive model is initialized at the observer state estimate in (6b), 
whereas its dynamics are embedded by means of constraint (6c). Input constraint 
satisfaction is ensured by (6d), while .xk+τ |k ∈ X is guaranteed by the invariance 
of . X . The cost function (6a) is composed by two terms. The first term penalizes 
states’ and inputs’ deviations from their equilibrium values . x̄ and . ū, respectively, 
by the weights .Q ≻ 0 and .R ≻ 0. The  term  .Vz̄(xk+N |k) represents a terminal cost 
approximating the cost-to-go from the terminal state .xk+N |k to the equilibrium . x̄
under the constant input . ū. That is, 

..Vz̄(xk+N |k) =
M∑
h=0

||xk+N+h|k − x̄||2S, (6e)
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where .xk+N+h+1|k = f (xk+N+h|k, ū;Φ★) for any .h ∈ {0, ..., M − 1}, .S ≻ 0 is the 
weight, and.M > 0 the simulation horizon. According to the receding horizon prin-
ciple, at every step. k the FHOCP (6) is solved, and the first optimal control action is 
applied, i.e., .uk = u★

k|k . Then, at the next time step, the entire procedure is repeated, 
yielding an implicit state-feedback control law.uk = κMPC(x̂k). 

In this framework, the model’s . δISS property and the state observer’s exponen-
tial convergence have been leveraged to propose conditions on the NMPC design 
parameters (. Q, . R, . S, . N , and . M) that allow attaining nominal closed-loop stability 
and recursive feasibility [ 6, Theorem 6.2]. Such conditions boil down to inequalities 
on the singular values of the weight matrices .Q and . R, and to an explicit minimum 
value for the simulation horizon .M [ 10]. Seen through these lenses, the devised 
NMPC scheme can be regarded as a constrained quasi-infinite horizon NMPC [ 5], 
where however a minimum prediction horizon is known explicitly. 

3.3 Offset-Free NMPC 

Albeit attaining desirable nominal closed-loop guarantees, applying the control 
scheme proposed in Sect. 3.2 to the plant may result in non-ideal tracking perfor-
mances. The model may indeed be affected by plant-model mismatch, in which case 
zero-error output regulation might not be achieved. For the main RNN architectures, 
this problem has been addressed by resorting to the two traditional approaches for 
offset-free NMPC, namely 

• Integral action-based approaches—In the spirit of [ 17], integrators can be placed 
on the output tracking error so that, as long as the closed-loop stability is preserved, 
robust asymptotic zero-error output regulation is achieved in virtue of the Internal 
Model Principle [ 16]. Applications of such strategy to RNN architectures are 
available in [ 12, 14, 19]. 

• Disturbance estimation-based approaches—Along the lines of [ 18], an approach 
guaranteeing offset-free static performances relies on the enlargement of the sys-
tem model with the disturbance dynamics. This allows the disturbance to be esti-
mated by means of a state observer and to be accounted for and compensated 
for in the NMPC formulation. Applications of this strategy to LSTM models are 
available in [ 22, 23]. 

4 Open Problems and Future Research Directions 

Despite the great potential that RNNs have shown in the context of data-driven 
control, there are several open issues that have been only partially addressed, and 
whose resolution would lead to improved applicability of these strategies, even in
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safety-critical contexts. Below, these issues are briefly outlined, while for more details 
the interested reader is addressed to [ 6]. 

i. Safety verification—The problem of safety verification consists in assessing that 
the RNN model’s output reachable set lies within a “safe” set, e.g., the set of 
physically-meaningful outputs. Safety verification hence allows certifying that 
the model does not generate unsafe or unexpected outputs. While this proce-
dure is notoriously involved for nonlinear systems, especially for RNNs, their 
. δISS certification allows for retrieval of an analytical expression of the output 
reachable set. Such an expression is however conservative in general, calling 
for numerical procedures to approximate the output reachable set and hence for 
RNNs’ probabilistic safety verification algorithms [ 13]. 

ii. Lifelong learning—A common problem in the context of indirect data-driven 
control is ensuring that the identified model remains an accurate approxima-
tion of the plant throughout its lifespan. While in the case of plant’s dramatic 
variations (e.g., due to faults) the common practice is to collect new data and 
learn a new RNN model of the system, in the case of moderate and slow varia-
tions it would be advisable to exploit the online data to adapt the model to these 
changes. This practice is commonly referred to as lifelong learning and should 
be conducted by averting the catastrophic forgetting phenomenon, i.e., the over-
fitting of the most recent data and the consequent forgetting of the past data. For 
black-box RNN models, this issue represents an open research topic, whereas 
for NNARX architectures preliminary results have been reported in [ 15], based 
on a moving horizon estimation approach. 

iii. Physics-based machine learning—One of the research directions that have been 
recently considered to be most promising by the scientific community is that 
of physics-based machine learning. In summary, it consists in exploiting the 
available qualitative knowledge of the physical laws governing the plant in order 
to improve the consistency, interpretability, generalizability, and ultimately the 
accuracy of the model. As discussed in [ 9] and references therein, physical 
consistency can be achieved via a suitable design of the training loss function 
and of the NN architecture, so as to ensure—for example—a known dynamical 
structure or the satisfaction of known relationships between variables [ 4]. 

iv. Robust control design—A control architecture capable of ensuring robustness 
properties with respect to disturbances and plant-model mismatch while satisfy-
ing input and state constraints is one of the most challenging research directions 
when adopting RNN models, due to their structural complexity. A preliminary 
approach in this direction has been proposed in [ 26] for NNARX models and, 
more recently, in [ 22] for LSTM models.
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5 Conclusions 

In this Brief, we summarized a novel framework towards the training of black-box 
Recurrent Neural Network (RNN) models with Incremental Input-to-State Stabil-
ity (. δISS) certification. The proposed method thus allows learning RNNs that are 
safe and robust against input perturbations and mismatches in initial conditions and 
applies to a variety of RNN architectures, such as Neural NARXs, Gated Recur-
rent Units, and Long Short-Term Memory networks. Relying on the model’s . δISS, 
theoretically sound model-based control strategies can be synthesized. In particular, 
in this Brief the design of a nonlinear model predictive control law with nominal 
closed-loop stability guarantees has been outlined, discussing the extension of the 
scheme to also achieve asymptotic zero-error setpoint tracking. Finally, the main 
open problems and promising future research directions, such as safety verification 
of RNN models and physics-based machine learning, have been reported. 
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